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Frequency based noise coherence-function extension
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Accurate modeling of acoustic propagation in the ocean waveguide is important to SONAR-

performance prediction. Particularly in shallow waters, a crucial contribution to the total transmis-

sion loss is the bottom refection loss, which can be estimated passively by beamforming the natural

surface-noise acoustic field recorded by a vertical line array of hydrophones. However, the

performance in this task of arrays below 2 m of length is problematic for frequencies below 10 kHz

It is shown in this paper that, when the data are free of interference from sources other than

wind and wave surface noise, data from a shorter array can be used to approximate the coherence

function of a longer array. This improves the angular resolution of the estimated bottom loss, often

making use of data at frequencies above the array design frequency. Application to simulated and

experimental data shows that the technique, rigorously justified for a halfspace bottom, is effective

also on more complex bottom types. Dispensing with active sources, small autonomous underwater

vehicles equipped with short arrays can be envisioned as compact, efficient seabed-characterization

systems. The proposed technique is shown to improve significantly the reflection-loss estimate of

an array that would be a candidate for such application. VC 2016 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4962229]

[SED] Pages: 1513–1524

I. INTRODUCTION

The prediction of SONAR performance depends upon

the accuracy of acoustic propagation modeling in the ocean

waveguide. This in turn requires the characterization of the

acoustic properties of the water column and the boundaries,

i.e., the surface and the bottom, with the latter being of cru-

cial importance in shallow-water environments. This paper

focuses in particular on determining the seabed reflection

loss (hereafter shortly referred to as “bottom loss,” or “BL”),

a significant contributor to the transmission loss, as a

function of frequency and grazing angle. The thickness and

physical properties of the bottom layers (which can vary

dramatically within a few hundred meters of distance)1,2

determine the dependence of the bottom loss on these two

variables. Direct in situ measurement of the bottom proper-

ties (e.g., by collection and analysis of seabed cores) is

costly and difficult.3,4 Data for propagation models are,

therefore, typically obtained either from existing environ-

mental databases, or by geoacoustic inversion of measured

acoustic data. While the first source has been shown to be

often unreliable for SONAR prediction,5 geoacoustic inver-

sion is potentially capable of providing adequate resolution

in space for accurate propagation modeling. In what is per-

haps its most widely employed methodology, the technique

uses acoustic sources (sound projectors, explosive charges,

or even sources of opportunity, such as ship noise) and

hydrophone arrays to measure the acoustic field, and model-

based matched-field processing to determine the seabed

properties.6–8

Alternatively, a passive technique was proposed by

Harrison and Simons, based on beamforming of the acoustic

field produced by noise naturally occurring at the surface

(generated by wind, breaking waves, and rain) recorded by

a vertical line array (VLA) deployed in the water column.9

By eliminating the need for artificial acoustic sources, the

technique achieves several benefits, among which reduced

equipment complexity, cost, weight, and power consump-

tion. Harrison and Simons’ technique has proven effective

in the 100–5000 Hz frequency range, when employing

arrays of lengths between a few meters and several tens of

meters. However, when the array length falls below 2 m, at

the frequency range indicated above, the inherently poor

angular resolution of the beams becomes a matter of con-

cern for the quality of the estimated bottom loss, causing an

underestimation of the loss and poor resolution of its

grazing-angle dependent features.10

More recently, a study has provided a detailed proof

(based on a model proposed by Harrison) of the technique, and

shown that the angular resolution of the BL estimated from

array data can be improved by exploiting specific properties of

the ambient-noise vertical coherence function to remove some

undesirable effects of conventional beamforming.11,12 Anothera)Electronic mail: muzi@pdx.edu
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recent study has proposed to employ existing algorithms for

the extrapolation of band-limited signals, to reconstruct the

noise coherence function of a longer array starting from

data measured by a shorter array. The extrapolation results

appeared promising, but the potential of this technique for

bottom-loss estimation has not been investigated yet.13

In this paper, the idea of overcoming the limitations of

short arrays by synthesizing the coherence function of a longer

array is treated with the specific purpose of improving the per-

formance of bottom-loss estimation (particularly the angular

resolution) through Harrison and Simons’ technique. However,

instead of applying extrapolation algorithms, the proposed

technique uses data measured at different frequencies by the

physical hydrophones, to approximate the coherence function

at the location of the sensors of a longer array. The technique is

computationally simple, and makes a more efficient use of the

frequency bandwidth available to modern acquisition systems,

which often extends well beyond the array design frequency.

An attractive field of application of short arrays is

autonomous-underwater-vehicle (AUV) based bottom sur-

vey. Dispensing with the use of active sources makes it now

possible to envision an efficient, cost effective survey tool

for seabed characterization, composed only of a short array

and acquisition system mounted on a small AUV, such as

the eFolaga employed in a preliminary feasibility study of

such a system.14 For AUVs of this class, constraints related

to weight, drag, and power consumption would reasonably

require array lengths below 2 m. While an ambient-noise

data set acquired by an AUV and suitable for this study is

not currently available, this paper includes an application of

the proposed algorithm to a data set recorded by an array

whose features (eight elements, 1:26 m length) would make

it a good candidate for AUV deployment.

The rest of this paper is organized as follows: Section II

describes Harrison and Simons’ technique for passive

bottom-loss estimation, shows the role played by the noise

spatial coherence function in the process, and illustrates the

dependence of the function on the signal frequency and array

sensor spacing. Section III describes how frequency based

extension of the coherence function is implemented. Section

IV uses simulation to introduce the application of this tech-

nique to passive bottom-loss estimation. Section V shows

the results of the technique on measured data from several

experimental campaigns, and Sec. VI summarizes the main

findings of this study.

II. PASSIVE BOTTOM-LOSS ESTIMATION AND THE
NOISE SPATIAL COHERENCE FUNCTION

A. Bottom-loss estimation and beamforming

Given a plane wave front of angular frequency x inci-

dent upon the bottom at grazing angle hb > 0 (see Fig. 1 for

the definition of all geometric quantities), the bottom loss is

defined as1

BLðhb;xÞ ¼ �10 log10Rðhb;xÞ; (1)

where Rðhb;xÞ is the plane-wave power reflection coeffi-

cient of the bottom. Harrison and Simons9 have proposed a

passive technique for estimating the bottom loss that has

proven effective in several studies;10,15–17 the details of the

technique have already been described in literature,9,11 but it

is convenient to summarize here the parts that are relevant to

this work.

In this technique, a vertical line array of hydrophones is

deployed in the water column to sample the marine ambient-

noise field at discrete locations in space. The measured data

are then beamformed to obtain an estimate B̂ð#;xÞ of the

average beam power impinging on the array at a given steer-
ing angle #. In this paper, the angle # ¼ 0 corresponds to the

array being steered towards broadside (i.e., horizontally, for

a vertical array), # > 0 towards the surface, and # < 0

towards the bottom. B̂ð#;xÞ is estimated via beamforming

at opposite angles with respect to the horizontal, and the

ratio of these measurements gives an estimate R̂ðhb;xÞ of

the power reflection coefficient:

R̂ hb;xð Þ ¼ B̂ �h;xð Þ
B̂ h;xð Þ

; (2)

where h ¼ jhrj is the absolute value of the angle at the
receiver hr (i.e., the angle at which a ray reaches the receiver)

corresponding to the angle at the bottom hb� R̂ðhb;xÞ is then

used in Eq. (1) to estimate the bottom loss.

The beamforming operation can be mathematically for-

malized as a matrix product (for the sake of simplicity, in

the remainder of this paper the dependence on frequency and

angle will be dropped on the right hand side of equations):

B̂ð#;xÞ ¼ wHĈxw; (3)

where wð#;xÞ ¼ ½w1;w2;…;wM�T is the weight vector (T
denotes the transpose operation) that achieves the spatial fil-

tering in direction #, and H indicates the conjugate transpose

operation. Harrison and Simons’ technique makes use of the

“conventional beamformer” (CBF), for which the weight of

the mth element in the array is computed as

FIG. 1. (Color online) Definition of coordinate system and geometric quan-

tities. For constant sound speed, the rays are straight lines (dashed), and

h0s ¼ h0b ¼ hr ¼ h: The thick solid lines represent ray paths in the presence

of a sound-speed profile. The same angle at the receiver hr is considered in

both cases.
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wm #;xð Þ ¼ sme�i m�1ð Þx
cd sin#; (4)

where c is the sound speed at the receivers, d is the array

inter-element spacing (assumed constant throughout the

array), and sm is a shading coefficient (equal to 1 if no shad-

ing is applied to the array).

The symbol Ĉx in Eq. (3) represents an estimate of the

“cross-spectral-density matrix” Cx (hereafter also referred to

as “CSD matrix”), obtained by averaging the outer product

pkðxÞpH
k ðxÞ over K data segments:

Ĉx ¼
1

K

XK

k¼1

pkpH
k : (5)

The vector pðxÞ ¼ ½p1ðxÞ; p2ðxÞ;…; pMðxÞ�T , where pmðxÞ
¼ pðrm;xÞ ¼ FfpmðtÞg; represents the data from the mth

hydrophone in the array ðFf�g denotes the Fourier trans-

form). The symbol pmðtÞ is a simplified notation for pðrm; tÞ,
designating the time series of the pressure field at the posi-

tion rm, where the mth hydrophone is located.

B. Normalized and unnormalized spatial coherence
function

The performance of an array of sensors in noise depends

upon the accuracy of the estimate of the CSD matrix—i.e.,

the second order statistics of the noise field at the sensors.

This is modeled in physics by the spatial coherence function

Cxðr1; r2Þ of the pressure field pðr;tÞ; defined between two

points (i.e., sensor locations) in space r1 and r2; in its unnor-
malized form, as the ensemble average of the product

pðr1;xÞp�ðr2;xÞ :

Cxðr1; r2Þ � hpðr1;xÞp�ðr2;xÞi; (6)

where � indicates complex conjugate. The explicit link with

beamforming is established by noting that element ði; jÞ in

Cx is given by Cxðri; rjÞ: The normalized coherence func-

tion C0xðr1; r2Þ is defined in this paper as18

C0x r1; r2ð Þ ¼
Cx r1; r2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cx r1; r1ð ÞCx r2; r2ð Þ
p ; (7)

and has the advantage of removing from the function the

dependence on the noise level at the given frequency. For

the aspects that are relevant to this study, the coherence

function is discussed in further detail in the remainder of this

paper; an extensive body of studies, including applications

to marine ambient noise, is available in the literature.18–28

III. FREQUENCY BASED COHERENCE-FUNCTION
EXTENSION

A. Algorithm

This section introduces an algorithm for extending the

coherence function beyond the physical length of the array,

which in the remainder of this paper will be called

“frequency based extension” (FBE). The treatment begins by

describing the algorithm, and then proceeds to justify its use

by means of both theoretical and empirical arguments. In the

following treatment, the symbol CxðzÞ introduces a more

compact notation CxðzÞ ¼ Cxðr1; r2Þ; where it is assumed

that r1 ¼ ð0; 0Þ and r2 ¼ ð0; zÞ—i.e., the hydrophone pair is

assumed to be aligned with the z axis, with the first hydro-

phone at z ¼ 0:
In FBE, the normalized coherence function C0x0

ðz1Þ
between two sensors is obtained, if an estimate of C0x1

ðz0Þ—
where x1 > x0 and z1 > z0—is available, with the condition

x1z0 ¼ x0z1 (8)

or, equivalently, z0=k1 ¼ z1=k0: More formally: For an M-

element array, the maximum spacing for which the coher-

ence function can be measured from data is the array length

z0 ¼ ðM � 1Þd; and the (extended) value of the function at

z1 ¼ nd—where n is an integer such that n � M—can be

obtained by assuming

C0x0
ðndÞ ¼ C0x1

½ðM � 1Þd�;
x1 ¼ nx0=ðM � 1Þ: (9)

The remainder of this paper provides the theoretical and

empirical basis of this algorithm, as well as examples of its

application to both simulated and measured data.

B. Modeling and application: Halfspace bottom

It is easier to start discussing the FBE algorithm by con-

sidering the simple case of a bottom composed of a single

material of constant acoustic properties, extending indefi-

nitely in depth—in the remainder of this paper, this bottom

type will be referred to as “halfspace.” Furthermore, it is

useful at this point to introduce an integral expression, origi-

nally derived by Harrison27,28 using a ray based approach,

for the unnormalized noise vertical coherence. For two verti-

cally separated hydrophones at spacing z; at a given fre-

quency x Harrison’s equation can be written as a function of

the sole angular variable h:11

Cx zð Þ ¼
ðp=2

0

2p cr=csð Þsin h cos h

1� Rs hð ÞR hð Þ e�asc hð Þ

n
ei x=cð Þz sin he�asp hð Þ

þR hð Þ e�i x=cð Þz sin he�a sc hð Þ�sp hð Þ½ �
o

dh: (10)

In Eq. (10), sc and sp are the complete (surface-bottom-surface)

and partial (surface-sensor) ray-path lengths, whose depen-

dence on h is determined by the sound-speed profile in the

water column; R and Rs are the bottom and surface power

reflection coefficients, and cr and cs are the sound speed at

the receiver and at the surface, respectively. In general,

besides the ray angle, the reflection coefficients are also a

function of frequency, but for the sake of simplicity this

dependence will not be indicated explicitly. Note that a is

the power attenuation per unit length along the ray path, and

the model assumes that the hydrophones are “close,” so that

a single ray path and sound speed can be defined for the sen-

sor pair.
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Since the reflection coefficient of a halfspace bottom is

independent of frequency,1 if one neglects the frequency

dependence of a (an acceptable assumption, as shown later),

in this case the integrand of CxðzÞ does not depend on x and

z separately, but rather on the term xz=c ¼ 2pz=k; where the

familiar ratio of sensor spacing to wavelength appears. This

is confirmed by the example provided in Figs. 2 and 3: Both

plots show the normalized coherence function C0x computed

at selected frequency values using Eqs. (7) and (10), for a

halfspace bottom (see case HS in Table I for the physical

properties of the water column and the bottom). Each curve

is plotted using 391 points over 0 � z � 5:85 m; correspond-

ing to an inter-sensor spacing of 0:015 m: The markers show

the positions of sensors number 10, 20, and 40 in an array of

spacing d ¼ 0:15 m (this value is used in the simulations

shown later in Sec. IV).

In Fig. 2, the curves are plotted as a function of sensor

spacing z and show the familiar decay along the horizontal

axis, with more oscillations included over the array aperture

as the frequency increases. However, the dependence of the

coherence on the z=k ratio is better illustrated by the C0xðz=kÞ
curves shown in Fig. 3, where, given the quantity on the hori-

zontal axis, at a lower frequency two consecutive points of a

curve are closer than they are at a higher frequency. The plots

show that, aside from the slight amplitude differences due to

the inclusion of volume attenuation in Eq. (10)—which is at

the basis of the model used to generate these plots—both the

real and the imaginary part of C0xðz=kÞ overlap almost per-

fectly, regardless of frequency. However, due to the differ-

ence in wavelength, the curves at higher frequencies extend

farther to the right on the horizontal axis than those at lower

frequencies. Using Fig. 3 for reference, understanding how

the FBE algorithm works becomes straightforward, in this

case: For example, the maximum spacing for a 10-element

array is z0 ¼ 1:35 m; and an additional (“nonphysical”) sensor

number 11 would be at z1 ¼ 1:50 m from sensor number 1. If

one assumes f0 ¼ x0=2p ¼ 1 kHz; then z1=k0 ¼ 1; and Eq.

(8) yields f1 ¼ ð1:50=1:35Þf0 ¼ 1:111 kHz: The point corre-

sponding to z=k ¼ 1 on the 1.111 kHz curve is then used to

estimate the coherence at the position of the “nonphysical”

sensor number 11 on the 1 kHz curve. The maximum avail-

able value for z0 is chosen on purpose in this example, so as

to minimize the difference between x0 and x1; ensuring that

the error between the two C0xðz=kÞ curves is minimized.

C. Considerations on layered bottoms

Although the treatment above relies on the fact that the

bottom reflection coefficient is independent of frequency, use

of the FBE algorithm prior to BL estimation (treated exten-

sively in Secs. IV and V below) improves the quality of the

results also in the case of layered bottoms, where the frequency

dependence of the reflection coefficient can be dramatic. The

reason for this is not immediately apparent from theoretical

FIG. 2. (Color online) Halfspace bottom (case HS): Normalized coherence-

function real (a) and imaginary (b) part at several frequencies, as a function

of sensor spacing z: The markers indicate the positions of sensors number 10

(diamond), 20 (circle), and 40 (square) for an array of spacing d ¼ 0:15 m:

FIG. 3. (Color online) Halfspace bottom (case HS): Normalized coherence-

function real (a) and imaginary (b) part at the same frequencies as in Fig. 2,

as a function of the z=k ratio. The markers indicate the same sensors as in

Fig. 2, but given the quantity on the horizontal axis, at a lower frequency

two consecutive points of a curve are now closer than they are at a higher

frequency, and the curve corresponding to a higher frequency reaches higher

values on the horizontal axis. In each plot, the curves for different frequen-

cies overlap very closely.

TABLE I. Water-column and bottom configuration for the simulated cases;

D is the layer thickness, q is the density, ac is the compressional volume

attenuation, and k is the wavelength.

D ðmÞ cp ðm=sÞ q ðkg=m3Þ ac ðdB=kÞ

Water 170 1500 1000 1	10-4

HS 1 1565 1500 0.2

1L�Layer 0.5 1650 1500 0.2

1L�Halfspace 1 1700 2000 0.5

2L�Layer #1 0.5 1565 1500 0.2

2L�Layer #2 3 1625 1700 0.3

2L�Halfspace 1 1800 2000 0.5
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models, which present CxðzÞ either in integral form, such as

Eq. (10), or as a series expansion.23 The expression of CxðzÞ
as the combination of a direct and an inverse Fourier trans-

form between the hydrophone spacing z and the vertical

wavenumber (and therefore, the frequency x) domains11

makes the connection between the two quantities explicit, but

this fact alone does not fully explain why FBE is so effective

in aiding BL estimation. An approach based on both theoreti-

cal and empirical considerations is proposed in this study.

As a starting point, the C0xðz=kÞ curves obtained from

Eq. (7) and Eq. (10) for the layered bottom types 1L and 2L

in Table I are shown in Figs. 4 and 5. One of the most

remarkable features in the plots is that, while the real parts

of C0xðz=kÞ appear to vary significantly between the two

cases, the imaginary parts have a much more “regular”

behavior, and appear to differ mostly in the amplitude of

their oscillations. This can be explained starting from Eq.

(10), and introducing the simplifying hypotheses of an iso-

speed water column ðcr ¼ cs ¼ cÞ with negligible volume

attenuation ða 
 0Þ and a unit-value surface reflection coeffi-

cient ðRs 
 1Þ; which yields the simplified expression

Cx zð Þ¼
ðp=2

0

psin2h

1�R hð Þ
ei xz=cð ÞsinhþR hð Þe�i xz=cð Þsinh
� �

dh:

(11)

Now, by expressing the exponentials in trigonometric form,

one can separate the real and imaginary parts of the integral:

Re Cx zð Þ½ � ¼
ðp=2

0

p sin 2h
1þ R

1� R
cos

x z

c
sin h

� �
dh;

Im Cx zð Þ½ � ¼
ðp=2

0

p sin 2h sin
x z

c
sin h

� �
dh: (12)

The most apparent feature in Eq. (12) is the absence of the

reflection coefficient in Im½C0xðz=kÞ� : In this simplified

model, the imaginary part of C0xðz=kÞ is independent of the

bottom reflection properties, and its dependence on x is only

present as the xz product. This conclusion is confirmed by

Figs. 4 and 5, where the behavior of the imaginary part

curves is analogous to that observed in the halfspace case

(see Fig. 3).

Furthermore, Eq. (12) indicates that the differences due

to the bottom type should manifest themselves in the real

part curves, which, in fact, show clear differences between

the two cases. However, it should be noted that, even for

these layered bottoms, if one considers two Re½C0xðz=kÞ�
curves corresponding to “close” frequency values, the points

corresponding to the same z=k value on the two curves will

be close too. In other words, although the curves can be

proven theoretically to overlap perfectly (except for the fre-

quency dependence of a) only for a halfspace bottom, they

still appear to vary smoothly with frequency, in the case of

layered bottoms. The results presented in Secs. IV and V

below confirm that this reasonable hypothesis holds, and that

the FBE algorithm does help improve the BL estimates from

short arrays.

IV. APPLICATION TO BOTTOM-LOSS ESTIMATION:
SIMULATION

Simulation can be useful at this point to investigate

further the dependence of the coherence function on signal

and array physical parameters. In the remainder of this paper,

simulated data have been produced using OASN, the surface-

noise module of the OASES29 package. By implementing a

numerical solution to the full wave equation for range inde-

pendent, stratified media—as opposed to implementing an

analytical model—OASES produces directly the Ĉx matrix

of Eq. (3), providing a more realistic approximation to what

an estimate of the coherence function from measured data

FIG. 4. (Color online) Single layer over halfspace (case 1L): Normalized

coherence-function real (a) and imaginary (b) part at several frequencies, as a

function of the z=k ratio. The markers are positioned as in Fig. 3. The curves

in panel b differ from their counterparts in Figs. 3 and 5 mainly in amplitude.

FIG. 5. (Color online) Double layer over halfspace (case 2L): Normalized

coherence-function real (a) and imaginary (b) part at several frequency

values, as a function of the z=k ratio. The markers are positioned as in Fig.

3. The curves in panel (b) differ from their counterparts in Figs. 3 and 4

mainly in the amplitude.
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would be. For its simulation part, this study presents the

application of OASN to the three different types of bottom

already investigated above: Halfspace (identified by “HS”),

single layer over halfspace (“1L”), and two layers over half-

space (“2L”). The bottom properties for each case are shown

in Table I.

A. Considerations on array configuration and the
bandwidth of the estimated bottom loss

Arrays suitable for deployment on AUVs of the class

considered in this study should reasonably have a length no

larger than 2 m, but the applicability of Harrison and

Simons’ technique to such arrays, especially at frequencies

below 10 kHz has been shown to be problematic, due to the

severe deterioration of the beamformer’s angular resolu-

tion.10 High resolution bottom-loss estimation (HR-BL) has

recently shown that BL estimates from Harrison and

Simons’ technique can be improved, by replacing the CBF

with a more sophisticated technique, which exploits the

physical properties of the surface generated noise field.11

However, the challenge posed by BL estimation with AUV

deployable arrays in the 500–5000 Hz frequency range

makes any further performance improvement highly

desirable.

As an example of an effective application of FBE, this

section shows how it can improve significantly the perfor-

mance of short arrays in passive bottom-loss estimation. The

main advantage is the possibility of improving the grazing-

angle resolution of the estimated bottom loss to a level that

the original technique could only achieve by means of a lon-

ger array. A subtler advantage is a more efficient use of the
bandwidth of current acquisition systems, explained below.

The beamforming operation imposes a practical limita-

tion on BL estimation: The upper limit on the frequency

range over which data can be used (hereafter referred to as

“array design frequency”). For conventional beamforming on

a line array, this limit is determined by the inter-sensor spac-

ing: The maximum frequency at which the array can operate

as a directional antenna corresponds to a wavelength that is

twice the spacing. For instance, assuming a sound speed in

water of 1500 m/s an array whose sensors are spaced 0:15 m

has a design frequency of 5 kHz. The appearance of grating

lobes in the beam pattern makes it impossible to estimate the

bottom loss above the array design frequency.

However, with the sampling rates afforded by current

acquisition systems, the array design frequency usually falls

well below the Nyquist frequency, leaving a sizeable fraction

of the data unused, for the purpose of bottom-loss estima-

tion. In FBE, data from higher frequencies are used to

estimate the noise spatial coherence function at a lower fre-

quency, for values of the sensor spacing beyond the physical

length of the array. As Eq. (9) shows, if one wants to double

the number of sensors, and therefore double the array length,

and estimate the BL up to the array design frequency

fd ¼ c=2d; it is necessary to have data available from the

physical sensors up to a frequency that is roughly 2fd. By

doing so, the angular resolution of the bottom-loss estimate

can be improved, often making use of data at frequencies

otherwise not utilized for beamforming.

B. Application to simulated data

In this section, the application of FBE to passive BL

estimation is investigated through simulation. This ensures

the a priori knowledge of the bottom and the water column

(a luxury that experiments on the field usually cannot

afford), making it possible to compare the results to model-

based predictions. Since the goal is BL estimation, in this

study the reference is provided by a model, presented by

Jensen et al.,1 that predicts the power reflection coefficient

of a horizontally stratified fluid bottom of known physical

properties, as a function of frequency and grazing angle.

For each of the cases introduced above, the model of

Jensen et al. has been run to provide the predicted BL to be

used as reference. The CSD matrices produced by OASN for

the same bottom types have been processed to estimate the

BL via CBF, as in Harrison and Simons’ original technique,

using a 24-element array with 0.15 m spacing. The procedure

has been repeated using only the first 12 elements of the

array, to show how the estimated BL is impacted by a signif-

icant reduction of the array length. Finally, the same 12	 12

CSD matrices have been used to estimate the 12-point coher-

ence function by diagonal averaging,11 and this has been

extended as described in Sec. III up to the length of the origi-

nal array, i.e., adding 12 points corresponding to “synthetic”

sensors beyond the length covered by the “physical” sensors.

In the examples presented in this section, the frequency

domain has been sampled with 680 bins of 50 Hz width

between 50 Hz and 34 kHz. In general, the frequency value

required to apply Eq. (9) will not fall at the center of one of

the chosen frequency bins. The results presented in the

remainder of this paper have been obtained by simple linear

interpolation of the coherence function between the closest

available frequency bins. The HR-BL algorithm has then

been applied to the extended coherence function to estimate

the BL.

The results obtained by the procedure outlined above for

case HS are shown in Fig. 6. Panels (a) and (c) show the

known limitations of beamforming: While the predicted BL

is perfectly frequency independent, the 24-element beam-

former—corresponding to a 3:45 m aperture—places the

critical angle correctly only at the higher frequencies. With

decreasing frequency, the beams become wider, and the

decreased angular resolution causes an area of substantial

BL underestimation, which extends to cover the entire graz-

ing angle range at the bottom of the plot. The design fre-

quency for this array is 5 kHz, and at this frequency, around

normal incidence, the BL estimate drops to zero, due to the

grating lobes that appear in the beam pattern. When the aper-

ture is reduced to 1:65 m [12 elements, see panel (b)], all the

limitations described above are magnified. Finally, panel (d)

in Fig. 6 shows the BL estimated by HR-BL with data from

the same 12 sensors, but after extending the coherence func-

tion by FBE back to 24 elements: The plot shows a virtually

complete recovery of the information lost by the shorter

array.
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Given the analysis presented in Sec. III, it is not surpris-

ing to see that FBE performs well on a halfspace bottom. For

a layered bottom, one could expect the more pronounced

dissimilarity of the coherence-function real part to make the

application of FBE more difficult. This has been preliminary

investigated through a number of simulations, of which the

results for cases 1L and 2L, shown in Figs. 7–9, respectively,

are presented as a sample. These results have been produced

following the same procedure as the one described above for

case HS.

For layered bottoms, the predicted BL presents more

“structure” than for a halfspace. Such structure can be rather

fine, as shown, for instance, in case 1L [see Fig. 7(a)] at the

critical angle (the angle above which the BL becomes signif-

icant), and, in case 2L (see Fig. 9), in the thin striations

overlapping with the three wide striations. Although the BL

estimated by Harrison and Simons’ technique from simu-

lated data are very “clean,” compared to what is usually

observed when the technique is applied to experimental data,

such fine features fall beyond the resolution of any of the

processing techniques presented in this paper. In general, the

BL estimated in the reference case [24-element CBF, panel

(c) in Figs. 7 and 9] appears to be a “smeared” version of the

modelled BL, and presents the area of significant BL under-

estimation at the lower frequencies described above. These

effects are expected, as they are due to the finite angular res-

olution of the beamformer, and are accentuated when mov-

ing to the half-length array [12 elements, panel (b) in Figs. 7

and 9]. The BL estimated by HR-BL using the data from the

same 12 elements—after extending the estimated coherence

function at the locations of 12 additional “synthetic”

sensors—shows in both layered-bottom cases [panel (d) in

Figs. 7 and 9] a significant recovery of the information lost

by the 12-element CBF. For comparison, Fig. 8 shows the

BL estimated for case L1 by HR-BL alone. Using the 12-

element array, HR-BL alone achieves a significant improve-

ment over CBF [compare Figs. 7(b) and 8(a)]. However, it

remains far from the performance it achieves after FBE

extension from 12 to 24 elements [see Fig. 7(d)], which in

turn is very close to the BL estimated by HR-BL alone using

the full, 24-element array [shown in Fig. 8(b)].

V. APPLICATION TO MEASURED DATA

This section presents the results of applying FBE to

passive BL estimation from actual data measured in three

different experiments at sea by the NATO-STO Centre for

Maritime Research and Experimentation. The data refer to

three different sites and arrays, and the data set identifiers

used in the remainder of this paper, as well as the basic char-

acteristics of each data set and array, are listed in Table II.

The medium frequency array (MFA) and VLA data are from

the experimental campaign named Boundary 2003, while the

slim vertical array (SLIVA) data set was recorded during the

REP14-MED experiment of 2014.

The emphasis in this study is in showing how FBE can

improve the performance of a short array in BL estimation.

For this reason, rather than comparing the results to a ground

truth that in the case of the measured data is rather uncertain,

the comparison is carried out between the full 32-element

array, a subarray including only a subset of the original ele-

ments, and the same subarray extended to the original length

FIG. 6. (Color online) Halfspace bot-

tom (case HS): BL predicted using the

reflection coefficient given by the

model of Jensen et al. (a); BL esti-

mated from OASN data using CBF

over 12 (b) and 24 (c) sensors, and BL

estimated by HR-BL over 12 sensors

extended to 24 by FBE (d).
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by using FBE to estimate the coherence function at the loca-

tion of the missing original sensors.

All the CSD matrices used in this study correspond to 5-

min data averages. The plots in Figs. 10 and 11 compare the

BL estimated by applying different techniques to data

recorded over the full 32-element arrays of the Boundary

experiment, and to a 20-element subarray. In these examples,

the magnitude of the extension (from 20 to 32 elements)

used by the FBE algorithm is limited by the low Nyquist fre-

quency, which in particular, prevents the recovery of the BL

estimate up to the design frequency (4166 Hz assuming a

sound speed of 1500 m=s) for the MFA data set. In all cases

the deterioration due to the reduced array length is visible in

the same terms as already described above for the synthetic

data, and FBE coupled with HR-BL proves to be able to

recover in the BL most of the information lost by applying

the CBF to the short array, as in Harrison and Simons’ origi-

nal technique. In the MFA data, some high loss striations

appear at very low grazing angles in the FBE result in Fig.

10. It is unclear whether these represent an actual feature of

the bottom, but analysis of the other panels in the figure,

shows that these features are present in the BL estimated by

the other techniques, and are simply emphasized by the

higher resolution of the HR-BL algorithm.

Finally, the VLA results in Fig. 11 may not appear to be

as “dramatic” as the MFA ones; this is due to the nature of

the data. The analysis of these data shows that the surface

noise field is contaminated by other contributions, a circum-

stance to which the HR-BL algorithm is known to be sensi-

tive.11 To alleviate the consequences of this, a Hanning taper

FIG. 7. (Color online) Single layer

over halfspace (case 1L): BL predicted

using the reflection coefficient given

by the model of Jensen et al. (a); BL

estimated from OASN data using CBF

over 12 (b) and 24 (c) sensors, and BL

estimated by HR-BL over 12 sensors

extended to 24 by FBE (d). The very

fine structure visible in the modelled

BL around the critical angle falls

beyond the resolution of any of these

techniques.

FIG. 8. (Color online) Single layer over halfspace (case 1L): BL estimated

from OASN data using HR-BL over 12 (a) and 24 (b) sensors. Using 12 sen-

sors, HR-BL shows a clear improvement over CBF [compare panel (a) here

to Fig. 7(b)]. However, the performance of the algorithm remains well

below the result shown in Fig. 7(d), obtained after extending the array to 24

elements by FBE, which is very close to that in panel (b) here.
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was applied to the CSD matrix prior to HR-BL processing, a

procedure that limits the performance of the algorithm.

However, it should also be noted that although this low fre-

quency array, with an inter sensor spacing of 0:5 m, can be

more challenging for FBE, it is also an unlikely candidate

for small AUV deployment.

Data-bandwidth limitation is a less important problem

today, with data acquisition systems that are capable of much

FIG. 10. (Color online) Boundary

2003 MFA data: BL estimated by HR-

BL over 32 elements (a), by CBF over

20 (b) and 32 elements (c), and by HR-

BL after extending the coherence func-

tion estimated from 20 sensors to 32

sensors by FBE (d). The origin of the

artifacts visible in panel (d) at low

grazing angles is at present unclear.

Although such artifacts appear to be

emphasized by the combination of

FBE and HR-BL, they are present also

in the other panels, indicating that they

are not a product of this particular

technique.

FIG. 9. (Color online) Double layer

over halfspace (case 2L): BL predicted

using the reflection coefficient given

by the model of Jensen et al. (a). BL

estimated from OASN data using CBF

over 12 (b), and 24 (c) sensors, and BL

estimated by HR-BL over 12 sensors

extended to 24 by FBE (d). Due to the

limited resolution afforded by the

array, the very fine striations overlap-

ping the three main striations are just

barely visible in panels (c) and (d).
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higher sampling rates. For instance, Table II shows that the

SLIVA array has the same spacing as the MFA array, but a

much higher sampling rate. In Fig. 12 the BL estimated using

the full SLIVA array is compared to that obtained from an

eight-element subarray which, at 1:26 m of length, would be a

good candidate for deployment on small AUVs. The BL esti-

mated using CBF on the subarray [see Fig. 12(b)] shows a sig-

nificant loss of information, but in this case the sampling rate

is high enough to “extend” the subarray back to 32 elements,

therefore quadrupling the array length, and up to the array

design frequency. Even in this rather extreme attempt, FBE

appears to afford a significant recovery of information in the

BL estimate [see Fig. 12(d)].

To conclude the experimental part of this study, it is

important to stress that the quality of these results depends

on the measured acoustic field being free of sources other

than wind and wave noise. Furthermore, it should be noted

that there can be features in the coherence function that do

not manifest themselves in measurement if the array does

not have an adequate length. In such cases, FBE may not

recover such features, which may correspond to some details

in the BL plot, but it will still provide an approximation to

the general shape of the function, and its decay with increas-

ing z=k.

VI. CONCLUSIONS

The analysis of an existing model of the spatial coher-

ence function (as measured by a vertical line array in a natu-

ral surface-noise field) shows that the dependence of this

function on the bottom reflection properties is mostly con-

tained in the real part. Both the real and the imaginary part

of the function depend strongly on the ratio of the sensor-

pair spacing to signal wavelength ðz=kÞ: However, due to the

influence of the bottom reflection properties, the real part

shows a stronger dependence on bottom type and, for the

same bottom, on frequency.

Based on these considerations, in the case of a

frequency-independent bottom reflection coefficient (such as

that of a halfspace bottom), a simple technique can be envi-

sioned to extend the coherence function to values of the sen-

sor spacing that are beyond the physical length of the array,

by making use of data at higher frequencies, and provided

that the spacing-to-wavelength ratio is preserved. While

some amount of error is expected when the technique is

applied to a layered bottom, results show that, for the partic-

ular task of passive bottom-loss estimation, these errors are

well within the margins of Harrison and Simons’ technique.

This appears to be due to the fact that the coherence function

varies smoothly with frequency. Processing of both simu-

lated and measured data by FBE coupled with HR-BL shows

FIG. 11. (Color online) Boundary

2003 VLA data: BL estimated by HR-

BL over 32 elements (a), by CBF over

20 (b) and 32 elements (c), and by HR-

BL after extending the coherence func-

tion estimated from 20 sensors to 32

sensors by FBE (d). Due to contamina-

tion of the natural noise field by inter-

ferers (a condition to which HR-BL is

known to be sensitive), a Hanning

taper was applied to the CSD matrix

before passing it to the HR-BL

algorithm.

TABLE II. Data sets and array basic features.

Data

set ID

No. of

elements

Spacing

(m)

Sampling

freq. (Hz)

Design freq.

(Hz) at

c ¼ 1500 m/s

Deployment

type

VLA-03 32 0.50 6000 1500 Drifting

MFA-03 32 0.18 12 000 4166 Drifting

SLIVA-14 32 0.18 50 000 4166 Moored
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that the information lost by a short array can be at least par-

tially recovered, while making a more efficient use of the

large bandwidth afforded by modern acquisition systems. An

important prerequisite for the application of the approach

illustrated in this paper is that the data be free of interference

from sources other than wind and wave noise.
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