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Graph clustering has been a hot research topic and is widely used in many fields, such as community detection in social

networks. Lots of works combining auto-encoder and graph neural networks have been applied to clustering tasks by utilizing

node attributes and graph structure. These works usually assumed the inherent parameters (i.e. size and variance) of different

clusters in the latent embedding space are homogeneous, and hence the assigned probability is monotonous over the Euclidean

distance between node embeddings and centroids. Unfortunately, this assumption usually does not hold since the size and

concentration of different clusters can be quite different, which limits the clustering accuracy. In addition, the node embeddings

in deep graph clustering methods are usually L2 normalized so that it lies on the surface of a unit hyper-sphere. To solve this

problem, we proposed Deep Adaptive Graph Clustering via von Mises-Fisher distributions, namely DAGC. DAGC assumes

the node embeddings H can be drawn from a von Mises-Fisher distribution and each cluster k is associated with cluster

inherent parameters ρk which includes cluster center µ and cluster cohesion degree κ. Then we adopt an EM-like approach

(i.e. P (H |ρ) and P (ρ |H ) respectively) to learn the embedding and cluster inherent parameters alternately. Specifically, with

the node embeddings, we proposed to update the cluster centers in an attraction-repulsion manner to make the cluster centers

more separable. And given the cluster inherent parameters, a likelihood-based loss is proposed to make node embeddings more

concentrated around cluster centers. Thus, DAGC can simultaneously improve the intra-cluster compactness and inter-cluster

heterogeneity. Finally, extensive experiments conducted on four benchmark datasets have demonstrated that the proposed DAGC

consistently outperforms the state-of-the-art methods, especially on imbalanced datasets.
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CCS Concepts: • Mathematics of computing → Graph algorithms; • Theory of computation → Unsupervised learning

and clustering; • Computing methodologies→ Learning latent representations.

Additional Key Words and Phrases: Graph Embedding, Graph Clustering, vMF

1 INTRODUCTION

The goal of graph clustering is to divide the nodes in a large graph into different clusters such that the inter-

cluster similarity is low and the intra-cluster similarity is high [40]. Graph clustering techniques are very useful

for detecting connected relationships with nodes’ similar properties in a large graph [66], where it is critical to

identify the specific patterns or structures efficiently. And deep learning has been widely applied to many tasks

and achieved lots of improvements[35], including the clustering approach [45]. In this paper, we focus on the

deep graph clustering approach. Recently, deep graph clustering has attracted intensive attention and achieved

great success in many fields [48, 49], such as co-saliency [19], community detection [44] and image segmentation

[7, 9]. With the emerging representation learning [18, 27, 29, 38, 51], many deep clustering approaches have been

proposed to investigate the deep graph clustering efficiency. Specifically, some researchers proposed a method

that can learn feature representations and cluster assignments using deep neural networks by partitioning the

nodes into several disjoint datasets in [55]. Some researchers jointly consider the local structure preservation

in deep clustering, optimizing cluster labels assignment and learning features by integrating the clustering loss

and auto-encoder reconstruction loss [14]. The authors in [59] applied the Gaussian mixture model (GMM) as

the prior in VAE to improve the learned embeddings. The authors in [5] designed a delivery operator and a dual

self-supervised mechanism to combine the auto-encoder representation and the graph convolutional networks

(GCNs) representation. And the authors in [46] proposed a dynamic cross-modality fusion mechanism and a triplet

self-supervised strategy, etc.

However, these existing works are all based on the assumption that the clusters are homogeneous and learned

by the Euclidean distance between points in a given feature space, inevitably limiting the representation learning

and clustering efficiency. First, most existing deep graph clustering works combined with auto-encoder and graph

neural networks do not consider the discrepancy in cluster size. But in many real-world applications from both

academia and industry, clusters are usually unequal in size [2, 17, 50, 52], e.g., the communities are imbalanced in

social network [1]. Second, each cluster has a particular cluster distribution. That is, given a cluster, the maximum

distance between all the points and the centroid is the unique property of the cluster. And the radii of different

clusters may be different. But most methods mentioned above do not consider the cluster cohesion degree. For

example, in Figure 1, the length of Red dotted line represents the Euclidean distance between the target point and

centroid a , denoted as da . Likewise, the length of Blue dotted line, db is the distance between the target point

and centroid b. Obviously, distance da is longer than the distance db in both Figure 1(a) and Figure 1(b). Then the

target point will be assigned into the cluster b as the target point is closer to centroid b. However, it is not very

suitable to assign target point into the cluster b in the scenario shown in Figure 1(b) without considering the cluster

cohesion degree. More specifically, Figure 1(a) shows it is appropriate to assign target point into the cluster b when

cluster a and cluster b have similar inherent parameters. But on the contrary, as 1(b) shows, without utilizing the

inherent parameters of clusters, the nodes may be assigned into inappropriate groups. In addition, the target point

should be assigned to the cluster a by considering the cluster cohesion degree.

Meanwhile, the general idea of the clustering algorithm is to find the best centroid for each cluster. A centroid is

the geometric center of a convex object, which can be considered as the generalization of the mean. Given a specific

feature space, the clustering method assigns the points into the clusters with the shortest distances between candidate

points and centroids. Probabilistic clustering algorithms such as K-means clustering method [16], Multinomial

Mixtures [60], and Gaussian Distributions[59], have been used to discover the latent structures and relations in

deep graph clustering. However, these assumptions are questionable to be directly used in deep graph clustering to
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(a) Similar cluster inherent parameters (b) Different cluster inherent parameters

Fig. 1. A toy example of clustering. The target point will be assigned to the cluster b due to the distances between

target point and the centroids. Specifically, it is correct to assign target point into cluster a when cluster a and cluster

b have similar inherent parameters as shown in Figure 1(a). But the target point should be assigned into cluster a by

considering the different inherent parameters of cluster a and cluster b as shown in Figure 1(b).

learn the node embeddings. For example, in a citation graph, the documents usually are represented as a point on a

unit-sphere. Similarly, in Image-modeling, the unit normalized spatial pyramid vector is a common representation

[13]. Thus, the popular clustering assumptions such as Gaussian or Multinomial are not appropriate. Can we

develop models that are suitable to model the inherent parameter of clusters on a unit-sphere?

To tackle the challenges mentioned above, inspired by [13], we propose a deep adaptive graph clustering method

(DAGC) via von Mises-Fisher (vMF) distributions. Firstly, in a specific graph, each node represented as a point on

a unit-sphere is assumed to be drawn from one vMF distribution. Given a specific cluster, the nodes are drawn from

the same vMF distribution. The centroid of the cluster could be modeled by the mean direction of vMF distribution.

And the cluster cohesion degree could be modeled by the concentration parameter of vMF distribution. Then, we

can model the distribution of the latent embedding space by considering the inherent parameters of clusters. As it is

almost not possible to obtain the node embeddings and the inherent parameters at the same time. Therefore, we

use an EM-like[56] approach to optimize the model. On the E-step, with the node embeddings, we estimate the

assigned probability by the posterior of mixture distribution and reassign it by Sinkhorn’s theorem [42] to capture

the imbalance of cluster size. And then we can adjust the cluster inherent parameters automatically. After that, on

the M-step, we propose to update the node embeddings based on the cluster assignment and the cluster inherent

parameters. Given the cluster inherent parameters, we take advantage of a likelihood-based loss function to make

the representations in the same cluster more compact. Along this line, DAGC can simultaneously improve the

intra-cluster compactness and inter-cluster heterogeneity. We also present detailed experimental comparisons of the

proposed algorithms DAGC with the start-of-art methods related to deep graph clustering. Our key contributions

can be summarized as follows:

• We propose a deep adaptive graph clustering method via vMF distributions, which can effectively capture the

heterogeneity of clusters by modeling the node embeddings with the cluster inherent parameters.

• We design an efficient learning strategy, an EM-like approach, which updates the clustering parameters and

node embeddings alternately, which can increase the inter-class heterogeneity and intra-class compactness,

respectively.
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• We conduct experiments on four challenging real-world graph datasets, the experimental results show our

approach can outperform the state-of-the-art deep graph clustering models, especially on imbalanced datasets.

Comprehensive ablation experiments have also proved that every component of our method is indispensable.

2 RELATED WORK

2.1 Attributed Graph Embedding

Graph embedding has attracted increasing attention in many applications [4, 11, 24, 30, 31, 57, 61]. Graph

embedding, also known as network embedding [6] or network representation learning [62], aims to learn low-

dimensional representations for nodes in graphs. In addition, attributed graph embedding methods assume node

attribute information is available and exploit both topological information and attribute features simultaneously

[12]. TADW [58] proved that DeepWalk can be interpreted as a factorization approach and proposed an extension

to DeepWalk to explore node features. DANE [25] deals with the dynamic environment with an incremental matrix

factorization approach, and LANE [20] incorporates the label information into the optimization process to learn a

better embedding. [43] proposes an attributed graph embedding model with the node/edge attributed information

by constructing a heterogeneous graph. [65] proposes a framework to learn node representations from a sequence

of temporal interactions with two coupled memory networks to store and update node embeddings in external

matrices. [8] design a non-parametric Laplacian smoothing filter that preserves optimal denoising properties to

filter out high-frequency noises to learn node embeddings. The authors in [64] integrate both structure and feature

information into the kernel matrix via a higher-order graph convolution to make the spectral loss well-adapt to

attributed graphs. In [32], the authors treat the protein-protein interaction prediction problem as a link prediction

problem in attribute networks, then they use an attributed embedding approach to predict the interactions between

proteins in the PPI network. The work in [39] proposes an unsupervised graph embedding method to efficiently

capture structural properties as well as node labels and attributes in a graph. Although these algorithms are well

designed for graph data, they have largely ignored the node embedding distribution, which may result in poor

representation in the real graph data.

2.2 Deep Graph Clustering

Recently, due to the strong representation power of deep neural networks, many deep clustering methods have been

proposed and achieved impressive performance [14, 15, 26, 34, 37, 55, 63]. Auto-encoder [18] is one of the most

commonly used unsupervised deep neural networks, which plays a crucial role in deep clustering. DEC [55] is the

most popular method which used the auto-encoder to learn the deep representations by mining divergence between

assignment distribution and target distribution. To exploit the structural information underlying the data, some

GCNs based clustering methods were proposed [5, 23, 33, 36, 46, 48]. [23] proposed using the GAE and VGAE

to learn the graph-structured data via iteratively aggregating neighborhood representations around each central

node. [48] provided DAEGC to encode the topological structure and node contents by introducing the attentional

neighbor-wise fusion strategy on the GAE framework. ARGA adversarially regularized GAE further improved the

clustering performance by introducing an adversarial learning scheme to learn the graph embedding [33]. SDCN

[5] designed a delivery operator and a dual self-supervised mechanism. [36] proposed an attention-based deep

graph clustering method by considering the dynamic fusion strategy and the multi-scale features fusion. DFCN

[46] designed a dynamic cross-modality fusion mechanism and a triplet self-supervised strategy. Although these

methods improve the clustering performance, they merely concern the design of the backbone but ignore the

heterogeneity of clusters in the clustering stage.
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3 PRELIMINARIES

In this section, we first present some preliminary graph notations about the graph data. Then we formulate the

specific problem setting of graph clustering. Finally, we simply introduce the framework of our proposed approach.

3.1 Notations

Given a graph G = (V, E,X ,A),V = {v1,v2,v3, ...,vN } is a set of N nodes in the graph and E ⊆ V ×V is the

edge set of graph. Each edge ei j in E describes the connection between two different nodes vi and vj , and hence

ei j can be represented as (vi ,vj ), where vi ,vj ∈ V and nodes vi and vj are adjacent nodes. A ∈ {0, 1}N×N is the

adjacency matrix of a graph, and each element in the adjacency matrix A represents whether or not two nodes

are connected in a graph. We denote by an N × N matrix A for the adjacency matrix of a graph G. Namely, for

∀vi ,vj ∈ V , Ai j = 1 if there exists an edge between node vi and node vj , otherwise, Ai j = 0. We assume there

are self-loops in the graph, thus Aii = 1 for all i. In addition, X = [x1,x2,x3, · · · ,xN ]
T is the attribute features

of nodes where xi ∈ R
F and F is the total number of node attributes. Given a vector x , we write ∥x ∥2 as the its

Euclidean norm. Given a subset S ⊆ V , we write |S | as the number of nodes in S .

3.2 Problem Statement

In line with the aforementioned graph notations, given a specific graph G = (V, E,X ,A), the graph clustering meth-

ods focus on mapping each node vi ∈ V to the low-dimensional embedding hi ∈ R
d based on its original attributes

xi ∈ R
F and the graph structure, and separates the node set V into K disjoint subsets V = V1

⋃

V2 · · ·
⋃

VK

such that eachVk is corresponding to a specific semantic. The main goal of graph embedding is to encode nodes

into low-dimensional space while preserving the information of graph structure and node attributes, thus the node

similarity in the latent embedded space can approximate the node similarity in the original high-dimensional graph.

Then we assume H = [h1,h2,h3, · · · ,hN ]
T is the latent embedding which can preserve the graph structure proper-

ties and node pairwise similarity in the embedded latent space facilitates an approximation of the corresponding

node similarity in the original space. And we denote the set c = [c1, c2, c3..., cN ] as the clustering assignment for

all nodes, each element ci can indicate the label for node vi . We will simultaneously learn the embedding H and

clustering assignments c in this paper.

3.3 Framework Overview

To begin with, we assume that each node is drawn from one of the K vMF distributions and each node belongs to a

specific cluster in the graph G. Based on this assumption, we propose a deep adaptive graph clustering model, the

framework is illustrated in Figure 2. Specifically, we develop a graph attention auto-encoder as a backbone that

can effectively integrate both the graph structure information and node attribute information to learn the hidden

representations for all nodes. Then we use an adaptive model to fit the hidden representations via vMF distributions.

During iteration, we adopt an efficient EM-like updating approach, which alternatively updates the representations

of graph attention auto-encoder and parameters of the clusters based on vMF distributions. More details are given

in the following section.

4 METHOD

According to the mathematical problem setting of graph clustering in section 3, we will introduce the components of

the deep adaptive graph clustering approach via Von Mises-Fisher. First, we present the graph attention auto-encoder

and give the reconstruction loss of attributes and structure. Then we propose the deep adaptive graph clustering

model based vMF distribution. Finally, we show the details of the parameter updating process with an efficient

EM-like approach.

ACM Trans. Web
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Fig. 2. Framework Overview of Deep Adaptive Graph Clustering via von Mises-Fisher Distributions. The representa-

tions of graph attention auto-encoder and parameters of the clusters based on vMF distributions can be updated

with an efficient EM-like approach.

4.1 Graph Attention Auto-encoder

Graph attention auto-encoder includes an encoder that maps nodes from the attribute space to the latent space and a

decoder performing an inverse mapping. For the sake of neat notation, we denotes z
(l )
i as the output representation

of node vi in the l-th feed-forward layer, then the attribute feature vector xi = z
(0)
i , hi = z

(L)
i /∥zi ∥2 is the hidden

representation of node vi on the unit hypersphere and x̂i = z
(2L)
i is the reconstructed representation.

To represent both graph structure information and node attribute information in a unified framework, we consider

graph attention network (GATs) [47] as the encoder, i.e.,

z
(l+1)
i = σ

(
∑

j ∈Ni

α
(l )
i j W

(l )z
(l )
j

)

(1)

where Ni denotes the neighbors of node vi , σ is a non-linear function, and α
(l )
i j is the attention coefficient that

indicates the importance of neighbor node vj to node vi , which can be computed by:

α
(l )
i j =

exp
(

LeakyReLU(a (l )T [W (l )z
(l )
i | |W

(l )z
(l )
j ])
)

∑

k ∈Ni exp
(

LeakyReLU(a (l )T [W (l )z
(l )
i | |W

(l )z
(l )

k
])
) (2)

where a (l ) is the parametric weight vector, | | is the symbol of concatenation operation, and (·)T denotes transpose

operation.

ACM Trans. Web



Deep Adaptive Graph Clustering via von Mises-Fisher Distributions • 7

4.2 Attributes and structure reconstruction

In this work, our decoder is a combination of the inner product layer and the encoder symmetric GATs layers

following the same propagation style defined in the Equation (1). Attributes reconstruction loss is the basic paradigm

of auto-encoder, which minimize the difference between the input and output of auto-encoder with the following

formula:

LX =
1

N

N
∑

i=1

∥xi − x̂i ∥
2
2 (3)

Different from the previous works [33, 46, 48] about the structure reconstruction loss of graph link structure A, we

minimize the structure reconstruction loss by measuring the difference between Â and pairwise similarity matrix S:

LA =
1

N 2

N
∑

i, j=1

(Âi j − Si j )
2 (4)

where Si j =
xi

T x j
∥xi ∥2 ∥x j ∥2

is the cosine similarity of attribute features between node vi and node vj , Âi j = hi
Thj is

the cosine similarity of embeddings between node vi and node vj . The final reconstruction loss is a hybrid of the

content reconstruction loss and the structure reconstruction loss:

Lr = LA + LX (5)

4.3 Adaptive model based vMF

In this paper, we assume the nodes are drawn from the K von Mises-Fisher (vMF) distributions. The von Mises-

Fisher (vMF) distribution defines a probability density over points on a unit-sphere. It is parameterized by two

parameters, mean parameters µ and concentration parameter κ. µ defines the mean value in the distribution and

κ determines the spread of the probability mass around the mean. Specifically, to efficiently capture the variable

inter-cluster dispersion and intra-class compactness, we assume the node embeddings H can be drawn from K

vMF distributions adeptly. For each cluster k ∈ {1, ...,K }, we defined the cluster inherent parameters ρk = (µk ,κk ),

where µk is the centriod and κk is the magnitude parameter. Thus, µk defines the mean embedding in the cluster k

and κk determines the spread of the probability mass around the cluster centroid. Then, if any h belongs to cluster

k , the probability density function for node representation h ∈ Rd is given by following:

f (h |ρk ) = Cd (κk ) exp(κkµ
T
kh), (6)

where ∥µk ∥ = 1, κk ≥ 0 and Cd (κk ) is the normalizer which is expressed as:

Cd (κk ) =
κ
d
2 − 1

(2π )
d
2 I d

2 −1
(κ)
, (7)

where I is the modified Bessel function of the first kind. Then given node embeddings H , cluster assignment c and

cluster inherent parameters ρ = (ρ1, ..., ρK ), the likelihood function can be written as:

P (H |c, ρ) = ΠN
i=1Cd (κci ) exp(κci µ

T
ci
hi ). (8)

Since H , c, and ρ are all unknown, it is impossible to infer all of them at one time. Here we will adopt an EM-like

updating approach, i.e. alternatively updating H , c and ρ by maximizing P (H |c, ρ) and P (c, ρ |H ), respectively.

By maximizing P (c, ρ |H ), it can increase the inter-cluster separability. While it can improve the intra-cluster

compactness by maximizing P (H |c, ρ).
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4.4 Cluster Assignment

Denote t ∈ {I0, I1, I2, · · · , IM } as the iteration index, when given the t-th updated latent embedding H (t ) , clustering

assignment c (t ) and cluster inherent parameters ρ (t ) , we can calculate π
(t )

k
=
|c (t )
=k |

N
, where π

(t )

k
can be viewed as

the proportion of samples for cluster k . Intuitively, we can calculate the assignment probability matrix P (t ) by:

P
(t )

ik
= p (ci = k |h

(t )
i ; ρ

(t )

k
)

=

π
(t )

k
f (h

(t )
i |ρ

(t )

k
)

∑K
k ′=1 π

(t )

k ′
f (h

(t )
i |ρ

(t )

k ′
)

(9)

where P
(t )

ik
is the probability of i-th node belongs to k-th cluster. For a typical classification problem with determin-

istic labels, the learning goal can be summarized as the minimization of the average cross-entropy loss. However,

node labels are not accessible in unsupervised clustering. Considering that pseudo labels are relaxed to be the

posterior probability matrix P (t ) , where each row represents the cluster assignment probabilities of one node with

the schema defined in the Equation (9). And there exist degenerate solutions by assigning all data points to a single

(arbitrary) label. To avoid this extreme case, we add the constraints that the label distribution must be consistent

with the mixing proportions. Therefore, the updated posterior probability matrix Q (t ) should satisfy the following

optimization problem:

min
Q (t )

−Q (t )logP (t ) −
1

λ
H(Q (t ) )

s.t. Q (t ) ∈ RN×C
+
,

Q (t )
1C = 1N and Q (t )T

1N = Nπ (t )

(10)

where H is the entropy function and λ is the smoothness parameter that can control the equilibrium of clusters.

Apparently, the existence and unicity of the solution are guaranteed by Equation 10. Furthermore, Sinkhorn’s

theorem [42] states that there exist diagonal matrices diag(u) and diag(v ) such that diag(u)P (t )λdiag(v ) has i-th

row sum 1 and c-th column sum Nπ
(t )
c and can be computed with Sinkhorn’s fixed point iteration. In addition, the

posterior probability updating process can be shown in Algorithm 1.

Algorithm 1 The posterior probability updating algorithm

Input: The posterior probability P (t );

Row sum constraint 1N ;

Column sum constraint Nπ (t );

Output: The updated posterior probability matrix Q (t ) .

1: Initialize u = 1N andv = 1C .

2: loop

3: u = IN (P (t )λ
v )−1;

4: v = diag(Nπ (t ) ) (P (t )λTu)−1;

5: end loop

6: Q (t )
= diag(u)P (t )λdiag(v ).

4.5 E-step: updating c and ρ

Given the latent embedding H (t ) and the assignment probability matrix Q (t ) of iteration t , we can update c and ρ

by

maximize P (c, ρ |H (t ) ).

ACM Trans. Web
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Updating cluster assignment c. Similar to the EM algorithm for the Gaussian mixture model, we can update c

simply by

c
(t+1)
i = argmax

k
Q

(t )

ik
(11)

Updating cluster center µ. Generally, the sum of distances between data points and the corresponding center is

regarded as the objective to measure whether centers are preferable. We aim to find the optimal cluster centers

closed to associating data points, i.e.,

min
{µk }

K
1

K
∑

k=1

N
∑

i=1

Q
(t )

ik
∥h

(t )
i − µk ∥

2
2

s.t. ∥µk ∥2 = 1 k = 1, 2, · · · ,K

(12)

If Q
(t )

ik
is binary and follows the hard-assignment scheme, the solution of the above optimization problem is the

centroids estimation in spherical k-means [10]. If Q
(t )

ik
follows the soft-assignment scheme, with the gradient

descent method, the updated center can be computed by

µ
(t+1)

k
=

µ
(t )

k
+ η · ∇µ

(t )

k

∥µ
(t )

k
+ η · ∇µ

(t )

k
∥2

(13)

∇µ
(t )

k
=

N
∑

i=1

Q
(t )

ik
(h

(t )
i − µ

(t )

k
) (14)

where η is the updating rate. Note that when we set updating rate as η = 1/
∑N

i=1Q
(t )

ik
, the updating scheme

degenerates to the centroids updating method in [3]. However, the node embeddings keep changing during the

learning process, it is unsuitable to update the center so quickly. Note that the updating strategy of Equation (14)

would cause different centers which collapsing to one data point, which is harmful to the node embedding learning.

Besides, from the Equation (14), we can observe that if node vi has a high posterior probability on the k-th cluster,

then it has a strong attraction to pull µ
(t )

k
with displacement distance (η ·Q

(t )

ik
;Θ(t ) ) (h

(t )
i − µ

(t )

k
). Therefore, for each

cluster, we encourage the center to move close to the data points with the high posterior probabilities and away

from the data points with the low posterior probabilities, i.e.,

∇µ
(t )

k
=

∑

Q
(t )

ik
≥τ

(t )

k

Q
(t )

ik
(h

(t )
i − µ

(t )

k
)

−
∑

Q
(t )

ik
<τ

(t )

k

Q
(t )

ik
(h

(t )
i − µ

(t )

k
)

(15)

where τ
(t )

k
is the Nπ

(t )

k
-largest probability in the k-th column of probability matrix Q (t ) .

Updating cluster cohesion degree κ . As for the concentration parameter, the larger value of κ
(t )

k
implies a higher

cohesion degree of the cluster. In particular, when κ
(t )

k
= 0, f (h

(t )
i |µ

(t )

k
,κ

(t )

k
) reduces to the uniform density, and

as κ
(t )

k
→ ∞, f (h

(t )
i |µ

(t )

k
,κ

(t )

k
) degenerated to one-point distribution. Additionally, inspired by the concentration

parameter estimation in [3], we utilize the reasonable updating formulation as follows

κ
(t+1)

k
=

Ad (κ
(t )

k
)d −Ad (κ

(t )

k
)3

1 −Ad (κ
(t )

k
)2

(16)
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where Ad (κ
(t )

k
) =

Id/2 (κ
(t )

k
)

Id/2−1 (κ
(t )

k
)
.

4.6 M-step: Updating H

Given cluster assignment c (t+1) and cluster inherent parameters ρ (t+1) , we will update H by

maximize P (H |c (t+1), ρ (t+1) ).

It is equivalent to minimize the following loss function:

Lp = −
1

N

N
∑

i=1

κ
c
(t+1)
i

µT
c
(t+1)
i

h (17)

By including the construction loss, the overall loss function for updating H

L = Lr + γLp = LA + LX + γLp (18)

where γ is a hyper-parameter that balances the weight of reconstruction loss and prediction loss. Then we can

obtain H (t+1) by SGD algorithm.

Algorithm 2 Deep Adaptive Graph Clustering via vMF Distributions

Input: Attribute feature matrix X ;

Graph adjacent matrix A;

Number of clusters K ;

The number of iteration M .

Output: Clustering results c = {ci }
N
i=1 .

1: Pre-train graph attention auto-encoder by minimizing the final loss as shown in Equation (5).

2: Conduct K-Means on the node embeddings learned by the pre-trained auto-encoder.

3: Initialize cluster centers {µk }
K
k=1

with K-Means.

4: Initialize clustering assignment {ck }
K
k=1

by the hard assignment and initialize the proportion of clusters {πk }
K
k=1

.

5: Initialize concentration parameter {κk }
K
k=1

by the average sample-based parameters.

6: for iteration from 1 to M do

7: Generate node embedding H (t );

8: Compute the posterior probability matrix P (t );

9: Compute the updated posterior probability matrix Q (t ) through Sinkhorn’s fixed point iteration;

10: update c (t+1) by the Equation (11);

11: update µ (t+1) by the Equation (13);

12: update κ (t+1) by the Equation (16);

13: update the parameters of graph attention auto-encoder by minimizing Equation (18)

14: end for

15: Return the clustering results c (M ) .

4.7 Overall algorithm

In practice, we first pre-train the graph attention auto-encoder in a reconstruction task, then conduct K-means

on the node embeddings to initialize the clustering parameters. After that, to learn more discriminative node

representations, we leverage an alternate learning strategy. When fixing the node embeddings, we update the
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clustering parameters to adjust the deflected mixture distribution. Given the current clustering parameters, we

update the parameters of graph attention auto-encoder by minimizing the overall loss L. This process enables the

learned node embeddings close to their associating cluster centroids. The details are summarized in the Algorithm

2.

4.8 Complexity Analysis

Along the proposed model DAGC, we denote the dimensions of layers in graph attention auto-encoder as

d1,d2, · · · ,d2L , then the time complexity of graph attention auto-encoder can be expressed as O (N (d1F + d2d1 +

· · ·+d2Ld2L−1)+ |E |(d1 +d2 + · · ·+d2L−1)), where F is the total number of node attributes. And the time complexity

of the mixture parameter learning process is O (NKd ), where N is the total number of nodes, K is the number of

divided clusters, and d is the dimension of latent embedding. Since attribute number F , dimensions of auto-encoder

d1,d2, · · · ,d2L , and parameters K ,d can be regarded as constants, the overall time complexity is linearly related to

the numbers of nodes and edges.

5 EXPERIMENT

In order to show the effectiveness of our proposed model. In this section, we first introduce the four public

benchmark datasets widely used in graph clustering tasks. Then we show the compared baselines and the evaluation

metrics used in this paper. In addition, we present the implementation details and show the performance of the

proposed model. Finally, we also conducted some additional experiments to show the effectiveness of our proposed

model including an ablation study, visualization, parameter sensitivity, and efficiency analysis.

5.1 Datasets

Our proposed DAGC is evaluated on four public benchmark datasets including multiple types of graphs. The

statistical information of these datasets is provided in Table 1 and the detailed descriptions are the followings:

• ACM1 [53]: This is a paper network from the ACM dataset. There is an edge between two papers if they are

written by the same author. Paper features are the bag-of-words of the keywords. We select papers published

in KDD, SIGMOD, SIGCOMM, and MobiCOMM and divide the papers into three classes (database, wireless

communication, data mining) by their research area.

• DBLP2 [53]: This is an author network from the DBLP dataset. There is an edge between the two authors if

they are the co-author relationship. The authors are divided into four areas: database, data mining, machine

learning, and information retrieval. We label each author’s research area according to the conferences they

submitted. Author features are the elements of a bag-of-words represented by keywords.

• Citeseer3 [22]: This is a citation network that contains sparse bag-of-words feature vectors for each document

and a list of citation links between documents. The labels contain six areas: agents, artificial intelligence,

database, information retrieval, machine language, and HCI.

• Amazon4 [41]: This is an item co-purchased network, where nodes represent goods, edges indicate that two

goods are frequently bought together, node features are bag-of-words encoded product reviews, and class

labels are given by the product category.

5.2 Baselines

We compare the performance of our proposed method with seven baseline methods:

1https://dl.acm.org/
2https://dblp.uni-trier.de
3https://citeseerx.ist.psu.edu/index
4https://www.amazon.com/
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Table 1. The statistics of the datasets.

Dataset Network Type Nodes Classes Dimension

ACM Paper 3025 3 1870

DBLP Author 4058 4 334

Citeseer Citation 3327 6 3703

Amazon Item 7650 8 745

• K-means [16]: A classical clustering method based on the raw data.

• AE [18]: It performs K-means on the representations learned by auto-encoder.

• DEC [55]: It employs a clustering loss to supervise the process of clustering with the auto-encoder backbone.

• DAEGC5 [48]: It uses an attention network to learn the node representations and employs a clustering loss

to supervise the process of graph clustering.

• SDCN6 [5]: It is representative of hybrid methods which take advantage of both AE and GCN modules for

clustering.

• AGCN7 [36]: It utilizes the attention-based method by considering the dynamic fusion strategy and the

multi-scale features fusion.

• DFCN8 [46]: It designs a dynamic cross-modality fusion mechanism and a triplet self-supervised strategy.

5.3 Metrics

To show the effectiveness of the proposed method, we employ four popular metrics [54]. For each metric, the

larger value implies a better clustering result. The best map between cluster ID and class ID is found by using the

Kuhn-Munkres algorithm [28]. The four specific evaluation metrics are as follows:

• ACC: Accuracy shows the quality between the predicted labels and the true labels. After achieving the best

map between the class ID and the cluster ID by using the Kuhn-Munkres algorithm, clustering accuracy can

be computed by ACC =
∑N
n=1 In

N
, where In is an indicator function, In = 1 when the predicted label and the

true label are the same, and In = 0 otherwise.

• NMI: Normalized Mutual Information, a symmetric index computing the similarity between two clustering

solutions based on the confusion matrix (also referred to as the contingency matrix).

• ARI: Adjusted Rand Index, ARI shows the ratio of the number of node pairs similarly classified in both

solutions, divided by the total number of pairs. It compares two clusterings with the number of cluster

membership agreements and disarrangements.

• F1: F1 score can combine the precision and recall into a single metric by taking their harmonic mean with

equation F1 = 2∗Precision∗Recall
Precision+Recall

, where Precision = T P
T P+F P

and Recall = T P
T P+FN

. Similar to ACC, the macro

F1-score can be computed after achieving the best map between the class ID and the cluster ID with the

Kuhn-Munkres algorithm.

5.4 Implementation Details

In the experiments, we implement our proposed model based on PyTorch. For baseline methods, we report the

results listed in their papers. The embedding size d is fixed to 16 for all datasets, which is suitable for the model to

5https://github.com/kouyongqi/DAEGC
6https://github.com/bdy9527/SDCN
7https://github.com/ZhihaoPENG-CityU/AGCN
8https://github.com/WxTu/DFCN
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learn strong representations [5, 48]. We optimize DAGC with Adam [21] optimizer having a learning rate 0.005 for

all datasets, weight decay 0.005 for ACM and Citeseer, 5e−4 for DBLP and Amazon. And the number of epochs is

fixed to 100. In terms of updating rate of centroid η, we set it as 1e−3 for ACM, 5e−4 for DBLP and Citeseer, 1e−5

for Amazon. As two introduced hyper-parameters loss balance coefficient and smoothness parameter, we apply

grid search, and {γ , λ} are set to {0.5, 10} for ACM, {1, 3} for DBLP, {0.7, 5} for Citeseer and {1, 5} for Amazon.

5.5 Overall Clustering Performance

The clustering results of DAGC are averaged over 10 runs with random seeds, and we report the mean values and the

corresponding standard deviations. The overall results are shown in Table 2. We have the following observations:

• For each metric, our method DAGC achieves the best results in all four datasets. In particular, compared with

the best results of the baselines, our approach achieves a significant improvement of 4.35% on ACC, 7.45%

on NMI, 10.65% on ARI, and 5.95% on F1 score averagely. Different from other methods such as DFCN and

AGCN which focus on fusing the attributes and graph structure, DAGC pays more attention to the clustering

process. It uses a deep adaptive model to handle the latent embedding and adopts an EM-like updating

approach, which can simultaneously improve the intra-cluster compactness and inter-cluster heterogeneity.

This is why DAGC can achieve better performance than state-of-the-art baselines.

Table 2. Clustering results on four benchmark datasets (mean±std).

Dataset Metric K-Means AE DEC DAEGC SDCN AGCN DFCN DAGC

ACM

ACC 67.31±0.71 81.83±0.08 84.33±0.76 86.94±2.83 90.45±0.18 90.59±0.15 90.84±0.15 92.02±0.12

NMI 32.44±0.46 49.30±0.16 54.54±1.51 56.18±4.15 68.31±0.25 68.38±0.45 69.39±0.36 71.68±0.11

ARI 30.60±0.69 54.64±0.16 60.64±1.87 59.35±3.89 73.91±0.40 74.20±0.38 74.93±0.37 77.77±0.14

F1 67.57±0.74 82.01±0.08 84.51±0.74 87.07±2.79 90.42±0.19 90.58±0.17 90.78±0.16 92.04±0.12

DBLP

ACC 38.65±0.65 51.43±0.35 58.16±0.56 62.05±0.48 68.05±1.81 73.26±0.37 76.02±0.77 81.46±0.19

NMI 11.45±0.38 25.40±0.16 29.51±0.28 32.49±0.45 39.50±1.34 39.68±0.42 43.65±1.01 52.51±0.41

ARI 6.97±0.39 12.21±0.43 23.92±0.39 21.03±0.52 39.15±2.01 42.49±0.31 46.95±1.51 58.28±0.36

F1 31.92±0.27 52.53±0.36 59.38±0.51 61.75±0.67 67.71±1.51 72.80±0.56 75.74±0.75 80.10±0.21

Citeseer

ACC 39.32±3.17 57.08±0.13 55.89±0.20 64.54±1.39 65.96±0.31 68.79±0.23 69.54±0.15 70.60±0.06

NMI 16.94±3.22 27.64±0.08 28.34±0.30 36.41±0.86 38.71±0.32 41.54±0.30 43.93±0.22 44.85±0.19

ARI 13.43±3.02 29.31±0.14 28.12±0.36 37.78±1.24 40.17±0.43 43.79±0.31 45.45±0.26 47.05±0.18

F1 36.08±3.53 53.80±0.11 52.62±0.17 62.20±1.32 63.62±0.24 62.37±0.21 64.27±0.20 65.87±0.06

Amazon

ACC 43.24±4.37 59.72±3.87 59.84±0.24 71.56±3.34 75.51±1.92 76.80±0.40 79.13±0.90 84.95±0.08

NMI 30.74±4.33 51.89±3.70 54.67±0.30 60.68±2.58 63.26±2.05 63.17±0.72 71.12±0.98 74.05±0.17

ARI 17.78±2.82 40.47±3.06 42.21±0.25 52.05±3.76 54.95±2.23 55.67±0.84 62.41±1.58 69.43±0.20

F1 30.34±7.45 47.76±6.04 47.72±2.87 67.55±3.39 69.44±1.34 68.32±0.62 72.92±0.81 83.17±0.09

• For two imbalanced datasets DBLP and Amazon, DAGC obtains a remarkable improvement of 9.03% on

ACC, 12.21% on NMI, 17.69% on ARI, and 9.89% on F1 averagely. Existing deep graph clustering methods

are incompetent in dealing with imbalanced datasets and intrinsically tend to produce balanced clusters.

On the contrary, DAGC takes cluster inherent parameters (both cluster size and intra-cluster variance) into

consideration and can automatically estimate the latent parameters. As shown in Figure 3, the estimated

cluster size by DAGC is highly consistent with the ground-truth, the performance shows our model can

capture the inter-cluster dispersion and intra-compactness even on imbalanced datasets, it also demonstrates

the superiority of DAGC.
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Fig. 3. Correlation demonstration of cluster proportion distribution between ground truth and DAGC.

Table 3. Ablation study on centroid updating strategy.

Dataset Metric DAGC-h DAGC-s DAGC

ACM

ACC 90.44±0.12 90.98±0.11 92.02±0.12

NMI 68.32±0.19 68.84±0.16 71.68±0.11

ARI 74.87±0.14 75.01±0.13 77.77±0.12

F1 90.94±0.09 91.02±0.12 92.04±0.12

DBLP

ACC 79.64±0.16 80.56±0.24 81.46±0.19

NMI 50.47±0.34 50.70±0.28 52.51±0.41

ARI 54.79±0.25 55.96±0.47 58.28±0.21

F1 78.07±0.49 79.69±0.27 80.10±0.21

Citeseer

ACC 68.69±0.09 69.36±0.05 70.06±0.06

NMI 42.66±0.16 43.48±0.18 44.85±0.19

ARI 44.41±0.13 45.52±0.19 47.05±0.18

F1 64.51±0.07 64.57±0.04 65.87±0.06

Amazon

ACC 80.74±0.14 82.77±0.13 84.95±0.08

NMI 70.28±0.24 72.32±0.16 74.05±0.17

ARI 62.44±0.23 65.43±0.11 69.43±0.20

F1 79.80±0.18 81.80±0.10 83.17±0.09
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5.6 Ablation Study

We conduct ablation studies to evaluate the contributions of the centroid updating strategy, mixing proportion, and

concentration parameter. Particularly, we introduce the following model variants: DAGC-h takes hard-assignment

scheme and updates centroids with the means of data points; DAGC-s utilizes a soft-assignment strategy and

replaces the binary patterns with the posterior probability; DAGC-t considers the Student’s t-distribution given in

DEC to compute the posterior probability. DAGC-π sets mixing proportion πc = 1/C; DAGC-κ regards cohesion

coefficient κc as the inverse of the variance of all data points.

Table 4. Ablation study on mixing proportion and cohesion degree.

Dataset Metric DAGC-t DAGC-π DAGC-κ DAGC

ACM

ACC 90.94±0.15 91.09±0.05 91.44±0.18 92.02±0.12

NMI 68.65±0.47 69.49±0.29 70.30±0.58 71.68±0.11

ARI 74.93±0.38 75.33±0.14 76.28±0.47 77.77±0.12

F1 90.98±0.15 91.12±0.05 91.48±0.17 92.04±0.12

DBLP

ACC 79.67±0.21 81.13±0.16 80.73±0.33 81.46±0.19

NMI 50.20±0.23 51.82±0.19 51.07±0.50 52.51±0.41

ARI 53.85±0.31 57.03±0.32 56.56±0.65 58.28±0.21

F1 79.29±0.24 79.65±0.15 79.71±0.38 80.10±0.21

Citeseer

ACC 66.60±0.07 67.22±0.08 69.12±0.09 70.06±0.06

NMI 41.33±0.08 41.83±0.19 43.30±0.09 44.85±0.19

ARI 42.04±0.11 42.84±0.15 45.76±0.12 47.05±0.18

F1 63.96±0.08 64.28±0.08 65.28±0.11 65.87±0.06

Amazon

ACC 78.61±0.39 80.31±0.35 82.85±0.15 84.95±0.08

NMI 68.32±0.30 69.98±0.12 72.15±0.10 74.05±0.17

ARI 58.23±0.35 61.12±0.89 65.20±0.17 69.43±0.20

F1 77.45±0.48 79.24±0.55 81.94±0.11 83.17±0.09

Table 4 and 3 show the following observations :

• First, compared to DAGC-h, DAGC-s improves the performances due to the fact that the soft-assignment

strategy considers the otherness with the probability if two data points are assigned to the same cluster;

• Second, DAGC has acceptable improvement on DAGC-s, which indicates that our centroid updating strategy

can estimate the preferable centroids via pushing cluster centroids away from low confident points.

• Finally, Table 4 shows, that both DAGC-π and DAGC-κ jointly considering cluster size and cluster cohesion

outperform DAGC-t based on the simple distance measure, but they are not as good as DAGC in comparison.

Therefore, it is essential to consider the cluster inherent parameters for learning the node embeddings.

5.7 Visualization

In order to show the superiority of the representation obtained by our proposed method, PCA is utilized to visualize

the feature space. The visualizations on four datasets are given in Figure 4. From up to down, they are the space of

raw data, initialization embeddings, and learned embeddings (epoch 10 and epoch 100) of DAGC, respectively. We

can see that the representations obtained by DAGC are discriminative, and each cluster is compact. The discriminate

cluster distributions indicate the clusters could be distinguished clearly in the feature space.

ACM Trans. Web



16 • Pengfei Wang, et al.

Fig. 4. 2D visualization on four benchmark datasets. Black circles indicate the cluster centroids.

5.8 Parameter Sensitivity

In order to demonstrate the robustness of the proposed model, we further study the influence of hyper-parameters

including loss balance coefficient γ and smoothness parameter λ. Figure 5 and Figure 6 illustrate the effect of γ and

λ varying from 0.1 to 10 and 1 to 50, respectively. Specifically, for loss balance coefficient γ , our method performs

stably over a wide range of its values as shown in Figure 5. And since λ is the smoothness parameter controlling

the equilibrium of clusters and the dataset Amazon is more imbalanced than other datasets. Thus, the parameter λ

is more sensitive on the dataset Amazon, and there is a small peak in the Amazon data set as shown in 6. In other

cases, the performance is relatively stable.
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Fig. 5. Performance of DAGC on four benchmark datasets w.r.t. different loss balance coefficient γ .

5.9 Efficiency Analysis

To show the efficiency of the proposed method, we compare the running times of the proposed model DAGC and

one representative baseline model DFCN [46] to show the efficiency of the proposed model DAGC. Specifically,

the unit of running time we used in this paper is seconds. Table 5 shows that the running times of the models have

the same order of magnitude. In addition, the proposed model DAGC requires less running time compared with

DFCN.

6 CONCLUSION

In this paper, we study the deep graph clustering problem. To address the issue that the density of different clusters

can be quite different, we proposed a new method named deep adaptive graph clustering via vMF distributions.

Specifically, we model the cluster distribution via considering the cluster inherent proprieties to better evaluate the
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Fig. 6. Performance of DAGC on four benchmark datasets w.r.t. different smoothness parameter λ.

Table 5. Running time of the proposed model DAGC and the baseline model DFCN (mean±std, Time Unit: Second).

Dataset ACM DBLP Citeseer Amazon

DFCN 18.50±0.22 29.51±0.27 37.52±0.27 68.54±0.56
DAGC 18.42±0.21 25.78±0.38 26.87±0.31 65.67±0.45

distances between candidates and centroids by assuming the nodes can be drawn from vMF distributions. Then, we

design an EM-like clustering parameters updating strategy to adjust the mixture distribution guiding the embedding

learning. Finally, extensive experiments on four benchmark datasets have been conducted to demonstrate the

proposed DAGC consistently outperforms the state-of-the-art methods, especially on imbalanced datasets. In the

future, we will develop our method on large-scale or multi-relational graph datasets for the clustering task.
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