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Parameterized Complexity of Feature Selection for

Categorical Data Clustering

SAYAN BANDYAPADHYAY, Department of Computer Science, Portland State University, USA

FEDOR V. FOMIN and PETR A. GOLOVACH, Department of Informatics, University of Bergen,

Norway

KIRILL SIMONOV, Hasso Plattner Institute, University of Potsdam, Germany

We develop new algorithmic methods with provable guarantees for feature selection in regard to categorical
data clustering. While feature selection is one of the most common approaches to reduce dimensionality in
practice, most of the known feature selection methods are heuristics. We study the following mathematical
model. We assume that there are some inadvertent (or undesirable) features of the input data that unneces-
sarily increase the cost of clustering. Consequently, we want to select a subset of the original features from
the data such that there is a small-cost clustering on the selected features. More precisely, for given integers
� (the number of irrelevant features) and k (the number of clusters), budget B, and a set of n categorical data
points (represented bym-dimensional vectors whose elements belong to a finite set of values Σ), we want to
selectm− � relevant features such that the cost of any optimal k-clustering on these features does not exceed
B. Here the cost of a cluster is the sum of Hamming distances (�0-distances) between the selected features of
the elements of the cluster and its center. The clustering cost is the total sum of the costs of the clusters.

We use the framework of parameterized complexity to identify how the complexity of the problem depends
on parameters k , B, and |Σ|. Our main result is an algorithm that solves the Feature Selection problem in
time f (k,B, |Σ|) ·mд (k, |Σ |) · n2 for some functions f and д. In other words, the problem is fixed-parameter
tractable parameterized by B when |Σ| and k are constants. Our algorithm for Feature Selection is based on a
solution to a more general problem, Constrained Clustering with Outliers. In this problem, we want to delete a
certain number of outliers such that the remaining points could be clustered around centers satisfying specific
constraints. One interesting fact about Constrained Clustering with Outliers is that besides Feature Selection,
it encompasses many other fundamental problems regarding categorical data such as Robust Clustering and
Binary and Boolean Low-rank Matrix Approximation with Outliers. Thus, as a byproduct of our theorem,
we obtain algorithms for all these problems. We also complement our algorithmic findings with complexity
lower bounds.

CCS Concepts: • Mathematics of computing→ Combinatorial algorithms; • Theory of computation

→ Parameterized complexity and exact algorithms;

Additional Key Words and Phrases: Robust clustering, PCA, Low-rank approximation, hypergraph
enumeration
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1 INTRODUCTION

Clustering is one of the most fundamental concepts in data mining and machine learning. A consid-
erable challenge to the clustering approaches is the high dimensionality of modern datasets. When
the data contains many irrelevant features (or attributes), an application of cluster analysis with a
complete set of features could significantly decrease the solution’s quality. The typical approach
to overcome this challenge in practice is feature selection. The method is based on selecting a small
subset of relevant features from the data and applying the clustering algorithm only on the selected
features. The survey of [1] provides a comprehensive overview of methods for feature selection in
clustering. Due to the significance of feature selection, there is a multitude of heuristic methods
addressing the problem. However, very few provably correct methods are known [7, 8, 12].

Kim et al. [24] introduced a model of feature selection in the context of k-means clustering.
We use their motivating example here. Decision-making based on market surveys is a pragmatic
marketing strategy used by manufacturers to increase customer satisfaction. The respondents of a
survey are segmented into similar-interest groups so that each group of customers can be treated
in a similar way. Consider such market survey data that typically contains responses of customers
to a set of questions regarding their demographic and psychographic information, shopping expe-
rience, attitude toward new products, and expectations from the business. The standard practice
used by market managers to segment customers is to apply clustering techniques w.r.t. the whole
set of features. However, depending on the application, responses corresponding to some of the fea-
tures might not be relevant to find the target set of market segments. Also, some of the responses
might contain incomplete or spurious information. To address this issue, Kim et al. [24] considered
several quality criteria to return Pareto-optimal (or non-dominated) solutions that optimize one or
more criteria. One such solution removes a suitable subset of features and clusters the data w.r.t.
the remaining features.

The main objective of this work is to study clustering problems on categorical data. In statistics,
a categorical variable is a variable that can admit a fixed number of possible values. For example, it
could be a gender, blood type, political orientation, and so forth. A prominent example of categori-
cal data is binary data where the points are vectors each of whose coordinates can take value either
0 or 1. Binary data arise in several important applications. In electronic commerce, each transac-
tion can be modeled as a binary vector (known as market basket data) each of whose coordinates
denotes whether a particular item is purchased or not [26, 36]. The most common similarity (or
dissimilarity) measure for categorical data objects is the Hamming distance, which is basically the
number of mismatched attributes of the objects.

2 OUR RESULTS

In this article, we introduce a new model of feature selection w.r.t. categorical data clustering,
which is motivated by the work of Kim et al. [24]. We assume that there are some inadvertent
features of the input data that unnecessarily increase the cost of clustering. Consequently, in our
model, we define the best subset of features (of a given size) as the subset that minimizes the cor-
responding cost of clustering. The goal is to compute such a subset and the respective clusters. We
provide the first parameterized algorithmic and complexity results for feature selection in regard
to categorical data clustering.
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Let Σ be a finite set of non-negative integers. We refer to Σ as the alphabet and we denote
the m-dimensional space over Σ by Σm . Given two m-dimensional vectors x ,y ∈ Σm , the Ham-
ming distance (or �0-distance) dH (x ,y) is the number of different coordinates in x and y, that is,
dH (x ,y) = |{i ∈ {1, . . . ,m} : x[i] � y[i]}|. For a set of indices S ⊂ {1, 2, . . . ,m} and anm×n matrix
A, let A−S be the matrix obtained from A by removing the rows with indices in S . We denote the
columns of A−S by aj

−S
for 1 ≤ j ≤ n. We consider the following mathematical model of feature

selection.

Input: An alphabet Σ, an m × n matrix A with columns a1,a2, . . . ,an such that
aj ∈ Σm for all 1 ≤ j ≤ n, a positive integer k , non-negative integers B
and �.

Task: Decide whether there is a subsetO ⊂ {1, 2, . . . ,m} of size at most �, a par-
tition {I1, I2, . . . , Ik } of {1, 2, . . . ,n}, and vectors c1,c2, . . . ,ck ∈ Σm−|O |

such that
k∑

i=1

∑

j ∈Ii

dH (aj
−O
,ci ) ≤ B.

Feature Selection

In the above definition and all subsequent problem definitions, without loss of generality, we
assume that each cluster is non-empty, i.e., Ii � ∅ for each 1 ≤ i ≤ k . Note that, otherwise, one
could probe different values k ′ < k for the actual number of non-empty clusters. The problem
is defined as a decision problem; however, if the instance is a yes-instance, we would also like
to find such a clustering. For � = 0 and Σ = {0, 1}, Feature Selection is the popular Binary
k-Clustering problem, which is known to be NP-hard for every k ≥ 2 [16]. This makes it natural
to investigate the parameterized complexity of Feature Selection.

Our main result is the following theorem.

Theorem 2.1. Feature Selection is solvable in time f (k,B, |Σ|) ·mд (k, |Σ |) ·n2, where f and д are
computable functions.

In Theorem 2.1, f (k,B, |Σ|) = (k ′B)O (k ′B ) |Σ|k ′B and д(k, |Σ|) = O (k ′), where k ′ = |Σ|k . In
particular, this implies that for fixed k and |Σ|, the problem is fixed-parameter tractable (FPT)1

parameterized by B. Note that in any study concerning the parameterized complexity of a problem,
the value of the parameter is implicitly assumed to be sufficiently small compared to the input size.
Although the parameter B seems to be a natural choice from the problem definition, in general B
can be fairly large. Hence, Theorem 2.1 is mostly applicable in the scenario when for the selected
features the cost of clustering B is small and thus the points are well clustered on the selected
features. Even in this case, the problem is far from being trivial. One can think of our problem as
a problem from the broader class of editing problems, where the goal is to check whether a given
instance is close to a “structured” one. In particular, our problem can be seen as the problem of
editing the input matrix after removing at most � rows such that the resulting matrix contains at
most k distinct columns and the number of edits does not exceed the budget B. In this sense, our
work is in line with the work of [21] on matrix completion and [18] on clustering. Note that in
many applications it is reasonable to assume that k and |Σ| are bounded, as the alphabet size and
the number of clusters are small in practice. Indeed, for binary data, |Σ| = 2.

1A problem is FPT or fixed-parameter tractable parameterized by a set of parameters if it can be solved by algorithms that
are exponential only in the values of the parameters while polynomial in the size of the input.
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7:4 S. Bandyapadhyay et al.

Another interesting property of our algorithm is that the running time does not depend on the
number � of irrelevant features. In particular, for fixed k , B, and |Σ|, it runs in polynomial time even
when � = Ω(m). Also, the theorem could be used to identify the minimum number � of irrelevant
features such that the cost of k-clustering on the remaining features does not exceed B. Note that
our time complexity also exponentially depends on the number of clusters k . In this regard, one
can compare our result with the result in [18] that shows that the binary version of the problem
with � = 0 (Binary k-Clustering) is FPT parameterized by B only. However, in the presence of
irrelevant features, the dependence on k is unavoidable as we state in our next theorem.

Theorem 2.2. Feature Selection is W[1]-hard parameterized by

• either k + (m − �)
• or �

even when B = 0 and Σ = {0, 1}. Moreover, assuming the Exponential Time Hypothesis (ETH),

the problem cannot be solved in time f (k ) ·mo (k ) ·nO (1) for any function f , even when B = 0 and the
alphabet Σ is binary.

Note that when B = 0 and Σ = {0, 1}, from Theorem 2.1 it follows that Feature Selection can
be solved in time f (k ) ·mд (k ) ·n2. Theorem 2.2 shows that the dependence of such a function д on
k is inevitable unless W[1] = FPT, and д(k ) is unlikely to be sublinear up to ETH.

In order to prove Theorem 2.1, we prove a more general theorem about Constrained Cluster-
ing with Outliers. In this problem, one seeks a clustering with centers of clusters satisfying the
property imposed by a set of relations. Constrained clustering [17] was introduced as the tool in
the design of approximation algorithms for binary low-rank approximation problems. The Con-
strained Clustering with Outliers problem is basically the robust variant of this problem.
Besides Feature Selection, Constrained Clustering with Outliers encompasses a number
of well-studied problems around robust clustering, low-rank matrix approximation, and dimen-
sionality reduction. Our algorithm for constrained clustering implies fixed-parameter tractability
for all these problems.

To define constrained clustering, we need a few definitions. A p-ary relation on Σ is a collection
of p-tuples whose elements are in Σ.

Definition 2.3 (Vectors satisfying R). An ordered set C = {c1,c2, . . . ,cp } of m-dimensional
vectors in Σm is said to satisfy a set R = {R1,R2, . . . ,Rm } of p-ary relations on Σ if for all 1 ≤ i ≤ m,
the p-tuple formed by the ith coordinates of vectors fromC , that is, (c1[i],c2[i], . . . ,cp[i]), belongs
to Ri .

We define the following constrained variant of robust categorical clustering.

Input: An alphabet Σ, an m × n matrix A with columns a1,a2, . . . ,an such that
aj ∈ Σm for all 1 ≤ j ≤ n, a positive integer k , non-negative integers B
and �, a set R = {R1,R2, . . . ,Rm } of k-ary relations on Σ.

Task: Decide whether there is a subsetO ⊂ {1, 2, . . . ,n} of size at most �, a par-
tition I = {I1, I2, . . . , Ik } of {1, 2, . . . ,n} \O , and a setC = {c1,c2, . . . ,ck }
ofm-dimensional vectors in Σm such that C satisfies R and

k∑

i=1

∑

j ∈Ii

dH (aj ,ci ) ≤ B.

Constrained Clustering with Outliers

ACM Transactions on Computation Theory, Vol. 15, No. 3-4, Article 7. Publication date: December 2023.
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Thus, in Constrained Clustering with Outliers we want to identify a set of outliers ai , i ∈
O , such that the remaining n − � vectors could be partitioned into k clusters {I1, I2, . . . , Ik }. Each
cluster Ij could be identified by its center c j ∈ Σm as the set of vectors that are closer to c j ∈ Σm

than to any other center (ties are broken arbitrarily). Then the cost of each cluster Ij is the sum
of the Hamming distances between its vectors and the corresponding center c j ∈ Σm . However,
there is an additional condition that the set of cluster centers C = {c1,c2, . . . ,ck } must satisfy the
set of k-ary relations R. And the total sum of costs of all clusters must not exceed B. We prove the
following theorem.

Theorem 2.4. Constrained Clustering with Outliers is solvable in (kB)O (kB ) |Σ|kB ·nO (k ) ·m2

time.

The connection between Constrained Clustering with Outliers and Feature Selection
is established in the following lemma.

Lemma 2.5. For any instance (D,k,B, �) of Feature Selection, one can construct in time O (mn+
k · |Σ|k ) an equivalent instance (A,k ′,B′, �′,R ) of Constrained Clustering with Outliers such

that A is the transpose of D, k ′ = |Σ|k , B′ = B, and �′ = �.

Theorem 2.1 follows from Theorem 2.4 and Lemma 2.5. Connections of constrained clustering
with several other clustering and low-rank matrix approximation problems have been established
in the literature [17]. Similarly, Theorem 2.4 allows to design parameterized algorithms for robust
variants of these problems.

Robust low-rank matrix approximation. Here we discuss two problems where for a given matrix
of categorical data, we seek to remove � columns such that the remaining columns are well approx-
imated by a matrix of small rank. The vanilla case of the �0-Low Rank Approximation problem
is the following. Given anm ×n matrix A over GF(p) (a finite field of order p for a positive integer
p), the task is to find an m × n matrix B over GF(p) of GF(p)-rank at most r that is closest to A in
the �0-norm; i.e., the goal is to minimize ‖A − B‖0, the number of different entries in A and B. In
the robust version of this problem, some of the columns of A could be outliers, which brings us to
the following problem.

Input: Anm×n matrixA over GF(p), a positive integer r , non-negative integers
B and �.

Task: Decide whether there is a matrix B of GF(p)-rank at most r , and a matrix
C over GF(p) with at most � non-zero columns such that ‖A−B−C‖0 ≤ B.

Robust �0-Low Rank Approximation

Note that in this definition the non-zero columns of C can take any values. However, it is easy
to see that the problem would be equivalent if the columns ofC were constrained to be either zero
columns or the respective columns ofA. This holds since ifC contains a non-zero column, it could
be replaced by the respective column of A, and the respective column of B can be replaced by a
zero column. This does not increase the cost or the rank of B. Thus, any of the two formulations
allows to restore the column outliers in A from C .

By a reduction [17, Lemma 1] similar to Lemma 2.5, we can show that Theorem 2.4 yields the
following theorem.

Theorem 2.6. Robust �0-Low Rank Approximation is FPT parameterized by B when p and r are
constants.
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Another popular variant of low-rank matrix approximation is the case when the approximation
matrix B is of low Boolean rank. More precisely, let A be a binarym × n matrix. Now we consider
the elements of A to be Boolean variables. The Boolean rank of A is the minimum r such that
A = U ∧ V for a Boolean m × r matrix U and a Boolean r × n matrix V , where the product is
Boolean; that is, the logical ∧ plays the role of multiplication and ∨ the role of sum. The variant
of the low Boolean-rank matrix approximation is the following problem.

Input: A binarym×n matrixA, a positive integer r , non-negative integers B and
�.

Task: Decide whether there is a binary matrix B of Boolean rank ≤ r , and a
binary matrixC with at most � non-zero columns such that ‖A−B−C‖0 ≤
B.

Robust Low Boolean-Rank Approximation

By Theorem 2.4 and a reduction (identical to [17, Lemma 2]) from Robust Low Boolean-Rank
Approximation to Constrained Clustering with Outliers, we have the following.

Theorem 2.7. Robust Low Boolean-Rank Approximation is FPT parameterized by B when r is
a constant.

Finally, we consider clustering with outliers. This problem looks very similar to feature selection.
The only difference is that instead of features (the rows of the matrix A), we seek to remove some
columns of A. More precisely, we consider the following problem.

Input: An alphabet Σ, an m × n matrix A with columns a1,a2, . . . ,an such that
aj ∈ Σm for all 1 ≤ j ≤ n, a positive integer k , non-negative integers B
and �.

Task: Decide whether there is a subset O ⊂ {1, 2, . . . ,n} of size at most �, a
partition of {1, 2, . . . ,n} \O into k sets {I1, I2, . . . , Ik } called clusters, and
vectors c1,c2, . . . ,ck ∈ Σm such that the cost of clustering

k∑

i=1

∑

j ∈Ii

dH (aj ,ci ) ≤ B.

k-Clustering with Column Outliers

Note that k-Clustering with Column Outliers is also a special case of Constrained Clus-
tering with Outliers when every relation Ri ∈ R contains all possible k-tuples over Σ; that is,
there are no constraints on the centers. Hence, by Theorem 2.4, we readily obtain the same result
for this problem. However, in this special case, we show that it is possible to obtain an improved
result.

Theorem 2.8. k-Clustering with Column Outliers is solvable in time 2O (B log B ) |Σ|B · (nm)O (1) .

In particular, the theorem implies that the problem is FPT parameterized by B and |Σ|. We note
that the running time of Theorem 2.8 matches the running time in [18] obtained for the Binary
k-Clustering problem without outliers on binary data. The interesting feature of the theorem
is that the running time of the algorithm does not depend on the number of outliers �, matching
the bound of the problem without outliers. Most of the clustering procedures in robust statistics,
data mining, and machine learning perform well only for a small number of outliers. Our theorem

ACM Transactions on Computation Theory, Vol. 15, No. 3-4, Article 7. Publication date: December 2023.
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implies that if all of the inlier points could be naturally partitioned into k distinct clusters of small
cost, then such a clustering could be efficiently recovered even after arbitrarily many outliers are
added.

Related Work. Constrained Clustering (without outliers) was introduced in [17] as a tool for
designing EPTAS for Low Boolean-Rank Approximation. Robust �0-Low Rank Approxima-
tion is a variant of robust PCA for categorical data. The study of robust PCA, where one seeks for
a PCA when the input data is noisy or corrupted, is a large class of extensively studied problems;
see [9, 34]. There are many models of robustness in the literature; most relevant to our work is the
approach that became popular after the work of [10]. The variant of robust PCA where one seeks
for identifying a set of outliers, also known as PCA with outliers, was studied in [5, 11, 33, 35].

For the vanilla variant, �0-Low Rank Approximation, a number of parameterized and approx-
imation algorithms were developed [4, 17, 18, 25].

Low Boolean-Rank Approximation has attracted much attention, especially in the data min-
ing and knowledge discovery communities. In data mining, matrix decompositions are often used
to produce concise representations of data. Since much of the real data is binary or even Boolean
in nature, Boolean low-rank approximation could provide a deeper insight into the semantics asso-
ciated with the original matrix. There is a big body of work done on Low Boolean-Rank Approx-
imation. We refer to [27, 29–31] for further references on this interesting problem. Parameterized
algorithms for Low Boolean-Rank Approximation (without outliers) were studied in [18].

There are several approximations and parameterized algorithms known for Binary k-
Clustering, which is the vanilla (without outliers) case of k-Clustering with Column Out-
liers and with Σ = {0, 1} [4, 17, 19, 32]. Most relevant to our work is the parameterized algorithm
for Binary k-Clustering from [18]. Theorem 2.8 extends the result from [18] to clustering with
outliers.

Article Outline. The remaining part of this work is organized as follows. We briefly outline our
techniques in Section 3. In Section 4 we describe the FPT algorithm for Constrained Clustering
with Outliers. The improved FPT algorithm for k-Clustering with Column Outliers follows
in Section 5. Next, in Section 6 we present the reduction from Feature Selection to Constrained
Clustering with Outliers. The hardness results are deferred to Section 7. Finally, in Section 8,
we conclude with some open problems.

3 OUR TECHNIQUES

In this section, we give a high-level overview of the techniques used to show our main algorithmic
results; the details and formal proofs are given in Sections 4–6.

Both of our algorithmic results from Theorems 2.4 and 2.8 have at their core the subhyper-
graph enumeration technique introduced by Marx [28]. This is fairly natural since our algorithms
solve generalized versions of the vanilla binary clustering problem, and the only known FPT al-
gorithm [18] for the latter problem parameterized by B relies on hypergraph enumeration as well.
In fact, our algorithm for k-Clustering with Column Outliers closely follows this established
approach of applying the hypergraph construction to clustering problems ([19], and partly [18]).
However, for the Constrained Clustering with Outliers problem the existing techniques do
not work immediately. To deal with this, we generalize the previously used hypergraph construc-
tion. In what follows, we present the key ideas of both algorithms. We begin with the simpler
case of k-Clustering with Column Outliers, even though our main results are for Feature
Selection and Constrained Clustering with Outliers.

For the presentation of our algorithms, we recall standard hypergraph notations and the notion
of a fractional cover of a hypergraph. A hypergraphG (VG ,EG ) consists of a setVG of vertices and
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7:8 S. Bandyapadhyay et al.

a set EG of edges, where each edge is a subset of VG . Consider two hypergraphs H (VH ,EH ) and
G (VG ,EG ). We say that H appears in G at V ′ ⊆ VG as a partial hypergraph if there is a bijection π
between VH and V ′ such that for any edge e ∈ EH , π (e ) ∈ EG , where π (e ) = ∪v ∈eπ (v ). H is said
to appear in G at V ′ ⊆ VG as a subhypergraph if there is a bijection π between V ′ and VH such
that for any edge e ∈ EH , there is an edge e ′ ∈ EG such that π (e ) = e ′ ∩V ′.

A fractional edge cover of H is an assignment ϕ : EH → [0, 1] such that for every vertex
v ∈ VH , the sum of the values assigned to the edges that contain v is at least 1, i.e,

∑
e �v ϕ (e ) ≥ 1.

The fractional cover number ρ∗ (H ) of H is the minimum value
∑

e ∈E ϕ (e ) over all fractional edge
covers ϕ of H . The following theorem is required for our algorithm.

Theorem 3.1 ([28]). Let H (VH ,EH ) be a hypergraph with fractional cover number ρ∗ (H ), and let
G (VG ,EG ) be a hypergraph where each edge has size at most L. There is an algorithm that enumerates,

in time |VH |O ( |VH |) · L |VH |ρ∗ (H )+1 · |EG |ρ
∗ (H )+1 · |VG |2, every subset V ⊆ VG where H appears in G as

a subhypergraph.

3.1 The Algorithm for k-Clustering with Column Outliers

Given an instance (A, k , B, �) of k-Clustering with Column Outliers, we note that at most 2B
distinct columns can belong to “nontrivial” clusters (with at least two distinct columns), exactly like
in the case without the outliers. So we employ a color-coding scheme [2] to partition the columns
in a way so that every column belonging to a nontrivial cluster of a fixed feasible solution is
colored with its own color. Thus, we reduce to multiple instances of the problem we call Restricted
Clustering. In Restricted Clustering, we are given sets of columnsU1,U2, . . . ,Up and a parameter B.
The goal is to select p columns b1,b2, . . . ,bp and a cluster center s such that bt ∈ Ut for 1 ≤ t ≤ p

and
∑p

t=1 dH (bt , s ) ≤ B.
Restricted Clustering is similar to the Cluster Selection problem of [19] and [18], and the

hypergraph-based algorithm to solve it is essentially the same as in [19]. However, next we briefly
sketch the details, as this construction serves as the base for our more general Constrained Clus-
tering with Outliers algorithm. First, guess b1 ∈ U1 in the optimal solution to the instance of
Restricted Clustering. If the cost of the optimal solution is at most B, then dH (b1, s ) is at most B as
well. If we know the set P of at most B positions where b1 and s differ, we can easily identify s by
trying all possible |Σ|B options at these positions. For each option, we can find the closest bi from
each Ui and check whether the total cost is at most B.

To show that we can enumerate all potential sets of deviating positions in FPT time, we identify
the instance with the following hypergraph H (V ,E) for which we apply the crucial structural
result from Lemma 4.1. The verticesV are the positions {1, . . . ,m}. With each column x in

⋃p
i=1Ui ,

we identify a hyperedge containing exactly the positions where x is different from b1. Now the
optimal set P of positions and the optimal columns {bi }pi=1 induce a subhypergraph H0 (V0,E0)
of H such that |V0 | ≤ B and the fractional cover number of H0 is at most two. The latter holds
simply because wherever s is different from b1, at least half of the chosen columns must also
be different from b1; otherwise modifying s to match b1 decreases the cost. If we enumerate all
possible subhypergraphs H0 and all possible locations in H where they occur, we can surely find
the optimal set of locations P . Since |V0 | ≤ B, enumerating all choices for H0 is clearly in FPT time.
For a fixed H0, finding all occurrences in H is in FPT time by Theorem 3.1. Note that applying
Theorem 3.1 results in FPT time only when the fractional cover number of H0 is bounded by a
constant. Also, by a sampling argument one can show that it suffices to consider only thoseH0 with
O (logB) hyperedges. It follows that the number of distinct hypergraphs that we have to consider
for enumeration is bounded by only 2O (B log B ) . Thus, it is possible to bound the dependence on B
in the running time by 2O (B log B ) .
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A specific issue we need to deal with in the k-Clustering with Column Outliers problem
is the following. If we encounter a number of identical columns, we need to treat them as an
indivisible set (initial cluster), as only a cluster with sufficiently many different columns can have
large cost. However, a potential flaw of this approach is that in an optimal solution, identical
columns can belong to different clusters and to the set of outliers. To handle this, we prove in
Lemma 5.1 that the optimal solution can always be “normalized.” Namely, we can rearrange clusters
of the optimal solution in a way that at most one initial cluster is split between a solution cluster
and the set of outliers, and every other initial cluster is completely contained in either one of the
resulting clusters or the set of outliers. Then, guessing the one initial cluster being split solves
the issue. After the color-coding and solving Restricted Clustering, each remaining initial cluster
either is a trivial cluster in the solution or belongs to the outliers. This can be decided greedily.

3.2 The Algorithm for Feature Selection

For Feature Selection, the above-mentioned approach is not applicable, for several reasons. Most
crucially, it does not seem that one can partition the problem into k independent instances of a
simpler single-center selection problem in the way that we reduce k-Clustering with Column
Outliers to k instances of Restricted Clustering (for a fixed coloring). Intuitively, the possibility to
remove a subset of features does not allow such a partition as all the clusters depend simultaneously
on the choice of those features. Moreover, our hardness result shows that for Feature Selection
the running time cannot match with k-Clustering with Column Outliers, as no no (k ) time
algorithm is possible for constant B, assuming ETH.

By Lemma 2.5, for solving Feature Selection, it suffices to solve Constrained Clustering
with Outliers. For the same reasons as with Feature Selection, the approach used for k-
Clustering with Column Outliers fails, as the constraints on the centers do not allow to form
clusters independently. Instead, we generalize the hypergraph construction used for Restricted
Clustering to handle the choice of all k centers simultaneously, as opposed to just one center at
a time. This is the most technical part of the article. The main idea is to base the hypergraph on
k-tuples of columns instead of just single columns. In the next sections, we formalize this intuitive
discussion, presenting the proof in full detail.

4 THE ALGORITHM FOR CONSTRAINED CLUSTERING WITH OUTLIERS

In this section, we prove Theorem 2.4 by giving an algorithm for Constrained Clustering with
Outliers that runs in (kB)O (kB ) |Σ|kB ·nO (k ) ·m2 time. First, we prove a structural lemma that will
be useful for the analysis of the algorithm.

4.1 Structural Lemma

Here we show that an optimal set of centers corresponds to a “good” subhypergraph in a cer-
tain hypergraph. Consider a feasible clustering I = {I1, I2, . . . , Ik } having the minimum cost. Let
{c1,c2, . . . ,ck } be a fixed set of centers corresponding to I. Also, let T be the set of all tuples of
the form (ai1 ,ai2 , . . . ,aik ) such that i j ∈ Ij for all j. Note that we do not actually need to know the
set T—we just introduce the notation for the sake of analysis.

For a k-tuple x = (x1, . . . ,xk ), we denote the tuple (x1[j],x2[j], . . . ,xk [j]) by x[j]. Two k-tuples
x and y are said to differ from each other at location j if x[j] � y[j].

Let C be the k-tuple such that C = (c1,c2, . . . ,ck ). Suppose x = (x1, . . . ,xk ) is such that there
are at most B positions h where x[h] � C[h], and for each 1 ≤ j ≤ m, x[j] ∈ R j . Consider the
hypergraph H defined in the following way with respect to x . The labels of the vertices of H are
in {1, 2, . . . ,m}. For each k-tuple y = (y1, . . . ,yk ) ofT , we add an edge S ⊆ {1, 2, . . . ,m} such that
h ∈ S if x[h] � y[h].
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In the following lemma, we show that the hypergraph H has a “good” subhypergraph.

Lemma 4.1 (Structural Lemma). Suppose the input is a yes-instance. Consider a k-tuple x =
(x1, . . . ,xk ) (not necessarily in T ) such that there are at most B positions h where x[h] � C[h] and
for each 1 ≤ j ≤ m, x[j] ∈ R j . Also, consider the hypergraph H defined above with respect to x . There
exists a subhypergraph H ∗ (V ∗,E∗) of H with the following properties:

(1) |V ∗ | ≤ B.
(2) |E∗ | ≤ 200 lnB.
(3) The indices in V ∗ are the exact positions h such that x[h] � C[h].
(4) The fractional cover number of H ∗ is at most 4.

To prove the above lemma, first, we show the existence of a subhypergraph that satisfies all
the properties except the second one. Let P be the set of positions h such that x[h] � C[h]. Let
H0 (V0,E0) be the subhypergraph ofH induced by P . By definition of x , P contains at most B indices.
Thus, the first property follows immediately. The third property also follows, as V0 = P is exactly
the set of positions h ∈ {1, 2, . . . ,m}, where x[h] � C[h]. Next, we show that the fourth property
holds for H0. In fact, we show a stronger bound.

Lemma 4.2. The fractional cover number of H0 is at most 2.

Proof. Note that the total number of edges ofH0 is τ = |T |. We set the fractional weight of each
edge to 2/τ , making the total weight of the edges 2. We claim that each vertex of H0 is contained
in at least τ/2 edges. This proves that each vertex is covered by a set of edges with the total weight
at least 1.

Consider any vertex h of H0. Suppose there is a 1 ≤ j ≤ k such that for at least �|Ij |/2� columns

in Ij the value at location h is not x j [h]. Note that each such column contributes to Πj−1
t1=1 |It1 | ·

Πk
t2=j+1 |It2 | = τ/|Ij | tuples (y1, . . . ,yk ) ofT such that yj [h] � x j [h]. Thus, the edge corresponding

to each such tuple contains h. It follows that at least �|Ij |/2� · (τ/|Ij |) ≥ τ/2 edges in E0 contain h.
We show that the other case does not occur, completing the proof of the lemma. In the other

case, for all 1 ≤ j ≤ k and less than �|Ij |/2� columns in Ij , the value at location h is not x j [h]. We
prove that this case does not occur. Note that there is a k-tuple z in Rh such that z = x[h]. Consider
replacingC[h] by z at position h ofC . Next, we analyze the change in the cost of the clustering I.
Note that the cost corresponding to positions other than h remains the same. For a 1 ≤ j ≤ k , if
previously c j [h] = x j [h], the cost remains the same. Otherwise, c j [h] � x j [h]. Note that for more
than �|Ij |/2� columns in Ij , the value at location h is x j [h]. Thus, by replacing c j [h] by x j [h], the
cost decrement corresponding to the index j and location h is at least 1. As x[h] � C[h], there is
an index j such that c j [h] � x j [h]. It follows that the overall cost decrement is at least 1, which
contradicts the optimality of the previously chosen centers. Hence, this case cannot occur. �

So far we have proved the existence of a subhypergraph that satisfies all the properties except
the second. Next, we show the existence of a subhypergraph that satisfies all the properties. The
following lemma completes the proof of Lemma 4.1.

Lemma 4.3. Let B ≥ 2. Consider a subhypergraph H0 that satisfies all the properties of Lemma
4.1 except (2). It is possible to select at most 200 lnB edges from H0 such that the subhypergraph H ∗0
obtained by removing all the other edges from H0 satisfies all the properties of Lemma 4.1.

For the proof of the lemma, we need the following form of Chernoff bound.
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Theorem 4.4 ([3]). Let X1, . . . ,Xn be independent 0-1 random variables with Pr[Xi = 1] = pi . Let
X =
∑n

i=1 Xi and μ = E[X ]. Then for 0 < β ≤ 1,

Pr [X ≤ (1 − β )μ] ≤ exp (−β2μ/2),

Pr [X ≥ (1 + β )μ] ≤ exp (−β2μ/3).

Now, the proof of Lemma 4.3 is as follows.

Proof. Recall that τ is the number of edges in H0. Construct a hypergraph H ′0 by selecting
each edge of H0 independently at random with probability 150 ln B

τ
. The expected number of edges

selected is 150 lnB. Also, by Theorem 4.4, with β = 1/3, the probability that at least 200 lnB edges
are selected is at most exp (−150 lnB/27) < 1/B2. Each vertex of H0 is contained in at least τ/2
edges. Thus, the expected number of edges that cover a vertex of H ′0 is at least 75 lnB. Moreover,
by Theorem 4.4, with β = 1/3, the probability that a given vertex ofH ∗0 is covered by at most 50 lnB
edges is at most exp (−75 lnB/18) < 1/B3. Therefore, with probability at least 1−1/B2−B ·1/B3,H ′0
contains at most 200 lnB edges and each vertex of H ′0 is covered by at least 50 lnB edges. Thus, the
fractional cover number of H ′0 is at most 4. Hence, the second and the fourth property are satisfied.
As the vertex set does not get changed, the first and the third property also hold. It follows that
there exists a subhypergraph H ∗0 that contains at most 200 lnB edges from H0 and satisfies all the
properties of Lemma 4.1. �

4.2 The Algorithm for Constrained Clustering

In this section, we describe our algorithm. The algorithm outputs a feasible clustering of minimum
cost if there is a feasible clustering of the given instance. Otherwise, the algorithm returns “NO.”

The Algorithm. First, we consider all k-tuples x = (x1, . . . ,xk ) such that x j is a column of A
for 1 ≤ j ≤ k , and apply the following refinement process on each of them. Here, a k-tuple x of
columns of A is said to differ from R at a position j for 1 ≤ j ≤ m if x[j] � R j .

• Let P ⊆ {1, 2, . . . ,m} be the set of positions where x differs from R.
• If |P | > B, probe the next k-tuple x .
• For each position h ∈ P , replace x[h] by any element of Rh .

Next, for each refined k-tuple x = (x1, . . . ,xk ), we construct a hypergraphG whose vertices are
in {1, 2, . . . ,m}. For eachk-tupley = (y1, . . . ,yk ) of columns ofA, we add an edge S ⊆ {1, 2, . . . ,m}
such that h ∈ S if x[h] � y[h]. For all hypergraphs H ∗0 having at most B vertices and at most
200 lnB edges, we check if each vertex of H ∗0 is contained in at least 1/4 fraction of the edges. If
that is the case, we use the algorithm of Theorem 3.1 to find every place P ′ where H ∗0 appears in
G as subhypergraph. For each such set P ′, we perform all possible B′ ≤ B · k edits of the tuple x
at the locations in P ′. In particular, for each B′, the editing is done in the following way. For each
possible B′ entries (a1, . . . ,aB′ ) in (x1, . . . ,xk ) at the locations in P ′ and each set of B′ symbols
(s1, . . . , sB′ ) from Σ, we put sj at the entry aj for all j. After each such edit, we retrieve the edited
tuple (x1, . . . ,xk ) and perform a sanity check on this tuple to ensure that it is a valid k-tuple center.
In particular, for each index 1 ≤ h ≤ m, if there is a z ∈ Rh such that z = x[h], we tag x as a valid
tuple. Lastly, we output all such valid k-tuples as candidate centers if the corresponding cost of
clustering is at most B. If no k-tuple is output as a candidate center, we return “NO.”

Note that, given a valid k-tuple candidate center z = (z1, . . . ,zk ), one can compute a minimum
cost clustering in the following greedy way, which implies that we can correctly compute the cost
of clustering in the above. At each step i , we assign a new column of A to a center. In particular,
we add a column aj of A to a cluster I ′t such that aj incurs the minimum cost over all unassigned
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columns if it is assigned to a center; i.e., it minimizes the quantity mink
t ′=1 d (aj ,zt ′ ), and zt is

a corresponding center nearest to aj . As we are allowed to exclude � outliers, we assign n − �
columns. The clustering {I ′1, . . . , I ′k } obtained at the end of this process is the output. This finishes
the description of our algorithm.

4.3 Analysis

Again consider the feasible clustering with partition I = {I1, I2, . . . , Ik } and the corresponding cen-
ter tuple C = (c1,c2, . . . ,ck ) having the minimum cost. First, we have the following observation.

Observation 4.5. Suppose for a k-tuple x , x differs fromC at B1 positions. Then, after refinement,
there are at most B1 positions h such that x[h] � C[h]. Moreover, after refinement, dH (x ,C ) ≤ B1 · k .

The first part is true for the following reason. If x was different from R at a position h, then
x[h] � C[h] as well. Thus, refinement is applied for a position h where x[h] already differs from
C[h]. Hence, refinement does not affect a position h where x[h] = C[h]. The moreover part follows
trivially from the first part as x is a k-tuple. Now, it is sufficient to prove the following lemma.

Lemma 4.6. Suppose there is a feasible clustering with partition I = {I1, I2, . . . , Ik } as defined
above. The above algorithm successfully outputs the k-tuple (c1,c2, . . . ,ck ).

Proof. Consider a k-tuple x = (x1, . . . ,xk ) such that the column x j is in cluster Ij . As the
algorithm considers all possible k-tuples of columns in A, it must consider x . By Observation 4.5,
after refinement, there are at most B positions h where x[h] � C[h]. Also, for each 1 ≤ j ≤ m,
x[j] ∈ R j . Let G be the hypergraph constructed by the algorithm corresponding to this refined
x . Note that the hypergraph H defined in Lemma 4.1 is a partial subhypergraph of G. Thus, the
subhypergraph H ∗ of H is also a subhypergraph of G. As we enumerate all hypergraphs having
at most B vertices, at most 200 lnB edges, and at most 4 fractional covering number, H ∗ must be
considered by the algorithm. Let P ′ be the place in G where H ∗ appears. By the third property of
Lemma 4.1, the locations in P ′ are the exact positions h such that x[h] � C[h]. It follows that an
edit corresponding to P ′ generates the tuple C = (c1, . . . ,ck ), as dH (x ,C ) ≤ B · k . It is easy to see
that C also passes the sanity check. Hence, C must be an output of the algorithm. �

Given the tuple center C = (c1, . . . ,ck ), we use the greedy assignment scheme (described in
the algorithm) to find the underlying clustering. Note that given any k-tuple candidate center
z = (z1, . . . ,zk ), this greedy scheme computes a minimum cost clustering, with z1, . . . ,zk being
the cluster centers. Thus, the cost of the clustering computed by the algorithm is at most B. Hence,
the algorithm successfully outputs C as a candidate center. We summarize our findings in the
following lemma.

Lemma 4.7. Suppose the input instance is a no-instance; then the algorithm successfully outputs
“NO.” If the input instance is a yes-instance, the algorithm correctly computes a feasible clustering.

4.4 Time Complexity

Next, we discuss the time complexity of our algorithm. The number of choices ofx isnO (k ) . For each
choice ofx , the hypergraphG can be constructed innO (k ) time. The number of distinct hypergraphs
H ∗0 with at most B vertices and at most 200 lnB edges is 2B ·200 ln B = BO (B ) since there are 2B

possibilities for each edge. Now we analyze the time needed for locating a particular H ∗0 in G. For
any tuple y ∈ T , y differs from C in at most B positions. Hence, x differs from y in at most 2B
positions. Thus, the size of any edge in H is at most 2B, and we can remove any edge of G of
size more than 2B. From Theorem 3.1, it follows that every occurrence of H ∗0 in G can be found in

BO (B ) · (2B)4B+1 ·n4k+k ·m2 = BO (B ) ·nO (k )m2 time. If H ∗0 appears at some place inG, it would take
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O ((kB |Σ|)kB ) time to edit x . Hence, in total the algorithm takes (kB)O (kB ) |Σ|B ·nO (k ) ·m2 time. By
the above discussion, we have Theorem 2.4.

Theorem 2.4. Constrained Clustering with Outliers is solvable in (kB)O (kB ) |Σ|kB ·nO (k ) ·m2

time.

5 FPT ALGORITHM FOR k-CLUSTERING WITH COLUMN OUTLIERS

PARAMETERIZED BY B

In this section, we give a proof of Theorem 2.8. Let us recall that the theorem states that k-

Clustering with Column Outliers is solvable in time 2O (B log B ) |Σ|B · (nm)O (1) .

Let (A,k,B, �) be an input of k-Clustering with Column Outliers, where A is an m × n
matrix, k the number of clusters, B the cost of the solution, and � the number of outliers.

Let β be the number of pairwise distinct columns in A. We start with partitioning the columns
of A into sets of identical columns J = {J1, J2, . . . , Jβ }. That is, all columns in each Ji are equal.
We refer to such a set Ji as an initial cluster.

We show that for any yes-instance, there is a feasible solution such that the columns of at most
one initial cluster is “split” by the solution. More formally, consider a clustering C = {I1, I2, . . . , Ik }
of {1, 2, . . . ,n} \ O . Then each of the initial clusters Ji is exactly one of the following types with
respect to C:

(i) {Ji } such that there is t with Ji ⊆ It ;
(ii) {Ji } such that Ji is not of type (i), and Ji ⊆ ∪k

j=1Ij ;
(iii) {Ji } such that Ji ⊆ O ;
(iv) {Ji } such that Ji � ∪k

j=1Ij , Ji � O , and there is t with Ji ⊆ It ∪O ; and

(v) {Ji } such that Ji � ∪k
j=1Ij , Ji � O , and there is no t with Ji ⊆ It ∪O .

Lemma 5.1. Let (A,k,B, �) be a yes-instance of k-Clustering with Column Outliers. Then there
is a set O ⊆ {1, 2, . . . ,n} of size � and k-clustering C of {1, 2, . . . ,n} \O of cost at most B such that
every initial cluster of A with respect to C is of type (i), (iii), or (iv). Moreover, there is at most one
initial cluster of type (iv).

Proof. Because (A,k,B, �) is a yes-instance, there is a set of outliers O and a k-clustering of
the remaining vectors of cost at most B. Among all such clusterings, we select a clustering C =
{I1, I2, . . . , Ik } of {1, 2, . . . ,n} \O of cost at most B such that with respect to C,

the number of initial clusters of type (ii) is minimum; (1)

subject to (1)
the number of initial clusters of type (v) is minimum; (2)

and subject to (1) and (2),

the number of initial clusters of type (iv) is minimum. (3)

We claim that C is the required clustering. Targeting toward a contradiction, assume first that there
is an initial cluster of J of type (ii) with respect to C. Without loss of generality, let this cluster
be J1. Then J1 is not fully contained in any cluster of C, but it is fully contained in the union of
all clusters. We convert J1 into a type (i) initial cluster by the following modification of C. Let ci

be the center of cluster Ii for i ∈ {1, . . . ,k }. Also, let a be the unique column corresponding to J1
(the whole initial cluster consists of columns equal to a). Let cq be a center that minimizes the cost
dH (a,ci ) over all centers ci . We construct a new clustering C′ by reassigning the columns of J1
to the cluster Iq . Thus, in the new clustering, J1 becomes of type (i). The assignment of all other
initial clusters remains the same. Since dH (a,cq ) ≤ dH (a,c1), we have that the cost of the new
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clustering C′ is at most B, thus contradicting assumption (1). Hence, there are no initial clusters
of J of type (ii) with respect to C.

We apply the same arguments to the non-outlier part of a type (v) initial cluster with respect to
C. The only difference is that now the type (v) initial cluster becomes type (iv), thus contradicting
assumption (2).

Finally, we already know that there are no type (ii) and (v) initial clusters with respect to C.
Assume that there are at least two, say J1 and J2, initial clusters of type (iv) with respect to C. Then,
there are clustersCi1 andCi2 in C such that J1 ⊆ Ci1 ∪O and J2 ⊆ Ci2 ∪O . (We do not exclude the
possibility of i1 = i2 here.) Let ci1 and ci2 be the centers ofCi1 andCi2 , respectively. Let also a1 and
a2 be the unique columns corresponding to J1 and J2. Without loss of generality, we assume that
dH (a1, ci1 ) ≤ dH (a2, ci2 ). There are two cases: (1) |J2∩Ci2 | ≤ |J1∩O | and (2) |J2∩Ci2 | > |J1∩O |. In
the first case, we can assign additional |J2 ∩Ci2 | columns of Ji to Ci1 and move |Jt ∩Ci2 | columns
of J2 from Ci2 to O . The cost increase is |J2 ∩Ci2 | · (dH (a1, ci1 ) − dH (a2, ci2 )) ≤ 0. Also, the type of
J2 is now changed to (iii) with respect to the new clustering. Thus, the number of type (iv) initial
clusters has decreased by at least 1 and no type (ii) or (iv) clusters were created. For the second case,
assign the |J1 ∩O | columns of J1 fromO toCi1 and move |J1 ∩O | more columns of J2 fromCi2 toO .
The cost increase is |J1 ∩O | · (dH (a1, ci1 ) − dH (a2, ci2 )) ≤ 0. Also, the type of J1 is now changed to
(i) with respect to the new clustering. Thus, in this case also, the number of type (iv) initial clusters
has decreased by 1. In both cases, we constructed clusterings contradicting (3). Hence, there is at
most one initial cluster of type (iv) with respect to C. �

Now, we describe our algorithm. The algorithm tries to find a feasible clustering (if any) that
satisfies the property of Lemma 5.1. As there is at most one initial cluster that can get split, we
can guess it in advance. Suppose Jt is this initial cluster. We can also guess the number of columns
�′ of Jt that would be part of the outliers set. We construct a new instance of the problem that
contains all the columns in Ji for 1 ≤ i ≤ β and i � t , and exactly |Jt | − �′ columns of Jt . Let A′ be
the matrix A containing these columns. Then, our new instance is (A′,k,B, � − �′). The advantage
of working with this instance is that in the desired clustering no initial cluster gets split. Next, we
show how to find such a clustering for this instance.

For simplicity of notations, let us denote the input instance by (A,k,B, �). As no initial cluster
in the desired clustering gets split, an initial cluster either can form its own cluster, becomes part
of the outliers, or gets merged with other initial clusters to form a new cluster. We refer to the last
type of clusters as composite clusters. Now, we have the following simple observation.

Observation 5.2. In a feasible clustering, the total number of initial clusters that can be part of
the composite clusters is at most 2B. The total number of composite clusters is at most B.

Next, we use the color coding technique of [2] to randomly color the initial clusters by one of
the colors in {1, 2, . . . , 2B}. The idea is that with sufficient probability the initial clusters that form
the composite clusters get colored by pairwise distinct colors. Thus, assuming this event occurs, it
is sufficient to select only one initial cluster from each color class to find out such initial clusters.
However, we do not know how to combine those initial clusters. Nevertheless, we can guess such a
combination by trying all possible partitions of {1, 2, . . . , 2B} that contain at most B parts. For each
part, we can also guess the cost of the corresponding composite cluster. By Observation 5.2, the
selected initial clusters corresponding to each part form a composite cluster. Each initial cluster
that is not selected would either form its own cluster or become part of the outliers. However,
an initial cluster that forms its own cluster does not incur any cost. Hence, any subsets of the
appropriate number of non-selected initial clusters can form their own clusters without incurring
any extra cost. However, we need to ensure that the number of outliers is at most �. To ensure this,
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we assign the non-selected initial clusters to the outliers setO in the non-decreasing order of their
cardinalities. This ensures that we can pack the maximum number of initial clusters into O .

In light of the above discussion, the problem boils down to the following Restricted Clustering
problem with exactly one cluster. Let S j be the set of indices of the initial clusters colored by the
color j for all 1 ≤ j ≤ 2B. Also, denote the unique column in Jj by b j for 1 ≤ j ≤ β , and let the
weight of b j ,w j = |Jj |. Fix a partitionT1,T2, . . . ,Tτ of {1, 2, . . . , 2B}. Also, guess τ positive integers
B1,B2, . . . ,Bτ such that

∑τ
i=1 Bi = B. Bi is the guess for the cost of the ith composite cluster.

Fix a part i of the partition, where 1 ≤ i ≤ τ . Let the set of color indices Ti = {i1, i2, . . . , ip }. For
each 1 ≤ t ≤ p, let U i

t = ∪j ∈Sit
b j , i.e., the set of unique columns of the initial clusters that are

colored by color it . The Restricted Clustering problem that we need to solve is the following. We
are given the sets of columns U i

1 ,U
i
2 , . . . ,U

i
p and a parameter Bi . The goal is to select p columns

b j1 ,b j2 , . . . ,b jp and a cluster center si such thatb jt ∈ U i
t for 1 ≤ t ≤ p and

∑p
t=1w jt

·dH (b jt , si ) ≤
Bi .

Next, we will show that Restricted Clustering can be solved in 2O (Bi log Bi ) |Σ|Bi (nm)O (1) time
using the hypergraph-based technique of Marx [28].

5.1 Solving Restricted Clustering

For simplicity, we drop the suffix i from all the notations. Thus, now we are given the sets of
columnsU1,U2, . . . ,Up and a parameter B. Let c be a center corresponding to an optimum feasible
clustering I with the set X = {b j1 ,b j2 , . . . ,b jp } of chosen columns. Also, let U = ∪p

t=1Ut .
Suppose x is a vector such that there are at most B positions h with x[h] � c[h]. Consider the

hypergraph H defined in the following way with respect to x . The labels of the vertices of H are
in {1, 2, . . . ,m}. For each b jt ∈ X , we add w jt

copies of the edge S ⊆ {1, 2, . . . ,m} such that h ∈ S
if x[h] � b jt [h].

Lemma 5.3. Suppose the input is a yes-instance. Consider a vector x such that there is at most B
positions h where x[h] � c[h]. Also, consider the hypergraph H defined above with respect to x . There
exists a subhypergraph H ∗0 (V ∗0 ,E

∗
0 ) of H with the following properties:

(1) |V ∗0 | ≤ B.
(2) |E∗0 | ≤ 200 lnB.
(3) The indices in V ∗0 are the exact positions h such that x[h] � c[h].
(4) The fractional cover number of H ∗0 is at most 4.

To prove the above lemma, first, we show the existence of a subhypergraph that satisfies all
the properties except the second one. Let P be the set of positions h such that x[h] � c[h]. Let
H0 (V0,E0) be the subhypergraph of H induced by P . We show that H0 satisfies the first, third, and
fourth properties mentioned in Lemma 5.3.

By definition of x , P contains at most B indices. The first property follows immediately. Next, we
show that the third property also follows for H0. As V0 ⊆ P , in every position h ∈ V0, x[h] � c[h].
It is sufficient to show that for any position h with x[h] � c[h], h ∈ V0. Consider any such position
h. Then, if there is at least one y ∈ X such that x[h] � y[h], there is an edge e in H that contains
h. Now, h ∈ P by definition. Thus, the edge e ′ = e ∩ P ∈ H0 also contains h. Hence, h ∈ V0. In
the other case, for all y ∈ X , x[h] = y[h]. However, this case does not occur. Otherwise, we can
replace the symbol c[h] by x[h]. The new center c would incur lower cost, as now c[h] = y[h] for
all y ∈ X and previously c[h] � y[h] for all y ∈ X . Next, we show that the fourth property holds
for H0.

Lemma 5.4. The fractional cover number of H0 is at most 2.
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Proof. Note that the total number of edges of H0 is τ =
∑p

t=1w jt
. We claim that each vertex of

H0 is contained in at least τ/2 edges.
Consider any vertex h of H0. Let h be contained in δτ edges. Thus, by definition, (1−δ )τ vectors

ofX (with multiplicity equal to their weights) do not differ from x at locationh. Consider replacing
c[h] by x[h] at position h of c . Next, we analyze the change in the cost of the clustering I. Note
that the cost corresponding to positions other than h remains same. As c[h] � x[h], previously
each of the (1 − δ )τ columns were paying a cost of at least 1 corresponding to position h. Now, as
c[h] is replaced by x[h] and consequently c[h] = x[h], for these columns, the cost decrease is at
least (1 − δ )τ . Now, the cost increase for the remaining δτ columns is at most δτ .

As I is an optimum feasible clustering, the cost decrease must be at most the cost increase. It
follows that δ ≥ 1/2. �

So far we have proved the existence of a subhypergraph that satisfies all the properties except
the second. Next, we prove the existence of a subhypergraph that satisfies all the properties. The
proof of the following lemma is very similar to the proof of Lemma 4.3.

Lemma 5.5. Let B ≥ 2. Consider the subhypergraph H0 that satisfies all the properties of Lemma
5.3 except (2). It is possible to select at most 200 lnB edges from H0 such that the subhypergraph H ∗0
obtained by removing all the other edges from H0 satisfies all the properties of Lemma 5.3.

5.1.1 The Algorithm. We consider all possible columns x ∈ U and for each of them construct
a hypergraph G whose vertices are in {1, 2, . . . ,m}. For each column bj ∈ U , we add w j copies of
the edge S ⊆ {1, 2, . . . ,m} such that h ∈ S if x[h] � bj [h]. For all hypergraphs H0 having at most
B vertices and at most 200 lnB edges, we check if each vertex of H0 is contained in at least 1/4
fraction of the edges. If that is the case, we use the algorithm of Theorem 3.1 to find every place P ′

where H0 appears in G as a subhypergraph. For each such set P ′, we perform all possible B′ ≤ B
edits in x at the locations in P ′. After each such edit, we retrieve the edited vector x and construct
a clustering considering x as its center in the following way. For each 1 ≤ t ≤ p, we select a vector
bj from Ut such that dH (x ,bj ) is the minimum over all bj ∈ Ut . If the cost of this clustering is at
most B, we output x as a candidate center. If no such vector is output as a candidate center, we
return “NO.”

Next, we analyze the correctness and time complexity of this algorithm.

5.1.2 The Analysis.

Lemma 5.6. The above algorithm successfully outputs c as a candidate center.

Proof. Consider any vector x ∈ B. Note that there are at most B positions h where x[h] �
c[h]. Consider the hypergraph G constructed by the algorithm corresponding to x . Note that the
hypergraph H defined in Lemma 5.3 is a partial subgraph of G. Thus, the subhypergraph H ∗0 of H
is also a subhypergraph ofG. As we enumerate all hypergraphs having at most B vertices, at most
200 lnB edges, and at most 4 fractional covering number, H ∗0 must be considered by the algorithm.
Let P ′ be the place inG where H ∗0 appears. By the third property of Lemma 5.3, the locations in P ′

are the exact positionsh such that x[h] � c[h]. It follows that an edit corresponding to P ′ generates
the vector c , as dH (x ,c ) ≤ B. Hence, c must be an output of the algorithm. �

5.1.3 Time Complexity. Next, we discuss the time complexity of our algorithm. For each choice
of x , the hypergraph G can be constructed in nO (1) time. The number of distinct hypergraphs H0

with at most B vertices and at most 200 lnB edges is 2O (B log B ) since there are 2B possibilities for
each edge. Now we analyze the time needed for locating a particular H0 inG. For any vectory ∈ B,
dH (y,c ) ≤ B. By triangle inequality, dH (x ,y) ≤ 2B. Thus, the size of any edge in H is at most 2B,
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and we can remove any edge of G of size more than 2B. From Theorem 3.1, it follows that every
occurrence of H0 inG can be found in BO (B ) · (2B)4B+1 ·n5 ·m2 = BO (B ) ·nO (1)m2 time. If H0 appears
at some place in G, it would take O ((B |Σ|)B ) time to edit x . Hence, in total the algorithm runs in
2O (B log B ) |Σ|B · (nm)O (1) time.

Finally, Theorem 2.8 is proven. We restate it here for convenience.

Theorem 2.8. k-Clustering with Column Outliers is solvable in time 2O (B log B ) |Σ|B · (nm)O (1) .

6 CLUSTERING WITH ROW OUTLIERS

Here we show that Feature Selection is a special case of Constrained Clustering with
Outliers.

Lemma 2.5. For any instance (D,k,B, �) of Feature Selection, one can construct in time O (mn+
k · |Σ|k ) an equivalent instance (A,k ′,B′, �′,R ) of Constrained Clustering with Outliers such

that A is the transpose of D, k ′ = |Σ|k , B′ = B, and �′ = �.

Proof. Given an instance I = (D,k,B, �) of Feature Selection, we construct an instance I ′ =
(A,k ′,B′, �′,R ) of Constrained Clustering with Outliers such that A is the transpose of D,
k ′ = |Σ|k , B′ = B, and �′ = �. The set of constraintsR is defined as follows. Let S = {s1, s2, . . . , s |Σ |k }
be the lexicographic ordered collection of all |Σ|k strings of length k on alphabet Σ. Also, let Q be
the |Σ|k ×k matrix such that the ith row of Q is the ith string of S . Thus, each element of Q is in Σ.
For each column q j of Q with 1 ≤ j ≤ k , we construct a tuple zj = (q j [1],q j [2], . . . ,q j [|Σ|k ]). Let
R be the set of these tuples. To construct R we set Ri = R for all i . This finishes our construction.

Next, we prove that I is a yes-instance of Feature Selection if and only if I ′ is a yes-instance
of Constrained Clustering with Outliers. The lemma follows immediately.

First, suppose I ′ is a yes-instance of Constrained Clustering with Outliers. Let X =

{X1,X2, . . . ,X |Σ |k } be a feasible clustering of the columns ofA\O , the matrixA after removing the
columns inO , whereO is the set of outliers. Also, let c1,c2, . . . ,c |Σ |k be the corresponding centers.
Note that as this clustering satisfies the constraints in R, each tuple (c1[j],c2[j], . . . ,c |Σ |k [j]) is
one of the k tuples of R. Let Y = {Y1,Y2, . . . ,Yk } be the partition of the rows of A \ O , such that
Yt contains all the indices j such that (c1[j],c2[j], . . . ,c |Σ |k [j]) = zt for 1 ≤ t ≤ k . We reorder the
rows of matrix A \O based on this partition. In particular, we modify the row numbers in a way
so that the rows in Y1 become the first |Y1 | rows, the rows in Y2 become the next |Y2 | rows, and so
on (see Figure 1). Now, let us go back to the clustering {X1,X2, . . . ,X |Σ |k }. Note that this is still a
feasible clustering of the new matrix A \O with cost at most B with rows of the centers reordered
in the same way. Indeed, by construction, the reordering of the centers ensures that the center
of Xi is the column vector (z1[i], . . . |Y1 | times , z2[i], . . . |Y2 | times , . . . , zk [i], . . . |Yk | times) (see
Figure 1). Now, note that {Y1,Y2, . . . ,Yk } is a clustering of the columns in D−O . We claim that its
cost is at most B. As |O | ≤ �, it follows that I is a yes-instance of Feature Selection. Note that
some clusters might be empty. But, as they do not incur any cost, we keep them for simplicity.
To analyze the cost, set the center of Yj to the column vector (zj [1], . . . |X1 | times , zj [2], . . . |X2 |
times , . . . , zj [|Σ|k ], . . . |X |Σ |k | times) (see Figure 1). Now, because of the symmetry between the
two clusterings X and Y , their costs are the same. Hence, the claim follows.

Now, suppose I is a yes-instance of Feature Selection and consider a feasible clustering
Y = {Y1,Y2, . . . ,Yk }. Let O be the set of indices of the outliers. Also, let c1,c2, . . . ,ck be the corre-
sponding centers. Note that each string of the form c1[j]c2[j] . . . ck [j] ∈ S . For a string s ∈ S , we
say row j is of type s if c1[j]c2[j] . . . ck [j] = s . Let {X1,X2, . . . ,X |Σ |k } be the partition of the rows

of D−O based on their types. In particular, for the ith string s ∈ S , Xi contains all rows of type s .
Note that {X1,X2, . . . ,X |Σ |k } is also a clustering of the columns of A \ O . We show that the cost
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Fig. 1. Figure showing the clustering X of A \ O and Y of D−O . The common center coordinate values are

shown inside submatrices.

of this clustering is at most B. To analyze the cost, choose the column vector (si [1], . . . |Y1 | times
, si [2], . . . |Y2 | times , . . . , si [k], . . . |Yk | times) as the center vector of the cluster Xi of the columns
of A \O . Note that the centers chosen in this way satisfy the constraints in R, as the center tuple
(s1[j], s2[j], . . . , s |Σ |k [j]) = (q j [1],q j [2], . . . ,q j [|Σ|k ]) corresponding to index j is in R. It follows
that the cost of this clustering is at most B, as it is induced by the clustering Y and the centers
c1,c2, . . . ,ck . �

Lemma 2.5 together with Theorem 2.4 immediately give us Theorem 2.1 with f (k,B, |Σ|) =
(k ′B)O (k ′B ) |Σ|k ′B and д(k, |Σ|) = O (k ′), where k ′ = |Σ|k . The theorem is restated here.

Theorem 2.1. Feature Selection is solvable in time f (k,B, |Σ|) ·mд (k, |Σ |) ·n2, where f and д are
computable functions.

7 LOWER BOUNDS

In this section, we present the lower-bound results. First, we recall a few complexity notions es-
sential to our hardness proofs.

A parameterized problem is a language Q ⊆ Σ∗ × N, where Σ∗ is the set of strings over a finite
alphabet Σ. Respectively, an input of Q is a pair (I ,k ), where I ⊆ Σ∗ and k ∈ N; k is the parameter
of the problem. A parameterized problem Q is fixed-parameter tractable (FPT) if it can be decided
whether (I ,k ) ∈ Q in time f (k ) · |I |O (1) for some function f that depends on the parameter k only.
Respectively, the parameterized complexity class FPT is composed by fixed-parameter tractable
problems. The W-hierarchy is a collection of computational complexity classes: we omit the tech-
nical definitions here. The following relation is known among the classes in the W-hierarchy:
FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[P]. It is widely believed that FPT � W[1], and
hence if a problem is hard for the class W[i] (for any i ≥ 1), then it is considered to be fixed-
parameter intractable. We refer to books [13, 15] for a detailed introduction to parameterized
complexity.
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Fig. 2. An illustration of the reduction in Theorem 2.2 showing a possible input graph, the obtained matrix,

and two possible selections of the inliers.

We also make use of the following complexity hypothesis formulated by Impagliazzo et al. [23]:

Exponential Time Hypothesis (ETH): There is a positive real s such that 3-CNF-
SAT with n variables andm clauses cannot be solved in time 2sn · (n +m)O (1) .

Our lower bounds hold for the Feature Selection problem, and even for its special case where
B = 0. This case may be viewed as the problem of partitioning columns of the input matrix into
clusters where columns in each cluster are identical, except for the outlier rows. We show that this
exact version of Feature Selection is W[1]-hard when parameterized by the number of clusters
k and the number of inliers (n − �), and also W[1]-hard when parameterized by the number of
outliers �.

The first lower bound shows that the result in Theorem 2.1 is tight in the sense that k must be a
constant. This is in contrast to the k-Clustering with Column Outliers problem, for which we
show the FPT algorithm for the stronger parameterization (Theorem 2.8). Thus, Feature Selec-
tion is fundamentally more difficult than k-Clustering with Column Outliers. Also, note that
k-Clustering with Column Outliers is trivially solvable in polynomial time when the cost B
is zero.

Lemma 7.1. Feature Selection is W[1]-hard when parameterized by k + (m − �) when B = 0
and Σ = {0, 1}. Assuming ETH, there is no algorithm solving the problem with B = 0 and the binary

alphabet in timemo (k ) · nO (1) .

Proof. We show a reduction from the Independent Set problem. Given a graph G (V ,E) and
a parameter t , the task in Independent Set is to determine whether there is an independent set
of size at least t in G. Consider an instance (G (V ,E), t ) of Independent Set. Assume that for any
t-sized subset S of V , each of s in S is adjacent to a vertex in V \ S , and there is an edge inside
V \ S . Any graph G can be tweaked to meet this assumption by adding a (t + 2)-sized clique C to
the graph and connecting each vertex of G to each vertex of C . Note that no vertex of C can be in
any independent set of size at least two, and any independent set of the original graph is present
in the newly constructed graph. Thus, the new instance of Independent Set is equivalent to the
original one, and it satisfies the assumption stated.

From (G, t ), we construct an instance of Feature Selection over the alphabet Σ = {0, 1}. The
input matrix A is the incidence matrix of G where rows are indexed by vertices and columns by
edges. Set k = t + 1, � = |V | − t , B = 0. See Figure 2 for an example.

Now it remains to show the correctness of the reduction. Assume there is an independent set
I of size t in G. Let the inliers be the rows corresponding to I , and O be the set of the remaining
outlier rows. Restricted to the inlier rows, every column ofA either is a zero column or has a single

ACM Transactions on Computation Theory, Vol. 15, No. 3-4, Article 7. Publication date: December 2023.



7:20 S. Bandyapadhyay et al.

one since no edge ofG has both ends in I . Thus, there are at most t + 1 distinct columns in A−O , so
there is a zero-cost (t + 1)-clustering. The centroids in this clustering are the following t-columns:
the zero column and all the t possible columns with a single one.

For the other direction of the correctness proof, assume there is a solution to the constructed
Feature Selection instance. Consider the set I of the vertices corresponding to the inlier rows,
and the set O of the outlier rows. By the assumption onG, every vertex in I is adjacent to a vertex
in V \ I , and there is an edge inside V \ I . Thus, A−O has a zero column and all t distinct columns
have a single one. If there is an edge e inside I , then there are at least t + 2 distinct columns in the
matrix since even after removing the rows of O , the column corresponding to e has two ones. In
this case, no zero-cost clustering with t + 1 clusters is possible. Thus, I must be an independent
set.

Thus, the reduction is valid. It is well known that Independent Set is W[1]-hard, and also
not solvable in time f (t ) · |V |o (t ) for any computable function f unless ETH fails. Observing that
k = t + 1 andm − � = t concludes the proof of the lemma. �

Since Lemma 2.5 gives a parameterized reduction from Feature Selection to Constrained
Clustering with Outliers, we immediately get the following corollary.

Corollary 7.2. Constrained Clustering with Outliers is W[1]-hard when parameterized by
k + (n − l ) when B = 0 and Σ = {0, 1}.

We do not get the analogous ETH bound, however, as the number of clusters in the constructed
instance of Constrained Clustering with Outliers is exponential.

The second lower bound shows that bounding both the number of outliers and the cost B is
insufficient for an FPT algorithm as well.

Lemma 7.3. Feature Selection is W[1]-hard when parameterized by � when B = 0 and Σ = {0, 1}.
Assuming ETH, there is no algorithm solving the problem with B = 0 and the binary alphabet in time

mo (�) · nO (1) .

Proof. We show a reduction from the Partial Vertex Cover problem. The input to Partial
Vertex Cover is a graph G (V ,E) and numbers t , q. The problem is to decide whether there is a
subsetC ⊂ V of size at most t such that at least q edges ofG are covered byC . The Partial Vertex
Cover problem is well known to be as hard as Independent Set ([13], Theorem 13.6). That is,
when Partial Vertex Cover is parameterized by t , there is a parameter-preserving reduction
from Independent Set.

Consider an instance (G, t ,q) of Partial Vertex Cover. The idea of the reduction is similar to
that in Lemma 7.1. In short, we argue that choosing t vertices in G in the way that maximizes the
number of covered edges corresponds to removing t rows in the incidence matrix of G in the way
that minimizes the number of distinct columns, up to a certain assumption on G. Next, we show
that formally.

First, we modify G to obtain a new graph G ′(V ′,E ′). Let P be a set of two new vertices, and D
be a set of d new vertices, where d = 5 + t + |E | − q. SetV ′ toV ∪ P ∪D. Keep all edges of G onV ,
and connect each vertex of P to all other vertices of G ′, including the other vertex of P . That is,

E ′ = E ∪ {pv | p ∈ P ,v ∈ V ′ \ {p}} .
The total number of edges in G ′ is |E | + 2 · |V ′ | − 3.

The graph G ′ behaves in the same way as G with respect to Partial Vertex Cover, as stated
in the following claim. Set t ′ = t + 2 and q′ = q + 2 · |V ′ | − 3.

Claim 7.4. The instance (G, t ,q) is a yes-instance of Partial Vertex Cover if and only if
(G ′, t ′,q′) is a yes-instance of Partial Vertex Cover.
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Proof. First, assume there is a subsetC ⊂ V of size at most t covering at least q edges ofG. Set
C ′ = C ∪ P , |C ′ | ≤ t + 2 = t ′, and vertices of P cover the additional 2 · |V ′ | − 3 edges that are not
present in G.

For the other direction, assume there is a subset C ′ ⊂ V ′ of size at most t ′ covering at least q′

edges of G ′. We may assume that P ⊂ C ′; otherwise we may replace any vertex of C by a vertex
of P , and the number of covered edges does not decrease since vertices in P are adjacent to all
vertices. Now,C = C ′ ∩V is a solution for (G, t ,q): |C | ≤ |C ′ \ P | ≤ t , and since |E ′ \ E | = q′ −q,C
must cover at least q edges in G. �

Now we construct the input instance (A,k,B, �) of Feature Selection over the alphabet Σ =
{0, 1}. The input matrix A is the incidence matrix of G ′ where rows are indexed by vertices and
columns by edges. Set k = 1 + |V ′| − t ′ + |E ′ | − q′, � = t ′, B = 0.

To show the correctness of the reduction, first assume there is a set C ⊂ V ′ of size t ′ covering
at least q′ edges in G ′. Let O be the set of rows in A corresponding to C . We claim that there are
at most 1 + ( |V ′ | − t ′) + ( |E ′ | − q′) distinct columns in A−O , that is, at most one zero column, at
most |V ′ | − t ′ columns with a single one corresponding to the vertices ofV ′ \C adjacent toC , and
at most |E ′ | −q′ columns with two ones corresponding to the edges not covered byC . Since there
are at most k distinct columns, the cost of k-clustering is zero if we remove the rows of O .

In the other direction, assume there is a solution to the constructed Feature Selection instance,
that is, a set O of at most t ′ rows such that A−O has at most k distinct columns. Consider the set
C of vertices corresponding to the outlier rows O . First, we show that C must contain P . If this
does not hold, either C ∩ P is empty or |C ∩ P | = 1. Assume C ∩ P is empty; in this case out of
2 · |V ′ | − 3 edges incident to P at most 2t ′ are covered by vertices of C . The uncovered of these
edges correspond to at least 2 · |V ′ | − 3 − 2t ′ columns of A that have still two ones each in A−O ,
and thus they are all distinct. However, the number of clusters is smaller than the number of such
columns since

2 · |V ′ | − 3 − 2t ′ = |V ′ | − 2t ′ − 1 + |V | + d > 1 + |V ′ | − t ′ + |E ′ | − q′ = k,
as d = 3 + t ′ + |E | − q and |E | − q = |E ′ | − q′. This is a contradiction to O being a solution.

In the other case, |C ∩ P | = 1, denote by p the vertex of P that is in C , and by p ′ the other
vertex of P . At most t ′ vertices in V ′ \ {p} are inC , and thus there are at least |V ′ | − 1 − t ′ distinct
columns in A−O that correspond to edges from p toV ′ \C; they each have a single one in the row
corresponding to the second endpoint. There are also at least |V ′| − 2− t ′ distinct columns in A−O

that correspond to edges from p ′ toV ′ \C; they each have two ones in the rows corresponding to
p ′ and the second endpoint. Thus, there are at least 2 · |V ′ | − 3 − 2t ′ distinct columns in A−O , and
we have already shown that this quantity is strictly larger than k , leading to the contradiction.

Now that we have shown P ⊂ C , we argue that all possible columns with less than two ones are
present inA−O , giving an exact bound on the number of distinct columns with two ones. Formally,
since P ⊂ C , there is a zero column in A−O corresponding to the edge inside P . Take any p ∈ P ;
since p ∈ C and any vertex v in V ′ \ C is adjacent to p, there is a column in A−O corresponding
to the edge vp that has a single one in the row corresponding to v . This gives |V ′ | − t ′ distinct
columns with single ones, one for each vertex of V ′ \ C . Thus, there must be at most k − 1 −
( |V ′ | − t ′) = |E ′ | − q′ distinct columns with two ones in A−O . These columns correspond exactly
to the uncovered by C edges of G ′. So C covers at least q′ edges, and (G ′, t ′,q′) is a yes-instance.
This finishes the correctness proof, and from the hardness of Partial Vertex Cover the lemma
follows. �

Clearly, Theorem 2.2, restated next for convenience, follows from Lemma 7.1 together with
Lemma 7.3.
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Theorem 2.2. Feature Selection is W[1]-hard parameterized by

• either k + (m − �)
• or �

even when B = 0 and Σ = {0, 1}. Moreover, assuming the (ETH), the problem cannot be solved in time

f (k ) ·mo (k ) · nO (1) for any function f , even when B = 0 and the alphabet Σ is binary.

8 CONCLUSION

We initiated the systematic study of parameterized complexity of robust categorical data clustering
problems. In particular, for k-Clustering with Column Outliers, we proved that the problem
can be solved in 2O (B log B ) |Σ|B · (nm)O (1) time. Further, we considered the case of row outliers and
proved that Feature Selection is solvable in time f (k,B, |Σ|) ·mд (k, |Σ |)n2. We also proved that we
cannot avoid the dependence on k in the degree of the polynomial of the input size in the running
time unless W[1] = FPT, and the problem cannot be solved in mo (k ) · nO (1) time unless ETH is
false. To deal with row outliers, we introduced the Constrained Clustering with Outliers
problem and obtained the algorithm with running time (kB)O (kB ) |Σ|kB ·m2nO (k ) . This problem is
very general, and the algorithm for it not only allowed us to get the result for Feature Selection
but also led to the algorithms for the robust low-rank approximation problems. In particular, we
obtained that Robust �0-Low Rank Approximation is FPT if k and p are constants when the
problem is parameterized by B. However, even if the low-rank approximation problems are closely
related to the matrix clustering problems, there are structural differences. For instance, we show
that the complexity of clustering with column outliers is different from row outliers; however,
low-rank approximation problems are symmetric. This leads to the question whether Robust �0-
Low Rank Approximation and Robust Low Boolean-Rank Approximation could be solved by
better algorithms specially tailored for these problems. It is unlikely that potential improvements
would considerably change the general qualitative picture. For example, Robust �0-Low Rank
Approximation for p = 2 and � = 0 is NP-complete if k = 2 [14, 22] and W[1]-hard when
parameterized by B [20]. It is also easy to observe that Robust �0-Low Rank Approximation for
p = 2, B = 0, and k = n− �−1 is equivalent to asking whether the input matrix A has n− � linearly
dependent columns. This immediately implies that Robust �0-Low Rank Approximation for p =
2 and B = 0 is W[1]-hard when parameterized by k or n − � by the recent results from the Even
Set problem [6]. The most interesting open question, in our opinion, is whether the exponential
dependence on k in the degree of the polynomial of the input size in the running time produced
by our reduction of Robust �0-Low Rank Approximation to Constrained Clustering with
Outliers could be avoided, even if p is a constant. Can the dependence of k be made polynomial
(or even linear)?
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