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Abstract. Nitric oxide/cyclic guanosine monophosphate (cGMP) signaling is compromised in Alzheimer’s disease (AD),
and phosphodiesterase 5 (PDE5), which degrades cGMP, is upregulated. Sildenafil inhibits PDE5 and increases cGMP levels.
Integrating previous findings, we determine that most doses of sildenafil (especially low doses) likely activate peroxisome
proliferator-activated receptor-� coactivator 1� (PGC1�) via protein kinase G-mediated cyclic adenosine monophosphate
(cAMP) response element binding protein (CREB) phosphorylation and/or Sirtuin-1 activation and PGC1� deacetylation. Via
PGC1� signaling, low-dose sildenafil likely suppresses �-secretase 1 expression and amyloid-� (A�) generation, upregulates
antioxidant enzymes, and induces mitochondrial biogenesis. Plus, sildenafil should increase brain perfusion, insulin sensitivity,
long-term potentiation, and neurogenesis while suppressing neural apoptosis and inflammation. A systematic review of
sildenafil in AD was undertaken. In vitro, sildenafil protected neural mitochondria from A� and advanced glycation end
products. In transgenic AD mice, sildenafil was found to rescue deficits in CREB phosphorylation and memory, upregulate
brain-derived neurotrophic factor, reduce reactive astrocytes and microglia, decrease interleukin-1�, interleukin-6, and tumor
necrosis factor-�, decrease neural apoptosis, increase neurogenesis, and reduce tau hyperphosphorylation. All studies that
tested A� levels reported significant improvements except the two that used the highest dosage, consistent with the dose-
limiting effect of cGMP-induced phosphodiesterase 2 (PDE2) activation and cAMP depletion on PGC1� signaling. In AD
patients, a single dose of sildenafil decreased spontaneous neural activity, increased cerebral blood flow, and increased the
cerebral metabolic rate of oxygen. A randomized control trial of sildenafil (ideally with a PDE2 inhibitor) in AD patients is
warranted.

Keywords: Alzheimer’s disease, cyclic GMP, mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma
coactivator 1-alpha, sildenafil citrate

INTRODUCTION

Alzheimer’s disease (AD) is the leading cause of
dementia worldwide, and AD patients and their fam-
ilies urgently require novel therapeutics to prevent
and slow the progression of this devastating disorder.
Hallmarks of AD include amyloid-� (A�) pep-
tide secretion and deposition into neuritic plaques,

∗Correspondence to: Owen Sanders, 1777 NW 173rd Ave,
#610, Beaverton, OR 97006, USA. Tel.: +1 503 809 1333; E-mail:
osanders@pdx.edu.

tau protein hyperphosphorylation and neurofibrillary
tangle formation, metal ion dyshomeostasis [1–9],
oxidative stress and lipid, nucleic acid, and protein
damage [10–13], abortive cell cycle reentry [14–26],
neuroinflammation and microbial dysbiosis [27–33],
insulin resistance [34, 35], cerebrovascular dysfunc-
tion [36–38], synaptic dysfunction [39, 40], neuronal
loss, endoplasmic reticulum stress [41–44], and mito-
chondrial dysfunction [45–48].

Sildenafil (Viagra) is a drug used to treat erectile
dysfunction and pulmonary arterial hypertension that
inhibits phosphodiesterase 5 (PDE5) (Fig. 1). PDE5
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Fig. 1. Sildenafil mechanism of action.

degrades cyclic guanosine monophosphate (cGMP).
Upstream of cGMP, normally, the amino acid L-
arginine is converted by three varieties of the enzyme
nitric oxide synthase (NOS) into nitric oxide (NO).
NO is a small cell-permeable gas molecule that dif-
fuses across the plasma membrane and activates
soluble guanylyl cyclase (sGC). sGC converts guano-
sine triphosphate (GTP) into cGMP [49]. However,
in AD, the activity of the NOS/NO/cGMP pathway
is severely impaired. NOS activity is significantly
decreased in AD patients’ superior frontal gyri and
hippocampi compared to age-matched controls [50],
even though aberrant neuronal NOS (nNOS) protein
expression has been observed in a subpopulation of
isocortical pyramidal neurons in AD patients’ brains
[51, 52] and the intensity of astrocyte endothelial
NOS (eNOS) and inducible NOS (iNOS) expression
had increased in AD patients’ deep cortical layers
[52, 53]. NO-induced soluble sGC (but not basal sGC

or particulate guanylyl cyclase) activity was found
to be decreased by 50% in AD patients’ superior
temporal cortices compared to controls [54]. cGMP
levels were found to be significantly lower in AD
patients’ cerebrospinal fluid (CSF) compared to con-
trols, and decreases in levels of cGMP correlated with
CSF A�42 levels [55], comorbid depression [56], and
cognitive decline as measured by Mini-Mental State
Examination (MMSE) [55, 57].

Potentially contributing to this cGMP depletion,
PDE5 protein levels have been found to be sig-
nificantly upregulated in AD patients’ temporal
cortices [55], and PDE5 mRNA levels are signifi-
cantly elevated in AD patients’ entorhinal cortices
compared to controls according to a meta-analysis
of mRNA datasets (p = 0.001, FDR = 0.018; Fig. 2)
[58]. Granted, low PDE5 mRNA expression in the
human CNS has been reported relative to periph-
eral tissue [59–61], and no specific hybridization
signal was observed for PDE5 mRNA in the brains
of aged and AD patients using radioactive in situ
hybridization histochemistry in one study, drawing
skepticism as to whether PDE5 inhibition has rele-
vance to AD [62–64]. Regardless though, the weight
of the evidence suggests that PDE5 is expressed
(albeit relatively less than in peripheral tissues) in
the normal human brain [58–61] and that, moreover,
it is upregulated in the AD entorhinal and temporal
cortices [55, 58], supporting the notion that PDE5
may be an important therapeutic target in AD.

Fig. 2. PDE5A mRNA levels upregulated in the AD entorhinal cortex.
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cGMP/PGC1α signaling

This multi-mechanism NOS/NO/cGMP signaling
dysfunction is an important therapeutic target in AD
for multiple reasons. One reason is that cGMP is
responsible for increasing the expression and activ-
ity of peroxisome proliferator-activated receptor-�
coactivator 1� (PGC1�). PGC1� overexpression
(or low-dose NO) suppresses the expression of �-
secretase 1 (BACE1) [65], the rate-limiting enzyme
in A� generation, suggesting that PGC1� activ-
ity suppresses A� generation. In addition, PGC1�
is a master transcriptional regulator of mitochon-
drial biogenesis, oxidative respiration [66, 67],
fatty acid �-oxidation [68], and antioxidant defense
[69]. PGC1� upregulates multiple antioxidant genes,
including mitochondrial manganese superoxide dis-
mutase (MnSOD), when bound to Forkhead box O3a
(Foxo3a) and deacetylated by Sirtuin-1 (SIRT1) [69].
However, PGC1� protein levels are significantly
lower in AD patients’ hippocampi compared to con-
trols [48], and mitochondrial biogenesis and MnSOD
expression are impaired there [45, 48]. Sildenafil has
the potential to reverse the hippocampal PGC1� sup-
pression in AD. 10 �M sildenafil treatment for 24
hours in vitro and 0.3 mg/kg sildenafil in vivo have
been shown to induce PGC1� expression and mito-
chondrial biogenesis by increasing cGMP in renal
proximal tubular cells and mouse renal cortex, respec-
tively [70]. In addition, sildenafil has been shown to
upregulate SOD and catalase activities in rat liver
(1.48 mg/kg sildenafil) and human blood (100 mg
sildenafil one time dosage) [71, 72].

Multiphasic regulation of PGC1α by sildenafil
and cGMP

NOS/NO/sGC/cGMP signaling upregulates
PGC1� in diverse cell types, including not only
renal proximal tubular cells [70], but also brown
adipocytes, U937 monocytic cells, HeLa cervical
cancer-derived cells, white 3T3-L1 adipocytes [73,
74], and probably neurons [75]. In mice, subcortical
brain tissue responded to hypoxia with PGC1�
upregulation (as well as with mitochondrial biogen-
esis) in a manner that depended on nNOS expression
[75], so the nNOS/NO/cGMP/PGC1� pathway does
appear to be active in neurons.

An important caveat to the claim that silde-
nafil and cGMP activate PGC1� though is that
NOS/NO/cGMP appears to be a multiphasic rheo-
stat of PGC1� signaling whose outcome depends

on cGMP concentration, duration, and crosstalk
with cAMP signaling mediated by phosphodiesterase
3 (PDE3) and phosphodiesterase 2 (PDE2) activ-
ity. Low concentrations of cGMP compete for
the active site of PDE3 [76], thereby imped-
ing PDE3 from degrading cAMP and increasing
cAMP levels. By contrast, high cGMP concentra-
tions allosterically activate PDE2, thereby promoting
cAMP degradation [76, 77]. Mirroring this, low-
dose sildenafil (up to 1 �M) inhibits PDE3, resulting
in cAMP accumulation [76], whereas high-dose
sildenafil (10 and 100 �M) activates PDE2, result-
ing in cAMP degradation [76] and suppression
of the cAMP/EPAC/adenosine monophosphate-
activated protein kinase (AMPK) pathway [76, 78,
79]. For this reason, excessively high doses of
sildenafil resulted in inferior therapeutic responses
compared to low doses in preclinical models of non-
alcoholic hepatic steatosis and obesity [76]. This
caveat may be relevant to AD as well. The dose-
dependent effect of sildenafil and cGMP signaling
on cAMP levels should affect PGC1� regula-
tion since cAMP is required for robust PGC1�
expression and mitochondrial biogenesis in AD
[48, 67]. On top of this, although NO/sGC/cGMP
signaling typically promotes PGC1� activity, it
also simultaneously activates the protein kinase G
(PKG)/phosphoinositide 3-kinase (PI3K)/Akt sig-
naling cascade, which decreases PGC1� activity
[80–83]; opposing this negative regulation of PGC1�
by cGMP, cAMP inhibits Akt via PKA and Rap1b
(Fig. 4) [84]. In other words, cGMP per se simul-
taneously increases and decreases PGC1� signaling
by distinct mechanisms, with crosstalk with cAMP
pathways probably determining whether PGC1� is
activated or inhibited overall. Therefore, since high
doses of sildenafil activate PDE2 and decrease cAMP
levels, high-dose sildenafil would be expected to be
less effective than low-dose sildenafil at activating
PGC1�, inducing mitochondrial biogenesis, upregu-
lating antioxidant genes, and downregulating BACE1
[76].

Low and high but not moderate cGMP levels
activate PGC1α?

Consistent with the dose-dependent effect of silde-
nafil and cGMP on PGC1�, 10 �M of 8-Br-cGMP
treatment for 24 hours upregulated PGC1� mRNA
expression and mitochondrial biogenesis in renal
proximal tubular cells [70]. By contrast, in endothe-
lial cells, 100 �M 8-Br-cGMP treatment for 6–24
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hours downregulated PGC1� [80, 83]. In addition,
treatment for less than 12 hours with NO donors
decreased PGC1� expression, whereas treatment for
24 hours or more increased PGC1� expression [83].
NO-triggered PGC1� downregulation and conse-
quent reactive oxygen species (ROS) production were
required for endothelial cell migration, an effect that
was mediated by NO-activated PI3K/Akt signaling
and Akt phosphor-inhibition of Foxo3a [80].

Surprisingly though, much higher dosages of
cGMP than 100 �M upregulate PGC1� like lower
doses do: for example, PGC1� was upregulated in
brown adipocytes treated with 1 mM 8-Br-cGMP for
4 days [73]. In human monocytic U937 cells, rat
L6 myotubes, and rat PC12 neurosecretory cells,
3 mM 8-Br-cGMP treatment every day for 6 days
upregulated PGC1�, as well as Nrf1 and Tfam, mito-
chondrial proteins Cox IV and Cytochrome C, and
mitochondrial DNA content [66]. Furthermore, 6
days of 3 mM 8-Br-cGMP in these three cell types
resulted in increased oxidative phosphorylation-
coupled oxygen consumption [66].

Therefore, there appears to be a U-shaped dose-
response curve between cGMP concentrations and
PGC1� expression, with PGC1� being downregu-
lated by 100 �M cGMP for 6–24 hours [80, 83]
but upregulated by 10 �M cGMP or 1–3 mM cGMP
for 24 hours or longer (Fig. 3) [66, 70, 73]. This
might be because 100 �M cGMP corresponds to
the 10–100 �M dosage of sildenafil that is suf-
ficient to activate PDE2 and lower cAMP [76],
whereas much higher dosages of cGMP and silde-
nafil nevertheless stimulate mitochondrial biogenesis
and PGC1� transcription [66, 73] because supraphys-
iological cGMP signaling is sufficient to overcome
the cAMP depletion to induce robust PGC1� activ-
ity independently of cAMP, perhaps via cAMP
response element binding protein (CREB) phospho-
rylation and SIRT1 activation (see next subsection).
If so, this would not be unprecedented: in fibrob-
lasts, PDE2 overexpression was sufficient to lower
cAMP levels and induce a transition into a pro-
fibrotic myofibroblast phenotype, an alternation that
cGMP elevating agents reversed, suggesting that suf-
ficiently high cGMP levels can overcome the deficits
to cellular signaling induced by PDE2-mediated
cAMP depletion [77]. Therefore, it appears that, for
optimal PGC1� expression, mitochondrial biogene-
sis, and BACE1 downregulation, either sufficiently
low or high sildenafil dosages must be used, or
sildenafil must be co-administered with a PDE2
inhibitor.

Fig. 3. Multiphasic dose response of PGC1� expression to cGMP
concentration.

Fig. 4. How sildenafil and cGMP may regulate PGC1�.

In addition to this complex but clinically rele-
vant dose-specific effect, the mechanism by which
NO/cGMP typically upregulates PGC1� remains
unresolved [67]. Two potential mechanisms involv-
ing either CREB or SIRT1 will now be described.

How sildenafil and cGMP activate PGC1α

In the hippocampus during long-term potentiation
and in other neural tissues, both the cGMP/PKG
and the cAMP/PKA pathways contribute to CREB
phosphorylation [85–90], and PKA-mediated CREB
phosphorylation promotes PGC1� transcription [67],
so cGMP/PKG/CREB signaling might promote
PGC1� expression as well. In addition, cGMP may
contribute to the post-translational regulation of
PGC1�. Once transcribed and translated, the stabil-
ity, subcellular localization, and co-activator activity
of PGC1� proteins are regulated by multiple post-
translational modifications. For example, PGC1� can
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Fig. 5. PGC1� post-translational regulation.

be inhibited via phosphorylation by Akt [81, 82],
S6 Kinase [91], or glycogen synthase kinase 3�
(GSK3�) [74, 92], or via acetylation by general con-
trol of amino acid synthesis 5 (GCN5) [81, 93–95]
or p300 [96]. Conversely, PGC1� can be activated
via phosphorylation by adenosine monophosphate
activated protein kinase (AMPK) [97–101] or p38
mitogen activated protein kinase (MAPK) [101, 102],
via methylation by protein arginine methyltrans-
ferase 1 (PRMT1) [103], or via deacetylation by
SIRT1 (Fig. 5) [69, 93, 94, 96, 101, 104–107].
Interestingly given the SIRT1-mediated activation
of PGC1�, sildenafil has been shown to upregulate
SIRT1 in heart, cardiomyocytes [108], serum, and
subcutaneous adipose tissue [109]. cGMP analogues
upregulated SIRT1 expression in white adipose tis-
sue [110, 111] and in osteoblasts [112]. Mice with
osteoblast-specific PKGII overexpression exhibited
increased SIRT1 expression [112]. The PKG inhibitor
KT-5823 blocked the relief of spinal allodynia
induced by resveratrol, a SIRT1 activator [113, 114].
In hypoxic myocardial cells, 1 �M sildenafil treat-
ment decreased PGC1� protein acetylation [115,
116]. Therefore, it is possible that sildenafil may
promote PGC1� deacetylation in some contexts via
cGMP/PKG/SIRT1 signaling (Fig. 5).

Benefits of sildenafil in AD

Since most doses of sildenafil/cGMP activate
PGC1� and PGC1� signaling induces mitochondrial
biogenesis [67, 70], upregulates antioxidant enzymes
[69], and suppresses BACE1 expression [65], silde-
nafil should provide significant benefits to patients
with AD. In addition to its PGC1�-specific benefits,
sildenafil promotes smooth muscle relaxation and
vasodilation via cGMP [117], which might provide
additional benefit to patients with AD since hypoper-
fusion is also a significant impairment in AD patients’
brains [37, 38, 118]. Sildenafil suppresses apoptosis
in hypoxic neurons [117, 119] and promotes neuro-

genesis [120–123], so it might slow the loss of AD
neurons and promote the replenishment of new ones.
Furthermore, sildenafil improves insulin sensitivity
and endothelial inflammation in patients [124–126],
so sildenafil might also promote insulin sensitiv-
ity and suppress inflammation in AD brains. Since
cGMP/PKG signaling mediates long-term poten-
tiation via CREB phosphorylation [85–90, 117],
sildenafil should improve the learning and memory
impairments associated with AD. Therefore, in the-
ory, most doses of sildenafil should improve multiple
hallmarks of AD, including excessive A� genera-
tion, impaired mitochondrial biogenesis, oxidative
stress, neuroinflammation, hypoperfusion, insulin
resistance, neuron loss, insufficient neurogenesis, and
memory deficits.

Sildenafil and AD comorbidities and risk factors

It is also important to consider the effects of silde-
nafil on common AD comorbidities and/or risk factor
conditions, such as type II diabetes, cardiovascular
diseases, and depression, since many AD patients
suffer from one or more of these conditions.

Regarding the effect of sildenafil in depression,
NOS/NO/sGC/cGMP and serotonin signaling tend to
oppose each other. cGMP triggers cerebral vasodila-
tion [127], whereas serotonin induces cerebral vaso-
constriction [128, 129]. NOS/NO/sGC/cGMP/PKG
signaling activates the serotonin transporter (SERT),
inducing serotonin reuptake [130–132]. For this rea-
son, sildenafil might be expected to make selective
serotonin reuptake inhibitor (SSRI) antidepressants
less effective. However, there do not appear to be any
reports of this being the case, and sildenafil has been
used safely and successfully to treat erective dys-
function in patients taking SSRIs [133]. Moreover,
sildenafil itself has been shown to exert an antide-
pressant effect in mice [134].

Regarding the effects of sildenafil in type II
diabetes, it has been found in a randomized, double-
blind, placebo-controlled study that 25 mg thrice
daily for 3 months sildenafil increases insulin sen-
sitivity in patients with pre-diabetes, indicating that
sildenafil might be beneficial for patients with AD
and type II diabetes [125]. Regarding the effects of
sildenafil and cardiovascular diseases, despite early
concerns [135], sildenafil usage does not appear to
contribute to myocardial infarction or sudden cardiac
death risk [136]. In fact, treatment of erectile dysfunc-
tion in patients who had had a myocardial infarction
with PDE5 inhibitors (but not alprostadil) correlated
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with a reduced risk of mortality and hospitaliza-
tion for heart failure (n = 43,145) [137]. Preclinically,
in a mouse model of hypercholesterolemia, silde-
nafil decreased aortic atherosclerotic plaques by
40% [138]. Furthermore, sildenafil decreases cardiac
hypertrophy [139]. Therefore, sildenafil treatment in
AD patients with comorbid cardiovascular diseases
would be expected to be safe and potentially benefi-
cial.

MATERIALS AND METHODS

To determine the current progress in studying silde-
nafil and AD, we searched PubMed for “sildenafil
Alzheimer’s.” Both preclinical and clinical studies
were reviewed. Results that were not about the effect
of sildenafil on patients or preclinical models with
AD (e.g., studies about the interaction between cGMP
and A� in long-term potentiation) were discarded. To
ensure clinical relevancy, studies about derivates of
sildenafil were also discarded.

RESULTS

As per the methods section, two in vitro studies,
ten rodent studies, one systematic review, and two
pilot studies in patients were included. Overall, all
the studies supported the use of sildenafil in AD (see
Table 1 for a summary of results).

HT-22 hippocampal neuronal cells treated with
A�25−35 exhibited mitochondrial calcium overload,
which was associated with ATP depletion, ROS
generation, permeability transition pore opening,
caspase-9 activation, and cell death. Sildenafil pre-
vented these effects by promoting the opening of
ATP-sensitive K+ channels [140]. In cultured HT-22
hippocampal neuronal cells, exposure to advanced
glycation end products [141] (a risk factor for
AD [142]) induced mitochondrial ROS generation,
depleted intracellular ATP, opened the mitochondrial
permeability transition pore, released cytochrome C,
activated caspase-3, and initiated apoptosis. Treat-
ment with sildenafil upregulated heme oxygenase
1 (HO1), protected mitochondria from permeabil-
ity transition pore opening and cytochrome C
release, and decreased caspase-3 activation and
apoptosis [141]. HO1 expression was required for
sildenafil-induced protection of mitochondrial reduc-
tive capacity and permeability transition pore opening
[141], suggesting that sildenafil protected mitochon-
dria via HO1 upregulation.

In mice with cholinergic dysfunction mimicking
AD due to scopolamine injection, sildenafil rescued
maze performance, with 3 mg/kg appearing to be
more efficacious than the 1.5 or 4.5 mg/kg dosages
[143].

In hippocampal slices from transgenic amyloid
precursor protein (APP)/presenilin 1 (PS1) AD mice,
50 nM sildenafil rescued the deficits in tetanus-
induced long-term potentiation in the Schaffer
collateral pathway caused by the APP/PS1 genotype
[144]. In vivo sildenafil treatment produced simi-
lar results. In APP/PS1 mice, a one-time dosage
of 3 mg/kg sildenafil rescued contextual fear mem-
ory. Daily intraperitoneal dosages for 2-3 weeks of
3 mg/kg sildenafil partially rescued spatial working
memory deficits on the radial arm water maze test.
Similar benefits were found for daily dosages of
3 mg/kg sildenafil 9–12 weeks after treatment ces-
sation, indicating a long-term benefit that persists
even after treatment cessation. Sildenafil also rescued
long-term spatial reference memory on the Morris
water maze and the probe trial. Sildenafil treatment
rescued tetanus-induced CREB phosphorylation in
the CA1 hippocampus to normal levels. 3 weeks
of daily 3 mg/kg sildenafil was sufficient to reduce
A�40 and A�42 levels in cerebral cortex samples
[144].

In APP/PS1 mice administered sildenafil 6 mg/kg
intraperitoneally daily for 3 months, significant
improvements were documented in behavioral tests
(nesting behavior, arm entries in the Y maze, Mor-
ris water maze escape latency and path length), as
well as immunoreactivity of inflammatory microglial
and astrocytic markers ionized calcium binding adap-
tor molecule 1 (Iba1) and glial fibrillary acidic
protein (GFAP), neurogenesis as shown by NeuN-
positive neurons and doublecortin (DCX)-positive
cells in dentate gyrus, and amyloid plaque burden
[145].

In APP/PS1 AD mice, 2 mg/kg sildenafil twice
daily for 4 months rescued cognition as shown
by spontaneous alternation and escape from elec-
trical stimulation in the Y-maze test, decreased
amyloid pathology as shown by decreased corti-
cal and hippocampal A�PP, A�40, and A�42 levels,
decreased PDE5 expression, and increased nNOS,
eNOS, iNOS, NO, and cGMP levels [146].

Sub-chronic intraperitoneal sildenafil treatment in
APP/PS1 mice was found to improve memory as
shown by novel object recognition preference, down-
regulated proinflammatory cytokines interleukin-1�
(IL-1�), intereukin-6 (IL-6), and tumor necrosis
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Table 1
Literature review results

Dosage Population Results Study

10–100 �M sildenafil HT-22 hippocampal
neuronal cells exposed to
A�25−35

Sildenafil rescued mitochondrial Ca2+
overload and dysfunction due to A�25−35 by
opening ATP-sensitive K+ channels

[140]

20 �M sildenafil HT-22 hippocampal
neuronal cells exposed to
advanced glycation end
products

Sildenafil decreased mitochondrial
permeability transition pore opening and
apoptosis via HO1 upregulation

[141]

Variable, 3 mg/kg Scopolamine-induced
cholinergic dysfunction
mice

Sildenafil rescued memory [143]

Variable, primarily 3 mg/kg/day
intraperitoneal sildenafil

APP/PS1 mice Sildenafil rescued long-term potentiation,
CREB phosphorylation, memory, and
decreased A� levels

[144]

6 mg/kg, intraperitoneal daily for
3 months

APP/PS1 mice Sildenafil improved memory, amyloid
plaque load, inflammation, and neurogenesis

[145]

2 mg/kg sildenafil twice daily for
4 months

APP/PS1 mice Sildenafil rescued memory and amyloid
pathology, downregulated PDE5, and
increased NOS, NO, and cGMP levels

[146]

Sildenafil was dissolved in 0.9%
saline at a concentration of
1.0 mg/ml. 10.0 mg/kg of this
solution was administered
intraperitoneally with an
injection volume of 0.1 ml/10 g.

APP/PS1 mice Sildenafil improved memory, decreased
levels of A�, IL-1�, IL-6 and TNF-�, and
increased p-CREB

[147]

15 mg/kg sildenafil daily for 10
weeks in water

J20 mice Sildenafil improved memory, tau
hyperphosphorylation, and Akt and GSK3�
phosphorylation, but not prefrontal cortex
A�42 levels

[61]

15 mg/kg daily sildenafil,
intraperitoneal

Tg2576 AD mice Sildenafil improved memory, tau but not
frontal cortex amyloid pathology, inhibited
GSK3�, decreased CDK5 p25/35 ratio,
upregulated BDNF and Arc

[148]

Variable Aged mice Sildenafil improved spatial memory
retention but not acquisition

[64]

3 mg/kg intraperitoneal sildenafil
daily for 3 weeks

Aged mice Sildenafil decreased double-stranded DNA
breaks and pro-apoptotic caspase-3 and Bax
and upregulated antiapoptotic Bcl2 and
BDNF

[149]

7.5 mg/kg sildenafil
intraperitoneally once daily for 4
weeks

SAMP8 mice Sildenafil improved amyloid and tau
pathology, memory, and gliosis

[145, 150]

7.5 mg/kg sildenafil
intraperitoneally once daily for 4
weeks

SAMP8 mice Sildenafil decreased JNK
phosphor-activation in the hippocampus, tau
phosphorylation, and memory deficits

[151]

50 mg sildenafil, single dosage 10 AD patients Sildenafil decreased spontaneous neural
activity in right hippocampus

[152]

50 mg sildenafil, single dosage 14 AD patients Sildenafil increased cerebral metabolic rate
of oxygen and cerebral blood flow in 12
patients, decreased cerebral vascular
reactivity in 8 patients

[127]

factor-� (TNF-�) in the hippocampus, decreased hip-
pocampal soluble A�40 and A�42 expression, and
increased CREB phosphorylation [147].

A recent systematic review found that, on the Mor-
ris water maze and the T-maze, sildenafil improved
spatial memory retention but not acquisition in aged
mice [64]. Interestingly, this review reported that

PDE5 is not located in brain structures critical for AD
based on the lack of specific hybridization of a PDE5
mRNA probe [62–64], but as noted, other groups have
found increased PDE5 mRNA or protein expression
in AD patients’ entorhinal [58] or temporal cortices
[55], respectively, and PDE5 mRNA expression has
been found by multiple groups in the normal human
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brain, albeit at lower levels than in peripheral tissues
[58–61].

In J20 AD mice, 15 mg/kg sildenafil daily for
10 weeks in drinking water resulted in improved
performance on the Morris water maze, decreased
tau hyperphosphorylation, and increased Akt and
GSK3� phosphorylation, but it did not alter pre-
frontal cortex A�42 levels [61].

In Tg2576 AD mice, 15 mg/kg/day intraperitoneal
sildenafil significantly rescued learning and memory
deficits as shown by the Morris water maze and fear
conditioning tasks, reduced hippocampal tau hyper-
phosphorylation, GSK3� activity, and the CDK5
p25/p35 ratio, upregulated hippocampal p-CREB
and c-Fos following fear conditioning training, and
increased hippocampal expression of brain-derived
neurotrophic factor (BDNF) and activity-regulated
cytoskeletal-associated protein (Arc) (an immediate
early response gene involved in memory encoding)
[148]. However, sildenafil did not affect total A�42
levels in the frontal cortex [148].

In aged mice, 3 mg/kg intraperitoneal sildenafil
daily for 3 weeks decreased double-stranded DNA
breaks and apoptotic cells as visualized by the ter-
minal deoxyuridine triphosphate nick end labeling
(TUNEL) assay in the CA1 hippocampus, down-
regulated proapoptotic proteins caspase-3 and B-cell
lymphoma 2-associated X (Bax), upregulated anti-
apoptotic B-cell lymphoma protein-2 (Bcl2) and
BDNF, downregulated A�PP expression, and sup-
pressed the age-associated shift in the A�42/A�40
ratio [149].

In the senescence accelerated mouse-prone 8
(SAMP8) mouse model of accelerated aging and spo-
radic AD, 7.5 mg/kg sildenafil for 4 weeks improved
cognitive performance as shown by the Morris water
maze and the passive avoidance test [145, 150, 151],
tau hyperphosphorylation [145, 151], inflammation
as shown by GFAP downregulation, and amyloid
pathology as shown by downregulation of BACE1,
cathepsin B, and hippocampal A�42 [150]. Sildenafil
also activated Akt and inhibited GSK3�, calpain,
cyclin-dependent kinase 5 (CDK5) [145, 150], and
c-Jun N-terminal kinase (JNK) [151].

Sildenafil in AD patients

In 10 AD patients, a single 50 mg dose of sildenafil
significantly decreased spontaneous neural activity
in the right hippocampus as shown by the fractional
amplitude of low-frequency fluctuations recorded
on functional magnetic resonance imaging of the

blood oxygen level-dependent signal, a parameter
that had been shown to be aberrantly increased in
AD patients’ hippocampi and parahippocampal gyri
[152]. In 12 elderly patients with AD, a single dosage
of 50 mg of sildenafil significantly increased the cere-
bral metabolic rate of oxygen and cerebral blood flow
[127]. In 8 AD patients, it decreased cerebrovascular
reactivity [127].

DISCUSSION

As predicted in the introduction, preclinical studies
that tested these parameters have found that sildenafil
rescued CREB phosphorylation, long-term potentia-
tion, and learning and memory [61, 143–148, 150,
151], increased neurogenesis [145], and decreased
neuroinflammation [145, 147, 150]. In addition, these
studies consistently found that sildenafil decreased
tau hyperphosphorylation and related parameters [61,
145, 148, 150, 151]. This might be in part because
the MnSOD downregulation in AD hippocampal
neurons contributes to tau hyperphosphorylation
[45,153], and low-dose sildenafil appears to upreg-
ulate MnSOD via PGC1� activation [69–72]. The
relatively high 15 mg/kg dosages appear to have
resulted in decreased tau hyperphosphorylation pre-
dominantly because high-dose sildenafil activated the
cGMP/PKG/PI3K/Akt pathway, leading to increased
inhibitory Ser9 phosphorylation of tau kinase GSK3�
[61, 80, 148].

Discrepancies have been reported, however,
regarding the effect of sildenafil on A� levels: most
of the studies showed that sildenafil decreases A�
levels [144–147, 150], but the two studies using
the highest dosages (15 mg/kg) reported no effect
on frontal cortex A� levels [61, 148]. This can be
understood through the lens of the U-shaped dose-
response curve of sildenafil and cGMP on PGC1�
signaling documented in the introduction: low-dose
sildenafil and cGMP appear to activate PGC1� and
suppress BACE1 expression [65, 70, 76], whereas
high-dose sildenafil and 100 �M cGMP appear to
inhibit PGC1� due to crosstalk with cAMP and
PDE2 signaling, failing to suppress BACE1 expres-
sion. In other words, it is possible that the 15 mg/kg
sildenafil studies may not have decreased A� levels
significantly [61, 148] because that dosage activates
PDE2, depletes cAMP [76], and inhibits cAMP-
signaled PGC1� activation and BACE1 repression
[65, 67]. Another intriguing observation is that only
the 15 mg/kg studies reported Akt activation and/or
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GSK3� inhibition [61, 148], suggesting the possibil-
ity that the 15 mg/kg dosages activated Akt [61, 148]
and may have consequently repressed PGC1� expres-
sion and its anti-amyloidogenic properties (Fig. 4)
[80–82].

Interestingly, in vitro studies found that silde-
nafil protected mitochondria from A� or AGEs via
ATP-sensitive K+ channels or HO1 upregulation,
respectively [140, 141], suggesting that sildenafil
may promote mitochondrial function via multiple
mechanisms, some of which may be independent of
PGC1�.

In patients, an especially promising finding is that
50 mg sildenafil increased the cerebral metabolic rate
of oxygen [127]. This effect might be accounted
for totally by the increases in the cerebral blood
flow [127], or it may have been partially medi-
ated as well by PGC1�-regulated mitochondrial
biogenesis. However, none of the studies reviewed
measured PGC1� mRNA, protein, or acetylation
levels, nor other markers of mitochondrial biogen-
esis, making it impossible to evaluate this possibility.
Nor was the effect of sildenafil on SIRT1 activ-
ity or the SIRT1/PGC1� pathway explored in any
of these studies. Nor did these studies examine
the effect of sildenafil on markers of insulin resis-
tance or antioxidant enzyme expression. Future
preclinical studies in transgenic AD mice should
address these points directly to assess the possible
role of SIRT1 and PGC1� activity in sildenafil-
induced A� suppression, mitochondrial biogenesis,
and antioxidant enzyme expression in AD, as well
as the putative effect of sildenafil on insulin resis-
tance. Future studies should also assess the potential
of combining sildenafil with a PDE2 inhibitor to
increase sildenafil’s maximal effective dosage con-
tinuously throughout the treatment duration. This
would bypass the dose-limiting effect of sildenafil on
PDE2 activation and cAMP depletion [76], allowing
for robust simultaneous cAMP and cGMP signaling
and therefore maximal PGC1� activity, mitochon-
drial biogenesis, antioxidant enzyme expression, and
BACE1 repression [48, 65–67, 69, 70, 73–75, 96, 108,
109, 112, 115, 116, 154–156]. The best candidate
for this role would be propentofylline, a potent and
broad-spectrum PDE inhibitor and methyl xanthine
derivate like caffeine that is particularly effective
at inhibiting cGMP-stimulated PDE2 activity and
PDE4 [157]. Propentofylline would be superior to
other PDE2 inhibitors primarily because 300 mg of
it taken thrice daily one hour before meals has been
tested and found to be safe and effective in mild to

moderate AD patients in 5 phase III clinical trials
[158–164]. Intriguingly, a recent review by Heckman
and colleagues opined that, based on the preclini-
cal evidence, inhibition of PDE2, PDE4, and PDE5
seemed to hold the most promise for the treatment of
AD [165], and sildenafil and propentofylline admin-
istered together would potently inhibit these three
therapeutic targets simultaneously [157].

Ultimately, a randomized control trial of sildenafil
should be undertaken in AD patients to assess the
clinical benefits of long-term sildenafil admin-
istration in this population compared to elderly
controls. This RCT should use the 50 mg/day dosage
[127]. As outcome measures, the RCT should
test cognition on the MMSE and the Alzheimer’s
Disease Assessment Scale-Cognitive Subscale,
comorbid depression on the Geriatric Depression
Scale [56], amyloid and tau pathology binding with
2-(1-6-[(2-[F- 18]fluoroethyl)(methyl)amino]-2-
naphthylethylidene)malononitrile positron emission
tomography (FDDNP-PET) [166, 167], cerebral
blood flow with MRI [127], the cerebral metabolic
rate of oxygen with MRI [127, 168, 169], the
cerebral metabolic rate of glucose with 18F-
fluoro-deoxyglucose positron emission tomography
(FDG-PET) [34, 35, 170–174], inflammation with
CSF IL-1�, IL-6, and TNF-� [124–126, 147,
175–182], NOS/NO/sGC/cGMP/PGC1� path-
way dysfunction with CSF cGMP [55, 56], and
antioxidant enzyme activity with urine 8-oxo-2’-
deoxyguanosine as an indirect biomarker [45, 69,
71, 72, 183].
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