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a b s t r a c t 

The question of whether features of the ocean bottom topography can be identified from measurements 

of water level is investigated using a simplified one-dimensional barotropic model. Because of the nonlin- 

ear dependence of the sea surface height on the water depth, a linearized analysis is performed concern- 

ing the identification of a Gaussian bump within two specific depth profiles, (1) a constant depth domain, 

and, (2) a constant depth domain adjoining a near-resonant continental shelf. Observability is quantified 

by examining the estimation error in a series of identical-twin experiments varying data density, tide 

wavelength, assumed (versus actual) topographic correlation scale, and friction. For measurements of sea 

surface height that resolve the scale of the topographic perturbation, the fractional error in the bottom 

topography is approximately a factor of 10 larger than the fractional error of the sea surface height. 

Domain-scale and shelf-scale resonances may lead to inaccurate topography estimates due to a reduction 

in the effective number of degrees of freedom in the dynamics, and the amplification of nonlinearity. 

A realizability condition for the variance of the topography error in the limit of zero bottom depth is 

proposed which is interpreted as a bound on the fractional error of the topography. Appropriately de- 

signed spatial covariance models partly ameliorate the negative impact of shelf-scale near-resonance, and 

highlight the importance of spatial covariance modeling for bottom topography estimation. 

© 2016 The Author. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Ocean bottom topography, i.e., the field of ocean depth relative 

to the undisturbed water surface, is a necessary component for 

the development of realistic ocean models. Topography influences 

ocean circulation at a wide range of spatial and temporal scales via 

kinematics, potential vorticity conservation, and through bound- 

ary layer processes. Gridded maps of ocean bottom topography 

are readily available to ocean modelers; however, their accuracy is 

poorly quantified ( Marks and Smith, 2006 ) and the impact of to- 

pographic error on ocean forecasts is significant ( Heemink et al., 

2002; Blumberg and Georgas, 2008 ). 

It is within this context that the problem of estimating bottom 

topography using data assimilation is studied here. The goal is to 

combine measurements of water surface elevation with hydrody- 

namic constraints in order to improve topographic maps, particu- 

larly on continental shelves where errors in gravimetrically-derived 

topography are large ( Marks and Smith, 2012 ). The rationale for 

such an approach is provided by the observation that harmonic 

E-mail address: zaron@cecs.pdx.edu , ezaron@pdx.edu 

constants of the main diurnal (K 1 ) and semidiurnal (M 2 ) tides are 

known from satellite altimetry with 1cm precision, or better, over 

much of the ocean ( Ray and Byrne, 2010; Stammer et al., 2014 ), 

which generally corresponds to a fractional error of 1–5%. The idea 

is that these data could be assimilated into an ocean tide model 

based on the Laplace Tidal Equations in which the bottom topog- 

raphy is treated as a distributed control parameter, and more ac- 

curate estimates of bottom topography could be obtained, partic- 

ularly in regions where the relative uncertainty in the depth is 

greater than the relative uncertainty in the satellite-derived tides. 

This generic approach has been tried previously ( Mourre et al., 

2004 ), but generalizing and validating the approach more widely 

has proved challenging. 

The present approach studies the bottom topography estimation 

problem in a maximally-simplified setting in order to understand 

the interplay between the dynamics, domain geometry, and data 

density. An idealized one-dimensional model consisting of shallow 

water flow over variable topography is used to examine these fac- 

tors by using the same estimation technique concurrently imple- 

mented with more realistic models. Thus, the present paper exam- 

ines the accuracy with which isolated perturbations to sea-floor 

http://dx.doi.org/10.1016/j.ocemod.2016.04.008 
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topography can be identified from measurements of water level 

alone. The tidal dynamics are approximated by a one-dimensional 

linear shallow water model. The novelty of studying this sim- 

ple system is that it allows the nonlinearity connected with the 

undisturbed water depth to be exhibited, and it permits a more 

systematic exploration of parameter space than would be other- 

wise possible. 

This paper is organized as follows. The following section de- 

scribes how variational data assimilation may be applied to iden- 

tify bottom topography in a one-dimensional wave equation. Fol- 

lowing that, the observability of bottom topography is analyzed 

in two particular cases, (1) a topographic perturbation to a con- 

stant depth ocean, and (2) a topographic perturbation to a con- 

stant depth ocean adjacent to a near-resonant continental shelf. 

In Section 3 the observability is defined and quantified by a sim- 

ple norm, and the observability of the topography is contrasted 

with the observability of the sea surface height for the constant 

depth case. This is followed, in Section 4 , by an analysis of a near- 

resonant continental shelf. For both geometries the observability 

is described as a function of non-dimensional parameters of rele- 

vance to applications, namely, the ratio of the spatial data density 

to the topographic length scale, the ratio of the wavelength of the 

tide to the topographic length scale, and the ratio of the assumed 

correlation scale of the topography to the actual correlation scale. 

2. A simple model for bottom topography estimation using 

variational data assimilation 

Consider a model for tidal waves within a domain between 

x = 0 , the “coastline,” where the depth-integrated water transport, 

U , vanishes; and x = L, the “open ocean,” where water elevation, η, 

is specified. Both U and η are taken as complex-valued functions 

of x , the complex harmonic constants at a given tidal frequency, ω, 

here equal to 2 π/ 12 . 42 h 

−1 , the main semi-diurnal tidal frequency. 

The hydrodynamics consist of the continuity and momentum equa- 

tions, 

− jω U + g Hηx + C d u f U/H = 0 (1) 

− jωη + U x = 0 (2) 

H = H 0 (x ) + h (x ) , (3) 

where j = 

√ −1 , H is water depth, g is gravitational acceleration, 

C d is the bottom drag coefficient, and u f is a bottom friction veloc- 

ity which may depend on x . The equations are supplemented by 

H = H 0 (x ) + h (x ) to emphasize that the bottom topography shall 

be taken as a control variable, with H 0 its first guess, and h a cor- 

rection to be determined by data assimilation. The system repre- 

sents a simplification of the full shallow water system in which 

bottom stress is linearized, water density is assumed constant, the 

advective nonlinearity is neglected, and quadratic nonlinearity in- 

volving η has been neglected. The specification of the equations 

is completed by the boundary conditions, U(0) = 0 and η(L ) = η0 . 

In this one-dimensional setting the Coriolis term modifies the dis- 

persion relation in a non-essential manner and so rotation is ne- 

glected. 

The topographic estimation problem is posed in the language 

of variational state estimation, where the model state consists of 

( H, U, η). An estimate for the state is sought which is consistent 

with the dynamics specified above, where adjustments to the bot- 

tom topography, h , bring the modeled and observed values of η
into agreement, allowing for measurement error. It is assumed that 

the expected value of h is zero and its spatial covariance is given 

by C HH . For testing purposes, the true solution ( ̃  H , ̃  U , ̃  η) is known, 

and measurements of ˜ η are given, d i = ̃

 η(x i ) + εi , for i = 1 , . . . , M, 

together the variance of ε i , σ
2 , the measurement noise. The covari- 

ance C HH shall be represented in terms of a variance, σ 2 
H (x ) , and a 

spatial correlation function, c HH ( x, y ), as 

C HH (x, y ) = σH (x ) c HH (x, y ) σH (y ) . (4) 

Particular models for the variance and correlation shall be dis- 

cussed below. 

The estimator for ( H, U, η) is given by the minimizer of the ob- 

jective function, 

J(H, U, η) = 

∫ L 

0 

∫ L 

0 

h (x ) C −1 
HH (x, y ) h (y ) d yd x + 

M ∑ 

i =1 

| εi | 2 σ−2 , (5) 

where the data error is given by εi = η(x i ) − d i , and | εi | 2 = εε∗

is defined using the complex-conjugate of ε, indicated with the 

super-script ∗. Taking the variation with respect to ( H, U, η) leads 

to the following system for the minimizer of J , 

jωμ + C d u f μ/H − ζx = 0 (6) 

jωζ − g ( Hμ) x = −
M ∑ 

i =1 

δ( x − x i ) ( η( x i ) − d i ) σ
−2 (7) 

λ = −gμη∗
x + C d u f μU 

∗/H 

2 , (8) 

with boundary conditions μ(0) = 0 and ζ (L ) = 0 . The auxiliary 

variables μ( x ) and ζ ( x ) are Lagrange multipliers associated with 

the equalities (1) and (2) . The optimal estimate of topography, 

H(x ) = H 0 (x ) + h (x ) , is computed from H 0 , λ( x ), the covariance 

function C HH ( x, y ), and h ( x ) using the definition, 

h (x ) = 

∫ L 

0 

C HH (x, y ) Re [ λ(y )] dy, (9) 

where Re [ · ] denotes the real part of its argument. 

The objective function is quadratic in h and ε i , but non- 

quadratic in the variables, H, η and U . Nonlinearity is an impor- 

tant issue, but it will not be emphasized compared to the basic 

linear structure of the estimation problem. Instead, assume the so- 

lution consists of a small perturbation ( H 

′ , U 

′ , η′ ) to a basic state, 

( H , U , η) . Then the solution of equations (1) –(8) approximately sat- 

isfies, 

− jωU 

′ + gH 

′ ηx + g H η′ 
x + C d u f U 

′ / H − C d u f U / H 

2 
H 

′ = 0 (10) 

− jω η′ + U 

′ 
x = 0 (11) 

H 

′ = (H 0 − H ) + h 

′ . (12) 

The topographic correction, h ′ = 

∫ L 
0 C HH Re [ λ] , is once again ob- 

tained from the first-order optimality condition for an extremum 

of J ( H, U, η) written in terms of the adjoint variables ( λ, μ, ζ ), 

jωμ + C d u f μ/ H − ζx = 0 (13) 

jωζ − g( H μ) x = −
M ∑ 

i =1 

δ(x − x i )(η(x i ) − ηi ) σ
−2 (14) 

λ = −gμη∗
x + C d u f μU 

∗
/ H 

2 
, (15) 

with boundary conditions μ(0) = 0 and ζ (L ) = 0 . If the set, 

( H , U , η) , used for the linearization solves equations (1) –(3) , then 

the expression for λ may be written as, 

λ = −μ∗ jω U / H 

(
1 + 2 jC d u f / (ω H ) 

)
, (16) 

where the dependence of λ on the basic state fields U and H is 

exhibited. 
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3. Case 1: constant depth basic state 

The model in this section consists of the dynamics introduced 

above within a bounded domain, from x = 0 to x = L = 10 7 m , in 

which the basic state for the linearization is constant depth, H = 

40 0 0 m . The topographic perturbation to be identified, ˜ h (x ) , is 

a Gaussian bump of amplitude 
H = 400 m , centered at x = 6 ×
10 6 m . The degree of nonlinearity, 
H/ H = 0 . 1 , is small enough 

that a linear analysis suffices to demonstrate the salient points. The 

wavelength of the M 2 tide, L τ = 9 × 10 6 m , is slightly shorter than 

the domain. The open boundary condition is simply η(L ) = 1 m 

(i.e., a cosine of unit amplitude). The values of the drag coefficient 

and friction velocity are taken as constants, C d = 3 × 10 −3 and u f = 

0 . 05 m / s , resulting in a weakly damped system, C d u f / (ω H ) = 10 −4 . 

An expansion in terms of so-called “representer functions” may 

be used to transform the system of coupled differential equations, 

(10) –(15) , into a finite-dimensional linear system ( Bennett, 1992; 

Wahba, 1990 ). Let { d i } denote the real-valued data vector, for 

i = 1 , . . . , M, which corresponds to the real and imaginary parts of ˜ η(x i ) . The optimal estimate of ( h ′ , U 

′ , η′ ), denoted ( ̂  h , ̂  U , ̂  η) , can 

be written as a linear combination of M representer functions ( h i , 

U i , ηi ), ̂ h = 

∑ 

i 

βi h i (17) 

̂ U = 

∑ 

i 

βi U i (18) 

̂ η = 

∑ 

i 

βi ηi , (19) 

where ( h i , U i , ηi ) solves the linear system (10) –(15) with the 

inhomogeneity, δ(x − x i ) or jδ(x − x i ) , on the right-hand-side of 

(14) , depending on whether the i th measurement corresponds to 

the real or imaginary part of ˜ η(x i ) . 

The real-valued coefficient vector β = { βi } , for i = 1 , . . . , M, is 

found by solving the linear system, 

(R + C ηη) β = d ′ , (20) 

where the elements of the M × M matrix R are R i, j = ηi (x j ) , and 

the elements of the M × 1 vector d ′ are d ′ 
i 
= d i − η(x i ) . The M ×

M matrix C dd is the data error covariance matrix, assumed to be 

diagonal, C dd = σ 2 
η I, where ση = 10 −2 m in the examples, below. 

Because the optimal estimate is a linear combination of repre- 

senter functions, one for each measurement, the representers for 

the topography, transport, and surface elevation ( h i , U i , ηi ), can be 

related to the Jacobian derivative, or sensitivity, of the optimal esti- 

mate to the observation at the i th location. Given a single measure- 

ment at x i , for example, the field ∂ ̂  h /∂d i is simply proportional to 

h i . The corresponding solutions of the adjoint equations (13) –(15) , 

( λi , μi , ζ i ), are equal to the Jacobian derivatives of the observed 

variables to the field, e.g., λi = ∂ η′ (x i ) /∂ h 
′ , the so-called adjoint 

sensitivity. Thus, the representer functions and their adjoints will 

be shown below in order to interpret the observability of the fields. 

The observability of the topography will be quantified in terms 

of an L 2 norm of the estimation error, 

ε2 
H = 

∫ L 
0 ( ̂

 h (x ) −˜ h (x )) 2 dx ∫ L 
0 ̃

 h (x ) 2 dx 
(21) 

where the true topography is ˜ H (x ) = H + ̃

 h (x ) . Similarly, the ob- 

servability of sea surface elevation will be measured by, 

ε2 
η = 

∫ L 
0 | ̂  η(x ) − ˜ η(x ) | 2 dx ∫ L 

0 | η − ˜ η(x ) | 2 dx 
, (22) 

where ˜ η is the η field obtained by solving (1) –(3) with H(x ) = ˜ H (x ) . 

Observability has been studied as a function of the following 

non-dimensional parameters: 

Fig. 1. Representative solutions for the flat-bottom case ( x in units of 10 6 m). (a) 

The η field associated with the given topographic perturbation (shaded). (b) Se- 

lected real and imaginary parts of the adjoint functions, solutions to (13) –(15) , for 

a measurement at x i = 5 × 10 6 m : real part of μi (dashed), imaginary part of ζ i 

(solid), real part of λi (heavy). (c) Selected real and imaginary parts of the rep- 

resenter functions, corresponding to panel (b): imaginary part of U i (dashed), real 

part of ηi (solid), real part of h i (heavy). 

• the spatial density of the data sites expressed as the ratio, D / L c , 

where D is the separation between measurement sites (which 

are arranged evenly and sequentially within the domain), 

D = x i +1 − x i , and L c is the e-folding half-width of the Gaussian 

topographic bump; 
• the ratio of the tide wavelength to the topographic perturba- 

tion width, L τ / L c , where L τ = 2 π
√ 

g H /ω is the wavelength of 

the tide; 
• the ratio of the assumed width to the actual width of the topo- 

graphic perturbation, ̂  L c /L c , where ̂  L c is the e-folding half-width 

of the correlation function c HH ; and 

• the friction number, r = C d u f / (ω H ) . 

Thus, D / L c is a measure of the data resolution relative to the 

length scale of the unknown topography. L τ / L c is a measure of the 

dynamical scale of the topographic perturbation. ̂  L c /L c is a measure 

of the accuracy of the spatial covariance model; note that ̂  L c /L c = √ 

2 corresponds to perfect knowledge of the correlation scale. 

The friction number, r , determines the relative influence of the 

in-phase versus the quadrature components of U / H on h , which 

roughly corresponds to the influence of ηx versus U (cf., Eq. (16) ). 

Within this section a homogeneous spatial covariance model is 

assumed, 

σH (x ) = 
H, and c HH (x, y ) = exp (−(x − y ) 2 / ̂  L 2 c ) . (23) 

Fig. 1 illustrates the various fields for the given configuration. 

The basic state, η, and true solution, ˜ η, are both nearly sinu- 

soidal standing waves and differ by roughly 0.1 m ( Fig. 1 a). The ad- 

joint functions for a measurement at x i = 5 × 10 6 m are obtained 
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Fig. 2. Estimation error as a function of data spacing, D / L c . The εH (thick) and εη

(thin) functions are increasing functions of the data spacing, D / L c , where D is the 

separation between the data sites and L c is the width of the topographic perturba- 

tion. Errors fluctuate for D / L c > 1 because of how the data sites sample the spatial 

variance of η. 

by solving equations (13) –(15) with a unit delta function on the 

right-hand side of equation (14) , δ(x − x i ) . The solution contains 

a jump in the μi and λi fields, and a discontinuous derivative in 

the ηi field ( Fig. 1 b). The representer fields are obtained as the 

solution to (10) –(12) , forced via the smoothed field h i = 

∫ 
C HH λi 

( Fig. 1 c). Notice that the representer for the topography, h i ( x ), os- 

cillates with approximately 1/2 the wavelength of the dynamical 

wave fields ( η and U ) because of its dependence on the product of 

μ and the physical fields. Because λi is discontinuous at the mea- 

surement site, the value of d i is, in this case, correlated with the 

slope of the topography at that point. 

The observability of η and H may be examined by considering 

how well the solution can be reconstructed from a given set of 

evenly-spaced measurements of η. The representer functions pro- 

vide a basis for the space of all observable perturbations, and the 

functions εη and εH measure the efficiency with which a given set 

of measurements can determine the true η and H fields. Note that 

since the norm involved in εη and εH measures the deviation on 

the entire interval [0, L ], and not just at the measurement sites, 

{ x i }, it is possible to over-fit the data at x i resulting in a poor fit 

over the entire interval. Thus, the results shown depend the nu- 

meric value of ση , which controls the goodness-of-fit at { x i }; al- 

though, the qualitative behavior is not sensitive to its precise value. 

Fig. 2 presents εη and εH as a function of D / L c . It is not surpris- 

ing that η measurements are very efficient at observing η; even 

a single measurement of η is sufficient to reduce εη to less than 

0.1. As more measurement sites are added and D / L c is reduced, the 

value of εη is also reduced. The reduction is not monotonic since 

the particular locations of the data sites determine how well the 

peaks and troughs of the η field are sampled. For D / L c < 1, the 

reduction of εη is essentially monotonic. In comparison, the ob- 

servability of H is quite different. A data density of D / L c < 0.6 is 

required to reduce εH below 0.5. 

Why is H estimated so poorly compared to η? The represen- 

ter function, ηi , in Fig. 1 c is a smooth sinusoid, and the span of 

{ ηi } efficiently explains the smooth function, δη = ̃

 η − η, shown 

in Fig. 1 a. The h i representer shown in Fig. 1 c is also smooth, 

and one might expect the set { h i } to efficiently explain the topo- 

graphic bump in Fig. 1 a; however, this is not the case. The error 

in the estimated topography is shown in Fig. 3 a for a case with 

M = 250 evenly-spaced measurements of η. The existence of the 

topographic bump is identified, but the amplitude and placement 

of the bump are in error. 

Fig. 3. Topography and representers. (a) The estimated topography (heavy line) is 

compared with the true topography (solid) and the error (dashed) when η observa- 

tions are assimilated at M = 250 data sites. (b) The representer functions, h i ( x ), are 

shown at a subset of 3 of the M measurement sites. The measurement location, x i , 

is shown with a dot. 

To explain why the error in the topography is large on the left 

side of the bump, representer functions for 3 of the measurement 

sites are illustrated in Fig. 3 b. The representers shown, and also 

those not shown, all have a small amplitude near the same loca- 

tion, x = 4 . 5 × 10 6 m . Relative to other locations in the domain, all 

the h i functions are inefficient at explaining variance near this site. 

The reason for this is the dependence of λi on the product, μη∗
x , 

which is zero where the | η| field has a local maximum, i.e., at the 

anti-amphidrome near x = 4 . 5 × 10 6 m . In other words, the struc- 

ture of the basic state ( H , U , η) determines the sensitivity of η to 

topographic perturbations, and the latter are essentially unobserv- 

able when they coincide with a local extremum of | η| , where the 

magnitude of the gradient, | ∇η|, is zero. 

From now on the ratio D/L c = 0 . 1 shall be kept fixed to examine 

the influence of the other parameters on a nominally well-resolved 

case. 

The influence of the ratio of the dynamical wavelength to the 

topographic length scale, L τ / L c , is illustrated in Fig. 4 . As previously, 

one observes that η is more observable than H , εη < εH . Several 

local extrema in the function εH ( L τ / L c ) are labelled in the Figure; 

and, in certain cases (labelled 1, 2, 4, and 5), the topography be- 

comes completely unobservable, e.g., near L τ /L c = 40 , 12 , 8 , . . . . For 

these values of L τ / L c , the value of L τ is such that the domain is 

near resonance, and miniscule changes in H lead to large changes 

in η; however, this extreme sensitivity near resonance also ampli- 

fies the errors in the linearized dynamics, making the linear esti- 

mator a poor estimate of ˜ H . 

It is not known if near-resonances will create the same diffi- 

culty for realistic applications in two-dimensions. In practice, the 

linear estimator is only used to identify the search direction in the 

function space of ( H, U, η) ( Zaron et al., 2011 ), so the impact of the 

amplified nonlinearity would be reduced. A realistic domain would 
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Fig. 4. Observability as a function of L τ / L c . The non-dimensional observability met- 

rics, εH (thick) and εη (thin), are shown as a function of non-dimensional tidal 

wavelength, L τ / L c , where L c is the width of the Gaussian bump and L τ is the dy- 

namical wavelength. The reduced observability of H near L τ /L c = 40 , 12 , 8 , 5 . 5 , . . . 

(peaks labelled 1, 2, 4, 5) is caused by 1/4-wave resonance. 

Fig. 5. Observability as a function of ̂  L c /L c . The non-dimensional observability met- 

rics, εH (thick) and εη (thin), are shown as a function of the ratio the assumed to 

the actual topographic width scale, ̂  L c /L c . The observability of H is a weak function 

of ̂  L c so long as ̂  L c is smaller than about 3 L c . 

also contain topographic roughness which would further detune 

a resonance. Examination of the role of the nonlinearity in detail 

would require a global analysis, which is beyond the scope of the 

present work, but ignoring spikes caused by near-resonance, the 

over-all trend is for improved observability of H for larger L τ / L c 
(which also corresponds to increased data density relative the to 

spatial scale of the tide, L τ / D ). Beyond a certain point, though, the 

wavelength becomes so large that η( x ) is simply slaved to its open 

boundary value and it becomes insensitive to H ( x ). 

In practice the spatial correlation structure of the topographic 

perturbations is poorly known ( Smith, 1993; Jakobsson et al., 

2002 ). For the present calculation, the true topographic perturba- 

tion is characterized by a single length scale, L c , and modeled with 

the length scale ̂  L c . Fig. 5 illustrates the dependence of the observ- 

ability functions on the ratio ̂  L c /L c , and shows that εH is insensitive 

to ̂  L c so long as ̂  L c /L c < 3 . For larger values of ̂  L c the observability 

is degraded as the effective number of degrees of freedom are re- 

duced. The influence of ̂  L c /L c for values larger than 10 (not shown) 

is constrained by domain-size effects. 

For the present case of a nearly constant depth domain, the in- 

fluence of the friction number, r , on observability is very weak for 

r < 1 (not shown). For larger values of r the effects of damping 

lead to a boundary layer structure, with significant | η| values re- 

Fig. 6. Representative solutions for the near-resonant shelf case. (a) The η field 

associated with the given topographic perturbation (shaded). (b) Real and imagi- 

nary parts of the adjoint functions, solutions to (13) –(15) , for a measurement at 

x i = 5 × 10 6 m : real part of μi (dashed), imaginary part of ζ i (solid), real part of λi 

(heavy). (c) Real and imaginary parts of the corresponding representer functions: 

imaginary part of U i (dashed), real part of ηi (solid), real part of h i (heavy). 

stricted to near the open boundary, x = L . In the present case the 

topographic bump is too far from the boundary to be of influence, 

and the topography becomes unobservable as r increases above 1. 

4. Case 2: near-resonant shelf basic state 

From the above discussion, it would appear that observations 

of surface elevation, η( x i ), are sufficient to identify perturbations 

to the bottom depth with the caveat that the fractional error in H 

will be a factor of 10 or more larger than the fractional error in 

η. Thus, if the surface tide is known with a precision of εη = 10 −2 

(e.g., 1 cm precision for a 1 m amplitude tide), one might anticipate 

that under optimal circumstances the fractional error of the esti- 

mated topography will be εH = 10 −1 , or 10%. In sparsely sampled 

areas where uncertainty in topography exceeds 10%, this could rep- 

resent a significant improvement. 

Unlike the previous example, the real ocean is complicated 

by the presence of variable topography. In particular, continental 

shelves create spatially heterogeneous tides when near-resonances 

occur. The domain-scale resonances were problematic in the sim- 

ple example, above, because the sensitivity of the linear system 

was amplified near resonance, and this led to the situation in 

which topography was essentially un-observable, as measured by 

ε2 
H 

. In the present case, with a near-resonant shelf embedded in a 

larger domain, it is found that the impact of near-resonant shelf is 

not restricted to the shelf, but it has a global impact on the esti- 

mated topography. The causes and consequences of this global im- 

pact are explained in this section. 

Fig. 6 a illustrates the perturbation to η caused by the same to- 

pographic perturbation as considered previously, except that the 
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Fig. 7. Sensitivity to the topographic error scale parameter, α. (a) The influence of 

the topographic error model on the representer function, h i , is shown for three val- 

ues of α. The case α = 1 corresponds to a constant fractional error in topography, 

which serves as a realizability condition in the limit H → 0 . Note that the cases 

α = 1 / 2 (thin line) and α = 1 (thick dashed line) overlap in the domain interior 

( x > 1.5 × 10 6 m). (b) The topography estimates corresponding to the α values in 

panel (a). The true topography is shown by the thin dashed line. 

first guess topography, H , contains a continental shelf. The to- 

pographic profile (shaded) represents a shelf from x = 0 to x = l, 

where l = π
√ 

gH 1 / (2 ω) is equal to 1/4 the wavelength of the tide 

for the depth H 1 = 200 m . The depth in the range of x = 0 to 

x = l0 6 m varies linearly from H (0) = 10 m to H (l) = 200 m , and 

this depth variation, combined with friction, detunes the resonance 

to a near-resonance. Note that the topographic perturbation cen- 

tered at x = 5 × 10 6 m is of the same form as used in Section 3 ; 

however, the vertical scale differs between Figs. 1 and 6 . 

The adjoint functions and representer functions, Fig. 6 b and c, 

differ significantly from the corresponding functions in Fig. 1 b and 

c. The largest values of λi and h i occur over the continental shelf, 

0 < x ≤ l , which indicates that the η function is most sensitive to 

small perturbations of the continental shelf topography. For essen- 

tially the same reason that the estimate of topography in the pre- 

vious case was poor near x = 4 . 5 × 10 6 m (cf., Fig. 3 ), reconstruction 

of the topographic bump is impossible with the present setup. 

But the relationship between h i and λi is determined by the 

covariance function, C HH , which is set a priori. Eq. (16) suggests 

that a realizability condition on C HH might be necessary in order 

to prevent unrealistic (non-physical) divergence of the λ function 

near the coasts, in the limit H → 0 . A sufficient condition to yield 

a physical solution in the limit of small H is that the covariance 

function behaves like C HH (x, y ) ∼ H 

2 α
, for some α > 1, so that 

the product, C HH (x, y ) × (C d u f μU 

∗
/ H 

2 
) , is finite in the H → 0 limit. 

Given the representation in Eq. (4) , the realizability condition may 

be expressed in terms of σ H ( x ) as σH (x ) ∼ H (x ) α . Note that α = 1 

corresponds to the condition that the fractional error in the topog- 

raphy is constant in the limit H → 0 . 

The influence of the parameter α is illustrated in Fig. 7 a, where 

h i is shown for three particular cases, α = 0 , 1/2, and 1. The case 

α = 0 is repeated from above, and shows that all the spatial struc- 

ture in h i is confined to the shelf. The choice α = 1 / 2 has structure 

both on the shelf and in the domain interior; however, the identi- 

fication of the topographic bump is poor ( Fig. 7 b). The value α = 1 

greatly reduces the amplitude of h i on the shelf, and it results in a 

satisfactory reconstruction of the topography. 

From now on the value α = 1 shall be used in the error model 

for the topography. The observability as a function of the density of 

Fig. 8. Estimation error as a function of data spacing, D / L c , for the near-resonant 

shelf case. Errors fluctuate strongly for D / L c > 0.6 because of how the data sites 

sample the spatial variance of η, especially on the shelf. 

Fig. 9. Topography and representers. (a) The estimated topography (heavy line) is 

compared with the true topography (solid) and the error (dashed). (b) The repre- 

senter functions, h i ( x ), are illustrated for x i at a subset of 3 of the M = 250 mea- 

surement sites. The measurement location, x i , is shown with a colored dot. 

η observation sites is shown in Fig. 8 . The situation is similar to the 

flat-bottom case ( Fig. 2 ), except that higher density data is required 

before the monotonic convergence regime begins. The data density 

corresponds to the presence of 2-or-more η measurements on the 

continental shelf. 

With 250 observation sites the main topographic bump is iden- 

tified ( Fig. 9 ); however, the estimation error is somewhat larger 

than in the previous case. Also, the spatial structure of h i at the 

continental slope, near x = 10 6 m , has led to a spurious feature in 

the estimated topography, the magnitude of which is about 10% of 

the total depth at this site. This feature results from the form of 

the spatial covariance model, C HH , which allows a correlation be- 

tween the deep topography and that of the shelf and slope. It is 
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Fig. 10. Observability as a function of L τ / L c . Compare with Fig. 4 . 

is conceivable that this feature could be suppressed by a judicious 

choice of the correlation function, c HH ( x, y ), but this would require 

a non-stationary model for the spatial correlation. Identification of 

plausible models for the topography error is a subtle issue which 

shall be revisited later, in the Discussion. 

The shelf case also shows additional complexity with regard to 

the ratio of the topographic and dynamical length scales, L τ / L c , 

where L τ is the tidal wavelength in the deep water. The depen- 

dence illustrated in Fig. 10 is similar to Fig. 4 in that there are sev- 

eral local maxima in εH (labelled), associated with particular tidal 

wavelengths where the topographic bump becomes essentially un- 

observable. As in the flat-bottom case, most of these peaks (e.g., 

1, 2, 4, and 5) are caused by a collapse of the dynamics and in- 

creased nonlinearity near resonance. The peak labelled 3 cannot 

be explained by resonance, and it requires further analysis to un- 

derstand its cause. 

In order to understand the lack of observability at near L τ /L c = 

13 , it is helpful to consider the canonical decomposition of the 

representer matrix, R = V �V T . The orthogonal matrix, V = { v ki } , is 
comprised of basis vectors which may be interpreted as the spatial 

patterns of { η( x i )} variability which are most stably estimated by 

the observations. The basis vectors in V may be used to construct 

corresponding fields, denoted in bold, ηk and h k , called solution 

array modes ( Bennett, 1992 ), which are linear combinations of the 

previously-mentioned representer functions, 

ηk (x ) = 

M ∑ 

i =1 

v ki ηi (x ) , and h k (x ) = 

M ∑ 

i =1 

v ki h i (x ) . (24) 

The solution array modes, { ηk } and { h k } for k = 1 , . . . , M, form a 

(non-orthogonal) basis for observable η′ and h ′ fields, respectively, 

the corrections to the first guess fields. Assuming that the singu- 

lar values, σk = �kk , are ordered as σk > σk +1 , then the smaller 

k -modes (larger σ k ) are more stably estimated than the larger k - 

modes (smaller σ k ). The projection of the perturbation fields onto 

the dynamical array modes can be used to quantify how stably the 

given perturbations can be identified from observations. 

With these definitions, it is possible to examine how the η′ and 

h ′ project onto the solution array modes. The definition of a pro- 

jection, c ( f, g ), of function f onto function g is given by, 

c( f , g) = 

〈 f , g〉 
〈 f , f 〉 1 / 2 〈 g, g〉 1 / 2 , (25) 

where 〈 f, g〉 = 

∫ | f (x ) g ∗(x ) | dx . Fig. 11 illustrates two cases identi- 

fied from Fig. 12 : a “best case” where L τ /L c = 22 , and a “worst 

case” where L τ /L c = 13 . In the best case ( Fig. 11 a) the perturbation 

η′ (thin line) and h ′ (heavy line) fields both project primarily onto 

low modes which are stably estimated. In contrast, in the worst 

case ( Fig. 11 a), the perturbation η field projects uniformly onto the 

modes while the h field projects predominantly onto the higher 

modes which are less stably estimated. In other words, the partic- 

ular configuration of the domain, tidal wavelength, and perturba- 

tion topography is such that η measurements provide an unstable 

and inaccurate estimate of the bottom topography. 

To complete the comparison with the flat-bottom case, 

Fig. 12 illustrates the sensitivity of εη and εH to the ratio of the 

actual to assumed topography length scale. As was the case previ- 

ously, the results show little sensitivity to ̂  L c so long as it is small 

enough. If ̂  L c is chosen too large, though, the εH error grows more 

rapidly than in the flat bottom case. 

Fig. 11. Projection of the perturbations ̃  η − η (thin line) and ̃  h = ̃

 H − H (thick lines) onto the solution array modes for different values of L τ / L c . (a) In the best case (smallest 

εη) the perturbations project primarily onto the lowest modes. (b) In the worst case (labelled 3 in Fig. 10 ) η projects somewhat evenly onto the modes, but h projects more 

onto higher modes (up to mode 9). In other words ̃  h is projects onto a subspace that cannot be stably reconstructed. 
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Fig. 12. Observability as a function of ̂  L c /L c . As in Fig. 5 . 

Fig. 13. Topography of the Sea of Okhotsk, as represented in version 15 of Smith 

and Sandwell (1997) . Solid dots indicate locations of bathymetric data control points 

used to create the gridded topography. 

5. Discussion 

Due to its practical significance, the estimation or calibration 

of bottom topography in ocean models has a long history ( Das and 

Lardner, 1991; Ten-Brummelhuis et al., 1993; Heemink et al., 2002; 

Losch and Wunsch, 2003; Mourre et al., 2004 ). The idealized model 

used here has permitted a systematic examination of the problem 

over an extensive parameter space. But what are the implications 

for less idealized applications of the methodology? 

Consider the Sea of Okhotsk as a potential application where 

bathymetric measurements are sparse and contemporary gridded 

topographic maps differ significantly ( Fig. 13 ). Relatively large tides 

in the Sea suggest favorable signal-to-noise for assimilation of 

altimeter-derived tides in order to improve the topography. Fig. 14 

illustrates the locations of altimeter measurements where statisti- 

cally independent estimates of tidal harmonic constants are avail- 

able with an uncertainty of approximately 1.5 cm for the M 2 and 

K 1 tides. In mid-basin these uncertainties correspond to a frac- 

tional error of 3–5% in tidal elevation. Taking Figs. 2 and 8 as 

a guide, it appears that the error in topography inferred from 

these data ought to be in the 30–50% range at scales which are 

well-resolved by altimetry, say, 300 km. Intercomparison of exist- 

ing gridded topographies indicates an uncertainty of 10–30% in this 

Fig. 14. Cotidal charts and locations of satellite altimeter data. (a) Locations of sta- 

tistically independent estimates of the harmonic constants for the M 2 tide (gray 

dots), obtained by averaging multiple missions (TOPEX, JASON-1, and JASON-2; orig- 

inal and interleaved orbits). Solid lines indicate constant phase lines in 30 ° incre- 

ments, and dashed lines indicate tidal amplitude (meters) with 0.2 m increment. (b) 

Cotidal chart for K 1 . 

region. Thus, it is hypothesized that incremental reductions in the 

topographic uncertainty should be achievable. 

The idealized studies indicated that spurious topographic esti- 

mates might be obtained in two situations, (1) where the sensi- 

tivity of η to H is locally reduced because of the dependence of 

λ on ( H , U , η) , especially at anti-amphidromes, and (2) where h 

cannot be stably estimated because of how the unknown topog- 

raphy projects onto higher-order solution array modes. Both cases 

ought to be identifiable by large a posteriori error estimates, i.e., 

by the sensitivity of the spurious features to slightly perturbed η
measurements. From the cotidal charts for M 2 and K 1 in Fig. 14 , 

one can infer a large range of |∇ η| values; although, only one 
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unambiguous anti-amphidromic point is present, near 58 °N–154 °E 
for M 2 . Because the anti-amphidromes of the diurnal and semi- 

diurnal tides do not, generally, coincide, the inclusion of data for 

multiple tidal constituents is warranted. 

One final implication of the idealized experiments is the signifi- 

cance of the spatial covariance model for H errors. The topographic 

corrections are computed from the dynamically-derived sensitiv- 

ity, λ, smoothed and scaled by the covariance C HH . Unlike η, the 

topographic corrections are not directly constrained by measured 

values at the data sites; although measurements of H could cer- 

tainly be assimilated in the present framework if they were avail- 

able. Consequently, progress in the development of reliable mod- 

els for the inhomogenous spatial covariance of gridded topographic 

data ( Marks et al., 2010; Marks and Smith, 2012 ) will contribute to 

the success of the present approach. 

6. Conclusions 

An idealized model for the estimation of bottom topography 

from measurements of tidal water surface elevation has been in- 

vestigated. There are many parameters which, in principle, deter- 

mine the accuracy with which the topography may be identified, 

and the above analysis has focussed on a few non-dimensional 

parameters related to the length scale of the unknown topog- 

raphy and the wavelength of the tide, the latter being related 

to both its phase speed and frequency. The presence of non- 

linearity in the dynamics when H is taken as a control vari- 

able led to the consideration of two specific cases for the first 

guess topography, and an elucidation of some domain size and 

configuration-dependent results. The results indicate that wave 

resonance may present an obstacle to identification of bottom to- 

pography. Near resonance the variance and parameter sensitiv- 

ity are concentrated into a single mode, which leads to a re- 

duction in the effective number of degrees of freedom, and an 

amplification of nonlinear effects. Whether near-resonance will 

present problems in realistic models has not been addressed, 

but it should be less problematic than in the one-dimensional 

case since realistic bottom roughness in H would allow for spa- 

tial damping and de-tuning of near-resonant geometries. Fur- 

ther work will be required to explore the nonlinear parameter 

space. 

The sensitivity studies indicate that the fractional error in to- 

pography may be expected to be about 10 times larger than the 

fractional error in the water surface elevation. Excluding finite- 

domain-size and near-resonance effects, the bottom topography 

can be more accurately identified at scales small compared to the 

tidal wavelength, rather than at large scales, provided that the spa- 

tial density of data is sufficient to resolve the topographic features. 

Analysis of the assumed form of the topography error covariance 

model found significant sensitivity to the spatial variance model 

while the correlation length scale was less significant. 

The present study used identical twin data assimilation exper- 

iments to analyze the observability of bottom topography in two 

particular cases. The estimation error that occurs when measure- 

ments are contaminated by inhomogeneous noise, as is always the 

case in practice, has not been addressed. The present analysis indi- 

cates that pathological cases can occur, even for smooth and well- 

resolved topography, where the surface elevation may be stably es- 

timated but the estimated bottom topography may be unstable and 

inaccurate. Fortunately, the canonical decomposition used to study 

the situation here could also be applied in cases of practical inter- 

est, and the instability ought to be identifiable from small sample 

size Monte Carlo estimates of a posteriori errors. 

Two factors have been identified which could lead to stable, but 

erroneous, estimates of topography. The first factor is the nonlinear 

dependence of the estimated topography on the first guess fields 

(cf., Fig. 3 a near x = 4 × 10 6 m , and Fig. 9 a near x = 5 . 5 × 10 6 m ). 

In this weakly damped case, the product μη∗
x in (15) leads to an 

inability to estimate topographic perturbations in regions where 

there is no gradient in η. The second factor concerns the spatial 

heterogeneity of the topography covariance model (cf., Fig. 9 a near 

x = 1 × 10 6 m ). A realizability condition on the topography vari- 

ance, σ 2 
H 
, was suggested that is equivalent to a spatially-constant 

fractional topography error, but even with this condition, some ad- 

joint sensitivity contaminated the topography estimate in the deep 

water near the shelf break. The large sensitivity on the shelf was a 

consequence of the near-resonant topography, H , a phenomenon 

which is not uncommon in the world’s oceans, and covariance 

modeling is likely to present significant difficulties in realistic ap- 

plications. 
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