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Canonical Quantile Regression

Stephen Portnoya

aUniversity of Illinois at Urbana-Champaign and Portland State University

Abstract

In using multiple regression methods for prediction, one often considers the linear combination of explanatory vari-
ables as an index. Seeking a single such index when here are multiple responses is rather more complicated. One
classical approach is to use the coefficients from the leading Canonical Correlation. However, methods based on
variances are unable to disaggregate responses by quantile effects, lack robustness, and rely on normal assumptions
for inference. An alternative canonical regression quantile (CanRQ) approach seeks to find the linear combination of
explanatory variables that best predicts the τth quantile of the best linear combination of response variables. Applying
this “regression” approach more generally, subsequent linear combinations are chosen to explain what earlier CanRQ
components failed to explain. While numerous technical issues need to be addressed, the major methodological issue
concerns directionality: a quantile analysis requires that the notion of a larger or smaller response be well-defined.
To address this issue, the sign of at least one response coefficient will be assumed to be non-negative. CanRQ results
can be quite different from those of classical canonical correlation, and can offer the kind of improvements offered by
regression quantiles in linear models.

Keywords: Canonical Correlation, index prediction, multivariate regression, regression quantile,
2020 MSC: Primary 62H12, Secondary 62J05 62H20

1. Introduction.

Given explanatory X-variables and Y response variables, we seek to find an index based on the X’s to predict the
best linear combination of Y’s in a quantile regression setting. The approach was motivated by a specific financial
data set listing various measures of the performance of some large U.S. companies. The aim was to use prior com-
pany data to predict future performance; specifically, to define an index in X with better predictive power than CEO
compensation. A detailed statistical analysis of the financial data using the Canonical Regression Quantile (CanRQ)
methodology is presented in Portnoy and Haimberg [14]. Some additional data analysis is added in Section 5.3,
together with a few comments on the earlier analyses. The goal here is to develop the CanRQ method in general,
to provide the underlying theoretical properties, and to present some simulations and examples suggesting that the
methodology is useful and reliable.

A classical approach might be to use the leading Canonical Correlation, which provides a linear combination
of X-variables (the X-index) that is most highly correlated with some linear combination of the Y-variables (the Y-
index). However, the inability of correlation methods to disaggregate responses by quantile effects, their inherent lack
of robustness, and their need for normal assumptions strongly motivates the search for a novel quantile regression
approach. The results here develop such an approach, both for the leading coefficients, and for subsequent coefficients
in analogy with classical Canonical Correlations.

The basic idea is to replace the objective of maximizing the correlation of the X- and Y-indices by that of mini-
mizing the regression quantile loss applied to the difference of the indices; see (2). However, this objective function
is homogeneous in all the coefficients, and so it is minimized globally by setting all X and Y coefficients to zero.
Classical Canonical Correlations solves the corresponding problem by imposing quadratic restraints on both sets of
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coefficients. Here we replace this by imposing an L1 constraint on the Y coefficients only: we require the sum of the
absolute value of the coefficients of the Y-index to be 1.

Regression quantiles, of course, impose an order on the data and so require that directionality be defined. Here we
impose inequality constraints of positivity on at least one response coefficient. This implies that increasing values of
the X-index leads to increasing for those Y variables whose coefficients are constrained to be positive. This defines the
leading “Canonical Regression Quantiles” (CanRQ) component as a constrained regression quantile solution, which
is thus computable using available software (for example, the R quantreg package, Koenker [10])

Subsequent CanRQ components defined to minimize the same regression quantile loss (2) subject to orthogonality
to prior components (as well as the L1 constraint). However, here the sign of the coefficients is not identifiable. Thus,
as described below, an (arbitrary) positivity constraint is introduced to provide well-defined coefficients. Asymptotic
theory is provided to justify Bootstrap approaches to inference. The fact that the standard bootstrap fails for con-
strained estimators leads to using an n-choose-m approach (see Andrews [1]). Some simulations and examples are
quite promising.

2. Interpretation.

This research does not seek to develop a robust version of Canonical Correlations, nor does it try to define a
multivariate notion of quantiles to be used in multivariate regression. The purpose is to develop linear indices based
on multiple dependent and independent variables to which standard linear quantile regression can be applied. This
allows the use of the well-known computational methods and well-considered means of interpretation of regression
quantiles in order to provide a superior regression quantile approach to the linear relationship and dimension reduction
goals of classical Canonical Correlation analysis.

Specifically, a fundamental aim of CanRQ is to allow parameters to be interpreted as regression quantile coeffi-
cients just as classical canonical correlation allows coefficients to be interpreted in terms of least squares regression.
The only difference is that whereas the classical coefficients describe the effect of the explanatory on the conditional
mean of the best linear combination of response variables, the CanRQ coefficients describe the effect on the condi-
tional (τth) quantile. For the classical Y-coefficients, the norm constraints restrict their interpretation in that that can
only indicate relative influence. Nonetheless, this does allow a qualitative interpretation, and the CanRQ Y-coefficients
have an analogous interpretation as indicating the relative response of each variable on the τ-th quantile. That is, the
only difference in interpretation between classical canonical correlation coefficients and CanRQ coefficients is that the
effect on the conditional τth quantile replaces the effect on the conditional mean.

Furthermore, once the coefficients of the responses are determined, they define a Y-index; and the X coefficients
are exactly regression quantile estimates of the Y-index (and so have a direct interpretation as such). While the Y coef-
ficients suggest the influence of the explanatory X-variables on individual Y-responses, the norm and sign constraints
require careful consideration. The L1 norm constraint restricts the interpretation to indicate only a relative effect (just
as is the case for classical coefficients). The sign constraints on the Y-coefficients introduced by the CanRQ method
require additional consideration. In many cases with multivariate responses that are the main focus of this work, all
(or most) of the Y’s measure some common component that might be expected to increase with the X-variables. Thus,
it might be quite reasonable to constrain all the Y-coefficients to be positive. If this is true, the X-regression quantiles
(as a function of the τ probability, defining the quantile) would indicate increasing responses (as τ increases). For
example, the τ = .75 CanRQ Y-index would correspond exactly to the 75th conditional quantile of the response Y-
index; and would also correspond to generally larger values of each of the Y’s. However, if some of the Y-coefficients
are negative, then the interpretation is somewhat different, and more akin to Principal Components. Specifically, if
only one (or a few) Y-coefficients are constrained to be positive and some CanRQ estimates are negative, the signs of
the coefficients separate the Y’s into two sets whose response to the X’s is in opposite directions. This would suggest
that the two sets of variables are related in some way. While this generates a rather more complex interpretation, the
dependence on X’s would still suggest increasing responses for Y’s with positive coefficients and decreasing responses
for those with negative coefficients. Again, note that this is exactly the same form of interpretation as for the classical
canonical correlations, with meaning of conditional mean replaced by that for conditional quantiles.

Because of the orthogonality constraints for subsequent CanRQ components, the more complex kind of inter-
pretation is even more necessary in going beyond the leading component. The orthogonality constraint essentially
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ensures that some Y coefficients will be negative; so there is no simple way to impose constraints intended to provide
monotonic increasing relationships. In fact, CanRQ coefficients are not unique: reversing the signs of all (X and Y)
coefficients does not change the objective function; and so the overall sign is not determined. Thus, to provide speci-
ficity, one of the Y coefficients must be constrained to be positive. By default, for subsequent components the first
Y-coefficient is constrained to be positive in the current software, but the choice is arbitrary. Nonetheless, once the
constraint is chosen, the CanRQ coefficients have a very similar interpretation as for the first component when some
coefficients are negative: the signs of the estimates divide the variables into two groups whose relationship is mono-
tonic (increasing and decreasing) in τ. Again, the X coefficients for each component are exactly regression quantiles
estimates for the corresponding Y-Index. Therefore, CanRQ can provide useful regression quantile interpretations.

To continue the interpretation of subsequent components, note that classical canonical correlations can be used
as a dimension-reduction technique. For this purpose, their application is more concerned with preliminary data
analysis and less concerned with confirmatory inference. In this regard, CanRQ can also be used to reduce dimension.
However, since different quantile levels may lead to rather different estimates, the reductions may vary with the
quantile probability level, τ, and thus may be rather less indicative of the underlying dimension of the data. That is,
for each τ, CanRQ may suggest subsets of the data that should be adequate to analyze that quantile, but these subsets
may vary with τ. Nonetheless, this is not necessarily a disadvantage, as the indication of heterogeneity can be very
useful in avoiding inappropriate interpretations. Furthermore, the dependence of the sign-classification of variables
on the quantile level allows a more nuanced interpretation of variable relationships as being dependent on the size of
the response.

3. Definition and Methodology

The method of Canonical Quantile Regression seeks first to find a linear combination of the response variables
that is best predicted by a linear combination of the explanatory variables in terms of regression quantile objective
functions. The basic idea is as follows: let ρτ(u) = u(τ − I(u < 0)) be the quantile objective function so that the τth
quantile, Qτ of a sample {xi} satisfies

Qτ = min
θ

∑
i

ρτ(xi − θ) . (1)

Given an n × p data matrix, X, of explanatory variables (generally including a constant intercept column) and an
n × q data matrix Y of response variables, we would like to define the first Canonical Quantile Regression as the pair
of coefficient vectors, (α, β) achieving

min
α,β

n∑
i=1

ρτ(x′iβ − y′iα) , (2)

where xi and yi denote the ith rows of X and Y respectively. As noted above, minimizing (2) without constraints would
lead to all coefficients being zero. To reflect the quantile setting and to avoid the lack of robustness of the quadratic
constraints of classical Canonical Correlations, impose the following L1 identity:

q∑
j=1

|α j| = 1 , (3)

where α j are the coordinates of α. However, changing the signs of all coefficients does not change the problem for
τ = .5, and reverses τ and 1 − τ otherwise. That is, something further is needed to define directionality for both
computation and interpretation.

In many (most) applications, the response variables measure related outcomes, and so we expect at least some of
them to be monotonic in the predictors. Since the objective function in (2) is invariant under sign changes (that is,
it does not define the sign of the coefficients), either choice of sign can be made. This suggests imposing the side
conditions: ∑

j

α j = 1 ; α j ≥ 0 j ∈ S , (4)
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where S is a set of Y-indices to be chosen using substantive knowledge of the data. If the Y’s are all thought to be
positively related to X’s, then taking S = {1, . . . , q} might be indicated, but a strict subset S ′ ⊂ S might be preferred
to account for non-significant variables (see below).

Minimizing (2) subject to this constraint is a constrained regression quantile problem, whose solution is well
defined, and it is easily computable since the linear constraints perfectly match the linear programming form of the
regression quantile problem (see Koenker [9], p. 213). Thus, letting (α̂, β̂) solve (2) subject to (3) and (4), consider
α̂ and β̂ to define predictive and response indices (respectively), and call x′iβ and y′iα the observed predictive and
response indices corresponding to the i-th observation (that is, the i-th row of X and Y).

If α j > 0 (for all j), it is possible to reduce to a standard regression quantile problem. From the side condition
(3), we can write α1 = 1 −

∑q
j=2 α j and substitute into the objective function (2) to get

min
α,β

∑
ρτ

yi,1 −

q∑
j=2

yi, jα j + x′iβ

 . (5)

The solution to this minimization problem provides β̂ and {α̂ j} , j ∈ {2, . . . , q} (with α̂1 = 1 −
∑q

j=2 α̂ j ) as standard
regression quantile coefficients. Furthermore, if all α j > 0 , the estimates will all be positive with probability tending
to 1 asymptotically. The coefficient estimates will satisfy all known results for regression quantiles (finite sample,
asymptotic, and computational; see Koenker [9]).

What if only some α j > 0 ? For those α j not assumed to be positive, minimize (1) over all choices for the signs of
α j. For example, suppose α1 > 0 is specified. Define s1 = 1 and let

s(k)
j = ±1 , j ∈ {2, . . . , q} (6)

denote all choices of signs (k = 2, . . . , 2q−1).
Then, for each k, minimizing (1) subject to the constraints α1 > 0 and

∑q
j=2 s(k)

j α j = 1. (with s1 ≡ 1) is a linearly
constrained regression quantile problem. To complete the computation, simply minimize further over all 2q−1 choices
of signs. This is essentially just projecting the unconstrained solution onto a union of constraint cones (instead of just
one).

Note: given one specification for positive signs (say, {α j ≥ 0 : j ∈ S }), any other specification S ′ that agrees
with the α signs produced under S will give exactly the same coefficients. In this sense, there is a certain uniqueness
in the CanRQ methodology: only introducing a positivity constraint on a negative coefficient can provide different
estimates.

4. Extension to Subsequent Canonical Regression Quantiles

Subsequent Canonical Correlation components seek to explain what has not been explained by earlier components.
In the classical case, the quadratic metric provided by normal assumptions makes orthogonality a reasonable criterion
for choosing subsequent components. This criterion is less compelling when considering regression quantiles. Even
for classical Canonical Correlation, orthogonality makes more sense for dimension reduction than for choosing good
predictors.

Nonetheless, the asymptotic theory for regression quantiles relies on the fact that absolute error loss leads to
an approximate quadratic objective function when applied to the data. Furthermore, the author was unable to find
any alternative method that seemed more reasonable in general. Thus, subsequent canonical regression quantile
components will also be defined by requiring orthogonality to previous components. Again, scale specificity will be
obtained by setting the L1 norm of α̂ to one.

Specifically, given leading CanRQ. component, (α̂(1), β̂(1)), let (α̂(2), β̂(2)) solve (1) as for leading case with∑q
j=1 |α̂

(2)
j | = 1 and, say, α(2)

1 ≥ 0 (to specify signs) plus the orthogonality constraint
∑q

j=1 α̂
(2)
j α̂

(1)
j = 0 . Since

subsequent components aim to find differences from earlier components (rather than to estimate responses), no mono-
tonicity (or directionality) constraints are needed. Here, the constraint, α(2)

1 ≥ 0, only serves to fix the sign of the α̂
and β̂ coefficients, which is critical for comparisons and for the use of resampling methods for inference.
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Continue inductively to compute subsequent CanRQ components: at stage j take basis elements for Rq orthogonal
to {α̂(1), . . . , α̂( j−1)}. Project Y onto this subspace, and find α̂( j) as for the leading canonical regression quantile
(including a positivity constraint on at least one α( j)). Of course, the last α̂(q) is defined (simply) by orthogonality to
the first (q − 1) α̂’s.

5. Asymptotics and Inference

The presence of constraints can seriously affect theoretical properties if some α̂ coefficients are negative or are
on the boundary. This can occur with positive probability for finite samples even when all α(k)

j strictly satisfy the
inequality constraints. In such cases, the constrained solution will be a projection into the constraint set. While this
complicates the asymptotic theory, the basic approach is somewhat straightforward and can be found in Chernoff [4].

To describe the general situation, suppose θ̂n is an unconstrained estimator, and satisfies
√

n(θ̂n − θ0)→ Nm(0,Σ) .
Suppose the contraint set, C, can be approximated as an intersection of a finite number (say k < m) of half spaces.
This is called Chernoff regularity of the constraint set, and is true under appropriate smoothness conditions on the
boundary, B, of C. For the estimators here, the constraint set is an intersection of half spaces directly. If θ0 is interior
to C, then θ̂n will also lie in C with probability tending to 1; and the constrained estimator will equal θ̂n and have
the same asymptotically normal distribution. If θ0 lies outside the interior of C, let θ∗ denote the nearest point to θ0
on the boundary, B, in the metric generated by Σ (that is, the projection onto B under Σ). Then θ∗ will lie in a linear
manifold in B, which is an intersection of a finite number (less than k) of half-spaces. Thus, the constrained estimator
will be a mixture of the projection of the unconstrained estimator onto each of the half-space linear boundaries. Since
projection is continuous and linear,

√
n(θ̂n − θ0) will converge in distribution to a mixture of multivariate normals.

A general result is given in Geyer [6] while Parker [11] gives a detailed result for constrained regression quantiles.
This provides asymptotics for the α and β parameters of the first CanRQ component. Subsequent canonical regression
coefficients need to be projected into sets defined by earlier ones, and thus are random projections. However, the
random projections are still continuous, and thus convergence in distribution of the unconstrained estimators still
implies convergence of the projections (see Chernoff, [5], Theorem 2). Thus, the following result holds, with most
details provided in the proof:

Theorem 1. Consider the vectors A = Vec(α( j) : j = 1, . . . , q) and B = Vec(β( j) : j = 1, . . . , p) for all CanRQ’s
defined above (for fixed τ). Suppose that the unconstrained estimators given by (5) for any fixed choice of signs of
the α’s (see (6)) satisfy standard regression quantile asymptotics. For example, see Koenker [9] for conditions. Then
the vectors Â and B̂ of all canonical regression quantile estimators have an asymptotic distribution in the sense that
√

n{(Â, B̂) − (A, B)} converges in distribution.

Proof: Consider the first canonical regression quantile and note that (5) provides standard regression quantile estima-
tors; and so under standard conditions (for example, see Koenker, [9]),

√
n{(α̂, β̂) − (α, β)} converges in distribution.

Now, continue inductively. At the j-th stage let α( j) denote the coefficients for the j-th component and define
A j = (α(1), . . . , α( j−1)) . Let α̃ j be the previous (unconstrained) estimates projected orthogonally to the prior A j

parameters, and let B j denote the corresponding (previous) β’s. Note that α̃ j is obtained from (5) as above and then
projected onto a fixed (non-random) space. Thus, from Geyer [6], Theorem 4.4,

√
n(α̃ j − A j) converges to a (joint)

distribution in Rq( j−1); as does the corresponding B j .
By the induction hypothesis,

√
n(Â j−A j, B̂ j−B j) also converges in distribution. To satisfy the condition that α̂ j

be orthogonal to A j, we must project α̃ j onto a (random) linear subspace orthogonal to Â j. This is a continuous linear
(random) operation. But since

√
n(Â j − A j) converges in distribution, the projections converge in probability to the

projections orthogonal to the fixed A j . Thus, from Chernoff [5], Theorem 2,
√

n(α̂( j)−α( j)) converges in distribution;
as does

√
n(β̂( j) − β( j)) .

It now follows that Bootstrap methods can be used to obtain appropriate asymptotic inference. If the parameter
inequality constraints hold strictly, standard bootstrap methods will work (asymptotically). However, it seems rea-
sonable to allow some inequality constraints to be equalities. Specifically, if the α-constraints fail, the estimates will
lie on the boundary with non-vanishing probability (asymptotically). In such cases, Andrews [1]) presented a specific
counterexample showing that the standard bootstrap must fail if the parameter is on the boundary, but referred to
Politis, Romano and Wolf [12], Theorem 2.2.1, to show that the n-choose-m subsample bootstrap will work as long as
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m tends to infinity more slowly than n. As a consequence, Andrews noted that the subsample bootstrap will provide
appropriate inferences for constrained maximum likelihood estimators. Later work extended these results in various
directions. Thus, a version of the Andrews bootstrap will be applied here, though it appears that the method has not
yet been investigated fully for constrained regression quantiles.

The focus here will use a weighted version of the Andrews bootstrap that is informed by recent research in this
area. One complication of subsample bootstrap methods is that the rank of the X-matrix may not be a small fraction
of the sample size. Thus, repeated observations in bootstrap samples can lead to singular (or nearly singular) design
matrices. To avoid this problem, weighted resampling methods will be used here. Specifically, a subsample size m
will be chosen proportional to a power of n a bit less than 1. In minimizing the quantile loss function to obtain the
bootstrap estimates, a subsample of size m will be given independent negative exponential weights, and the remaining
observations will be given (1/n) times independent uniform weights. This is straightforward computationally since
the R-programs in the quantreg package (Koenker [10]) specifically allow such reweighting in the quantile objective
function. The weighted subsample process will be repeated R times to provide a “bootstrap” sample. Weighted
bootstrap methods are justified in some generality in Chatterjee and Bose [3]. A formal justification of the bootstrap
here is given in the following Corollary:

Corollary 1. Let θ denote the vector of the α and β parameters in the canonical regression quantile model, let θ̂
denote their estimates and let θ∗ denote the bootstrap estimates using the weighted n-choose-m bootstrap described
above. Specifically, the weighted bootstrap chooses a subsample of size m and uses weights that are either negative
exponential or uniform(0, 1/n), with the weights rescaled so that their mean is 1. Then, under the hypotheses of
Theorem 1, the asymptotic distribution of {

√
n(θ∗ − θ̂ )} is the same as he asymptotic distribution of {

√
n(θ̂ − θ ) }.

Proof: As noted above, the n-choose-m bootstrap is fully justified by Theorem 2.2.1 of Politis, Romano and Wolf [12]
as long as the estimators converge in distribution (which is given by Theorem 1). It remains to show that the weighted
version is equivalent. To do this, check the “Basic conditions” (equations (2.1), (2.2), and (2.3)) of Chatterjee and
Bose [3]. Since p is assumed to be fixed here, these conditions become: the weights, {wi} are exchangeable, and

Ewi = 1, (7)
0 < Var(wi) = o(n), (8)

EWaWb = O(n−1), (9)

where Wi = (wi − 1)/
√

Var(wi) . Chatterjee and Bose [3] show that the conditions hold for the multinomial distribu-
tion that is equivalent to the standard n-choose-m bootstrap. Now, replace a positive multinomial value by a negative
exponential and “0” by a uniform (Unif(0, n−1)) and rescale to make the marginal expectation equal to 1. The is equiv-
alent to the weighted n-choose-m bootstrap used here, and the conditions can be checked immediately. Specifically,
(7) holds by rescaling, (8) holds since the variances are a constant plus O(n−1), and (9) holds since the multinomial
covariance is O(n−1) and the negative exponential and uniform distributions have finite second moments.

The problem of estimates potentially falling on the boundary might be addressed by an alternative approach.
Cavaliere and Georgiev [2] suggest that the main problem generating bootstrap inconsistency in such cases occurs
when the probability that a parameter falls on the bounder differs substantially between the bootstrap distribution
and the distribution of the estimator under the model. To keep the difference between the bootstrap and empirical
probabilities small, a weighted version of a delete-

√
n jackknife might be used successfully. Portnoy [13] provides

evidence that such a procedure is appropriate for censored regression quantiles, where it is also important to keep the
resampling distribution close to the empirical distribution. While this method worked in some examples, it did not
seem as generally reliable in the simulations and examples, and the weighted version described above was used here.

Based on this weighted n-choose-m bootstrap, several procedures were considered for constructing confidence
intervals. The first is the modified percentile method. Let qup and qlow be the .975 and .025 quantiles of the bootstrap
distribution of an estimator, θ̂. Let c ≡

√
m/n . Then the upper and lower confidence bounds are: θ(1 + c) − c qlow

and θ(1 + c) − c qup . These come directly from using the bootstrap distribution of
√

n(θ∗ − θ̂) to approximate the
asymptotic distribution of

√
n(θ̂ − θ) and from adjusting for the n-choose-m subsample bootstrap.

This method is presented in the simulations results below. Several alternative approaches were tried, with the best
being an interval using a standard error estimate based on the interquartile range of the bootstrap sample. Specifically,
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the interval is θ̂ ± IQR s/1.349 , where the last factor adjusts for the n-choose-m bootstrap and aims to provide 95%
coverage. This method seemed to provide conservative intervals in all cases, and so was not presented here. Future
research may suggest ways of combining this approach with the percentile method above to improve coverage.

6. Simulations and examples

Some limited simulations suggest that the above methodology is sound. The CanRQ method was also applied to
several real-data sets, two of which are reported here. All results were produced by R-programs (see R Core Team
[15]). The tables below were produced from R arrays using the R stargazer package (Hlavac [8]).

6.1. Some simulations
While it is easy to generate multivariate normal samples where classical Canonical Correlations and CanRQ can

be applied, it is more difficult to generate such examples where the α coefficients are known but not constant in τ. If
some α’s vary with τ, then the constraints require others to vary, which eliminates standard approaches to specifying
τ-varying coefficients. The β coefficients, however, can be defined by any set of co-monotonic functions of τ (that
is, functions satisfying the known minimal conditions needed to define quantile functions; see Koenker [9]). Thus,
as noted in Section 2, the β coefficients have exactly the same interpretation in terms of the α responses as standard
regression quantiles. The leading α coefficients are subject only to a norm constraint (and positivity constraints),
and it is possible, though rather difficult, to define coefficients that vary with τ. As noted above, their interpretation
is somewhat compromised by the norm constraint; that is, they can only provide relative indications of influence of
the Y-variables. Subsequent α components are also subject to orthogonality and, thus, are more restricted. As noted
in Section 2, the subsequent α coefficients provide a more exploratory analysis, more akin to the interpretation of
Principal Components. As a consequence, the simulations here take all α coefficients and all β slope coefficients to be
constant in τ.

The simulations used additive error regression models (that is, location-scale models) to define auxiliary response
vectors Yi with β coefficients given in Table 1. Note that the intercept in the regression quantile model for the j-th
component will be β0, j plus the quantile function for the σ j-scaled error distribution evaluated at τ (where σ j is
defined below).

The specific model is as follows: given an n× p design matrix, X, define the rows of the auxiliary response matrix,
Y1 by

Y1i =
(

1 Xi
)

B +
(

S 1 S 2 S 3 S 4
)
, (10)

where S i are independent with S i distributed as a scale-family with σi = .7(5−i) . Thus, the first regression equation
has smallest variance, and the variances increase for subsequent components. Here, B is the 5 × 4 matrix of β
coefficients given as the transpose of the right side of Table 1. The Y matrix of responses is then modeled by taking
rows

Yi = Y1i A−1 . (11)

The values in the A matrix are given by the transpose of the first 4 columns in Table 1. As noted above, if Q j(τ)
denotes the quantile function for S j (in (10)), writing matrix B(τ) as the matrix B with β0 j replaced by β0 j + Q j(τ)
gives the CanRQ model (as used in (2)) to be (1, X)B(τ) = YA .

Table 1: Specification of the constants defining the regression parameters for the linear regression plus error model and the Y-model used in the
simulations. The matrix B in (10) is the transpose of the last 5 columns below and the A in (11) is the transpose of the first 4 columns below.

Component α1 α2 α3 α4 β0 β1 β2 β3 β4

1 .25 .25 .25 .25 2.5 2 1.5 1 .5
2 .50 -.50 0 0 3.5 3 2.5 2 1.5
3 .25 .25 -.50 0 4.5 4 3.5 3 2.5
4 .1667 .1667 .1667 -.50 5.5 5 4.5 4 3.5

Fig. 1 presents results summarizing coverage probabilities for 8 trials. In all cases N = 1000 simulation replica-
tions were taken, and the nominal coverage was set at .95. Sample sizes were n = 200 and n = 400 , and all trials
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used the adjusted bootstrap percentile method described above with R = 400 bootstrap replications. Three sets of
distributions were used: X and S normal (marked by a single purple dash in the figure), X and S normalized Chi-
square (marked by a double navy dash), and X normal with S t-distributed with 3 df (marked by a triple red dash).
The quantile level τ was set at .5 and .25 for normal X and S , and kept at .5 for the other two distributional settings.
Other values for the various simulation parameters (p, q, n, σi, R) were tried, but the results were very similar. Some
trials with a data generating process allowing all β coefficients to vary with τ were done, but again results were rather
similar.
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Fig. 1: Simulated Coverage Probabilities for α̂ and β̂ (combined over all simulation trials); x-axis labels = (component, sample size);
distributions: - : X and e normal, - - : X and e normalized Chi Square, - - - : X normal and e ∼ t with 3 df.

It seems clear that the coverage probabilities for τ = .5 are quite reasonable, especially for the first component.
The variation in coverages generally reflect random variation with standard error of order 1/

√
n , as expected. The

second component gives some low coverages, especially for n = 200 , but this is not surprising given that the orthog-
onality constraints promulgate errors from estimating the first component into the second one. Results for τ = .25
used only normal errors. These values seem more variable, but that is to be expected since the asymptotic standard
deviation of a quantile is inversely proportional to the density at the quantile. The fact that some coverages are a bit
low suggests that some adjustment for subsequent components might be useful, but a formal approach to this problem
would require second order asymptotics, which are not available for this model. Overall, the coverage results seem
similar to results for other multivariate procedures with relatively modest sample sizes.

The simulations also kept track of biases and the ratio of the average bootstrap standard error to the simulation
standard error. Table 2 presents the R-summary results for these values for components 1 and 2. The biases for
the first component are quite small, especially considering that the size of the coefficients and fact that the standard
errors are generally between .05 and .4. The bias in the second component are again larger, but in fact generally
somewhat smaller than the standard errors. The ratio of standard errors show the bootstrap value to be a bit larger
than the simulation standard error, which agrees with the coverages generally being slightly conservative. As noted
above, confidence intervals based on bootstrap standard errors were overly conservative and are not presented. Their
relatively poor behavior is likely because the distribution of the constrained estimates was somewhat far from normal.

Overall, the simulation data indicates that the basic asymptotic theory is useful and suggests that reasonably
reliable inference is possible.
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Table 2: Summary statistics computed over all simulations for the absolute bias and standard error ratio for CanRQ estimates of the parameters for
components 1 and 2.

Statistic 1st Qtile Median Mean 3rd Qtile Max

|bias|,1 0.0004 0.003 0.007 0.007 0.144
|bias|,2 0.077 0.475 0.385 0.655 0.927

bootSE/simSE,1 1.254 1.272 1.279 1.318 1.417
bootSE/simSE,2 1.336 1.406 1.453 1.571 2.012

6.2. A Psychology data set

The data set is available at: https://stats.idre.ucla.edu/r/dae/canonical-correlation-analysis/
and consists of measurements on a sample of 600 male and female students of three psychological variables (loss-of-
control, self-concept, and motivation) and 4 academic variables (reading, writing, math, and science). The question
concerned how well the psychological variables explain the academic ones. This clearly suggests a regression setting
rather than one of dimension reduction. The following tables present the summary results for canonical regression
quantile analysis. The tables give results for the first two components for τ ∈ {.5, .25, .75} . They list the estimates,
the bootstrap standard error estimate, and the bootstrap percentile 95% confidence interval (described at the end of the
previous section). The tables also list a normalized version of the corresponding coefficient from classical Canonical
Correlations. These are normalized to sum to 1 in absolute value in order to provide more direct comparison with the
regression quantile values. Canonical Correlation coefficients that are significantly non-zero at a nearly .05 level (or
less) are starred.

Without input from the psychologists who undertook the study, it is not clear what constraints to impose on the
leading component. The results below used the specification α2 ≥ 0 , which seemed reasonable since the largest
classical Canonical Correlation is associated with the Writing test. In fact several constraint sets were tried, and most
others led to less intuitive and interpretable results. As noted in Section 3, specifications that agree with the α signs
below under α2 ≥ 0 must give the same results.

It should be noted that the first attempt to apply CanRQ specified all α’s to be positive (since none of the classical
α coefficients were negative). This led to very different solutions that were much closer to the classical Canonical
Correlations, especially for the β coefficients. The reason for this is likely the small (non-significant) classical coeffi-
cient for Concept, which suggests that this value may be negative (or zero) and, hence, should not be constrained to be
positive. With positivity constraints on all Y’s, there was still some heterogeneity at τ = .75, but it was much smaller.
In all cases, the signs and magnitudes of the coefficients did not seem as intuitive as those given by assuming α2 ≥ 0 .
Finally, note that both objective functions (for both components) were substantially smaller under α2 ≥ 0 than under
the specification that all α signs are positive.

The CanRQ estimates with 95% confidence intervals are listed in Tables 3 - 8. These tables also give classical
Canonical Correlations estimates, with the α coefficients normalized by L1-norm (rather than by L2 norm) and β co-
efficients defined by least-squares regression on the α-index in order to facilitate comparison with CanRQ. Canonical
Correlation coefficient that are significant at .05 are starred.

The analyses can be summarized as follows. First consider τ = .5 (Tables 3 and 4). For the leading CanRQ
component, indeed, the signs of the α’s are not all positive; so the choice of sign constraint is important. The response
index weights Writing and Science positive and Reading and Math negatively. All coefficients are significant. Thus,
academic performance is not monotonically increasing in the best overall measure of the psychological scores. This is
markedly different from the classical Canonical Correlation analysis, where all coefficients are positive, and only the
Reading and Writing scores are significant. As will be clear from analysis of other τ values, heterogeneity of the data
probably plays a role in this, though non-normality may also contribute. As suggested by differences in the α’s, the
CanRQ β’s differ very substantially from those of the classical Canonical Correlations. Among classical coefficients,
Control and Motivation (and the intercept) are significant, while CanRQ has only Control significant.

The second component at τ = .5 also shows substantial differences between the two methods. For the α’s, CanRQ
has reading and writing positive while math and science are negative, a seemingly intuitive result. All coefficients are
significant. Classical Canonical Correlations have none of the α coefficients significant (though science is nearly so).
Furthermore, all the β coefficients are significant for CanRQ, while only motivation (and the intercept) are significant
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for the classical case.
The results for τ = .25 are rather similar to those for τ = .5 (see Tables 5 and 6); and so will not be discussed

further here. However, the results for τ = .75 are rather different (see Tables 7 and 8), and so they indicate substantial
heterogeneity that would be missed by classical Canonical Correlations. Here the first component α’s are positive
for reading and writing, but negative for math and science (again, intuitively reasonable). Again, all α̂ coefficients
are significant. However, only the β intercept is significant, and there is no statistical evidence that the psychological
variables explain the third quartile responses. Thus, the CanRQ response index at τ = .75 is minimizing the Y
variability about the mean as measured by the .75 quantile loss. This perhaps is like a Principal Components analysis,
though the components are now ordered in reverse from smallest variability to largest.

The second CanRQ component at τ = .75 looks rather like the first component at τ = .5 , with the coefficient
signs lumping reading with math and writing with science. However, here, none of the β’s are significant; again
perhaps allowing an interpretation akin to reversed Principal Components Analysis.

Clearly, CanRQ appears to correct inadequacies of classical Canonical Correlations most likely caused by non-
normality and heterogeneity of the sample. As noted above, the significant differences between the .5 and .75 quantile
estimates provide a clear indication of heterogeneity in the sample, most likely reflecting population heterogeneity.
The significant differences between the .5 quantile estimates (conditional medians) and their canonical correlation
(conditional mean) estimates also suggests inadequacies of the classical analysis, since the median analysis does not
require normality and is resistant to outliers. Thus, CanRQ provides a far more nuanced interpretation, especially
in terms of predicting the test measurements from the psychological measures. Of course, some caution is required,
especially since many of the coefficients are not statistically significant. A larger sample size in subsequent studies
would likely be very helpful in this respect.

Table 3: Psych Data, Canonical RQ estimates for Component 1 at τ = .5. The column headings ”ci1:low” and ”ci1:up” refer to the lower and
upper confidence bounds for the bootstrap percentile method described at the end of Section 5. The heading ”cancor.coef” refers to the classical
canonical correlations renormalized to be directly comparable to the CanRQ estimates, with starred values indicating significance at the .05 level.

Parameter Value Std. Error ci1:low ci1:up cancor.coef

α:Read -0.2408 0.1953 -0.6625 -0.1738 0.3541 *
α:Write 0.2746 0.0348 0.2369 0.3605 0.4206 *
α:Math -0.2521 0.0927 -0.6329 -0.1986 0.1562
α:Science 0.2325 0.1945 0.1763 0.6664 0.0691
β:int -0.7795 2.1620 -5.7319 3.1809 -48.5550 *

β:Control -0.5986 0.4517 -1.8101 -0.1215 -5.2884 *
β:Concept -0.2777 0.4415 -1.2576 0.2995 0.3554
β:Motivation 0.8128 1.2082 -0.3506 3.9001 -4.4012 *

Table 4: Psych Data, Canonical RQ estimates for Component 2 at τ = .5. The column headings ”ci1:low” and ”ci1:up” refer to the lower and
upper confidence bounds for the bootstrap percentile method described at the end of Section 5. The heading ”cancor.coef” refers to the classical
canonical correlations renormalized to be directly comparable to the CanRQ estimates, with starred values indicating significance at the .05 level.

Parameter Value Std. Error ci1:low ci1:up cancor.coef

α:Read 0.2248 0.0569 0.0789 0.3437 -0.1534
α:Write 0.2510 0.1916 0.1914 0.6935 -0.2711
α:Math -0.2209 0.1989 -0.6764 -0.1317 -0.0342
α:Science -0.3032 0.1652 -0.7864 -0.2596 0.5413 *
β:int 4.7393 2.1390 3.0243 11.3630 -6.6817 *

β:Control 0.5009 0.3420 0.0148 1.4170 -0.5167
β:Concept 0.6674 0.3634 0.4222 1.8115 -0.4741
β:Motivation -2.0594 1.0763 -5.6420 -1.4918 1.9910 *
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Table 5: Psych Data, Canonical RQ estimates for Component 1 at τ = .25. The column headings ”ci1:low” and ”ci1:up” refer to the lower and
upper confidence bounds for the bootstrap percentile method described at the end of Section 5. The heading ”cancor.coef” refers to the classical
canonical correlations renormalized to be directly comparable to the CanRQ estimates, with starred values indicating significance at the .05 level.

Parameter Value Std. Error ci1:low ci1:up cancor.coef

α:Read -0.2685 0.2008 -0.7296 -0.1472 0.3541 *
α:Write 0.2525 0.0389 0.2030 0.3466 0.4206 *
α:Math -0.2402 0.1286 -0.6331 -0.0741 0.1562
α:Science 0.2388 0.1932 0.1841 0.6827 0.0691
β:int -1.1681 2.5396 -5.1037 4.6645 -48.5550 *

β:Control 0.0320 0.4608 -0.6871 1.0157 -5.2884 *
β:Concept 0.0954 0.4703 -0.8168 0.9284 0.3554
β:Motivation 1.2788 1.3718 -0.2211 4.9695 -4.4012 *

Table 6: Psych Data, Canonical RQ estimates for Component 2 at τ = .5. The column headings ”ci1:low” and ”ci1:up” refer to the lower and
upper confidence bounds for the bootstrap percentile method described at the end of Section 5. The heading ”cancor.coef” refers to the classical
canonical correlations renormalized to be directly comparable to the CanRQ estimates, with starred values indicating significance at the .05 level.

Parameter Value Std. Error ci1:low ci1:up cancor.coef

α:Read 0.2236 0.0768 0.0057 0.3698 -0.1534
α:Write 0.2728 0.1930 0.2275 0.7572 -0.2711
α:Math -0.2325 0.1844 -0.6716 -0.0616 -0.0342
α:Science -0.2711 0.2011 -0.7528 -0.2192 0.5413 *
β:int 0.3470 2.2875 -3.3680 6.3790 -6.6817 *

β:Control -0.1245 0.4233 -1.0603 0.6283 -0.5167
β:Concept 0.3751 0.4283 -0.3932 1.2665 -0.4741
β:Motivation -1.3682 1.0208 -4.0058 -0.4218 1.9910 *

Table 7: Psych Data, Canonical RQ estimates for Component 1 at τ = .75. The column headings ”ci1:low” and ”ci1:up” refer to the lower and
upper confidence bounds for the bootstrap percentile method described at the end of Section 5. The heading ”cancor.coef” refers to the classical
canonical correlations renormalized to be directly comparable to the CanRQ estimates, with starred values indicating significance at the .05 level.

Parameter Value Std. Error ci1:low ci1:up cancor.coef

α:Read 0.2738 0.2129 0.2177 0.7483 0.3541 *
α:Write 0.2221 0.0391 0.1423 0.2902 0.4206 *
α:Math -0.2488 0.1113 -0.6352 -0.1525 0.1562
α:Science -0.2553 0.1948 -0.6776 -0.1653 0.0691
β:int 3.6275 2.0380 0.5900 8.4320 -48.5550 *

β:Control 0.2145 0.4877 -0.4858 1.3584 -5.2884 *
β:Concept 0.1622 0.5395 -0.6479 1.4561 0.3554
β:Motivation -1.3087 1.1273 -4.3598 0.2696 -4.4012 *

Table 8: Psych Data, Canonical RQ estimates for Component 2 at τ = .75. The column headings ”ci1:low” and ”ci1:up” refer to the lower and
upper confidence bounds for the bootstrap percentile method described at the end of Section 5. The heading ”cancor.coef” refers to the classical
canonical correlations renormalized to be directly comparable to the CanRQ estimates, with starred values indicating significance at the .05 level.

Parameter Value Std. Error ci1:low ci1:up cancor.coef

α:Read 0.1979 0.0640 0.0120 0.3206 -0.1534
α:Write -0.2397 0.1908 -0.6968 -0.1044 -0.2711
α:Math 0.2868 0.2119 0.2151 0.8553 -0.0342
α:Science -0.2756 0.1923 -0.7373 -0.2077 0.5413 *
β:int 3.5058 2.5648 -0.7944 9.3866 -6.6817 *

β:Control 0.0892 0.4039 -0.6060 1.1138 -0.5167
β:Concept -0.0081 0.3743 -0.5318 0.8141 -0.4741
β:Motivation -0.7996 1.0561 -3.4221 0.6390 1.9910 *
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6.3. A Finance data set

Finally, some results for the motivating example are presented. Annual data was collected from 2009 to 2018, a
10 year period with relatively stable overall economic performance. The response variables were 4 measures of com-
pany performance, while the explanatory variables were generally accepted leading indicators of future performance.
The analysis focussed on predicting performance two years in advance based on summaries of the 5 previous years
explanatory variables, plus an indicator variable for 6 sectors. The canonical regression quantile analysis focussed on
using the first component and aimed to construct a linear index based on the previous 5 years of data to predict the
company performance variables better than CEO total compensation. Indeed, the coefficients in the first component
were able to predict all 4 performance variables (2 years ahead) better than CEO compensation; and the improvement
was greater when including past values of the performance variables (as suggested by Granger causality; see Granger
[7] and subsequent work). The details of this analysis appear in Haimberg and Portnoy [14].

While the original analysis considered only the first component, it seems reasonable to look at subsequent compo-
nents. Specifically, consider plotting the first two components to provide a graphical approach for distinguishing the
sectors. In particular, let X denote the original design matrix for the explanatory variables, without the sector indicator
(and without the previous response variables). Compute the coefficients α̂(1) and α̂(2) for the first two components and
plot Y α̂(1) against Y α̂(2) . To simplify the picture, consider only 3 groups: the science sectors (health and technol-
ogy sectors), utilities, and the other 3 sectors combined. The plots are given in Fig. 2. The regression quantile plots
(especially for τ = .75) appear to separate the science companies from the others rather more clearly.
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CanRQ  τ = .75

Fig. 2: Scatter plot for fitted Y-indices of first two components. “S” denotes health and technology companies, “U” denotes utilities, and “O”
denotes all other sectors. The first component is on the x-axis; the second is on the y-axis.
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7. Conclusions.

A Canonical Quantile Regression method has been developed in analogy with Canonical Correlations. Basically,
one seeks linear combinations of explanatory and response variables with the L2 normalization of Canonical Corre-
lations replaced by an L1 normalization and with mean squared error replaced by the regression quantile objective
function. A method for estimating the coefficients for the leading component was developed and extended to sub-
sequent components. An unresolved conceptual problem is the imposition of orthogonality: outside normal models,
the resulting indices will not be independent. While it seems clear that specific applications may suggest alterna-
tives to orthogonality, none were pursued here, neither for canonical quantile regression nor for traditional Canonical
Correlations.

Inferential methods were also developed based on a weighted n-choose-m bootstrap that followed from work
by Andrews [1] on estimators subject to constraints and further developments. Formal asymptotic theory and some
preliminary simulations indicate that the methodology appears to be successful. Two real-data examples show that the
methodology can achieve the traditional advantages of a conditional quantile analysis. In addition to indicating clear
heterogeneity, the quantile analysis provides a more complete, more nuanced, and more robust picture of the data.
While much more extensive application and simulation are needed to ensure that such novel methodology is indeed
trustworthy in great generality, the initial analyses are very promising.
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