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SUMMING HECKE EIGENVALUES OVER POLYNOMIALS

LIUBOMIR CHIRIAC AND LIYANG YANG

ABSTRACT. In this paper we estimate sums of the form Y~y |agymm (| f(n)])], for symmetric power lifts
of automorphic representations 7 attached to holomorphic forms and polynomials f(x) € Z|z] of arbitrary
degree. We give new upper bounds for these sums under certain natural assumptions on f. Our results
are unconditional when deg(f) < 4. Moreover, we study the analogous sum over polynomials in several
variables. We obtain an estimate for all cubic polynomials in two variables that define elliptic curves.

1. INTRODUCTION

A basic goal of the theory of automorphic forms is to estimate sums of Hecke eigenvalues. In this paper
we consider a finer version of this problem, where the sum is taken over values of polynomials f(x) € Z[x].
Averages over sparse sequences of this type have applications to studying moments of L-functions, and to
establishing non-vanishing results. On a related note, sums over values f(p) restricted to primes p, are
relevant to some questions arising from the Beyond Endoscopy approach proposed by Langlands.

Notable advances for nonlinear polynomials are rather scarce. The case of quadratic polynomials f(x)
has been investigated first by Blomer [Blo08|, and later by Templier [Temll], as well as Templier and
Tsimerman [TT13]. By taking absolute values of the summation terms, Kim [Kim07] obtained a conditional
result for polynomials of arbitrary degree in the setting of cuspidal automorphic representations 7 of GL(2).
Assuming the strong Artin conjecture, he showed that Y, - |ax(f(n))|> < X, where a,(n) are the Dirichlet
coefficients of the L-function of m. Kim’s argument rests on an estimate of Barban and Vehov [BV69]
concerning multiplicative functions g(n) > 0 with the property that there exists a constant ¢ such that
g(p*) < k¢ for all primes p and positive integers k. It appears to have been overlooked in [Kim07] that, in
order to be able to apply [BV69] for g(n) = |ar(n)|?, the Ramanujan conjecture for 7 must be assumed.

An immediate consequence of Kim’s result, under the appropriate assumptions, is the upper bound
> lax(f(n)] < X. (1)
n<X

Special cases suggest that it should be possible to improve this bound, perhaps by saving a power of
log X. For example, if 7 is generated by a holomorphic cusp form without complex multiplication (CM), the
Sato-Tate conjecture implies the asymptotics

S Jan(m)] ~ e,
=% (log X)

for some positive constant ¢ and § = 1 — 8/37 &~ 0.151. Furthermore, if ¢ is a fixed nonzero integer and =
corresponds to a Maass form, Holowinsky [Hol09] showed that

X
D lar(n)ax(n+ 0] < ——,
= (log X)
for some absolute positive constant § < 2(1 — 8/3x), which is essentially the case f(z) = x(xz + ¢). Such
estimates for shifted convolution sums have played a pivotal role in the resolution of the mass equidistribution
conjecture for the surface SLy(Z)\H (cf. [HS10]).

In the first theorem of this article we obtain a logarithm power saving over the bound (1), in a broader
context. We maintain assumptions similar to those in [Kim07]. As explained there, one can associate to a
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monic irreducible polynomial f(z) € Z[x] of degree d > 2 a permutation representation acting on its roots.
This can be thought of as a Galois representation, which is the sum of the trivial representation and another
(d — 1)-dimensional Artin representation oy with the property that the number of solutions of f modulo a
prime p is ps(p) := 1+ tr o¢(Frob,). The strong Artin conjecture, or more generally Langlands’ principle of
functoriality, predicts that there exists an automorphic representation 7'(f) of GL(d — 1, Ag) with the same
L-function as 0. In this case we refer to o; as being automorphic (or modular).

A novel feature of our result is that it applies not only to representations 7 attached to holomorphic
forms, but also to every symmetric power Sym™ 7, provided that o is automorphic. The existence of all
symmetric powers lifts has recently been established by Newton and Thorne [NT21b] for all cuspidal Hecke
eigenforms. Another important aspect is that our estimate holds in short intervals as well.

Theorem 1.1. Let 7 be a cuspidal automorphic representation of GL(2,Aqg) with trivial central character,
defined by a non-CM holomorphic newform of weight k > 2. Suppose f(x) € Z[z] is a monic irreducible
polynomial, with no fized prime divisor. Let 0 < e < 1/10, 0 < 8 < 1, and a,q € Z with 0 < a < q and
(g, f(a)) = 1. If oy is automorphic then for every integer m > 1 we have

X __m
Y lasyme<(If ()] < =2 - (log Xo) 227, (2)
X—Xo<n<X q
n=a (mod q)

uniformly for X* < Xg < X and1 < g < Xé_B. The implied constant depends on m, m and f.

The condition that f(x) has no fixed prime divisor means that there is no prime dividing f(x) for every
integer x; it holds precisely when p¢(p) < p for all primes p. This mild requirement is all we need to apply
a very general theorem of Nair and Tenenbaum [NT98] that reduces the problem to bounding sums over
primes of the form 3> _ v pf(p)lasymm = (p)|/p. The modularity of o provides a means of compatibility, in
an analytic sense, between the Frobenius traces of o ¢ and the Hecke eigenvalues of Sym™ 7. The rest of the
proof combines an insight inspired by Holowinsky’s sieve method for shifted convolution sums [Hol09] with
certain properties of the adjoint lift; this is detailed in Section 3.

For polynomials of small degree we can explicitly construct the automorphic representation 7' (f) corre-
sponding to o¢, so our result is unconditional.

Corollary 1.2. Let f(x) € Z[x] be a monic irreducible polynomial, with no fized prime divisor. Assume that
deg f < 4. Then oy is automorphic. In particular, the upper bound (2) holds for all such polynomials f.

Our second main result is concerned with an estimate over cubic polynomials in two variables, which
can be viewed as Weierstrass equations defining elliptic curves. This question fits into a more general
framework, as developed by de la Bretéche and Browning [dIBB06], who investigated the average order of
certain multiplicative functions over values taken by general binary forms. We also mention the recent work
of Lachand [Lac18] in the case of the special cubic form X3 + 2X3.

Theorem 1.3. Let m be a non-dihedral cuspidal automorphic representation of GL(2,Aq) satisfying the
Ramanujan conjecture. Consider an irreducible polynomial

E(z,y) =y* — 2% —az — b € Z[z,y]

with discriminant 4a® + 27> # 0. Let v2 > v1 > 0, and X, Y > 100 such that Y < X < Y72, Let
a,B€(0,1), and X* < Xg < X, Y? <Yy <Y. Then

> ax(|E(m,n)))] <
X—Xo<m<X
Y —Yo<n<lY

XoYo
- v 3
(log Xo¥o) /55" ®)

where the implied constant depends on o, B,7v1,v2 and 7.
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Our argument in Theorem 1.3 is robust enough to be applied to any modular variety defined by polynomials
in Z[xy1,22,...,2,]. In fact, one does not even need explicit polynomials to define the variety; all that is
required is the modularity condition. In Section 2 we give all the necessary ingredients for the general case,
particularly Proposition 2.2. To simplify notations, we opted to state Theorem 1.3 for elliptic curves.

The principal technical difficulty that we must overcome is adapting the methods of [Nai92] and [NT98]
to several variables. In contrast with [Nai92], Brun’s sieve does not seem to be amenable to our setting, so
we make use of Selberg’s upper bound sieve instead. For polynomials in two variables on smooth domains,
an approach of similar flavor appears in the work of Khayutin [Khal9], where a conditional proof of the
“Mixing Conjecture” of Michel and Venkatesh [MV06] is presented.

Acknowledgements. We thank Andrei Jorza and Peter Sarnak for many conversations and suggestions con-
cerning this project, and also for their encouragement.

2. SIEVE BOUNDS

We start this section with a brief review of a fundamental result on short sums of certain arithmetic
functions in arithmetic progressions due to Nair and Tenenbaum [NT98]. In order to state it, we first need
to introduce some notation.

For any A,B > 1, ¢ > 0 and k € ZT, we denote by My(A4, B,¢) the class of non-negative arithmetic
functions F'(nq,- -+ ,ng) in k variables satisfying

F(ming, - ,mgng) < min{AwQ(m),Bme} -F(ni, - ,ng), m:=mq---my,

where wg(m) denotes the number of prime factors of m counted with multiplicity; and (m;,n;) = 1, for
1<j<k
Let @, € Z[z], 1 < j < k be polynomials with factorization

Qj(x) = [[ Rilw), 1< <k,
1=1

where the polynomials R;(x) € Z[z] are irreducible over Q. For a polynomial Q € Z[z1, -+ ,z,], n > 1, let
pqo(c) =#{(r1, - ,m) € (Z/cZ)" : Q(r1,-++ ,rp,) =0 (mod c)} 4)
Write p;(n) = pg,(n) for 1 <4 < r. Define
ﬁ(n;Fap) = ZT F(Hniﬂlv aanki)'pl(nl)“.pr<nr)v
i=1 i=1 L

n Ny
njt

A
where the 1 symbol indicates that the r-fold sum is restricted to pairwise coprime variables. Also, for a
polynomial Q(z) = >, a;x’ € Z[z], set ||Q| = max; |a;|.

The Nair-Tenenbaum bound ([NT98], Corollary 1) can now be stated as follows:
Lemma 2.1. Let A/ B>1, g€ Z ", 0<e<1/8% 0< B <1,0<6<1/2g, and let v,k be arbitrary
positive integers. Let f € My(A,B,e86/6) and Q; € Z[X] (1 < j < k) be such that Q = Hle Q; has no
fized prime divisor. Let a,q € Z", with a < q and (¢,Q(a)) = 1. Then

S Pl ) < LT (1-222) ST o p) (5)
q p

r<n<zr+y p<x n<z
n=a (mod q) plq (n,g)=1

uniformly for x > clHQH%, plo’e <y<uz 1<q<y=B. The implied constant in < sign depends at most
on A, B e, 5,0,k,r, g and the discriminant of Q). The constant ¢y relies at most on A, B,¢€,0,k,7,g.

Note that the sum on the left hand side is essentially the average of a multiplicative function F' evaluated
at absolute values of the polynomial Q1Q)s - - - Q, which is still a single variable function. To prove Theorem
1.3 we need a similar sieve estimate for polynomials in several variables.

The main result of this section is the following:



Proposition 2.2. Let h > 0 be a multiplicative function bounded by the k-th divisor function, for some
integer k > 1. Let Q € Z[x1,2,--- ,xy] be an irreducible polynomial, and let pg be defined as in (4).
Suppose there is a constant 0 < 6 < 1 such that for all integers | > 1 and all primes p we have

lpo(p') — p V! < pt ==L, (6)
For 1 < j <n consider positive integers X; > X; such that

. i ’
1r£nja£xn log X; < 1I§njl£n log X;. (7)

Denote by X' = X1 --- X! . Then we have

Xj—=Xj<m;<X;, 1<j<n p<X{ XX, P
where wg(p) = pg(p)/p™~t, and the implied constant depends only on k, Q and the implied constant in (7).

It is important to emphasize that one cannot apply Brun’s sieve, as in [Nai92], to prove Proposition 2.2.
The reason is that the crucial condition (R), detailed in Halberstam and Richert [HR74], does not hold in
the case of several variables. The remaining part of this section is concerned with the proof of Proposition
2.2.

2.1. Preliminaries. First, we obtain an estimate using Selberg’s upper bound sieve.
Throughout the paper, we shall denote by P~(m) the least prime factor of the integer m. For an integer
d, let WQ(d) = pQ(d)/dnil.

Lemma 2.3. Suppose Q(x1, 22, -+ ,Tpn) € Zlx1, T2, -+ ,Ty] s an irreducible polynomial satisfying (6). For
1 <j<mn,let X;,X},z >0 with 2?2 < X; < Xj. Let X" = min{X1,---, X}, }. Then for every positive
integer ¢ we have

S .= Z Z 1<<XI'H(1_pQ(p)>+22X/§?,gz)3,

n
X1—X{<mi1<X Xn—X] <m,<X, Z;;Z p
c

P™(Q(m1,ma, - ,mpn))>z,
(Q(mlv'“ 7mn)ac)=1

where the implied constant depends at most on Q. In particular, the implied constant is independent of c.

Proof. Set P. = {p i pte, p prime} and let

P(z)= [ »

p<z, (p,c)=1

S(P,, z) == > - > 1.

X1—X!<mi<X  Xp—X,<mn<X,
(Q(ma,+ ;my),Pe(z))=1

Define

Note that S < S(P,, z). Let
N p(d)?wq (d) _ 2 wop™' 1
G- Y =S e i

= Il (0 —welp™) = a Lmwe®p™h) 2 (L—wo(pp™)
(d,e)=1 (d,c)=1 (p,c)=1

For 1 <d < 22, d| P.(z), define

Ay = Z Z 1

X1—X{<mi1<X Xn—X] <m,<X,
d|Q(ma,- ;my)

= Z Z 1 Z Z 1.

Osmi<d = 0sra<d X3 =Xjom ) o Xaom X Xpotm o, < Xoorm
de(Tlv'“ 77071)
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By definition,

n n
XZ, ! Oéid
= Y S I re) = X Y T )
0<ri<d  0<r,<di=1 0<ri<d  0<r,<d i=1 i
d|Q(r1,+,mn) d|Q(r1,+,7n)

where |o;| <1, 1 <4 < n. Hence, expanding the inner product we obtain

_ we(d)X’ ~d )\ _ we(d)X' wq(d) X’
Ag= == 1+0 ; w) )=t o\~
where the implied constant depends at most on Q. In particular, Ay = X’ + O(X’/X"). As a consequence,

wo(d wo(d)X'
Ry = ‘Ad — 7ch( ) 'Al' < 762)((/), .

Denote by v(d) is the number of district prime divisors of d. By Rankin’s trick, we have the estimate

v(d) 3
S g <2 3 Tt <A ] (1490 < g
p

d<z? d<z? p<z
d|P.(z) d‘Pc(Z)

where the last inequality follows from Mertens formula in conjunction with the assumption (6), and the
implied constant depends on ). Hence we derive that

Z Y 22X'(log 2)?
d<z?
d|Pe(z)

Finally, Selberg’s upper bound sieve gives

A 2x7/(1 3
S(P.,z) < =1 + Z 3"(d)|Rd|<<X’-H(1pQ(p))+Z (log 2) 7

- Y2 "
G(z) d<z? Pz P *
d|P.(z) pfe
where the implied constant depends on Q. |

Next, we present a variant of [Nai92, Lemma 2] adapted to our setting.

Lemma 2.4. With the same notation as before, for every z > 2 the following hold:
(i) If 1 <1 <logz then

T (1-222) oo (1 - 222).
1/ p p
p<z p<z
(i) Let ¢ be Euler’s totient function. If ¢ > 0 is an integer then

1 (=)< (- )

p<zl/2 p<z
pte

(i1i) Let H be a multiplicative function bounded by the k-th divisor function, for some k > 2. Then

H(p)w
Z (p)wg (p)

p

<LK exp
n<z p<lz

H(n)wgo(n
3 ()ncz()



2.2. Proof of Proposition 2.2. Without loss of generality, we can take
= min{X] 0, X,0 ... X0} = X"
to be the sifting level. Consider the following set
B={(mi,ma, - ,my) €ZN . X1 —X; <my <Xy, Xog—Xp<my<Xo, -, X,, — X, <mp, <X, }.
For m := (mq, ma, -+ ,my) € B, we define the quantities Ay, and By, as follows. First write

l

|Q(m1,m27"' 7mn)| :Hpi%7 P <p2 <---<py, k7. >07 ]-SZSZ
i=1

. prlfl >z set Am = 1.
o If plfl < z take j < to be the largest index such that p'fl ~-~p§j <z and set Ay, =p
o Let Bm = |Q(m1; mao, - - ,mn)l/Am
We decompose B into four disjoint sets, as in [Shi80]:
Bl = {m: (ml,m2,~-~ ,mn) e B: P_(Bm) > Zl/Q},
By = {m = (my,mg, - ,my,) € B: P~ (By) < 2zY/%, Ay < 2'/?},

Bs = {m = (my,ma, - ,my) € B: P (By) <logzloglogz, Ay > 21/2}7

k1 K
1 .-.pj .

By ={m= (my,ma,---,my) € B: logzloglogz < P~ (By) < 2'/2, Apn > z'/?}.
Here P~ (n) and P*(n) denote the least and the greatest prime factor of n, respectively.

In the next four Lemmas (2.5-2.8), we bound the contribution from each set B;. We maintain the same
notations and assumptions as in the statement of Proposition 2.2.

Lemma 2.5. Let By = {m = (my,ma,--- ,m,) € B: P~ (By) > z'/2}. Then

Z h(|Q(m1,m2, . 7mn)|) ok X/ exp Z wQ(p) . (h(p) - 1) _ (9)

(ma1,ma, ,mp)€EB: p<z p

Proof. By the definition of By and the multiplicativity of h, we have

S Qmuma - m)) < o) S h(B), (10)

(m1,ma, - mp)€EBL c<z (m1,ma, ,mn)€EB:
where the symbol 1 indicates that the inner sum is over the pairs (my,ma, -+ ,my) € By such that c |
Q(my,ma, -+ ,my) and (¢, By) = 1. Let
Mqo(X;,X;:1<j<n):= max |Q(m1,ma, -+ ,my)]|.

X;j—X;<m;<X;, 1<j<n
To simplify notation, we shall write Mg for Mq(X;, X} : 1 < j < n); this quantity will also appear in the
following Lemmas. Then by (7) one has log Mg < log z. Hence
M,
ZQ(Bm)/Q S Bm < TQ S ]\4@7

where Q(By,) is the number of prime divisors (with multiplicity). So Q(Bm) < % + O(1) = O(1),
implying that h(By) < A%Pm) < 1. Substituting this into (10) we obtain
t
S hQumma - m) <k Sk 3L (11)
(m1,ma, - ,mn)EB c<z (m1,ma, - ,mn)EB
We can express the right-hand side of (11) as

NICEEDD 3 1, (12)

c<z (r1,r2,,rn)ERe  (Mm1,ma, - ;my)EBL
mj;=r; (mod ¢), 1<j<n

6



where R, C (Z/cZ)"™ denotes the set of solutions of Q(z1,22, - ,2,) = 0 (mod ¢). Write m; = cq; + r;,

QUmama, mu)=Qlriira.irn) |

1 < j < n. Then Q(my,ma, -+ ,my,) = Q(r1,r2, -+ ,7r,) (mod ¢). Hence, 2 s
an integer. Denote it by P(g;,7; : 1 < j < n). Let Q(r1,72, -+ ,rn) = c¢R(r1,72,--- ,7,). Then the dagger
condition on the inner sum in (12) becomes

Xio X —r. e )
DTN gy <X 1< j <,

C

P=(R(r1,r2,- ,rn) + P(gj,rj: 1< j<n)) > 212
(¢, R(ri,re, -+ ,mn) + Plgj,r;: 1< j<n))=1.

Note that by definition of z, one has Xj'-/c > 2121 < j < n. Now we can apply Lemma 2.3 with

Q(z1,22, -+ ,xn) = R(r1,72,- -+ ,1n) + P(x;,7j : 1 < j < n) to see that
t X’ P (P)
> 1<<n'H<1Qn : (13)
c p
(m1,ma,- ,my)EBL p<z
m;=r; (mod c), 1<j<n pte

Since Q(cxy + 71,y + 1o, -+, Cy 4+ 1) = ¢Q(1, T2, -+, 2,), we conclude that ra(p) = pgp) ifptec.
So combining (11), (12) with (13) we then obtain

S nQemm ) <X’ 3 ML (1o 2

(m1,ma,--- ;m, )EB1 €<z (r1,r2,,mn)ERC p<z
pfe
h(c)pg(c) wq(p)
=x'y " 2R 1— .
RRCELR ) R
cLlz <z
pte

By Lemma 2.4 (ii), we have

16-24) <l (-5)

Using Lemma 2.4 (iii) for the multiplicative function H(c) = ch(c)/¢(c) it follows that

' wo(p) h(p)wg (p)
Z h(|Q(m17m2a"' amn)D < X H (1—p> exp (Zp) ,

(m1,ma2, - my,)EB p<z p<z

which combined with the assumption (6) implies the estimate (9). O

Lemma 2.6. Let By = {m = (my,ma, - ,my) € B: P~ (By) < 2Y/%, Ayn < 2'/2}. Then

w -(h(p) —1
3 W(Q(m1,ma, - ymy)|) <u X' -exp | S o) - (hp) —1) | (14)
(m1,ma, mnp)€EB2 p<z p
Proof. By definition, for each (my,ma,---,m,) € By there is a corresponding prime power p! such that
pl||Q(m17m2, e ymp), < 212 and p! > 2'/2. For each p < z!/2, denote by l,, the least integer [ such that

pl > z'/2. Then I, > 2 and max{zl/Q,pQ} < p'» < z. Therefore,

X/ Ip Ip
> oasy ¥ -y Hep(ieo(f).
(m1,ma, ;my,)EB2 p<zl/2 X;—Xj<m;<X;, 1<j<n p<z1/2

PP |Q(ma,ma,- ;mn)

By definition, z = X5, so plv /X" < 2/X" < 1. According to (6) we have pg(p'?) < p("=Dlv  Therefore,
X/

X' X’ X’
Yoey ey Mooy DX 19
(m1,ma, ,mp)EBy p<z1/2 p<zl/4 21/4<p<z1/2
7



On the other hand, we have

A
h('Q(mlamQa ce 7mn)|) < dk(|Q(mlam27 e ﬂmn)‘) <k Mgl?oglogMQ (16)
for some absolute constant A > 0.
Substituting (16) into (15) gives
X/

A
Z h(|Q(my,ma, -+ ,my)]|) <<M£2g1 e T

(m1,ma, ;mpn)EB2

A
Note that by assumption (7), ]\/[CIQog EMQe « X35 = z1/5. Moreover, since h > 0, then

Z wo(p) - (h(p) — 1) > — Z wq(p) = —Z} +0 Zp_2_6("_1) = —loglog z + O(1). (18)

p p

hS!

p<z p<z p<z p<z
Therefore, it follows from (17) and (18) that
X’ w <(h(p) — 1
Z R(|Q(my, ma, - ,my)|) < S < X' exp Z @(p) - (h(p) — 1) 7
(mama M) B p<= P
proving the estimate (14). O

Lemma 2.7. Let B3 = {m = (my,ma,--- ,m,) € B: P~ (By) <logzloglogz, Ay > 2'/?}. Then

w -(h(p) — 1
Z h(\Q(mhmg, o ’mn)|) <5 & exp Z Q(p) ( (p) ) - (19)
(m1,ma, - ,myn)EBs p<z p
Proof. By definition, for each (mi,mo,---,m,) € Bs there exists some integer ¢ | Q(mq1,ma, -+ ,m,) such

that 21/2 < ¢ < z, and P*(c) < log zloglog z. Hence

3 1< > 3 1< X' 3 pale)

cn
(m1,ma,--- ;mn)EB3 22<ce<z Xj—X;v<mj§Xj7 1<j<n 21 2<e<z
Pt (c)<log zloglog = c|Q(myi,ma, - ,my) Pt (c)<log zloglog z

Appealing to (6) we then deduce that

1 X’ X’ 3log z
Y oiex Y e v 1<<.exp().
1/2 1/2 g D
(m1,mz,--- ;m,)EBs 22 <e<z ¢ z 2 2<e<z z 10g logz
Pt (c)<log zloglog = Pt (c)<log zloglog z
We remark that the last inequality follows from the standard bound on de Bruijn function (e.g., [Shi80],
Lemma 1). Combining the above with (16) we obtain

—Aa X/ 3log z
o log log MQ . . e
Z h('Q(mlmea 7m77)|) <<kMQ Zl/2 eXp ( 1og 10gz>

(m1,ma2,- ;my,)EB3

<X exp ZWQ(P)'(;L(I?)_U 7

where the last inequality follows from (17) and (18). O

Lemma 2.8. Let By = {m = (mq,ma,--- ,m,) € B: logzloglogz < P~(By) < 22, Ay > 2Y/2}. Then

(m1,ma, - ,mp)EBy p<z
8



Proof. By the definition of B4 and the multiplicativity of h, we have

3 W(Q(myma, - my)) < > h(e) Y h(Bw), (21)

(m1,ma,- ,m,)EBy 21/2<e<z (m1,ma,- ;my,)E€By
where the asterisk indicates a sum over (my, ma,- -+ ,m,) € Bsuch that ¢ | Q(mi,ma, - ,my), log zloglog z <
P~ (Bn) < 2Y% and (¢,Bn) = 1, with By = |Q(m1,ma,--- ,my,)|/c. Let L be the integral part of
log z/log(log z loglog 2). For 2 < I < L, we consider the pairs (my,mg,--- ,m,) € By such that z'/(¢+1) <

P~ (By) < 2. Then by definition, P*(Ay) < 2/}, and
Mg > |Q(my,ma, - ,mp)| > By > P*(Bm)wQ(Bm) > pwe(Bm)/(+1)

Hence, wg(Bm) < [, implying that h(Bn) < C!, for some positive constant C' depending only on k.
Therefore, we have

L
0
oo Qmrma, e m)) <> C YT me Y,
(m1,ma, - ,mp)EB 1=2 21/2<c§z (m1,ma, mn)EBs
Pt (e)<z!/!
where the superscript (I) indicates a sum over (mq,mg,---,m,) € B such that ¢ | Q(mq,ma, -+, my),

A/ < P=(By) < 2P and (¢, Bp) = 1, with By, = |Q(mq, mg, -+ ,m,)|/c. Denote by R. C (Z/cZ)®"
the set of solutions of Q(x1,x2,- -+ ,z,) =0 (mod ¢). Then

L

S (Qmima, - m)) <320 ST k@Y )RR NNC )

(m1,ma, - ;my,)EBy =2 22 <e<z (r1,72,,mn)ERe (M1,ma, - ;my,)EBy
PH(z)<2/! mj=r; (mod ¢), 1<5<n

Similarly to (13), we can apply Lemma 2.3 to deduce that

(m1,ma, ,my)€EBy p<z/ U+
m;=r; (mod c), 1<j<n ple

Inserting (23) into (22) we get

L
S Qemma e m)) < x Yt Y MA@y (1_wQ<p>).

cr p

(ml,mz,-“ ,m”)684 =2 21/2<C§Z p<21/(l+1)
P+(c)§z1/l pfe
By Lemma 2.4, we obtain
L
h
> QU ) < XY nct Y UG (1 “ale)),
(ma,ma, ,mp)EBy =2 21/2<c§z v p<z p
P+(c)§z1/l

Applying [Shi80, Lemma 4] for H(c) = h(c)wg(c)c/¢(c) we deduce that

L
Z h(|Q(m1,m2,--~ 7mn)‘) <<X/ H (1 _ LUQ@) Z(Z+ 1)01 exp Z h(p)WQ(p) o llogl

(m1,mz,--- ;m;,)EBy p<z p 1=2 p<z 4,0(17) 10
<X H (1 _ wQ(Z’)) exp Z h(p)wq(p) ’
p<z p p<z p
from which (20) is now clear. O



Proof of Proposition 2.2. Since B is the disjoint union of By, B3, By, and By, Proposition 2.2 is then obtained
from the estimates (9), (14), (19), (20), and the fact that

< < 1.

> -3

p<X’ p<z

log

wq(p) - (h(p) — 1) wq(p) - (h(p)
yowe Sy e X 1

p

p<Xi--X] p<z

The last step above is a direct consequence of condition (7):

! ! ! . 4 X . /
log X' =log X1 X5+ X, < 121;2{71 log X; <« 11Snj1£n log X; < log z.

3. PROOF OF MAIN THEOREMS

A simple, yet fruitful idea is to bound the Hecke eigenvalues of an automorphic cuspidal representation in
terms of the Hecke eigenvalues of its adjoint lift (assuming it exists). The following elementary inequality led
to one of the first estimates of the sum > __|7(n)| for the Ramanujan 7-function, without the knowledge
of the Sato-Tate conjecture (see [EMS84] for details). As already mentioned in the introduction, similar
inequalities were used by Holowinsky [Hol09] in his sieve method for shifted convolution sums.

Lemma 3.1. Let II be a cuspidal automorphic representation of GL(n,Aqg). Suppose that II admits an
adjoint lifting, i.e., AdIl is automorphic. Let p be a prime such that I1, is unramified and tempered. Then

laaani(p)]*  aaan(p)

1< —
Proof. Since aaqn(p) = |an(p)|? — 1 and |an(p)| < n, the inequality follows readily from the fact that
1 1
<1+ (2 -1)— ——(2® - 1)?
ol <14 560 1)~ g )
is true for all nonnegative real numbers z that are bounded by n in absolute value. O

To ensure the temperedness condition everywhere we shall take 7 to be a cuspidal representation attached
to a holomorphic newform of weight & > 2. In this case, by a recent breakthrough of Newton and Thorne
[NT21b] (building on [NT21a]) we know the automorphy of the symmetric power lifting Sym™ 7 for all
m > 1. In fact, we are also guaranteed that Sym™ 7 is cuspidal if we insist that the newform be without
complex multiplication (cf. [Ram09]).

The following technical result provides a key estimate for the proof of Theorem 1.1.

Proposition 3.2. Let m be a cuspidal automorphic representation of PGL(2,Ag) defined by a non-CM
holomorphic newform of weight k > 2. Suppose f(x) € Z[x] is a monic irreducible polynomial. Denote by
pr(p) the number of solutions of f(x) =0 (mod p). If o5 is automorphic then for every integer m > 1 we
have

m™ T - 1
Z ,Df |aSy (p)| ) < — m logIOgX + O(l)’
2(m + 2)?
<X

where the implied constant O(1) depends only on m, © and f.

Proof. Let II = Sym™ . As discussed above, we know by [NT21b] that II is a cuspidal automorphic
representation of GL(m + 1).
Let N be the arithmetic conductor of 7. Since 7 has trivial central character, for all primes p { N we have

aAdH(p) = Z aSymm F(p) (24)
=1

By definition, the quantity ps(p) is nonnegative for all primes p, so Lemma 3.1 gives
10



pr(p |‘1H p)| — 1) ps(p |aAdH ps(p)asan(p) )
5 S . Ly )
p<X p<X p<X

(p,N)=1 (p,N)=1 (p,N)=1

Note that the contribution from the ramified primes is bounded by a constant. Indeed, since ps(p) < deg f
and |ar(p)| — 1 < m for all primes p, we have

pr |aH |71)_Zmdegf20(l), (26)

p<X px P
p|N p|N

where the implied constant depends on m, m and f. Therefore, combining (25) with (26) we obtain

Y b o= 1 pr plesan(ell 2y~ el o). o)

= 2(m +2)? P p<X

Since o is assumed to be modular, there exists an automorphic representation 7/(f) of GL(deg f —1, Ag)
such that ps(p) = 1+ ax (5 (p), as explained in the introduction. For convenience we shall simply refer to
7'(f) as @’. Therefore, ps(p)asan(p) = anan(p) + e (P)aaan(p).

Let Dy be the discriminant of f. Then 7’ and 7 are both unramified at all primes p such that p { NDy.
By (24), for p{ NDy, one has

aq (p)apamn(p Z ar (P)agym2t () = Z Ut Sym?! (D)5 (28)
=1

where @,/ gym2t - (p) is the Hecke eigenvalue of the Rankin-Selberg m,, X Sym? 7,. When p | ND¢, we have
lar (p)asan(p)] < m(degf — 1)(2m + 1). Note that there are only finitely many such ramified primes,
depending only on N and D;. Hence by (24) and (28) we obtain

Z pf ClAdH Z Z asymzz + Z Z a‘/r’XSmeL ) + O(l) (29)

p<X I=1 p<X =1 p<X

We claim that the isobaric representation 7/(f) has no constituents equivalent to Sym? 7 for I > 1. One
way to see this is by looking at the corresponding Hodge-Tate weights. Let p be a prime away from NDy.
Fix an isomorphism C ~ Qp, where Qp is the algebraic closure of Q,. Let C,, be the completion of Qp Under
the isomorphism C ~ Q we can regard oy as a (deg f — 1)-dimensional p-adic representation. Since oy is
locally trivial, tensoring with C, it becomes C,(0), which is a Hodge-Tate representation with Hodge-Tate
weights all equal to 0. On the other hand, if £ > 2 is the weight of the newform defining 7, we have that the
Hodge-Tate weights of Sym® 7 are (0,k—1,2(k—1),---,2l(k—1)) (e.g., from Proposition 4.3.1 of [CHT08]).
This, of course, is not equal to the zero vector since k > 2.

It follows from the previous paragraph that the Rankin-Selberg L-function L(s, 7’ x Sym? ) is regular
at s =1 for 1 <! < m. Therefore, both sums on the right-hand side of (29) are bounded, and so

Z pf a’Adﬂ' ) _ O(l), (30)

p<X

where the implied constant depends on m, m and f. Substituting the estimate (30) into (27) we then obtain

Z pf |aH ) —1) <_ 1 Z |aAdH(p)|2 B 1 Z a’ﬂ"(p)|a/AdH(p)|2 Lo, (1)

2 2
2 am+2P 2 p 2Amt2P T p

In view of (24) and the fact that IT is self-dual (and tempered) we can write

Z |aAdH Z Z Z Agym?2i 7r a’SmeJ 7r Z Z Z Agym?2i 7r><Sym27 ﬂ(p) (32)

p<X i=1 j=1p<X i=1 j=1p<X
pIN ptN ptN
11




Moreover

2 a ; i
Z |aAdH(p)‘ — 1 and ZZ Z Sym2 7T><Sym2 (p) — 0(1) (33)
p<X p i=1 j=1p<X
plN pIN

Hence, (32) and (33) combined with Selberg’s orthogonality relations (see, for example [LY05]) give

Z ‘aAdH ZZ Z AGym?2i 7T><Sym2~7 7T( ) + 0(1) = mloglogx + O(l) (34)

p<X i=1 j=1p<X

Furthermore, using the decomposition (24) once again, we get

m

Z ar (p )|aAdH ZZ Z ar( aSym2’ (p)aSymzfﬂ' :zm:z Z G’Hi,j(p)’ (35)

p<X i=1 j=1 p<X p 1=1 j=1 p<X p
ptN Dy ptNDy ptNDy

where 1I; ; = Sym* 7 X Sym? 7. Note that for i > j and p{ N, we have

ari; (p) = ASym?2i rK¥Sym?2J ﬂ(p) = Z Agym2(i—i+) ﬂ"(p)’ (36)

where Sym® 7 := 1 the trivial representation and Sym' 7 = 7. Substituting (36) into (35) we then obtain

3 aw’(P)la;dnp *QZiZ 3 e ( GSymw a+l>7r(p) (37)

p<X i=1 j=11=0 p<X
ptN Dy ptND;

On the other hand, we have

2 mo i 2 ’ 2(i—j+1
3 ax (p)lanan(p)|® _ o amd Y3 Y an (P)asym2i-7+0 7 (P) _ o(1). (38)
p<X p i=1j=11=0 p<X p
p|NDy p|NDy

It then follows from (37) and (3 ) that

> ax (p)lanan (@) _ zm:

p<X p i=1 j=1

Let S be the set of triples (i,4,1) with 0 < < 25 and 1 < j < ¢ < m such that the Rankin-Selberg
L-function L(s,n’ x Sym2(’_7+l) m) has a pole at s = 1. Let (4, 4,1) € S. Denote by m; ;; the multiplicity of

%

Sy as““z“ 00 L o). (30)
=0

p<X

the pole of L(s, 7" x Sym?=7+) ) at s = 1. Then, using Selberg’s orthogonality once more in (39), we get
2
y & Wleaan®l” _, 3" mijiloglog X + O(1), (40)
pX b (i3S

where the implied constant depends only on 7 and f.
Substituting (34) and (40) into the inequality (31) we then obtain

pt(p \asym )| —1) < mloglog X { } m
— 14— i o1 ————loglog X + O(1),
> = 2(m+2)2 + > maj) +00) < 2(m+2)2 8% +0(1)
p<X (z 3,)ES
which establishes Proposition 3.2. |

We are now in position to prove the first main result of this paper.

Proof of Theorem 1.1. Our starting point is Lemma 2.1 applied for the function F'(n) = |agym= ~(n)| and
the polynomial Q(z) = f(x) € Z[z]. It yields

Xo P Ias m (1)
> asymm (1 f ()] < =2 H( ) > ps(m)|asyu (m)], (41)
X—Xo<n<X p<X n<X
n=a (mod q) plq (n,q)=1

12



We turn to the sum on the right-hand side. The multiplicative property of the arithmetic function
|agymm (n)| implies

k k
Z pf |aSym < H 1+ Z pf(p )|aSym Tr(p )| ) (42)

k
n<X p<X 1<k<10gx p
(n,q)=1 logp

At the same time, the elementary inequality log(1 4+ x) < x, true for all > 0, gives

Zlog 14 Z Pf(Pk)GSgI:lmﬂ(Pkﬂ SZ Z Pf(pk)lasgkmmﬁ(pk)l‘ (43)

p<X 1<k< e X P<X 1<fp<los X
- log p - —="—=logp

Bounding p¢(p")|agymm »(p*)| trivially we see that

Z Z Pf(pk)‘asykmm”(pk” < (m+1)degf- Z Z = oS Z (44)

p
< log X < log X <
p<X 2<k<1001§? P<X o<ck< l?ai p< X

where the implied constant depends on m, m and f. Substituting (43) and (44) into (42) we get

)lasy (n) 2 s (M lasyur ) (0)lasyur =)
Z Pf Sym < exp Z Z pr(p Sym p < exp Z Pr\P)lasymm™ = (P . (45)
n<X p<X k=1 p<X p
(n,q)=1
Using the key estimate proved earlier (Proposition 3.2) together with a well-known result of Erdos [Erd52]:
Z pf =loglog X + ¢(f) + o(1), (46)
p<X
(for some constant c(f) depending of f) we obtain
ps(p |aSym =(p)| < m
1—-—— ) -loglog X + O(1). 47
> < a(m 1)z ) loslos X +0(1) (47)
p<X
Hence, combining (45) and (47) we get
s prlsmn ] o 1o x)'atar (18)
n<X
(n’Q)zl

Finally, we note that equation (46) also implies that

I1 (1’”;7’)) < bng. (49)

p<X
plq

Then Theorem 1.1 follows by substituting (48) and (49) into (41).

Next, for polynomials f of small degree we explain why the Artin representation o is automorphic.

Proof of Corollary 1.2. Denote by d the degree of f, and by D its discriminant. Recall that the permutation
representation acting on the roots of f, viewed as a Galois representation, decomposes as the sum of the
trivial representation and another Artin representation o : Gal(Q/Q) — GL4—1(C) with the property that
ps(p) =1+ o;(Frob,), where Frob,, is the usual Frobenius automorphism.

For d < 4 we show that o is automorphic, i.e., there exists an automorphic representation 7’(f) of
GL(d — 1, Ag) with the same L-function as oy. We treat each case separately.

o If d = 2 then, by quadratic reciprocity, ps(p) =1+ ( ) for all odd primes p (away from D). Since
o¢ is simply a character, its automorphy is clear.
13



o If d =3 then oy is induced from a character x : Gal (@/Q(\/ﬁ)) — C*. In this case, the existence

of 7'(f) is deduced by automorphic induction from GL(1) to GL(2).

o If d = 4 then it can be seen that o is the symmetric square of a 2-dimensional Artin representation
7: Gal(Q/Q) — GL2(C) with solvable image (see, e.g., Example 2 and 3 in [Kim07]). By the work
of Langlands and Tunnell, the automorphy of 7 is known in this case. This, in turn, combined with
the adjoint square lift of Gelbart and Jacquet gives the automorphy of 0.

We also mention that if d = 5 then, by [Kim07] (Example 4), we have that oy is the tensor product
of two Artin representations of degree 2. Provided that these are automorphic (e.g., if they are odd), the
existence of 7/(f) follows from the functorial product GL(2) x GL(2) (see [Ram00]). Since even icosahedral
representations are not yet known to be modular, we cannot deduce the automorphy of oy in full generality
for d = 5.

O

Finally, we give a proof of our second main result.

Proof of Theorem 1.3. In contrast with the proof of Theorem 1.1, neither [Nai92] nor [NT98] can be used
here directly, for the sum is over the values of a polynomial in two variables. This is where the sieve methods
developed in Section 2 come into play.

Let mg be the cuspidal automorphic representation associated by modularity to the elliptic curve defined
by the polynomial E(z,y) = y* — 2% — ax — b with 4a® + 27b? # 0. Then a.,(p) = p+ 1 — pr(p), and the
Hasse-Weil bound gives |pp(p®) — p* — 1| < 2p%/? for every integer £ > 1

Also, since Y < X <Y and X°¢ < Xy < X, YA <Y, < Y, it is clear that

max{log X,log Y} < min{log Xy, log Yo}

with implied constants depending on «, 3, y1 and ~s.
It follows that we can apply Proposition 2.2, which allows us to reduce the problem to showing that

Z wg(p) - (ax(p) — 1) < 7%8 loglog XYy + O(1), (50)
p<XoYo b

where wg(p) = pr(p)/p. Appealing to Lemma 3.1 we have

$ WE(p%(aw(p)*l)Sili 3 wE(p)Ia;dw(p)|2+1 > wr(p)arar(p) (51)

b p

p<XoYo p<XoYo p<XoYo

Since 7 is not dihedral, we note that Ad(r) is a cuspidal automorphic representation of GL(3), so by Selberg’s
orthogonality
2
> 820 =B _ 105 106 X% + O(1). (52)
p<XoYo

Furthermore, the fact that 7 satisfies the Ramanujan conjecture implies that |apq-(p)] < p¢ for some
positive constant (say) € < 1/100. Using this upper bound together with the inequality |a,, (p)| < 2p'/? we

get
v (o)) loasG)E Zp

p<XoYo p

1/2+2e

o). (53)

On the other hand L(s,7p x Ad ) is entire, since mg is not 1som0rphlc to Ad . As a consequence

> erllonsl) g anis) g Lo tmblanast) o, (54)

p<XoYo p p<xov, P p<XoYo

Combining the estimates (51) through (54) establishes (50), and therefore concludes the proof of Theorem 1.3.
(]
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