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Addressing diversity and social inclusion through group comparisons: A primer on 
measurement invariance testing 

 
Guizella A. Rocabado,1 Regis Komperda,2‡ Jennifer E. Lewis1,3 and Jack Barbera4†  
 
Abstract 
 
As the field of chemistry education moves toward greater social inclusion, social justice, and 
increased participation by underrepresented minorities, standards for investigating the 
differential impacts and outcomes of learning environments have to be considered. While 
quantitative methods may not be capable of generating the in-depth nuances of qualitative 
methods, they can provide meaningful insights when applied at the group level. Thus, when we 
conduct quantitative studies in which we aim to learn about the similarities or differences of 
groups within the same learning environment, we must raise our standards of measurement and 
safeguard against threats to the validity of inferences that might favor one group over another. 
One way to provide evidence that group comparisons are supported in a quantitative study is by 
conducting measurement invariance testing. In this manuscript, we explain the basic concepts of 
measurement invariance testing within a confirmatory factor analysis framework with examples 
and a step-by-step tutorial. Each of these steps is an opportunity to safeguard against 
interpretation of group differences that may be artifacts of the assessment instrument functioning 
rather than true differences between groups. Reflecting on and safeguarding against threats to the 
validity of the inferences we can draw from group comparisons will aid in providing more 
accurate information that can be used to transform our chemistry classrooms into more socially 
inclusive environments. To catalyze this effort, we provide code in the electronic supplementary 
information (ESI) for two different software packages (R and Mplus) so that interested readers 
can learn to use these methods with the simulated data provided and then apply the methods to 
their own data. Finally, we present implications and a summary table for researchers, 
practitioners, journal editors, and reviewers as a reference when conducting, reading, or 
reviewing quantitative studies in which group comparisons are performed. 
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Introduction 

Diversity and social inclusion are popular terms in science education at present. In the 
past few decades, numerous research endeavors have focused on studying diverse populations of 
students within science, technology, engineering, and mathematics (STEM; e.g., Hong and Page, 
2004; Tsui, 2007; Hurtado et al., 2010). Due to a directive to increase minority representation in 
STEM fields in the United States (Seadler, 2012), colleges and universities have launched 
initiatives to attract underrepresented minority (URM) students. These initiatives can help to 
initially increase diversity representation; however, simply admitting students is not enough if 
they feel unvalued or unwelcome in their college communities (Puritty et al., 2017). Thus, 
diversity initiatives may fail to retain these students without attention to creating inclusive 
environments where students of all backgrounds feel they have a voice and that they matter 
(Puritty et al., 2017). Attaining a diverse STEM workforce, then, means promoting social 
inclusion and social justice in our classrooms and in our research (O’Shea et al., 2016). 
  

Critical Race Theory (CRT) has become a central framework to study issues of inclusion 
and social justice, particularly for members of marginalized racial groups (Crenshaw, 1995; 
Solórzano, 1997, 1998; Delgado and Stefanic, 2001; Yosso, 2005; Dixson and Anderson, 2018). 
Although CRT was born in the legal realm, it has permeated the educational field as well 
(Crenshaw, 1995; Delgado and Stefanic, 2001). This theory has been linked to five guiding 
tenets that inform research, curriculum, pedagogy, and policy (Solórzano, 1997; Yosso, 2005). 
Three of these tenets seem particularly well suited to investigations utilizing quantitative 
methodology. First, an acknowledgment of the centrality of race and racism in the power 
relations that underpin society requires that race be explicitly considered rather than ignored in 
educational research. Second, the de facto existence of ‘dominant ideology’ informed by race 
and racism requires us to cast aside naive beliefs that research and researchers are neutral and 
objective (Yosso, 2005) and work to safeguard against systemic biases and the propagation of 
social inequities in educational research (García, López, and Vélez, 2017; Gillborn et al., 2018). 
And third, answering CRT’s call for a commitment to social justice requires us to privilege 
research that works to uncover social inequities and moves toward the eradication of racial and 
other forms of marginalization (Solórzano, 1997). CRT is a framework well equipped to 
investigate issues of racism and social inequities in educational settings at the individual as well 
as at the institutional level. For example, Fernández (2002) uses CRT as a framework and takes 
an individual approach to display a successful educational experience of one immigrant Latino 
student in a public school in Chicago via qualitative methods. On the other hand, Solórzano and 
Ornelas (2004) use CRT to investigate the access and availability of Advanced Placement (AP) 
courses in California high schools and how they affect African American and Latina/o students’ 
admission to college. This quantitative study exhibits an institutional approach that documents 
cumulative impacts on individuals and groups of students from minority racial and ethnic 
populations. Likewise, CRT and quantitative methods can be utilized at the institutional level to 
investigate achievement gaps in educational systems, providing a wider lens for these 
investigations (García, López, and Vélez 2017; López et al., 2018), rather than merely grade 
comparisons. Whenever possible, studies of this nature benefit from a comprehensive 
investigation with appropriate categories for investigating achievement gaps, such as race-
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gender-class intersections (Crenshaw, 1989; Covarrubias, 2011, 2013;  Litzler, Samuelson and 
Lorah, 2014; García, López, and Vélez, 2017; Ireland et al., 2018; López et al., 2018) as a 
movement to achieve a more complete view of the investigation and avoid reproduction of 
widespread inequities in educational settings (García, López, and Vélez 2017; Gillborn et al., 
2018). 
 

In an effort to combat against racism and other societal inequities, these issues have long 
been studied with qualitative methodologies (Gillborn et al., 2017; García, López and Vélez, 
2018). Quantitative methods have been criticized for an inability to speak to the details of lived 
experiences of diverse populations (García, López, and Vélez, 2018) and thus been deemed 
inappropriate to study these issues in educational settings due to these everyday experiences 
having deep roots in social relationships (Apple, 2001). Although qualitative methods are more 
appropriate to capture nuances of societal processes as experienced by individuals, quantitative 
methods can explore wider structures in which individual and collective experiences are lived, 
revealing wider structural issues that affect these diverse groups on a larger scale (Gillborn et al., 
2017). With this tension between qualitative and quantitative methodologies attending to issues 
of social inequities, we encourage the use of either or both types of methods when appropriate, 
following the tenets of CRT. Therefore, in an effort to promote inclusion and equity in our 
classrooms, appropriate qualitative and quantitative methods can be used in research, with the 
premise that our methods must be reflexive and safeguarded against systemic racial, ethnic, 
gender, and other biases favoring the majority groups (Gillborn et al., 2017). 
 

Much of the critique about using quantitative methods to investigate these issues comes 
from the problem that numbers are positioned as ‘neutral’ and audiences may believe ‘data 
speaks for itself.’ Critical theorists argue that these claims of neutrality are far from the truth 
(Gillborn et al., 2017). However, researchers, practitioners, and policy-makers tend to put great 
emphasis in numbers, as these are the data by which policies are justified and schools and 
districts are labeled successes or failures (Gillborn et al., 2017). Thus, to rise above these 
critiques in favor of continuing to use quantitative approaches to investigate social inequities, a 
process of ongoing self-reflexivity and engagement with historical, social, and political 
structures of the groups under investigation must be present (García, López and Vélez, 2018). 
Additionally, because numbers carry such important consequences, we must use them with 
caution and systematically interrogate the validity of the inferences we make with these numbers, 
particularly as it relates to consequential validity (AERA, NCME and APA, 2014). According to 
Messick (1995) the social consequences of score interpretation may be positive or negative, 
intentional or unintentional. Thus, in the interest of advancing inclusion and social justice, 
researchers must engage in collecting evidence of positive consequences while minimizing 
adverse effects. As an example of unintentional, negative effect, one could imagine that a 
subgroup of students misinterprets items on an assessment instrument based on unfamiliar words 
in the item, which may lead to confounding results in the data for that subgroup. This source of 
invalidity can potentially lead to erroneous decisions that may have adverse consequences for 
this subgroup of students (Shephard, 1993; Messick, 1995). Therefore, raising the bar for 
quantitative methods in our field will require taking steps to safeguard against consequential 
validity threats that may be present when making group comparisons. 
 
Quantitative Standards for Group Comparisons in CER 
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In CER, investigations of efforts to broaden participation of diverse student populations 
have been a focus of multiple studies (i.e., Richards-Babb and Jackson, 2011; Rath et al., 2012; 
Fink et al., 2018; Stanich et al., 2018; Nawarathne, 2019; Shortlidge et al., 2019). Many of these 
studies have aimed to investigate differential outcomes of URM students by performing group 
comparisons with various statistical analyses (Rath et al., 2012; Fink et al., 2018; Stanich et al., 
2018; Shortlidge et al., 2019). For instance, Fink and colleagues (2018) proposed a strategy to 
promote improved general chemistry performance for women and minorities through a growth 
mindset intervention. The results of the study report higher performance overall favoring the 
White students; however, post-hoc Tukey tests confirmed an intervention effect for minority 
students, who ultimately earned more than 5 percentage points higher on average in the mindset 
intervention condition (Fink et al., 2018). Similarly, Stanich and colleagues (2018) implemented 
a supplementary instruction (SI) course that aimed to narrow achievement gaps by showing that 
URM students who participated in the SI course had lower failure rates in general chemistry than 
URM students who did not take the course. Additionally, this study also aimed to narrow affect 
gaps by increasing perception of relevance, sense of belonging, and emotional satisfaction 
toward the subject of chemistry (Stanich et al., 2018). While studies such as these are a positive 
sign that diversity and social inclusion are being taken seriously, there is still work to be done 
with respect to developing guidelines for quantitative research on these issues. 

 
The next important step in developing research standards is to critically examine the 

collection, analysis, and representation of quantitative data and results for threats to the validity 
of inferences when group comparisons are to be made. CER has a long history of assessment 
design to probe student understanding of concepts taught in the classroom (i.e., Tobin and Capie, 
1981; Roadrangka, Yeany and Padilla, 1983; Loertscher, 2010; Villafañe, et al., 2011; 
Kendhammer, Holme and Murphy, 2013; Wren and Barbera, 2013; Brandriet and Bretz, 2014; 
Bretz, 2014; Kendhammer and Murphy, 2014; Xu, Kim and Lewis, 2016). These, and other, 
assessment instruments have been used by researchers and practitioners to evaluate the success 
of classroom interventions and curricular changes. Furthermore, in the last few decades, CER as 
a field has moved toward an increased interest in affect and motivation in educational settings 
(Xu, Villafañe and Lewis, 2013; Ferrell and Barbera, 2015; Salta and Koulougliotis, 2015; 
Ferrell, Phillips and Barbera, 2016; Liu et al., 2017; Gibbons and Raker, 2018; Gibbons, et al., 
2018; Hensen and Barbera, 2019; Rocabado et al., 2019). Thus, assessment instruments may be 
used in CER to determine research agendas, report findings, evaluate interventions or curricular 
design and much more.  

 
Given the current interest in measuring affect in the classroom, there is an added concern 

that many cognitive and emotional factors might have different effects among diverse 
populations, particularly disfavoring URM groups (Ceci, Williams and Barnett, 2009; Villafañe, 
García and Lewis, 2014; Rocabado, et al., 2019). However, some of the differences noted in 
these data could be an artifact of the assessment instrument (Jiang, García and Lewis, 2010); 
thereby resulting in a potential threat to the validity of the inferences drawn from the instrument-
derived data (Arjoon, Xu and Lewis, 2013; AERA, APA and NCME, 2014). Therefore, in the 
interest of promoting social inclusion in the classroom, it is important to know that when an 
instrument functions well for the whole class, the functionality extends to any subgroups of 
interest. Nevertheless, simply comparing observed scores for subgroups is not appropriate. As 
shown by several studies (Khaveci, 2015; Komperda, Hosbein and Barbera, 2018; Montes, 
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Ferreira and Rodriguez, 2018), differences might arise as artifacts of the instrument functioning 
and not as differences in understanding, ability, or affect. 
 
Goals of This Measurement Invariance Testing Primer 

To encourage and support the gathering of evidence to substantiate group comparisons 
within CER, this manuscript presents the quantitative method of measurement invariance testing 
for those familiar with factor analysis. A comprehensive review of measurement invariance 
testing can be found in Vandenberg and Lance (2000). Measurement invariance testing can be 
used to investigate the degree to which measured student data is represented by the same 
theoretical model. Prior to introducing the details and meanings of the various levels of 
measurement invariance testing, we discuss latent variables and data visualization techniques. 
This introduction provides initial insight into the relations among assessment items as well as 
providing a basis for understanding the mathematical foundations being tested. We then provide 
a step-by-step tutorial of measurement invariance testing, discussing what is being tested, how to 
evaluate if invariance has been achieved, and what (if any) comparisons between groups are 
supported at each step. Finally, we present a summary of the implications of measurement 
invariance testing as well as recommendations for researchers, practitioners, reviewers, and 
journal editors. 
 
Group Comparisons on Latent Constructs 

Commonly, the variables of interest in CER are ones that cannot be measured directly, 
i.e., they are latent traits. Variables such as student self-efficacy, attitude, metacognition, 
mindset, and understanding of chemistry are all examples of latent traits. Many of these latent 
traits are multidimensional, that is, they are subdivided into smaller latent units (subconstructs or 
factors) that make up the latent trait (Brown 2006 pp.2). To provide an example for our 
discussion of quantitative data comparison by group, we devised a fictitious assessment 
instrument to measure the latent trait of ‘perceived relevance’ toward chemistry. Such an 
instrument might be useful in understanding college students’ perceptions of the field of 
chemistry. For this fictitious assessment instrument, it could be expected that students’ perceived 
relevance of chemistry might differ by college major and that a researcher might want to 
compare data from this instrument by group. While many times the groupings of students we 
quantitatively investigate are by gender or URM status, these are not the only groupings for 
which comparisons need to be supported by evidence. For example, with our fictitious 
instrument the comparison groups could be defined as STEM and non-STEM majors. Other 
groupings could be first-generation college students or community college transfer students for 
comparison to students not in these groupings. Whatever the chosen comparison groups are, it is 
imperative that researchers have a directive to investigate those groups and use an appropriate 
construct for the comparison.  

 
It is important to note that utilizing assessment instruments that have been developed 

with a strong theoretical background and which have been investigated for forms of validity and 
reliability evidence delineated by the Standards for Educational and Psychological Testing 
(Arjoon, Xu and Lewis, 2013; AERA, APA and NCME, 2014) is imperative to drawing 
meaningful insights from studies. Following with the example, and assuming that the instrument 
was created under these conditions, our fictitious assessment instrument is called the Perceived 
Relevance of Chemistry Questionnaire (PRCQ) and contains three fictitious subconstructs: 
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Importance of Chemistry (IC), Connectedness of Chemistry (CC), and Applications of 
Chemistry (AC). The fictitious PRCQ is a 12-item instrument with four items per subconstruct. 
When student responses to these 12 items are examined, the expected pattern of bivariate 
correlations among responses would be that items aligned with the same subconstruct should 
have stronger correlations with each other, meaning they are highly associated with each other 
through an underlying subconstruct, and have weaker correlations with other items aligned with 
different subconstructs. For comparison purposes then, these item-level patterns need to be 
consistent within each group. 

 
Group Comparisons Through Data Visualization  

In addition to using descriptive statistics to investigate data patterns, item-level data can 
be visually inspected using a variety of methods (e.g., box-plots, violin plots, graphs, charts). To 
demonstrate ways in which to visualize data, we have created simulated PRCQ datasets that 
highlight several different data patterns across groups (see ESI pp. 1-7 for additional details).  
Item correlation values for one of these datasets are plotted in a correlation heatmap shown in 
Figure 1. In this correlation plot the item labels (i.e., I1, I2, etc.) are listed on the diagonal, and 
the color of each square represents the value for the correlation (i.e., the strength of association) 
between two items. Pairs of items with stronger correlations are represented with darker squares 
and pairs of items with weaker correlations are represented with lighter squares. The simulated 
data used in this example are strongly correlated in four-item sets (I1 to I4, I5 to I8, and I9 to 
I12); items outside these sets (e.g., I1 and I8) are weakly correlated. As the PRCQ has three 
subconstructs, another way to represent the relations between the twelve items is with a factor 
diagram. The intended factor diagram for the 12-item PRCQ instrument has been added above 
the correlation plot. In a factor diagram each individual item (called an indicator item and 
represented by a square) is associated with a subconstruct or factor (represented by a circle). 
Together, these visual representations of the PRCQ data provide initial visual evidence for the 
presence of the intended factors (i.e., item set groupings).  
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Figure 1. A visualization of the lower correlation matrix for the 12-item PRCQ instrument with a factor model 
overlaid to illustrate how correlations between sets of items implies the presence of an underlying factor structure. 
We note that, although the covariance matrix is more directly applicable, the correlation matrix is a standardized 
covariance matrix, and therefore easier to visualize and discuss. 
 When making measurements that will ultimately be used to compare the outcomes of 
various groups on an underlying construct (i.e., Importance of Chemistry (IC), Connectedness of 
Chemistry (CC), and Applications of Chemistry (AC)), it is necessary to provide evidence that 
the PRCQ instrument is functioning in a similar way for each group being compared. This 
practice is a way in which the field of CER can meet best practices when making comparisons 
and provide evidence to support that any differences between the groups’ data are due to true 
differences in the construct, not a result of systematic bias in the measurement of the construct 
(Gregorich 2006; Sass 2011). Using our example, as researchers we could be interested in 
measuring potential differences in the perceived relevance of chemistry (as measured by the 
PRCQ) between groups. As lower-level chemistry courses serve a range of majors, we could 
investigate potential differences in perceived relevance between STEM and non-STEM majors, 
or among multiple groups such as White, African-American, Asian, and Hispanic students. For 
simplicity in our example, we have simulated response data for a two-group comparison, which 
will help us visualize the discussion that will proceed. In addition, the data we have simulated is 
continuous. However, we do understand that much of the data generated in CER is categorical in 
nature and as such will necessitate a different set of considerations. Thus, we provide explanation 
and analyses for both continuous and categorical data, in the electronic supplementary 
information (ESI), along with code (in R and Mplus) for generating the data visualizations as 
well as the additional analysis steps described later in this manuscript.  
 

If the aggregated PRCQ data in Figure 1 were divided by STEM and non-STEM majors, 
one step towards examining consistent functioning across groups would be to see if the two 
groups have similar correlation plots. As shown in Figure 2, when visually comparing the 
correlation plots by group, it can be seen that they are essentially identical. Ways of testing this 
similarity statistically will be discussed later.       
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Figure 2. Correlation plots for 12 items with similar strength of association for each item and its intended factor for 
two subgroups (STEM majors and non-STEM majors) within the data set. 
 

While the situation represented in Figure 2 is the best possible outcome (i.e., the data are 
simulated to align with a known factor structure for both groups), it is not always the case that 
data from students in different groups will show the same strength of association between each 
item and each intended factor. An example of such a situation is visualized in Figure 3 where we 
simulated a difference in strength of association for one item in one group. In this aggregated 
PRCQ data set (Figure 3a) we can see inconsistencies around I10, where some correlation boxes 
are lighter. Although, the overall correlation pattern is consistent (i.e., an instrument that 
measures three distinct factors as hypothesized for the PRCQ), when we disaggregate the data 
and view the correlation matrix for each group separately, we observe that I10 has a much lower 
association with the AC factor for non-STEM majors (Figure 3c) compared to STEM Majors 
(Figure 3b). This group difference would not be obvious when looking at the correlations in the 
aggregated dataset (Figure 3a). The situation represented here, dissimilar associations between 
items and factors across groups, implies that the item is not functioning in similar ways for each 
group, which could be due to differences in item interpretation for I10. Regardless of the 
underlying reason, which may never be known for sure, this situation indicates a possible threat 
to the validity of the potential inferences from the data and needs to be examined more closely to 
determine whether the data can still be used to compare the groups. 
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Figure 3. (a) Correlation plot for 12 items with combined dataset; (b) Correlation plot with STEM major data; (c) 
Correlation plot with non-STEM major data with I10 correlation lowered. 
 

Another type of measurement difference that could occur between the groups is that an 
item may not have similar response averages in each group. In the next set of simulated data, the 
strength of association between all items and their intended factor is equivalent, as in Figure 3, 
but the average response for I3 has been modified for the STEM majors group to illustrate this 

      

(a) 

(c) (b) 



10 
 

issue. Unlike when the strength of association differed in the previous example, this result is 
more obviously seen when visualizing the correlations in the aggregated dataset (Figure 4a) than 
in the disaggregated sets (Figures 4b and 4c). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. (a) Correlation plot for 12 items with combined dataset; (b) Correlation plot of STEM majors with mean of 
I3 raised; (c) Correlation plot of non-STEM majors. 

 
To further visualize the distribution of values for each item within each group, Figure 5 

plots the means for each item in the two groups using a boxplot. It can be clearly seen that the 

      

(a) 

(b) (c) 
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distribution for I3 in the STEM majors group is much different and is shifted to the higher end of 
the scale. This outcome could occur because there are true differences between the groups or it 
could be due to improper item functioning for one group. However, a quantitative analysis does 
not differentiate between these two reasons, thus it is appropriate to further investigate the item 
functioning when this occurs. 

 

 
Figure 5. Boxplot of item means for each group. 
 

The item-level differences noted in Figures 3-5 may be due to a variety of issues, which 
would be worth exploring further in order to understand why they occur. However, in 
considering whether the data can still be used to make comparisons between groups, the degree 
to which these differences impact the proposed factor structure need to be evaluated using 
measurement invariance testing. This quantitative method would indicate if the differences pose 
a potential issue with how the instrument functions for the different groups, potentially limiting 
the ability to draw valid conclusions about how the underlying factors of interest differ across 
groups. 
 
Data Considerations Prior to Performing Measurement Invariance Testing 

While we have emphasized the importance of visualizing data and have shown various 
ways it can be useful, we acknowledge that data visualization is insufficient to address the degree 
to which item-level differences may impact group comparisons, which necessitates more robust 
investigations using statistical tests. Additionally, and more often than not, many data issues are 
not easily visualized, but can become evident in statistical analyses. We encourage all 
researchers to visualize their data and compute descriptive statistics, thereby providing initial 
insights to the data as well as evidence about the characteristics of the data. Understanding data 
characteristics will aid the researcher in making other decisions about further analyses, such as 
which tests are appropriate to run or which estimator is appropriate to use when modeling data.  

 
Different types of data such as categorical or continuous, can be analyzed with 

measurement invariance testing utilizing appropriate estimators for each type of data. For 
example, ordinal data (e.g., categorical data from items with a 7-point Likert-type scale) with 
variance ranging the entire scale is often treated as continuous data and can be estimated with a 
maximum likelihood estimator (Muthén and Muthén, 2010; Hirschfeld and von Brachel, 2014). 
On the other hand, categorical data (e.g., data from a ‘yes or no’ type item or items using fewer 
than 5 response scale categories) are more appropriately analyzed using a weighted least squares 
estimator (Muthén and Muthén, 2010; Hirschfeld and von Brachel, 2014; Bowen and Masa, 
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2015). Ensuring the proper estimator for the data-type is of utmost importance. Violations of 
normality, independence, and homogeneity are also important to note, and should be handled 
appropriately. Discussion of estimators and assumptions is beyond the scope of this article; 
however, we provide a few resource references for interested readers here (Stevens, 2007; 
Garson, 2012) and in the ESI. 
 

An additional consideration before conducting measurement invariance testing is 
statistical power (Hancock and French, 2013). To conduct meaningful statistical analyses, one 
must ensure an appropriate sample size in order to have enough power to draw meaningful 
inferences. In measurement invariance testing the interest is in finding no evidence of significant 
difference between groups, thus, an inappropriate sample size (i.e., too small) can increase the 
chances of type II error through failing to reject the null hypothesis (of equivalence) when it 
should have been rejected (Lieber, 1990; Counsell, Cribbie, and Flora, 2019).  Recently, work 
has been done indicating that sample size requirements can be estimated given the number and 
value of parameters being estimated (Wolf et al., 2013; Mueller and Hancock, 2019). 
 
Confirmatory Factor Analysis Framework	

In the previous section we explored visual methods for detecting potential validity threats 
in our PRCQ data. Though visualizing is an important initial step, more formal statistical 
methods can and should be employed to evaluate the degree to which differences pose threats to 
the validity of comparisons. Methods such as Differential Item Functioning have been used to 
investigate item-level threats in CER (Kendhammer, Holme and Murphy, 2013; Kendhammer 
and Murphy, 2014), however, the purpose of this paper is to explore threats at the construct, or 
latent variable level. At this level, various frameworks can be used, including Item Response 
Theory (IRT; Candell and Drasgow, 1988; Mellenbergh, 1989) and factor analysis (Brown, 
2006). As factor analysis methods have become commonplace within CER, and IRT is less 
frequently utilized in our field, this discussion will focus only on evaluating measurement 
invariance in a factor analysis framework. 

 
Within a Confirmatory Factor Analysis (CFA) framework (Brown, 2006), measurement 

invariance testing is a technique that can be used to support that the internal structure of an 
assessment instrument holds for different groups people at one time point (Salta and 
Koulougliotis, 2015; Bunce et al., 2017; Hensen and Barbera, 2019; Rocabado et al., 2019) or 
over time in longitudinal studies (Keefer, Holden and Parker, 2013; Hosbein and Barbera, 2019; 
Rocabado et al., 2019). In the previous section, the idea of internal structure was described in 
terms of the grouping of items with each other to form an underlying factor of interest (as 
introduced in Figure 1). In this section, these associations will be defined more formally using 
the language of factor analysis. 

 
The CFA framework operates under a network of equations, among which, regression 

equations link items to latent variables (Brown, 2006). Regression or linear equations (see 
Equation 1) have several components: a dependent (predicted) variable (y), an independent 
(predictor) variable (x), the slope of the line (m), the intercept (b), and the measurement error (e). 

 
y = mx + b + e                                                            [Eq.1]	

 	



13 
 

Translating the regression equation to the language of factor analysis, the predicted 
variables are the observed variables (i.e., items), the predictor variables are the factors or latent 
variables, and the slope is the factor loading. In Figure 6a we write out the regression equation 
for an item from the PRCQ and in Figure 6b display the model that underlays the PRCQ using 
common statistical notations in the CFA framework, which we will use for the remainder of the 
discussion in this manuscript. In this 12-item (i.e., I1-I12), 3-factor (i.e., IC, CC, AC), model 
lower-case lambdas (λ) represent the factor loading of each item to its respective factor, lower-
case taus (τ) represent the intercept of an item, and lower-case epsilons (ε) represent the 
measurement error of an item. In addition to these parameters, Figure 6b shows the covariance 
between factors (e.g., double headed arrow between IC and CC) and each individual factor 
variance (e.g., small curved arrow from IC to IC). While these parameters are part of the overall 
CFA model for the PRCQ, they do not need to be modified when evaluating for measurement 
invariance.   

	
 	

 
 
Figure 6. (a) Representation of equation components in CFA. Linear equation for I1 and the IC factor with notation 
and labels corresponding to CFA framework. (b) Factor model displaying the factor analysis notation of the relation 
between items and their corresponding factors. 
 
 

Measurement invariance testing within a CFA framework investigates the extent to which 
the network of equations in a model is similar across group-level data. Therefore, each part of the 
equation (Eq. 1), for each item is tested for evidence of significant differences across groups, 
starting with the slopes (loadings), then the intercepts, followed by the measurement error 
variances. At each stage of measurement invariance testing, evaluation of overall data-model fit 
occurs.  
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Data-Model Fit and Fit Indices 
The primary goal of measurement invariance testing is to examine how well the data 

collected fit a proposed model of relations among items and factors as described by a set of 
regression equations. Continuing with the example, we investigate the PRCQ data (by STEM 
and non-STEM groupings) for item associations based on the proposed (a priori) three-factor 
model for the PRCQ shown in Figure 6b. Mapping the data to this proposed model using a 
maximum likelihood estimator (the default in most software packages and the one that is 
appropriate for our simulated continuous data), fit indices are generated and are used to evaluate 
how well the data fit the model. Regardless of the software package used, it is good practice to 
review several kinds of fit indices that fall in each of these categories: comparative fit, absolute 
fit, and parsimony correction. The comparative fit indices evaluate the fit of a specified model 
solution in relation to a baseline model solution. Absolute fit indices assess how reasonable the 
model fit is based on the null hypothesis that the data fit the model perfectly. Finally, the 
parsimony correction indices are similar to the absolute fit but include a penalty for poor model 
parsimony (Brown, 2006). 

 
With these fit index descriptions in mind, we present several suggested cutoff criteria for 

fit indices that were simulated by Hu and Bentler (1999) using a maximum likelihood estimator. 
Examples of comparative fit are: the Comparative Fit Index (CFI) and the Tucker-Lewis Index 
(TLI), both of which have a recommended cutoff of >0.90 as acceptable, but best if >0.95 (Hu 
and Bentler 1999). For the absolute fit category, the Chi-square (χ2) test statistic and the 
standardized root-mean square residual (SRMR) indices can be considered. The χ2 is a 
descriptive index utilized to evaluate how closely the data fit the model. However, this test is 
highly influenced by sample size, thus additional fit indices must be considered to evaluate 
appropriate data-model fit (Brown, 2006). Hence the SRMR is a valuable index to add in this 
category and its cutoff criteria is <0.08 as acceptable (Hu and Bentler 1999). Finally, for the 
parsimony correction, the root mean square of approximation (RMSEA) index can be evaluated 
with acceptable cutoff criteria of <0.06 (Hu and Bentler 1999). Though these recommended 
criteria are often considered as firm cutoffs, there are known situations where the strength of the 
factor loadings can confound interpretation of fit indices (McNeish et al., 2018). Therefore, it is 
up to the researcher to provide as much evidence as possible to support the acceptability of a 
proposed factor model. It is also important to note that for categorical data a different estimator 
should be used, thus model fit indices and cutoff criteria are different from the ones noted here 
for continuous data and the maximum likelihood estimator. A more thorough description of 
estimator, model fit indices, and their respective cutoffs for categorical data are provided in the 
ESI.   

 
In the following section of this manuscript we present measurement invariance testing as 

the step-by-step evaluation of a series of nested models. Each step in the evaluation adds a 
constraint to test whether the groups being compared share a similar measurement model and if 
comparisons can be supported. Therefore, in addition to evaluating the data-model fit at each 
step of measurement invariance testing, we also calculate and evaluate the change in data-model 
fit between nested models. Cheung and Rensvold (1999, 2002) as well as Chen (2007) conducted 
a series of simulation studies with continuous data to investigate data-model fit criteria, in 
particular the change in data-model fit at each step of measurement invariance testing. Cheung 
and Rensvold (2002) focus solely on evaluating the change in Chi-square (Δχ2) between nested 
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models, looking for a nonsignificant value. More recent work finds this practice acceptable 
(Mueller and Hancock, 2019), as the idea of measurement invariance testing is to find no 
evidence of significant difference between the models, which provides support for group 
comparisons. Other researchers, such as Chen (2007) have investigated the change in other fit 
indices as well, to ensure that there are various indicators that provide further evidence that no 
significant difference between nested models is observed. Chen (2007) offers a range of values 
that, based on the simulation studies conducted, offer reasonable cutoff values for the fit indices 
we have introduced earlier in this section. These values vary by level of invariance being 
evaluated and therefore will be presented within the appropriate testing step below. However, 
simulation studies have called into question the exact cutoffs and fit indices to use in the context 
of invariance testing (Kang et al., 2016) so again the researcher must decide what evidence to 
present to justify interpretation of models.  
 
Steps of Measurement Invariance Testing  
 In 1997 Widaman and Reise described 4 steps of measurement invariance testing: 
configural, metric (weak), scalar (strong), and residual (strict, also known as conservative). In 
this report we focus on this 4-step method, although there are other methods that utilize 
additional steps when investigating whether comparisons are supported between groups (for 
examples see Jöreskog, 1971; Vanderberg and Lance, 2000).  
 
Step 0: Establishing Baseline Model 
 A preliminary step before conducting measurement invariance testing is to conduct a 
separate CFA for each group dataset that will be compared. In this step, the CFA is used to 
investigate that each group’s response patterns align with the proposed model to an acceptable 
level (Gregorich, 2006). The acceptability of the fit between each dataset (i.e., STEM and non-
STEM groupings) and the model (Figure 6) is checked using the fit indices noted earlier. If the 
data-model fit for either group’s data is deemed unacceptable at this stage, measurement 
invariance testing is not appropriate and comparisons between the groups would not be 
supported. At this point, the next step would be to conduct an investigation of the reasons for 
failing to achieve acceptable data-model fit. However, if the data-model fit reached acceptable 
criteria for each group, then beginning the measurement invariance testing steps is appropriate.  
 
Step 1: Configural Invariance 

Once the independent CFAs for each group are found to have acceptable data-model fit, 
the first step of measurement invariance testing can begin. In this step, the same model is 
estimated concurrently for each group, allowing all model parameters to be freely estimated 
(Gregorich, 2006; Sass, 2011; Putnick and Bornstein, 2016). The point of this unconstrained 
model is two-fold: 1) to investigate whether items associate with each other in similar ways in all 
groups (i.e., items belonging to the same factor correlate more highly with each other than to 
other items); and 2) to establish a baseline of data-model fit, ensuring that subsequent 
comparisons are conducted utilizing the same network of equations for both groups. This 
baseline model is called the configural model, as it verifies that the general structure (or 
configuration) of items and factors is similar across groups. Configural invariance is achieved 
when this model has acceptable data-model fit values (Hu and Bentler, 1999).  
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The models in Figure 7 represent the configural model, for our three-factor PRCQ 
instrument, for two groups. For discussion purposes, the model parameters for STEM majors 
(group 1) are labeled with numeric subscripts and those for non-STEM majors (group 2) are 
labeled with alphabetical subscripts. Take for example the relation between the first factor, IC, 
and the first item, I1. This relation is symbolized as λ1 for group 1 and λa for group 2. In the 
configural model, these two relations are free to take on whichever value provides the optimal 
solution to the system of regression equations.  

 

 
 
Figure 7. Configural invariance model where all parameters are freely estimated for two groups (STEM and non-
STEM majors).  
 	

If the configural model fails to reach acceptable levels of fit, the result suggests that the 
factors are not associated with the same items for both groups (Gregorich, 2006; Putnick and 
Bornstein, 2016). Therefore, one can question whether the constructs being measured have the 
same meaning for these groups (Bornstein, 1995; Putnick and Bornstein, 2016). With this 
outcome, no further invariance testing is advised. However, we encourage researchers to conduct 
further investigation to find the source of noninvariance between the groups. Modes of 
investigation could be quantitative in nature, such as inspection of covariance or correlation 
matrices similar to the visuals we provided earlier (Figures 1- 4). Investigation could also be 
qualitative in nature, for example conducting cognitive interviews (Willis, 1999) with 
respondents from both groups to explore the constructs being measured and find the root of the 
differences between the two groups. These practices can help to ascertain any fundamental 
differences in construct meaning for different groups, which can provide insight into their lived 
experiences and interpretation of the construct of study (Komperda, Hosbein and Barbera, 2018).     
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Step 2: Metric Invariance (Weak) 
If a configural model (Figure 7) is observed to have acceptable data-model fit, the next 

level of establishing equality between the group-level data can be conducted. This step involves 
applying the first constraint to the baseline model equations, which establish the linear 
relationship between items (e.g., I1) and factors (e.g., IC). In the metric model (Figure 8), also 
called the weak invariance model (Meredith, 1993), the constraint of equal unstandardized 
slopes, or factor loadings (λ), is applied (Gregorich, 2006; Sass, 2011; Putnick and Bornstein, 
2016; see Figure 8 where loading subscripts match across groups). That is to say that for STEM 
majors, the factor loadings are freely estimated, but for non-STEM majors, the loadings are set to 
be equal to the loadings for STEM majors. At this level of invariance testing, we are exploring 
whether the strength of associations between the items and the latent variables are similar across 
groups (Byrne, Shavelson and Muthén, 1989; Gregorich, 2006). To achieve metric invariance, 
first the fit statistics of the metric model (Figure 8) are evaluated (Hu and Bentler, 1999), and 
then they are compared to those of the configural model (Figure 7). No evidence of significant 
difference should be observed between the configural and metric models. To evaluate the 
comparison between configural and metric models, the change in fit indices between levels is 
established utilizing the guidelines noted earlier. It is important to note that evaluating model fit 
is pertinent; however, evaluating the change between the models is essential to establishing 
invariance between groups. Establishing metric invariance implies that the meaning of the factor 
(in terms of relative weight of items) is similar across groups (Gregorich, 2006). However, this 
evidence is not enough to make comparisons between groups. At the very least, another level of 
constraint is needed before group comparisons can be made, as will be summarized in 
subsequent steps. 
 

 
 
Figure 8. Metric model where factor loadings (highlighted) are constrained to be equal for both groups. All other 
parameters (e.g. intercepts and error variances) are freely estimated.   
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Failure to reach metric invariance suggests that the strength of association between items 
and the factor to which they belong are different between the groups. The strength of item 
association with the factor provides meaning to the factor from the perspective of the 
respondents (Gregorich, 2006). Therefore, if the item-factor associations are significantly 
different across groups, then the meaning of the underlying factor is different between groups, or 
the factor loadings are biased (Gregorich, 2006). Generally, when metric invariance is not 
achieved, there are one or more items with poor loadings for one of the groups compared to the 
other group. At this juncture, investigation of the item loadings or modification indices generated 
by the software can provide meaningful insight about the different ways that respondents may 
associate items to the underlying construct. After evaluation, researchers may choose to release 
the constraint of equal loadings for the problematic item(s) and run the model again for partial 
measurement invariance (Byrne, Shavelson and Muthén, 1989; Putnick and Bornstein, 2016). If 
this release of constraints is undertaken, comparisons between groups are cautioned, particularly 
for the constructs that involve the problematic items. These items might be the subjects of further 
investigation as to the alignment between items and underlying constructs for the groups of 
interest.  
 
Step 3: Scalar Invariance (Strong) 

Once metric invariance is established (i.e., no evidence of significant difference is found 
between the metric and configural models), the next constraint can be applied. The scalar model 
(Figure 9), also called the strong (factorial) invariance model (Meredith, 1993), consists of 
incorporating unstandardized equal intercepts, in addition to equal loadings, across groups in the 
model (Gregorich, 2006; Sass, 2011; Putnick and Bornstein, 2016). With this addition, the 
intercepts (τ) are freely estimated for STEM majors, but for non-STEM majors they are set to be 
equal to the intercepts for STEM majors (see Figure 9). The purpose of this model is to establish 
evidence of unbiased estimated factor mean differences between groups (Gregorich, 2006), 
which implies that factor means encompass all mean differences in the shared variance of the 
items (Putnick and Bornstein, 2016). Factor means are unbiased because the error terms (ε) are 
not part of them. This is not true for observed item and observed scale means as they are 
calculated from the observed item scores that include the associated error terms (Putnick and 
Bornstein, 2016).  

 
Just as with the metric model, first the scalar data-model fit is evaluated (Hu and Bentler, 

1999) and then the fit comparison between, now, the metric (Figure 8) and scalar (Figure 9) 
models utilizing the appropriate values noted earlier. We reiterate that evaluating data-model fit 
is an important step of measurement invariance; however, essential to providing sufficient 
evidence for score comparisons is the change in fit statistics from one model to the next. 

 
Once scalar invariance is achieved, the researcher has established evidence to support the 

comparison of factor means between groups. This evidence helps to rule out that any observed 
differences arise from variations caused by systematic higher or lower item responses 
(Gregorich, 2006; Sass, 2011; Putnick and Bornstein, 2016) due to issues like cultural norms.  
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Figure 9. Scalar model where factor loadings and intercepts (highlighted) are constrained to be equal for both 
groups. All other parameters, including error variances are freely estimated.  
 

If the scalar model provides results that are significantly different from the metric model, 
then scalar invariance has not been achieved and factor mean comparisons between groups are 
not supported. However, investigation as to the source of mismatch can be conducted. As 
demonstrated earlier, visualizing the data can be helpful at this juncture. Figure 5 shows item 
intercepts displayed as boxplots. Although one can choose to visualize data in various ways, 
Figure 5 visually suggests that the intercept for I3 (STEM majors) might be different than the 
intercept of the same item for the non-STEM majors. As I3 belongs to the IC factor, interpreting 
the IC factor mean comparisons between groups can be more difficult given this limitation. 
However, investigation as to the reason for the mismatch between groups is warranted. As 
previously mentioned, differences in item intercepts can be caused by diverging cultural norms 
that cause higher or lower item responses in diverse groups (Gregorich, 2006), thus investigating 
the source of the difference is encouraged. An example of this phenomenon that could cause 
systematic higher or lower responses is acquiescence bias. For example, one group might not 
utilize the entire response scale range, rather the response distribution is skewed to either end of 
the scale or narrowly in the middle. 
 

In this situation, researchers may choose to release the constraint of equal intercepts for 
I3 only and evaluate the scalar model again. If releasing the constraint for I3 results in scalar 
model fit that is not significantly different from the metric model, then scalar invariance is 
established with limitations, sometimes described in terms of partial invariance (Putnick and 
Bornstein, 2016; Fischer and Karl, 2019). However, if an item loading was not held constant 
between groups in a previous step of invariance testing then the intercepts must also not be held 
constant as there is no reason to believe items with two different slopes would be expected to 
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have the same intercepts. There is some evidence that with partial invariance of intercepts 
comparison of factor means may provide acceptable results (Steinmetz, 2013).  
  

An important distinction at this juncture is that factor means are obtained from the model, 
not from summing or taking the average of the observed item response values. Factor means are 
not a ‘set’ number, rather they are a comparison of latent (unobserved) means between two (or 
more) groups, where one group serves as the reference, taking the value of zero, and the other 
group or groups is/are compared to the reference. An effect size of the comparison can also be 
calculated (Hancock, 2001; Bunce et al., 2017). Although this way of making comparisons is not 
frequently used in CER, the application of this practice is useful. We encourage researchers to 
work with factor means more often for two main reasons: 1) As explained earlier, factor means 
are estimated from the model, capture all mean differences in the shared variance of the items in 
the factor, and are free from error terms (Putnick and Bornstein, 2016). This cannot be said for 
observed scale scores, meaning composite scores taken directly as an average or sum of the 
observed variables (i.e., items), since these scores must include the error terms and do not take 
into account the strength of the association between items and factors. 2) In order to compare 
observed scale scores, the conservative invariance test, described in the following section, must 
be achieved. Meaning, it is harder to provide sufficient evidence for observed scale score 
comparison between groups than it is to compare factor means. Thus, we encourage researchers 
to utilize factor means as an effective tool for group comparisons as these values are void of 
error terms and will lead to more accurate interpretations and more meaningful inferences. 
 
Step 4: Conservative Invariance (Strict) 

Once scalar invariance is achieved, comparison of factor means between the groups is 
possible. However, if researchers desire to compare the observed scale scores of each factor; 
meaning composite scores taken directly as an average or sum of the observed variables (i.e., 
items), it is advisable to conduct a conservative or strict (Meredith, 1993) invariance test first 
(Gregorich, 2006; Sass, 2011). The conservative test checks the additional condition that 
measurement error variances are similar across groups. This is done in the same fashion as the 
prior models, with the final addition being that the STEM majors’ error variances (ε) are freely 
estimated and non-STEM majors’ error variances (ε) are constrained to be equal to those of 
STEM majors (see Figure 10). At this point, all loadings, intercepts and error variances are fixed 
to be equal between the groups to be compared. To establish strict invariance, the data-model fit 
statistics are first evaluated and then compared between the strict (Figure 10) and scalar (Figure 
9) models and no evidence of significant difference should be found. If strict invariance is 
established, enough evidence is gathered to warrant observed scale score comparisons between 
groups (Gregorich, 2006; Sass, 2011). This type of comparison is what most researchers are 
accustomed to investigating; however, it is important to note that these comparisons require 
evidence of meeting this highest level of invariance testing. Failure to achieve strict invariance 
means that observed scale comparisons are not supported. Thus, researchers may investigate 
scalar invariance (i.e., Step 3) to compare factor scores instead.   
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Figure 10. Conservative (strict) invariance where loadings, intercepts, and error variances are constrained to be 
equal for both groups. 
 
 Based on the four steps described previously, we provide a summary table (Table 1) for 
readers to reference as they conduct measurement invariance testing in their own studies. This 
table, while not comprehensive, provides the basic model characteristics, the evidence 
established, appropriate claims, and supported group comparisons that can be made at each level 
of invariance testing. This table can also prove useful as reviewers and journal editors review 
quantitative studies that can benefit from this method to support comparisons between groups or 
across time.  
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Table 1. Summary of Claims and Evidence Established at Each Stage of Measurement Invariance Testing - Guide for Researchers, 
Practitioners, and Reviewers.  

 Configural Metric (Weak) Scalar (Strong) Conservative (Strict) 

Model 
characteristics 

all parameters freely estimated  
in all groups, no constraints 

factor loadings constrained to  
be the same for all groups 

factor loadings and item 
intercepts constrained to be 
the same for all groups 

factor loadings, item 
intercepts, and error variances 
constrained to be the same for 
all groups 

Evidence established 
same number of factors, items  
associated with the same  
specific factor for all groups 

evidence in configural plus 
same strength of association 
between factors and 
corresponding items for all 
groups 

evidence in configural and 
metric plus same item 
intercepts for all groups 

evidence in configural, metric, 
and scalar plus same item 
error variances for all groups 

Appropriate 
claims 

items are associated with each 
other and the underlying  
factors in similar ways 

claims from configural plus 
meaning of the factor (in terms 
of relative weight of items)  
is similar across groups  

claims from configural and 
metric plus no systematic 
response biases; differences  
in factor means are due to a 
true difference in groups 

claims from configural, 
metric, and scalar plus no 
systematic response biases or 
difference in error between 
groups; differences in item 
and scale means are due to a 
true difference in groups 

Supported comparisons  
between groups none none factor mean scores  

(from the model) observed scale scores 
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Measurement Invariance Testing Example with Simulated Data 
To illustrate the steps of utilizing measurement invariance testing for determining if, and 

to what degree, group comparisons can be made, we use the simulated dataset that generated 
Figures 4 and 5 to work through an example. The data was simulated to be continuous, therefore 
the maximum likelihood estimator was used for each model. For each step in the process, the 
data-model fit results as well as the fit comparisons between models are displayed in Table 2. It 
is important to note that while fit indices for each model will be calculated and tabulated by the 
software being used (i.e., R or Mplus, etc), the change values between models have to be 
manually calculated with a simple subtraction, with the exception of the p-value associated with 
the Δχ2, which must be retrieved from a χ2 table that contains degrees of freedom.  
 

At the baseline (Step 0) and configural (Step 1) levels, only the overall data-model fit is 
investigated. In our PRCQ example, the data at these levels was simulated with essentially 
perfect data-model fit as noted in Table 2. Perfect fit at these levels is unlikely to happen in a real 
study; thus, expecting a less-than-perfect fit is reasonable. Therefore, evaluating the data-model 
fit should follow acceptable guidelines, such as those by Hu and Bentler (1999) used here, or 
others as appropriate based on the data type. As each of our independent baseline models showed 
acceptable data-model fit and then the combined configural model showed good data-model fit, 
we can proceed to the next step of invariance testing. 

 
The metric model data (Step 2) exhibits acceptable data-model fit (see Table 2). 

Beginning with these metric level indices, we not only evaluate the data-model fit but also 
compare the fit obtained with the metric model to that of the configural model. First, we evaluate 
the Δχ2 (Cheung and Rensvold, 2002; Mueller and Hancock, 2019) which is a non-significant 
value, thus providing proof that there is no evidence of significant difference between the 
models. Then, following the suggestions of Chen (2007), our calculated values of ΔCFI = 0.000, 
ΔSRMR = 0.001, and ΔRMSEA = 0.003 are within the acceptable change cutoff levels: ΔCFI (< 
0.01), ΔSRMR (< 0.03), and ΔRMSEA (< 0.015) to establish metric invariance (Chen, 2007). 
The comparison between configural and metric models shows that there is no evidence of 
significant change between these two models, thus metric invariance is achieved based on the 
comparison and we are warranted in moving to the next step of invariance testing.  

 
For evaluating if scalar invariance is achieved (Step 3), a similar analysis pattern is 

followed. First, we evaluate the data-model fit. At this point, we observe that the fit indices for 
the scalar model are no longer within the acceptable ranges (see Table 2). This result is 
problematic because it is an indication that scalar invariance does not hold for the groups. 
Further evidence is found when we compare the change in fit indices between the metric and 
scalar models. Here we observe that our value of Δχ2 is significant, and the values for ΔCFI, 
ΔSRMR, and ΔRMSEA are also not within the recommended fit index cutoffs: ΔCFI (< 0.01), 
ΔSRMR (< 0.01), and ΔRMSEA (< 0.015) for scalar invariance (Chen, 2007). These additional 
results confirm that scalar invariance is not reached for these data. As the model at this level is 
not supported, we do not go on to evaluate the next highest level of invariance (i.e., the strict 
invariance model at Step 4), as we do not have a supported scalar model to compare it to. 
However, if the scalar model held and we desired to move on to test for strict invariance, the 
same guidelines and fit index cutoffs would be used as for scalar invariance (Chen, 2007).  
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In this simulated data example with the PRCQ, our analysis provided evidence for metric 
invariance at Step 2 but not for scalar invariance at Step 3. Therefore, these results imply that 
factor mean comparisons between STEM and non-STEM majors are not supported and should 
not be performed. Investigating the source of the misfit in the scalar model is warranted. Based 
on our previous discussion, we know that the I3 intercept is higher for the STEM majors 
compared to non-STEM majors (see Figures 4 and 5). At this point, we may choose to 
qualitatively investigate the difference between these groups for I3. Alternatively, we may 
choose to release this item’s intercept constraint (i.e., allowing the I3 intercept for each group to 
be freely estimated) and run the scalar model again. If the data-model fit and model comparisons 
indicate acceptable levels with this modification, partial scalar invariance would be achieved. At 
this point, we would have limited support for factor mean comparisons. However, we would not 
be able to make any significant claims, particularly for the IC factor, due to the limitation for I3. 
Based on this limitation, reflection on the consequences of making factor mean comparisons 
between these groups and the validity of inferences drawn from these comparisons is crucial. 
Finally, as we were not able to evaluate for scalar invariance, we have no basis for comparing the 
observed scale scores of the STEM and non-STEM majors using the PRCQ.   

 
Table 2. Measurement Invariance Testing for the PRCQ Instrument Comparing STEM Majors 
and Non-STEM Majors with Simulated Data for Illustration 

Step Testing 
level  χ2 df p-value CFI SRMR RMSEA Δχ2 Δdf p-value ΔCFI ΔSRMR ΔRMSEA 

0 STEM majors 
Baseline 65 51 0.084 0.998 0.021 0.017 - - - - - - 

0 
Non-STEM 

majors 
Baseline 

52 51 0.437 1.000 0.016 0.004 - - - - - - 

1 Configural 117 102 0.142 0.999 0.018 0.012 - - - - - - 

2 Metric 120 111 0.245 0.999 0.019 0.009 3 9 0.231 0.000 0.001 0.003 

3 Scalar 2268 120 < 0.001 0.820 0.191 0.134 2148 9 < 0.001 0.179 0.172 0.125 

Note. STEM majors n = 1000. Non-STEM majors n = 1000. Simulated data was used and altered at the scalar level 
(intercepts) for illustrative purposes; fit indices are from R.  
 

As we have described throughout this manuscript, and shown through the example here, 
measurement invariance testing provides researchers and practitioners with statistical evidence to 
support (or in this case, refute) comparisons between the groups evaluated (Sass, 2011). Once it 
has been established that both groups view the items on an instrument in similar ways (i.e., by 
establishing a certain level of measurement invariance), the interpretation of results becomes 
validated. Utilizing measurement invariance testing provides support for meaningful inferences 
between populations, taking into account response patterns that may arise from a group’s 
background or experiences (Wicherts, Dolan and Hessen, 2005). Furthermore, providing 
evidence that the data from an assessment instrument does not have validity threats against a 
comparison group, such as URMs (Gillborn et al., 2017), provides more confidence in the results 
obtained and may provide increased support for claims of social inclusion for these groups.  
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Limitations 
While we encourage all researchers and practitioners to utilize measurement invariance 

testing prior to conducting comparisons between groups, we acknowledge there are limitations 
which may not allow the use of this method. One of these limitations is the sample size required 
to conduct these model-based tests. Similar to factor analysis techniques, measurement 
invariance testing requires a large sample size. Although there are no specific rules about the 
sample size required, some work indicates that sample size requirements can be calculated given 
the number and value of the parameters being estimated (Wolf et al., 2013; Mueller and 
Hancock, 2019). However, we encourage researchers to continue investigating newer methods to 
determine appropriate sample size that may be more suitable for this technique that is specific to 
the model parameters, the type of data being analyzed, and other characteristics of their study 
(Wolf et al., 2013). Therefore, when conducting research and comparisons between groups with 
small samples, the technique presented in this work is not appropriate. Thus, we encourage 
researchers, practitioners, reviewers and journal editors to consider other methods of reflexivity 
such as response process evidence and/or content review by culturally-aware experts.  
 
 Additionally, researchers should be aware that the fit index cutoffs we have presented in 
this manuscript both for evaluating data-model fit and for change in model fit indices are 
suggested values based on simulation studies. While these guidelines are generally accepted 
within the field of measurement, this is an area of active investigation and these guidelines could 
evolve in coming years. As we encourage researchers to follow these guidelines, we also 
encourage a thoughtful evaluation of the data, model, and data-model fit where the suggested 
guidelines may not apply (Kang et al., 2016; McNeish et al., 2018). 
 

Another limitation of measurement invariance testing is that this technique alone does not 
inform the exact ways in which groups differ in item and factor interpretation. Although this 
technique can point to the problematic items and factors that are dissimilar between groups, it 
cannot provide reasoning for the different meaning of items or factors between groups. This 
information is best investigated using qualitative methods that can inform the perspective and 
interpretation from a respondent’s point of view.  

 
Finally, as with all statistical inferences, the measurement invariance testing process is 

built upon a series of assumptions. Without clearly identifying and acknowledging these 
assumptions, there is little support for the conclusions drawn from invariance testing. Due to the 
limited focus of this manuscript, only a few of the underlying assumptions for invariance testing 
were briefly discussed (i.e., theoretical support for the model being tested, quality of data being 
fit to the model, and acceptability of partial invariance at the metric and scalar stages). However, 
other assumptions are described more fully in the ESI and other resources (Bontempo and Hofer, 
2007; Hancock et al., 2009; Putnick and Bornstein, 2016; Fischer and Karl, 2019). 

 
Discussion 
 CER is moving in the direction of greater interest in the differential impacts and 
outcomes of diverse populations (Rath et al., 2012; Fink et al., 2018; Stanich et al., 2018; 
Shortlidge et al., 2019). However, efforts to increase diversity by enrolling more URM students 
are not sustainable unless paired with efforts to increase social inclusion and social justice 
(O’Shea et al., 2016; Puritty et al., 2017). In an effort to ‘re-imagine’ quantitative approaches to 
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better serve social justice initiatives (García, López and Vélez, 2017) and raise the standards for 
investigating these issues at different intersections of identity and background (e.g., race and 
gender; race and math preparation, etc.), we have presented a statistical method which 
investigates potential validity threats that could arise when analyzing assessment instrument data. 
Particular focus has been given at each stage of the analysis to explain some issues that could be 
evidenced if a given model fails to reach acceptable data-model fit criteria. We have included a 
few examples that could provide readers some ideas to begin their investigation when 
measurement invariance is not established at a particular level. Suggestions for circumventing 
some of these difficulties, such as releasing individual item parameters, have also been presented 
along with their implications. A summary of each stage of testing, along with the supported 
claims and evidence established is provided in Table 1.  
 

Many recent studies in CER have taken the first step toward raising the research 
standards by including variables such as gender, race, etc. and appropriate intersections in their 
studies (Rath et al., 2012; Fink et al., 2018; Stanich et al., 2018; Shortlidge et al., 2019). 
However, the next step of investigating the validity of the group comparisons was lacking. 
Therefore, we encourage researchers to investigate their own data, even the data that has already 
been published, and consider whether the inferences made were valid for the populations being 
compared. One recent example of this practice is the study conducted by Rocabado and 
colleagues (2019), which explored data from a study done in 2016 by Mooring and colleagues 
who conducted an evaluation of the attitude impact of an organic chemistry flipped classroom 
compared to a traditional classroom. The researchers found that the flipped classroom showed 
significant attitude gains when compared to the traditional classroom (Mooring et al., 2016). 
Rocabado and colleagues (2019), not only investigated whether the original comparison was 
supported, but also studied whether the attitude gains observed extended to the Black female 
students in the original sample by utilizing measurement invariance testing to support the 
investigation and comparisons.  

  
Measurement invariance testing provides opportunities to investigate levels of differences 

that could arise any time group comparisons are to be made. The 4-Step method presented in this 
primer is not limited to group comparisons by gender, race, or ethnicity only, it includes groups 
such as those used in this manuscript (i.e., STEM and non-STEM majors) and to same-group 
analyses in longitudinal comparisons (e.g., pre-post gain). Regardless of how the groups are 
defined, at the configural model level (Step 1), an acceptable data-model fit suggests that the 
groups utilize the same network of equations and the basic measurement model (e.g., number of 
factors present). At this stage, the claim can be made that item associations are similar between 
groups, as demonstrated by Figure 2. The configural model provides a lens to observe these item 
associations when the data is disaggregated by the defined groups. Item correlations might not be 
similar for all groups and therefore, the configural model might not reach acceptable levels of 
data-model fit, suggesting group-level differences in the constructs being measured. If this level 
cannot be achieved, comparisons between groups are not fair due to the difference in constructs. 
This is an important step in measurement invariance testing, as it provides a strong foundational 
model on which to base the subsequent tests. 

 
 The metric model (Step 2) investigates the strength of the association between factors and 
their corresponding items (Sass, 2011). The strength of these relations indicates the meaning of 
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the factor (Gregorich, 2006). Therefore, when the metric model fails, it is evidence of differences 
in factor meaning between the groups, which provides grounds for further investigation. These 
differences are observed when the entire pattern of item loadings differs between groups. As this 
result does not indicate why the groups differ in meaning, a thorough investigation of data from 
items and constructs should be reviewed for validity evidence including aspects of content 
validity, response process validity, and construct validity, keeping in mind the various groups 
that could be in the target population. Metric non-invariance may also arise when one or more 
item loadings on a factor differ greatly between groups (see Figure 3c), indicating that one group 
does not associate the item(s) with the construct being measured, while the other group does. For 
example, in the fictitious Applications of Chemistry (AC) scale, a problematic item might ask 
about the field of Materials Science. As this field is interdisciplinary between Engineering, 
Physics, and Chemistry, it is likely that STEM students would have been exposed to examples 
from the field across many courses. However, non-STEM majors may have never been exposed 
to the ideas and examples of Material Science and the role Chemistry plays. Therefore, when 
comparing a group of STEM majors, who are more likely to have been exposed to Materials 
Science, to a group of non-STEM majors, it is possible that this item functions differently 
between the groups. The non-STEM majors might not view Material Science as being an 
application on the AC scale because they have not been introduced to this field and its 
interconnections. Therefore, when an item cannot be explained by the underlying construct for 
one group, the meaning of the construct is different between the groups.  
 
  The scalar model (Step 3) considers whether item averages within the measurement 
model are similar across groups. As shown in Figure 4, item averages may look similar when 
combined; however, when disaggregated into groups, item means could be different (Figure 5) 
leading to the scalar model not reaching acceptable levels of fit. These differences could arise 
due to acquiescence biases that affect one group and not the other due to cultural norms not 
shared between groups (Gregorich, 2006). In the fictitious Connectedness of Chemistry (CC) 
scale, a problematic item might ask about the degree to which chemistry is connected to a 
specific issue of global warming, say CO2 emission. One can think that STEM majors might see 
stronger ties between the issue and chemistry and therefore score higher on this item than a 
group of non-STEM majors that may not have been exposed to the idea of light-matter 
interactions. Therefore, if all the STEM majors score this item high (i.e., a 4 or 5 on a 5-point 
scale) because they have learned about this phenomenon, then the scale is biased for this item 
between the two groups in this context. If scalar invariance is not achieved, comparisons between 
groups beyond the metric model level are not warranted. On the other hand, if scalar invariance 
is reached, estimated factor mean scores can be computed and compared between groups with 
evidence that differences between groups are not artifacts of the instrument and construct 
meaning is similar across the groups. However, if a researcher’s goal is to compare observed 
factor scores (e.g., observed item averages), evidence of conservative invariance (Step 4), in 
which error variances are constrained to be equal between groups, is required (Sass, 2011). 
 

While conducting measurement invariance testing, each stage provides safeguards and 
reflexivity (Gillborn et al., 2017) about the groups being compared, rendering this quantitative 
approach suitable for investigating the differential impacts and outcomes of diverse populations 
and advancing social justice and equity in CER at the institutional level. We encourage all 
researchers and practitioners not only to investigate the impact of variables such as race/ethnicity 
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and appropriate intersections (e.g., gender status, language status, socioeconomic status) more 
often in their research and in their classrooms, but also to employ techniques such as 
measurement invariance testing in order to safeguard against disguising racism and other social 
injustices and systemic biases when making comparisons between groups (Gillborn et al., 2017; 
García, López and Vélez, 2018). 
 
Recommendations and Implications 

Measurement invariance testing provides evidence to support or refute quantitative data any 
time group comparisons are to be made. Although qualitative methodologies are used more often 
to investigate individuals’ and groups’ lived experiences, utilizing quantitative methods with 
reflexivity and safeguards against racial and other biases (Gillborn et al., 2017; García, López 
and Vélez, 2018) can enhance research and teaching that aims at studying pedagogies and 
interventions that benefit URMs in chemistry. This quantitative method is not limited to group 
comparisons by gender, race, or ethnicity. It includes groups such as those defined by academic 
major, socioeconomic status, transfer status, or other meaningful categories and also extends to 
same-group analyses in longitudinal comparisons (e.g., pre-post gain). To make the endeavor of 
utilizing measurement invariance testing as easy and accessible as possible, we have provided 
code and ample explanation for two common software programs (R and Mplus) in the ESI. 
Although we provided code for these programs, there are a variety of other programs available 
that support this technique such as SAS, LISREL, EQS, or the AMOS add-in for SPSS. A 
helpful comparison of software for structural equation modeling with multiple groups can be 
found in Narayanan (2012). 

 
For Researchers and Reviewers 

Measurement invariance testing is a technique that we encourage all researchers to use 
when analyzing assessment instrument data for the purpose of group comparison in their studies. 
Identifying potential validity threats will greatly enhance the interpretation of the results obtained 
and claims made, as well as further the answer to the call for increased diversity and social 
inclusion. At each specific stage of measurement invariance testing, certain model claims can be 
supported or refuted, which either provide evidence for group comparison (see Table 1) or 
inform the subsequent steps to take in the research. Each of the measurement invariance steps is 
an opportunity to safeguard against observed and unobserved differences between groups that 
may be artifacts of the assessment instrument. As researchers, it is our duty to ensure that we 
present results that have the potential of being transformative; thus, working to minimize 
artifacts of measurement bias in our analyses is imperative to further the field of CER in more 
inclusive ways.  

 
Likewise, when reviewing articles for publication, reviewers have the responsibility to 

ensure that the analyses conducted are held to high standards and that the results and 
implications are supported by sufficient evidence. In this work, we have highlighted the 
importance of conducting measurement invariance testing when researchers and practitioners 
utilize assessment instruments of latent traits on which groups will be compared. The results of 
these comparisons can have important implications and consequences in CER as the field moves 
toward greater diversity and social inclusion. Thus, these comparisons have to be made 
responsibly to properly address the consequential validity of the inferences drawn from studies 
where group or longitudinal comparisons are made. Particularly, we advocate for safeguards and 
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reflexivity in research methodology that aims to challenge the idea of neutral and objective 
research in an effort to work toward the abolition of social inequities (Solórzano, 1997; Yosso, 
2005). Therefore, we urge reviewers and journal editors to check the conditions necessary for the 
comparison of outcomes by group. First, ensuring that researchers provide reason to believe it is 
valuable to compare the noted groups (i.e., the comparisons are not simply because the 
demographic data exists) on the variable of interest. Second, that there is reason to believe the 
construct being compared can be measured appropriately for all groups through establishing the 
relevant level of measurement invariance. We have shown how measurement invariance testing 
can provide reflexivity and ample opportunity to check for differences in measurement for 
groups in studies. Thus, we encourage the use of this method whenever possible. 
  
 Often, the comparisons made between groups will be done at the observed scale score 
level. If this is the ultimate goal of a study, then the researchers and reviewers should be aware 
that observed score comparisons require meeting strict invariance (the most conservative level of 
invariance) across all groups. If this strict invariance model provides acceptable data-model fit, 
then researchers and reviewers have evidence that observed scale scores can be compared 
between groups. Within this primer on measurement invariance testing, we laid out a step-by-
step method, working up to establishing strict invariance. However, it is beneficial to mention 
that if only the strict invariance test is conducted, the investigation at each stage of measurement 
invariance testing is not provided and the change in data-model fit from one level to the next is 
not produced. Although valuable step-by-step information is not obtained when choosing to run 
only the desired test, this practice is sound. However, if the strict invariance test fails to provide 
acceptable data-model fit, then researchers may benefit from conducting the lower level tests and 
investigating the source of measurement non-invariance. Table 1 provides a summary of 
appropriate claims and comparisons at each level of measurement invariance.  
    
For Practitioners        

We encourage practitioners to use measurement invariance testing, when possible, in any 
endeavor to inform their practice where group comparisons with assessment instrument data of 
latent traits are utilized. Safeguarding against threats to the validity of the inferences drawn from 
group comparison studies is fundamental to the evaluation and success of inclusive pedagogies 
in the classroom. We acknowledge that sample size is often a limitation in many studies. Thus 
we advise practitioners to utilize similar processes of reflexivity to safeguard against threats to 
the validity of inferences against groups that are appropriate for their sample size, such as 
cognitive interviews (Willis, 1999). This practice will help to ensure that the investigations 
conducted across individual and institutional levels remain mindful of the tenets of  CRT and 
move toward, rather than away from, equity. Additionally, we recommend the collaboration 
between practitioners and researchers in analyzing and interpreting quantitative data, particularly 
when comparing groups. These collaborations can be fruitful and inform a wider variety of 
settings in which our studies take place, providing the field of CER a broader and more complete 
view of the field as it advances toward greater diversity and social inclusion. 
 

Lastly, we urge practitioners to review the research literature with a critical lens and hold 
research findings to a high standard when data is compared by group. Following the steps of 
measurement invariance testing can inform whether an instrument can be utilized to make 
meaningful comparisons with diverse groups. For a practical approach, if measurement 
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invariance testing is not feasible, we suggest a careful review of the literature for instruments 
which have been appropriately tested with diverse populations, to support  appropriate data 
collection and analyses that lead to  meaningful conclusions. 
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Simulation and Visualization of Data in R 

Simulation of Identical Group Data 
The data used for the examples in the main article are simulated data created in R to follow 

the structure of the fictional Perceived Relevance of Chemistry Questionnaire (PRCQ). The 
PRCQ is conceptualized as containing three fictitious subconstructs: Importance of Chemistry 
(IC), Connectedness of Chemistry (CC), and Applications of Chemistry (AC). Additionally, the 
fictitious PRCQ is designed to be a 12-item instrument, where there are four items designed to 
measure each of the three subconstructs. To simulate this data in R first requires the installation 
and loading of the package simstandard (Schneider, 2019) which requires other dependent 
packages such as dplyr (Wickham et al., 2019) to be installed as well.  
 

install.packages("simstandard") 
library(simstandard) 

Syntax from the lavaan factor analysis package (Rosseel, 2012) is used to specify a three-
factor model with four items associated with each factor. For this model, named PRCQ, items 1–
4 are associated with the IC factor, 5–8 with the CC factor, and 9–12 with the AC factor. All 
items are assigned to have the same strength of association with their respective factors, a 
standardized value of 0.8. This value was chosen as it is relatively strong but not perfect 
association. In addition, each factor was simulated as having a weak association with the other 
factors. IC and CC have an association of 0.3, IC and AC have an association of 0.2 and CC and 
AC have an association of 0.1.  
 

PRCQ<-' 
 IC =~ 0.8*I1 + 0.8*I2 + 0.8*I3 + 0.8*I4 
 CC =~ 0.8*I5 + 0.8*I6 + 0.8*I7 + 0.8*I8 
 AC =~ 0.8*I9 + 0.8*I10 + 0.8*I11 + 0.8*I12 
 
 IC  =~  0.3*CC  
 IC  =~  0.2*AC 
 CC  =~  0.1*AC 
' 

 
Now, observed data that follow the relations described by the model can be simulated. The 

set.seed()function is used to ensure reproducibility across uses by simulating the same 
pseudorandom data each time the code is run. Following the example from the main text, data 
are simulated separately for 1000 fictional students in the STEM majors group and for 1000 
students in the non-STEM majors group. A column named group is added to distinguish the 
data from each group and the two datasets are combined to form the new dataset named 
combined.  
 

set.seed(1234) 
STEM <- sim_standardized(PRCQ, n = 1000, observed = T, latent = F, 
errors = F) 
nonSTEM <- sim_standardized(PRCQ, n = 1000, observed = T, latent = F, 
errors = F) 
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STEM$group<-"STEM" 
nonSTEM$group<-"nonSTEM" 
 
combined<-rbind(STEM, nonSTEM) 

 
The data generated with sim_standardized() are standardized meaning they have an 

average value of 0 and standard deviation of 1 as well as a normal distribution. Descriptive 
statistics for the complete dataset and for each group within the dataset can be generated using 
the describe() and describeBy()functions in the psych package (Revelle, 2018) and 
are shown in Figure ESI1 and ESI2. Note that statistics are not generated for the group variable 
as it is a character, not a number.  

library(psych) 
describe(combined) 
describeBy(combined, group="group") 
 

 
Figure ESI1. Output from the describe() function using the dataset named combined. 
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Figure ESI2. Output by group from the describeBy() function using the dataset named 
combined. 

 
Additionally, the data are complete with no missing cases. These data may not be 

representative of the type of data obtained in chemistry education research using a non-fictional 
assessment instrument. For the purposes of this example, as in the main body of the text, this 
dataset will continue to be used. Further procedures in the ESI will demonstrate converting the 
data from continuous into categorical, which may better match authentic data.  
 
Simulation of Data with Unequal Factor Loadings and Unequal Item Means 

The previous section described the simulation of data for two groups using the same model in 
each group. To illustrate the effect of invariance at different levels, modifications were made to 
the data. The data are simulated to highlight specific issues that could be encountered (i.e., 
noninvariant loadings, noninvariant intercepts) but are unlikely to be representative of authentic 
data which could have numerous issues simultaneously. The model below is used to simulate 
data with a lower association between AC and I10 for the non-STEM majors group (changed to 
0.3 instead of 0.8), as used to generate Figure 4 in the manuscript. This data is combined with the 
original STEM majors data to create the combined.invar.load dataset.  
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PRCQ.invar.load<-' 
 IC =~ 0.8*I1 + 0.8*I2 + 0.8*I3 + 0.8*I4 
 CC =~ 0.8*I5 + 0.8*I6 + 0.8*I7 + 0.8*I8 
 AC =~ 0.8*I9 + 0.3*I10 + 0.8*I11 + 0.8*I12 
 
 IC  =~  0.3*CC  
 IC  =~  0.2*AC 
 CC  =~  0.1*AC 
' 
 
nonSTEM.invar.load <- sim_standardized(PRCQ.invar.load, n = 1000, 
observed = T, latent = F, errors = F) 
 
nonSTEM.invar.load$group<-"nonSTEM" 
 
combined.invar.load<-rbind(STEM, nonSTEM.invar.load) 

 
To create data with a higher mean for I3 in the STEM majors group, as used to generate 

Figures 4 and 5 in the manuscript, a new dataset is created from the original STEM majors data 
and constant of 2 is added to all values for I3 in this new data. The STEM majors data is 
combined with the original non-STEM majors data to create a combined.invar.mean 
dataset. The describeBy() function can be used to confirm differences between the groups 
as seen in the descriptive statistcs in Figure ESI3.  
 

STEM.invar.mean<-STEM 
STEM.invar.mean$I3<-STEM.invar.mean$I3+2 
 
STEM.invar.mean$group<-"STEM" 
 
combined.invar.mean<-rbind(STEM.invar.mean, nonSTEM) 
 
describeBy(combined.invar.mean, group="group") 
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Figure ESI3. Output by group from the describeBy() function using the dataset named 
combined.invar.mean showing different means for I3 across groups.  

 

Visualization of Data 

The R code in this section can be used to generate the data visualizations (correlations and 
distributions) shown in Figures 1–5 of the manuscript. Correlation plots can be made with the 
corrplot package (Wei and Simko, 2017). To use the corrplot() function, the numeric 
variables are selected from the combined dataset and a correlation matrix is generated with the 
cor() function. Additional function arguments are used to specify that colored boxes should be 
plotted (method="color"), the text should be in the diagonal of the matrix in black 
(tl.pos="d", tl.col="black"), only the lower diagonal of the correlation matrix should 
be visualized (type="lower"), and that grey grid lines should appear 
(addgrid.col="grey"). Specifying the size of the margins is done to make room for the plot 
title (mar=c(0,0,1,0)).   
 
 



7 
ESI – A Primer on Measurement Invariance Testing  

library(dplyr) 
library(corrplot) 
 
combined %>% select(I1:I12) %>%   cor() %>%  

corrplot(., method="color", tl.pos="d", tl.col="black", 
type="lower", addgrid.col="grey", mar=c(0,0,1,0)) 

 
Similar plots can be generated for subsets of the data by filtering the combined dataset using the group 
variable (filter(group=="STEM")).     
          

combined %>% filter(group=="STEM") %>% select(I1:I12) %>% cor() %>%  
corrplot(., method="color", tl.pos="d", tl.col="black", 
type="lower", addgrid.col="grey", title="STEM Majors", 
mar=c(0,0,1,0)) 

            
combined %>% filter(group=="nonSTEM") %>% select(I1:I12) %>% cor() %>%  

corrplot(., method="color", tl.pos="d", tl.col="black", 
type="lower", addgrid.col="grey",title="Non-STEM Majors", 
mar=c(0,0,1,0))    

            
Using the combined.invar.load dataset will produce Figure 3 images from the manuscript.  
 

combined.invar.load %>% select(I1:I12) %>%   cor() %>%  
 corrplot(., method="color", tl.pos="d", tl.col="black", 
type="lower", addgrid.col="grey", 
title="Combined Data Varied\n Strength of Association for I10", 

   mar=c(0,0,1,0)) 
             
combined.invar.load %>% filter(group=="STEM") %>% select(I1:I12) %>% 

cor() %>% corrplot(., method="color", tl.pos="d", tl.col="black", 
type="lower", addgrid.col="grey", title="STEM Majors", 
mar=c(0,0,1,0)) 

                  
combined.invar.load %>% filter(group=="nonSTEM")%>% select(I1:I12) %>%   

cor() %>% corrplot(., method="color", tl.pos="d", tl.col="black", 
type="lower", addgrid.col="grey",title="Non-STEM Majors", 
mar=c(0,0,1,0))   

 
The Figure 4 images from the manucript are produced using the same method with the 

combined.invar.mean dataset. 
 

combined.invar.mean %>% select(I1:I12) %>%   cor() %>%  
   corrplot(., method="color", tl.pos="d", tl.col="black", 

type="lower", addgrid.col = "grey",                     
title="Combined Data\n Varied Mean for I3",mar=c(0,0,1,0)) 

             
combined.invar.mean %>% filter(group=="STEM") %>% select(I1:I12) %>%   

cor() %>% corrplot(., method="color", tl.pos="d", tl.col="black", 
type="lower", addgrid.col = "grey", title="STEM Majors", 
mar=c(0,0,1,0)) 

            



8 
ESI – A Primer on Measurement Invariance Testing  

combined.invar.mean %>% filter(group=="nonSTEM") %>% select(I1:I12)  
%>%  cor() %>% corrplot(., method="color", tl.pos="d", 
tl.col="black", type="lower", addgrid.col = "grey",         
title="Non-STEM Majors", mar=c(0,0,1,0))  

 
In order to generate the boxplot Figure 5 of the manuscript the package reshape2 

(Wickham, 2007) is needed to restructure the dataset and the package ggplot2 (Wickham, 
2016) is used to create the plot. First, the STEM and non-STEM groups are given more 
descriptive names since those will appear in the figure legend. The groups are also ordered as 
with STEM Majors first since the default setting would put the groups in alphabetical order. 

 
library(ggplot2) 
library(reshape2)  
 
combined.invar.mean$group<-ifelse(combined.invar.mean$group=="STEM", 

"STEM Majors", "Non-STEM Majors") 
combined.invar.mean$group<-ordered(combined.invar.mean$group, 

levels=c("STEM Majors", "Non-STEM Majors")) 
 

Next, the melt() function is used to create a long-format dataset where each group, 
variable (Item), and value occupies a single column. This long format is necessary for plotting 
using the function ggplot() with geom_boxplot(). In this boxplot the x-axis is the group 
and the y-axis is the value for each variable (x=group, y=value, fill=group). Faceting 
by variable (facet_grid(.~variable)) plots each item separately, yet within a single plot. 
The remainder of the code provides graphical parameters.   
 

melt.mean<-combined.invar.mean %>%  
select(I1:I12, group) %>% melt(id="group") 

melt.mean$group<-melt.mean$group %>% as.factor()   
 

ggplot(melt.mean, aes(x=group, y=value, fill=group))+  
geom_boxplot() + facet_grid(.~variable) + theme_bw() +  

  theme(axis.title.x=element_blank(), axis.text.x=element_blank(), 
       axis.ticks.x=element_blank(), axis.title.y=element_blank(), 

legend.position="bottom") +  
scale_fill_discrete(name="Group")    
 

Conducting Invariance Testing 

This section provides an overview of how to conduct measurement invariance testing using 
two popular software platforms, R and Mplus. Results obtained from both pieces of software will 
be similar, so the selection of software depends on the preferences of the researcher. In addition 
to R and Mplus there are other tools available for conducting measurement invariance testing, 
including SAS, LISREL, EQS, or the AMOS add-in for SPSS. A helpful comparison of software 
for structural equation modeling with multiple groups can be found in Narayana (2012) and 
Byrne (2004) provides a guide to AMOS. 
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Before introducing the specific steps to take within R and Mplus, it is worthwhile to note the 
default settings of both software packages. Within R, the package lavaan is generally used for 
factor analyses and in this package the default way to provide scale to the factor is to fix the 
value of the first item loading to one. In Mplus, the factor is given scale by setting its variance to 
one. Both methods are acceptable ways of identifying the model and will give equivalent results. 
However, each of these methods has different implications in the context of measurement 
invariance testing with multiple groups.  

 
The method of setting the factor variance to one (as in Mplus) in both groups is generally not 

recommended for multigroup measurement invariance testing as it implies that the latent variable 
has the same variance in both groups. This is described as homogeneity of variance for the latent 
variables. Though conceptually similar to the test for homogeneity of variance used in t-tests and 
ANOVAs, in a latent framework this is an untestable assumption (Hancock et al., 2009, 168).  

 
In the first method, used within lavaan, setting an item loading to one, the default is to use 

the first item on the scale. When the first item on the scale is set to be one for both groups the 
rest of the series of structural equations will be solved assuming this item has the same loading 
value in both groups. Yet, there is no way to know for certain if that assumption is true or if there 
are other scale items that would have been better to set equivalent. This seemingly 
inconsequential decision can have major implications for interpretation of results and researchers 
are advised to think carefully about which item may be best to set equal across groups based on 
either theoretical or observable grounds (Bontempo and Hofer, 2007; Hancock et al., 2009).  
 
Invariance Testing with R – Continuous Data 

Within the R software, the package lavaan, previously used to generate the simulated data, 
can be used to test confirmatory factor (CFA) models as well as structural equation models 
(SEM). The function for performing CFA, cfa() contains built-in arguments to set various 
model parameters equal for invariance testing (Hirschfeld and Von Brachel, 2014), making 
invariance testing a relatively simple process. In this section, the steps for measurement 
invariance testing will follow those in the main article using the combined.invar.load 
dataset to generate the fit index data from Table 1 in the manuscript. The general process for 
invariance testing within R is that of building up from the least constrained model (i.e., 
configural invariance) to the most constrained model (i.e., conservative invariance). Identical 
steps can be followed for the other datasets and fit indices resulting from these tests are provided 
later sections.   

  
Step 0: Establishing Baseline Model 

Following the steps outline in the manuscript, the baseline model is tested for each group 
separately. The model is specified in the same manner as was used to generate the simulated data 
with the main difference being that values for the loadings and associations between factors are 
not assigned but will be estimated by the software from the data. This model is named 
model.test to distinguish it from the model used to simulate the data.  
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library(lavaan) 
 
model.test<-' 
 IC =~ I1 + I2 + I3 + I4 
 CC =~ I5 + I6 + I7 + I8 
 AC =~ I9 + I10 + I11 + I12 

' 
The function cfa() is now used to examine how well the data fit the proposed model. The 

maximum likelihood (ML) estimator is used as the data are continuous and normally distributed 
and are therefore appropriate for the ML estimator. Additionally, this follows the steps in the 
main article and aligns with the estimator used to determine the suggested fit index cut off values 
(Hu and Bentler, 1999). In situations where the data are known to be nonnormally distributed the 
robust maximum likelihood estimator (MLR) is more appropriate and can be specified with the 
command estimator=”MLR”. The results from ML and MLR are equivalent if the data are 
normal, and interested readers can confirm this for themselves since lavaan prints the output of 
both ML and MLR simultaneously when MLR is used. Later sections of this ESI will describe 
how to modify the code to accommodate categorical data. Finally, specify that the mean structure 
(intercepts) should be explicitly shown.  
 

STEM.step0<-cfa(data=combined.invar.mean %>% filter(group=="STEM 
Majors"), model=model.test, estimator="ML", 

meanstructure=TRUE) 
 

The summary() function provides a convenient way to view the fit statistics and model parameters 
from the model that was just fit to the STEM majors data.  

 
summary(STEM.step0, standardized=TRUE, fit.measures=TRUE) 

 
Though the output provided by summary() is extensive the key fit indices are indicated by 

boxes in Figure ESI4. Note that the fit indices match Table 1 in the manuscript and show 
essentially perfect fit: CFI > 0.95; SRMR < 0.08; RMSEA < 0.06 (Hu and Bentler, 1999).  
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Figure ESI4. Summary output for testing baseline model (Step 0) with STEM majors data having 
modified I3 intercept highlighting chi square test statistic, degrees of freedom, p-value, CFI, 
RMSEA and SRMR. 

The same code can be executed using the non-STEM majors data and nearly identical fit is 
achieved (Figure ESI5).  

 
nonSTEM.step0<-cfa(data=combined.invar.mean %>% filter(group=="Non-

STEM Majors"), model=model.test,         
estimator="ML", meanstructure=TRUE) 

 
summary(nonSTEM.step0, standardized=TRUE, fit.measures=TRUE) 
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Figure ESI5. R summary output for testing baseline model (Step 0) with unmodified non-STEM 
majors data highlighting chi square test statistic, degrees of freedom, p-value, CFI, RMSEA and 
SRMR. 

Looking through the rest of the summary() output gives the values for the model 
parameters. The column Std.all is most typically reported when standardized model 
parameters are given. For both groups, these model parameters (Figures ESI6 & ESI7) match 
those used to simulate the data (loadings of 0.80 as well as associations between the three factors 
of approximately 0.3, 0.2, and 0.1). Examining the values of the intercept terms in both groups 
shows that in the STEM majors group (Figure ESI6) the intercept for I3 is larger than in the non-
STEM majors group by a value of 2, as specified in the model used to simulate the data. 
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Figure ESI6. R summary output for testing baseline model (Step 0) with unchanged STEM 
majors data highlighting standardized model parameters and intercepts. 

 
Figure ESI7. R summary output for testing baseline model (Step 0) with unchanged non-STEM 
majors data highlighting standardized model parameters and intercepts. 
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It is important to note that this difference in intercept for I3 between the groups (Figures 
ESI6 & ESI7) did not affect the overall fit of each group (Figures ESI4 & ESI5) because the 
parameters in each group were allowed to vary as needed to best fit the model. The purpose of 
testing these baseline models is to ensure that each group has a reasonable fit to the model before 
constraining any parameters to be equal across groups.  

 
Step 1: Configural Invariance 

The next step of invariance testing fits the model to both groups of data simultaneously. 
Within the cfa() function this is easily accomplished by specifying that groups are present and 
providing the name of the grouping variable (group="group").  
 

step1.comb.mean<-cfa(data=combined.invar.mean, model=model.test, 
group="group", estimator="ML") 

 
summary(step1.comb.mean, standardized=TRUE, fit.measures=TRUE) 

 
Output from testing this model provides both an overall model chi square and the individual 

group chi square values obtained from Step 0 (Figure ESI8). The rest of the fit indices (CFI, 
RMSEA, and SRMR) are provided for the overall model. As show in Table 1 of the manuscript 
the fit indices for the configural model are essentially perfect. Further exploration of the model 
parameters shows that parameters for both groups have been estimated separately and match 
those in Step 0.  

 

Figure ESI8. R summary output for configural invariance model (Step 1) with STEM majors 
data having modified I3 intercept highlighting chi square test statistic, degrees of freedom, p-
value, CFI, RMSEA and SRMR. 
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Step 2: Metric Invariance (Weak) 
To test for metric invariance (weak) the group.equal argument is used to specify that the 

loadings must be held constant across the two groups.  
 
step2.comb.mean<-cfa(data=combined.invar.mean, model=model.test, 

group="group", estimator="ML", 
group.equal=c("loadings")) 

 
summary(step2.comb.mean, standardized=TRUE, fit.measures=TRUE) 

 
The fit indices for the metric invariance model (Figure ESI9) again match Table 1 in the 

manuscript and show essentially perfect fit. As described in the manuscript the change in fit 
index values can be calculated by hand but the p-value for the Δchi square must be computed.  
  

 
Figure ESI9. R summary output for metric invariance model (Step 2) with STEM majors data 
having modified I3 intercept highlighting chi square test statistic, degrees of freedom, p-value, 
CFI, RMSEA and SRMR. 
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Examination of the model parameters is again done by groups (Figure ESI10) but shows that 
certain parameters have been constrained equal across the groups by assigning them a parameter 
name given in parenthesis (e.g., .p2.). Here the unstandardized loading values in the Estimate 
column are equal in both groups but the Std.all column values vary slightly. This is because 
the factors parameters (i.e., factor covariances) have not been constrained equal across groups 
and therefore affect the standardized loading values. Note that only the loadings have been 
assigned parameter names since these are the only parameters constrained equal across groups.  
 

 
Figure ESI10. R summary output for metric invariance model (Step 2) with STEM majors data 
having modified I3 intercept highlighting constraints on loading terms. 

Step 3: Scalar Invariance (Strong) 
Testing for scalar invariance only requires the addition of constraining the intercept terms to 

be equal, in addition to the loadings that were already constrained in Step 2.  
 

step3.comb.mean<-cfa(data=combined.invar.mean, model=model.test, 
group="group", estimator="ML", 
group.equal=c("loadings", "intercepts")) 

 
summary(step3.comb.mean, standardized=TRUE, fit.measures=TRUE)  

 

Again, matching the values found in Table 1 of the manuscript, the fit indices for the strict 
invariance model (Figure ESI11) indicate poor data-model fit, which is to be expected since the 
intercept terms were not simulated to be equal across groups. Notice that the chi square values 
for the individual groups give some indication that the problem is in the STEM Majors group, as 



17 
ESI – A Primer on Measurement Invariance Testing  

it has a much larger (worse) chi square value. Figure ESI12 shows that now the intercept terms 
are constrained to be equal across groups.  

 
Figure ESI11. R summary output for metric invariance model (Step 3) with STEM majors data 
having modified I3 intercept highlighting chi square test statistic, degrees of freedom, p-value, 
CFI, RMSEA and SRMR. 



18 
ESI – A Primer on Measurement Invariance Testing  

 
Figure ESI12. R summary output for scalar invariance model (Step 3) with STEM majors data 
having modified I3 intercept highlighting constraints on loading and intercept terms. 

Step 4: Conservative Invariance (Strict) 
Given the poor fit of the scalar invariance model, and out of range delta fit index values, it is 

not appropriate to go on to consider the strict invariance model. However, interested readers can 
test this model by adding “residuals” to the group.equal argument (residuals is another 
name for the error variance terms).   
 

Step4.comb.mean<-cfa(data=combined.invar.mean, model=model.test, 
group=”group”, estimator=”ML”, 
group.equal=c(“loadings”, “intercepts”, “residuals”)) 

 
summary(step4.comb.mean, standardized=TRUE, fit.measures=TRUE) 

 
Exporting Data from R to Mplus 

Data within R can be exported in a variety of familiar formats including txt, csv, and xlsx. 
Most conveniently for those working in Mplus there is also a package, MplusAutomation 
(Hallquist and Wiley, 2018), that allows for direct export of data in the correct Mplus format, dat. 
The correct format for Mplus requires data to not have any header information, such as column 
names. The MplusAutomation package also generates appropriate code to communicate the 
structure of the file to Mplus. The R code below shows how to export the simulated PRCQ data to 
Mplus and request the input file, which provides the code to use within Mplus to import the dat 
file in the correct format to be read by Mplus. Note that the group variable had been stored as a 
categorical factor within R and must be changed to a numeric variable for export. In this case the 
first group (STEM majors) will become 1 and the second group will become 2. This can be 
confirmed with the describeBy() function.  
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library(MplusAutomation) 
 
combined.invar.mean$group<-combined.invar.mean$group %>% 

as.numeric() 
describeBy(combined.invar.mean, group="group") 
 
prepareMplusData(combined.invar.mean, 

filename="InvarianceMean.dat", inpfile = TRUE, 
keepCols=c("I1", "I2", "I3", "I4","I5", "I6", 
"I7", "I8", "I9", "I10", "I11", "I12", "group")) 

 
As a result of these commands R will create two new files, InvarianceMean.dat and 

InvarianceMean.inp in the working directory of your R session. If you are unsure of 
where your working directory resides, use the command getwd().  
 

Invariance Testing with Mplus – Continuous Data 

Invariance testing in Mplus begins by opening the inp file generated previously or creating 
a new inp file for your own data. At the top of the inp file will be a title for the model being 
tested, the name of the data file, and the names of the variables in the data file. As before, the 
first step should be to test the model for each group individual. This is accomplished with the 
command USEOBSERVATIONS. Then the model to be tested is specified, this step is similar to 
lavaan but uses the term BY instead of =~ to denote relations between items and factors.   

 
TITLE: STEM Majors Group Step 0 
DATA: FILE = "InvarianceMean.dat"; 
VARIABLE:  
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group;  
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12; 
USEOBSERVATIONS are group==1; 
 
MODEL: 
IC BY I1 I2 I3 I4; 
CC BY I5 I6 I7 I8; 
AC BY I9 I10 I11 I12; 
 
OUTPUT: 
STANDARDIZED; 
 

The output for this model provides the same fit indices and standardized model parameters 
(Figure ESI13) as produced in R (Figures ESI4 & ESI 6) and shown in Table 1 of the 
manuscript.  
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Figure ESI13. Mplus summary output baseline model (Step 0) with STEM majors data having 
modified I3 intercept highlighting chi square test statistic, degrees of freedom, p-value, CFI, 
RMSEA, SRMR, and standardized model parameters. 

Similar code can be used for the non-STEM majors group and again the results (Figure 
ESI14) will agree with the R output (Figures ESI15 & ESI17 as well as Table 1 of the 
manuscript.  

 
TITLE: Non-STEM Majors Group Step 0 
DATA: FILE = "InvarianceMean.dat"; 
VARIABLE:  
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group;  
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12; 
USEOBSERVATIONS are group==2; 
 
MODEL: 
IC BY I1 I2 I3 I4; 
CC BY I5 I6 I7 I8; 
AC BY I9 I10 I11 I12; 
 
OUTPUT: 
STANDARDIZED; 
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Figure ESI14. Mplus summary output baseline model (Step 0) with Non-STEM majors data 
having modified I3 intercept highlighting chi square test statistic, degrees of freedom, p-value, 
CFI, RMSEA, SRMR, and standardized model parameters. 

Step 1: Configural Invariance 
To test configural invariance within Mplus, the model is specified separately for each group. 

The ! notation is used to insert comments within the Mplus model code. To provide results 
aligned with the R output the @1 notation is used to identify the model by standardizing the 
loading for the first item on each factor. This is the default setting for the R cfa() function, but 
models in both programs can also be run by standardizing the factors instead of the loadings as a 
method of identifying the model.  

Next the factor intercept is set to zero using brackets and @0 notation. By default, Mplus 
assumes that item intercepts should be equal across groups, these can be freely estimated using 
the bracket notation. Item error variances are coded without the use of brackets. Specifying the 
same model for the second group will tell Mplus to estimate parameters for both models 
separately. 
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TITLE: Combined Dataset with Mean Differences Step 1 (Configural) 
DATA: FILE = "InvarianceMean.dat"; 
VARIABLE:  
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group;  
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12; 
GROUPING = group (1 = STEM 2 = NonSTEM); 
 
MODEL: 
! Model with standardized loading of first item on each factor 
  IC BY I1@1 I2 I3 I4; 
  CC BY I5@1 I6 I7 I8; 
  AC BY I9@1 I10 I11 I12; 
   
! Setting factor intercepts to zero   
  [IC@0]; 
  [CC@0]; 
  [AC@0]; 
   
! Allowing item intercepts to be freely estimated   
  [I1-I12]; 
 
! Allowing item error variances to be freely estimated 
  I1-I12; 

 
! Specifying the same model for the second group will cause  
! all parameters to be freely estimated for the second group   
MODEL NonSTEM: 
  IC BY I1@1 I2 I3 I4; 
  CC BY I5@1 I6 I7 I8; 
  AC BY I9@1 I10 I11 I12; 
   
  [IC@0]; 
  [CC@0]; 
  [AC@0]; 
   
  [I1-I12]; 
   
  I1-I12;  
OUTPUT: 
STANDARDIZED;   
 

The output from this model (Figure ESI15) matches the fit indices in Table 1 of the 
manuscript for the configural model and both the unstandardized and standardized model 
parameters for the STEM majors group (Figure ESI16) and non-STEM majors group match 
those found using R (Figures ESI6 & ESI7).  
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Figure ESI15. Mplus summary output for configural invariance (Step 1) with STEM majors data 
having modified I3 intercept highlighting fit information. 

 
Figure ESI16. Mplus output for configural invariance (Step 1) with STEM majors data having 
modified I3 intercept highlighting unstandardized and standardized model parameters for both 
groups. 

 
 



24 
ESI – A Primer on Measurement Invariance Testing  

Step 2: Metric Invariance (Weak) 
Metric invariance is tested by assigning the same parameter names to the loading terms in 

each group. In this example the names L1-L12 are assigned to each of the loading parameters. 
Repeating this assignment in the second group will cause Mplus to set the unstandardized value 
of the parameters equal.  

 
TITLE: Combined Dataset with Mean Differences Step 2 (Weak) 
DATA: FILE = "InvarianceMean.dat"; 
VARIABLE:  
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group;  
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12; 
GROUPING = group (1 = STEM 2 = NonSTEM); 
 
MODEL: 
! Model with standardized loading of first item on each factor 
! Assigning a parameter name to each loading value (L1-L12) 
  IC BY I1@1 I2 I3 I4 (L1-L4); 
  CC BY I5@1 I6 I7 I8 (L5-L8); 
  AC BY I9@1 I10 I11 I12 (L9-L12); 
   
! Setting factor intercepts to zero   
  [IC@0]; 
  [CC@0]; 
  [AC@0]; 
   
! Allowing item intercepts to be freely estimated   
  [I1-I12]; 
 
! Allowing item error variances to be freely estimated 
  I1-I12; 

 
! Specifying the same model for the second group will force  
! loadings to be equivalent across groups while other  
! parameters are freely estimated   
MODEL NonSTEM: 
  IC BY I1@1 I2 I3 I4 (L1-L4); 
  CC BY I5@1 I6 I7 I8 (L5-L8); 
  AC BY I9@1 I10 I11 I12 (L9-L12); 
   
  [IC@0]; 
  [CC@0]; 
  [AC@0]; 
   
  [I1-I12]; 
   
  I1-I12; 
 
OUTPUT: 
STANDARDIZED; 
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The output from this model (Figure ESI17) matches the fit indices in Table 1 of the 
manuscript for the weak invariance model and now the unstandardized parameters are equal 
across groups (Figure ESI18) while the intercepts are allowed to differ. As before, the 
standardized parameters differ slightly, but are aligned with the R output (Figure ESI10).  

 
Figure ESI17. Mplus summary output for metric invariance (Step 2) with STEM majors data 
having modified I3 intercept highlighting fit information. 

 
Figure ESI18. Mplus output for metric invariance (Step 2) with STEM majors data having 
modified I3 intercept highlighting unstandardized and standardized model parameters for both 
groups. 
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Step 3: Scalar Invariance (Strong) 
Scalar invariance is tested by assigning the same parameter names to the intercept terms in 

both groups while also removing the restrictions on the mean of the factor terms for the second 
group using the * notation. As seen in Table 1 of the manuscript and in the R output, this 
significantly worsens the value of all fit indices (Figure ESI19) indicating that scalar invariance 
has not been achieved due to differences in loadings across groups. As before, the Mplus model 
parameters (Figure ESI20) are similar to those produced by R (Figure ESI12). 

 
TITLE: Combined Dataset with Mean Differences Step 3 (Strong) 
DATA: FILE = "InvarianceMean.dat"; 
VARIABLE:  
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group;  
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12; 
GROUPING = group (1 = STEM 2 = NonSTEM); 
 
MODEL: 
! Model with standardized loading of first item on each factor 
! Assigning a parameter name to each loading value (L1-12) 
  IC BY I1@1 I2 I3 I4 (L1-L4); 
  CC BY I5@1 I6 I7 I8 (L5-L8); 
  AC BY I9@1 I10 I11 I12 (L9-L12); 
   
! Setting factor intercepts to zero   
  [IC@0]; 
  [CC@0]; 
  [AC@0]; 
   
! Allowing item intercepts to be freely estimated in one group 
! assigning a parameter name so they will be equal across groups    
  [I1-I12] (M1-M12);  
 
! Allowing item error variances to be freely estimated 
  I1-I12; 

 
! Specifying the same model parameter names for the second group 
! will cause loadings and item intercepts to be equivalent across 
! groups while other parameters are freely estimated   
MODEL NonSTEM: 
  IC BY I1@1 I2 I3 I4 (L1-L4); 
  CC BY I5@1 I6 I7 I8 (L5-L8); 
  AC BY I9@1 I10 I11 I12 (L9-L12); 
   
! Allowing factor intercepts vary   
  [IC*]; 
  [CC*]; 
  [AC*]; 
   
  [I1-I12] (M1-M12); 
   
  I1-I12; 
 
OUTPUT: 
STANDARDIZED; 
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Figure ESI19. Mplus summary output for scalar invariance (Step 3) with STEM majors data 
having modified I3 intercept highlighting fit information. 

 

 
Figure ESI20. Mplus output for scalar invariance (Step 3) with STEM majors data having 
modified I3 intercept highlighting unstandardized and standardized model parameters for both 
groups. 
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Step 4: Conservative Invariance (Strict) 
As noted previously, due to the poor fit of the scalar invariance model, you would stop at 

Step 3 and not go on to test Step 4 (conservative invariance with equal error variance terms). 
However, interested readers can test Step 4 in Mplus by providing the same name to the error 
variance parameters in both groups.   
 

TITLE: Combined Dataset with Mean Differences Step 4 (Strict) 
DATA: FILE = "InvarianceMean.dat"; 
VARIABLE:  
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group;  
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12; 
GROUPING = group (1 = STEM 2 = NonSTEM); 
 
MODEL: 
! Model with standardized loading of first item on each factor 
! Assigning a parameter name to each loading value (L1-12) 
  IC BY I1@1 I2 I3 I4 (L1-L4); 
  CC BY I5@1 I6 I7 I8 (L5-L8); 
  AC BY I9@1 I10 I11 I12 (L9-L12); 
   
! Setting factor intercepts to zero   
  [IC@0]; 
  [CC@0]; 
  [AC@0]; 
   
! Allow item intercepts to be freely estimated in one group but 
! assigning a parameter name so they will be equal across groups    
  [I1-I12] (M1-M12);  
 
! Allow item error variances to be freely estimated but 
! assigning a parameter name so they will be equal across groups  
  I1-I12 (E1-E12); 
 
! Specifying the same model parameter names for the second group 
! will cause loadings and item intercepts to be equivalent across 
! groups while other parameters are freely estimated   
MODEL NonSTEM: 
  IC BY I1@1 I2 I3 I4 (L1-L4); 
  CC BY I5@1 I6 I7 I8 (L5-L8); 
  AC BY I9@1 I10 I11 I12 (L9-L12); 
   

! Allowing factor intercepts vary   
  [IC*]; 
  [CC*]; 
  [AC*]; 
   
  [I1-I12] (M1-M12); 
   
  I1-I12(E1-E12); 
   
OUTPUT: 
STANDARDIZED; 
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Fit Indices for other Continuous Datasets 

  Tables ESI1 & ESI2 show the data-model fit output from R produced from following the 
previous steps with the two other continuous datasets: combined and 
combined.invar.load.  
 
Table ESI1. Measurement Invariance Testing for the PRCQ Instrument Comparing STEM 
Majors and Non-STEM Majors With combined Simulated Data for Illustration 
Step Testing level  χ2 df p-value CFI SRMR RMSEA Δχ2 Δdf p-value ΔCFI ΔSRMR ΔRMSEA 

0 STEM majors 
Baseline 65 51 0.084 0.998 0.021 0.017 - - - - - - 

0 Non-STEM majors 
Baseline 52 51 0.437 1.000 0.016 0.004 - - - - - - 

1 Configural 117 102 0.142 0.999 0.018 0.012 - - - - - - 

2 Metric 120 111 0.245 0.999 0.019 0.009 3 9 0.964 0.000 0.001 0.003 

3 Scalar 127 120 0.311 0.999 0.020 0.008 7 9 0.637 0.000 0.001 0.001 

4 Conservative 135 132 0.417 1.000 0.020 0.005 8 12 0.786 0.001 0.000 0.003 

Note. STEM majors n = 1000. Non-STEM majors n = 1000. Simulated data was used and altered at the scalar level 
(intercepts) for illustrative purposes; fit indices are from R.  
 
Table ESI2. Measurement Invariance Testing for the PRCQ Instrument Comparing STEM 
Majors and Non-STEM Majors With combined.invar.load Simulated Data for Illustration 
Step Testing level  χ2 df p-value CFI SRMR RMSEA Δχ2 Δdf p-value ΔCFI ΔSRMR ΔRMSEA 

0 STEM majors 
Baseline 65 51 0.084 0.998 0.021 0.017 - - - - - - 

0 
Non-STEM 

majors 
Baseline 

66 51 0.081 0.997 0.017 0.017 - - - - - - 

1 Configural 131 102 0.028 0.997 0.019 0.017 - - - - - - 

2 Metric 305 111 < 0.001 0.983 0.051 0.042 101 9 < 0.001 0.014 0.032 0.025 

3 Scalar 310 120 < 0.001 0.984 0.051 0.040 5 9 0.834 0.001 0.000 0.002 

4 Conservative 433 132 < 0.001 0.974 0.043 0.048 123 12 < 0.001 0.010 0.008 0.008 

Note. STEM majors n = 1000. Non-STEM majors n = 1000. Simulated data was used and altered at the scalar level 
(intercepts) for illustrative purposes; fit indices are from R.  
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Creating Ordered Categorical Data in R 

As seen in the previous examples, the data simulation function in R creates continuous data 
which may not be representative of data collected from instruments used in chemistry education 
research, which often have five-point Likert-type scales. The code below is used to take the 
original simulated datasets and turn them into Likert-type data by collapsing the full ranges of 
data for each item into five bins using the cut() function. Note that this process of creating 
categorical data from continuous data ensures that each bin will be populated, but issues with 
testing models can arise if authentic categorical data are collected with empty bins (e.g., no 
responses in the 1 category).  
 

STEM.ord<-STEM 
for(i in 1:12){   
  var[i]<-paste0("I", i) 
  STEM.ord[[var[i]]]<-as.numeric(cut(STEM[[var[i]]], breaks=5)) 

} 
 

nonSTEM.ord<-nonSTEM 
for(i in 1:12){   
  var[i]<-paste0("I", i) 
  nonSTEM.ord[[var[i]]]<-as.numeric(cut(nonSTEM[[var[i]]], 
breaks=5)) 

} 
combined.ord<-rbind(STEM.ord, nonSTEM.ord) 
 
 
nonSTEM.invar.load.ord<-nonSTEM.invar.load 
for(i in 1:12){   
  var[i]<-paste0("I", i) 
  nonSTEM.invar.load.ord[[var[i]]]<-
as.numeric(cut(nonSTEM.invar.load[[var[i]]], breaks=5)) 
} 
combined.invar.load.ord<-rbind(STEM.ord, nonSTEM.invar.load.ord) 

 
STEM.invar.mean.ord<-STEM.invar.mean 
for(i in 1:12){   
  var[i]<-paste0("I", i) 
  STEM.invar.mean.ord[[var[i]]]<-
as.numeric(cut(STEM.invar.mean[[var[i]]], breaks=5)) 
} 
combined.invar.mean.ord<-rbind(STEM.invar.mean.ord, nonSTEM.ord) 

 
When data collected on Likert-type scales have fewer than seven categories or the full range 

of the response scale is not used by most respondents (i.e. a ceiling or floor effect) it is often 
recommended to treat the data as ordinal categorical data rather than continuous. In a factor 
analysis framework, this type of data is best modeled using a robust diagonally weighted least 
squares estimator, such as WLSMV (Finney and DiStefano, 2013). A noticeable difference in 
working with ordinal data the software will compute thresholds which are used to map the 
categorical variables onto an assumed underlying normal distribution of latent item responses 
and therefore create a set of latent correlations. This process is can be conceptualized as the 
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reverse of the process used to create ordered categorical data from the original continuous data 
show in prior steps.  

The concept of thresholds can be visualized by plotting the distribution of values for an item 
both in its continuous and categorical form. For this example, responses to I1 in the continuous 
data are visualized with a density plot (Figure ESI21a) and I1 responses in the categorical data 
are visualized with a bar plot (Figure ESI21b) using the code below.   

 
plot(density(combined$I1),  

main="Density Plot for Combined Data Item I1 - Continuous", 
ylab="Frequency", xlab="Response") 

 
barplot(prop.table(table(combined.ord$I1)),  

main="Frequency Plot for Combined Data Item I1 - Ordinal",  
ylab="Frequency", xlab="Response") 

 

 
Figure ESI21. Density plot of continuous I1 responses (a) and frequency plot of categorical I1 responses 
(b) 

Visual inspection of the two plots shows how the original continuous distribution aligns with 
the categorical data in that the middle responses have higher response frequencies and the 
extreme responses have lower response frequencies. When the ordinal data in Figure ESI21b are 
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used to estimate a factor model, the software will assume the categorical data are representative 
of an underlying continuous variable (DiStefano and Morgan, 2014) and determine cut points, 
called thresholds, where the unobserved continuous distribution would have been divided to 
create the observed categorical distribution.  

 
Since the categorical data used in this example were created from continuous data, we are 

able find the true cut points using the same code as before.  
 
summary(cut(combined$I1, breaks=5)) 
 

Plotting these cut points (–1.97, –0.672, 0.624, and 1.92) on the continuous distribution 
(Figure ESI22) shows how the categorical data were simulated, and also provides insight into 
how the factor analysis itself will identify thresholds in the categorical data.  

 
plot(density(combined$I1), main="Density Plot for Combined Data 

Item I1 - Continuous",ylab="Frequency", xlab="Response") 
abline(v=c(-1.97, -0.672, 0.624, 1.92), col="grey")  
 

 
Figure ESI22. Density plot of continuous I1 responses showing cut points used to create categorical data. 

Estimating Models with Ordered Categorical Data in R and Mplus 

Running the factor models in R and also exporting the data for running in Mplus will provide 
an opportunity to see the threshold values established by the software. Full measurement 
invariance testing steps will be described in later sections. Both programs will automatically 
switch to the correct estimator (WLSMV) when informed that the data are not continuous. In 
lavaan syntax the argument ordered is used. 
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combined.ord.cfa<-cfa(data = combined.ord, model = model.test,  
ordered=c("I1", "I2", "I3", "I4", "I5", 
"I6", "I7", "I8", "I9", "I10", "I11", 
"I12")) 

summary(combined.ord.cfa, standardized=TRUE, fit.measures=TRUE) 
 
combined.ord$group<-combined.ord$group %>% as.factor() %>% 

as.numeric() 
prepareMplusData(combined.ord, filename="CombinedOrdinal.dat", 

inpfile = T, keepCols=c("I1", "I2", "I3", 
"I4","I5", "I6", "I7", "I8", "I9", "I10", "I11", 
"I12", "group")) 

 
In Mplus the variables are specified as categorical.  

 
TITLE: Combined Ordinal Data - CFA Model 
DATA: FILE = "CombinedOrdinal.dat"; 
VARIABLE:  
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group;  
MISSING=.; 
 
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12; 
CATEGORICAL ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12; 
 
MODEL: 
IC BY I1 I2 I3 I4; 
CC BY I5 I6 I7 I8; 
AC BY I9 I10 I11 I12; 
 
OUTPUT: 
STANDARDIZED; 

 
The full output of both programs can be examined to confirm similarities in how the data are 

treated as well as the matched fit indices and model parameters. Figure ESI23 shows the 
threshold values calculated by each program, indicated with the t notation in R and the $ 
notation in Mplus. As expected, the thresholds for I1 are similar to those used to create the 
categorical data from the continuous, even though neither R or Mplus had access to the 
continuous data when generating the threshold values. 

 
 Figure ESI23. Threshold values from R (a) and Mplus (b) 
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Data Model Fit for Ordered Categorical Data with WLSMV Estimator 
 

The fit index cut off values recommended by Hu and Bentler (1999) were based on work 
using the maximum likelihood (ML) estimator which is appropriate for continuous data. Since a 
different estimator is used with categorical data, it is not appropriate to use the same Hu and 
Bentler recommendations for fit index cut off values. Simulation studies with the WLSMV 
estimator have indicated that more rigorous cut off values are best, particularly when the data 
contain a small number of categories or are severely nonnormal (Yu, 2002; Beauducel and 
Herzberg, 2006; DiStefano and Morgan, 2014). Recommendations for fit index values with the 
WLSMV estimator are CFI ≥ 0.95 and RMSEA ≤ 0.05. The SRMR is not recommended with the 
WLSMV estimator. In the context of invariance testing, less work has been done to determine 
recommended values for change in CFI and RMSEA values between models compared to the 
ML estimator. As with the fit indices themselves, simulation studies suggest either using more 
rigorous ΔCFI and ΔRMSEA values than those used with ML estimation or providing multiple 
sources of justification for acceptable data-model fit potentially using different estimators to see 
if similar conclusions about invariance would be drawn (Sass et al., 2014).  
 
Invariance Testing with R – Ordered Categorical Data 

Measurement invariance testing in R with categorical data can be conducted following 
similar steps as those used for continuous data. However, it should be noted that other 
researchers have advocated for a different order of steps or different sets of constraints when 
working with categorical data (Millsap and Yun-Tein, 2004; Wu and Estabrook, 2016; Svetina et 
al., 2019). The primary differences when working with categorical data compared to continuous 
are that the ordinal nature of the data must be specified in order for the correct estimator to be 
used, and thresholds must be constrained along with other model parameters during invariance 
testing steps.  

 
Also, unique to working with categorical data, a decision must be made about scaling of the 

underlying latent normal distribution for each set of item responses using either delta or theta 
scaling. In delta scaling the total variance of the latent response is set to 1 and in theta scaling the 
variance of the residual term is set to 1. These decisions primarily influence how the model 
parameters are identified. Theta scaling is appropriate for invariance research (Millsap and Yun-
Tein, 2004) and was chosen for the analysis here, but it is possible to convert parameters 
between delta and theta scaling (Finney and DiStefano, 2013). Since theta scaling affects the 
residual terms, Step 4 of invariance testing (strict) is not necessary with categorical data when 
following this method. 

 
The steps taken in this ESI will parallel those used previously for continuous data. The data 

used in this section are the categorical version of the continuous data used in previous examples 
where the mean for I3 was changed in the STEM majors group. The code for all steps of 
invariance testing in R with categorical data are specified below and the fit statistics are 
summarized in Table ESI3 using the WLSMV output from lavaan as given in the Robust 
column. Fit statistics for models using the other categorical datasets are provided in Tables ESI4 
& ESI5.  
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Step 0: Establishing Baseline Model 
The baseline model for each group is specified in the same way as the continuous data but 

now using the ordinal data set and specifying which variables are ordered categorical as well as 
the use of the theta parameterization. The same three factor model used for the continuous data is 
used for the categorical data. 

 
STEM.step0.ord<-cfa(data = combined.invar.mean.ord %>% 

filter(group==STEM), model=model.test, 
ordered=c("I1", "I2", "I3", "I4", "I5", "I6", 
"I7", "I8", "I9", "I10", "I11", "I12"), 
parameterization="theta") 

 
summary(STEM.step0.ord, standardized=TRUE, fit.measures=TRUE)  

 
nonSTEM.step0.ord<-cfa(data=combined.invar.mean.ord %>% 

filter(group=="nonSTEM"), 
model=model.test, ordered=c("I1", "I2", 
"I3", "I4", "I5", "I6", "I7", "I8", "I9", 
"I10", "I11", "I12"), 
parameterization="theta") 

 
summary(nonSTEM.step0.ord, standardized=TRUE, fit.measures=TRUE) 

 
Step 1: Configural Invariance 

Configural invariance uses data from both groups while specifying the grouping variable.  
 

step1.comb.mean.ord<-cfa(data=combined.invar.mean.ord, 
group="group", model=model.test, 
ordered=c("I1", "I2", "I3", "I4", "I5", 
"I6", "I7", "I8", "I9", "I10", "I11", 
"I12"), parameterization="theta") 

 
summary(step1.comb.mean.ord, standardized=TRUE, 

fit.measures=TRUE) 
 
Step 2: Metric Invariance (Weak) 

Metric invariance is tested by holding the loadings equal across groups.  
 

step2.comb.mean.ord<-cfa(data=combined.invar.mean.ord, 
group="group", model=model.test, 
ordered=c("I1", "I2", "I3", "I4", "I5", 
"I6", "I7", "I8", "I9", "I10", "I11", 
"I12"), group.equal=c("loadings"), 
parameterization="theta") 

 
summary(step2.comb.mean.ord, standardized=TRUE, 
fit.measures=TRUE) 
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Step 3: Scalar Invariance (Strong) 
Adding the constraint of equal thresholds across groups is similar to holding intercepts equal 

to test for scalar invariance in continuous data.  
 

 step3.comb.mean.ord<-cfa(data=combined.invar.mean.ord, 
group="group", model=model.test, 
ordered=c("I1", "I2", "I3", "I4", "I5", 
"I6", "I7", "I8", "I9", "I10", "I11", 
"I12"), group.equal=c("loadings", 
"thresholds"), parameterization="theta") 

 
summary(step3.comb.mean.ord, standardized=TRUE, 
fit.measures=TRUE) 

  
Table ESI3. Measurement Invariance Testing for the PRCQ Instrument Comparing STEM 
Majors and Non-STEM Majors With combined.invar.mean Simulated Categorical Data 
for Illustration 

Step Testing 
level  χ2 df p-value CFI RMSEA Δχ2 Δdf p-value ΔCFI ΔRMSEA 

0 STEM majors 
Baseline 81 51 0.005 0.996 0.024 - - - - - 

0 Non-STEM majors 
Baseline 61 51 0.162 0.999 0.014 - - - - - 

1 Configural 142 102 0.006 0.997 0.020 - - - - - 

2 Metric 145 111 0.017 0.998 0.018 3 9 0.231 0.001 0.002 

3 Scalar 869 144 < 0.001 0.953 0.071 724 9 < 0.001 0.045 0.053 
Note. STEM majors n = 1000. Non-STEM majors n = 1000. Simulated data was used and altered at the scalar level 
(intercepts) for illustrative purposes; fit indices are from R.  
 

Invariance Testing with Mplus – Ordered Categorical Data 

Following the previously shown steps, the categorical data in R are exported to Mplus by 
first converting the group variable from a text format into a numeric format. 
 

combined.invar.mean.ord$group<-combined.ord$group %>% as.factor() 
%>% as.numeric() 

 
prepareMplusData(combined.invar.mean.ord, 

filename="CombinedInvarMeanOrdinal.dat", 
inpfile = T, keepCols=c("I1", "I2", "I3", 
"I4","I5", "I6", "I7", "I8", "I9", "I10", 
"I11", "I12", "group")) 
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As with lavaan, the default estimator in Mplus is ML but the software will adjust to an 
appropriate estimator for ordinal data (WLSMV) by specifying the item variables as categorical. 
The call for theta parameterization is also added and the models are specified separately for each 
group. Following these steps for R and Mplus should provide similar fit indices and model 
parameters. 
 
Step 0: Establishing Baseline Model 

TITLE: Categorical STEM Majors Group Step 0 
DATA: FILE = "CombinedInvarMeanOrdinal.dat"; 
VARIABLE:  
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group;  
MISSING=.; 
 
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12; 
CATEGORICAL ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12; 
USEOBSERVATIONS are group==2; 

 
ANALYSIS: PARAMETERIZATION=THETA; 
 
MODEL: 
IC BY I1 I2 I3 I4; 
CC BY I5 I6 I7 I8; 
AC BY I9 I10 I11 I12; 
 
OUTPUT: 
STANDARDIZED; 

 
 

TITLE: Categorical Non-STEM Majors Group Step 0 
DATA: FILE = "CombinedInvarMeanOrdinal.dat"; 
VARIABLE:  
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group;  
MISSING=.; 
 
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12; 
CATEGORICAL ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12; 
USEOBSERVATIONS are group==1; 
 
ANALYSIS: PARAMETERIZATION=THETA; 
 
MODEL: 
IC BY I1 I2 I3 I4; 
CC BY I5 I6 I7 I8; 
AC BY I9 I10 I11 I12; 
 
OUTPUT: 
STANDARDIZED; 
 

 
 



38 
ESI – A Primer on Measurement Invariance Testing  

Step 1: Configural Invariance 
By default, Mplus will constrain thresholds equal across groups so this must be released by 

freeing all thresholds for all variables. The notation to free the thresholds uses the $ character. 
Four thresholds must be freed since four thresholds would be required to divide the underlying 
continuous distribution into five categories. As was done with the continuous data, the factor 
means are set to zero. The error variances are set to one for categorical data, in line with theta 
parameterization.  

 
TITLE: Categorical Combined Dataset with Mean Differences Step 1 
(Configural) 
DATA: FILE = "CombinedInvarMeanOrdinal.dat"; 
VARIABLE:  
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group;  
CATEGORICAL ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12; 
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12; 
GROUPING = group (1 = NonSTEM 2 = STEM); 
 
ANALYSIS: PARAMETERIZATION=THETA; 
 
MODEL: 
! Model with standardized loading of first item on each factor 
  IC BY I1@1 I2 I3 I4; 
  CC BY I5@1 I6 I7 I8; 
  AC BY I9@1 I10 I11 I12; 
   
! Freeing Thresholds 
  [I1$1-I12$1*]; 
  [I1$2-I12$2*]; 
  [I1$3-I12$3*]; 
  [I1$4-I12$4*];  

 
! Set factor means to 0   
  [IC@0]; 
  [CC@0]; 
  [AC@0]; 
 
! Set error variances to 1 
  I1-I12@1 
   
MODEL STEM: 
  IC BY I1@1 I2 I3 I4; 
  CC BY I5@1 I6 I7 I8; 
  AC BY I9@1 I10 I11 I12; 
   
! Freeing Thresholds 
  [I1$1-I12$1*]; 
  [I1$2-I12$2*]; 
  [I1$3-I12$3*]; 
  [I1$4-I12$4*];  
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! Set factor means to 0   
  [IC@0]; 
  [CC@0]; 
  [AC@0]; 
 
! Set error variances to 1 
  I1-I12@1 
   
OUTPUT: 
STANDARDIZED;   

 
Step 2: Metric Invariance (Weak) 

Loadings are constrained equal across groups by assigning the same name to the parameters 
in both groups. This is the same method used for invariance testing with the continuous data.  
 

TITLE: Categorical Combined Dataset with Mean Differences Step 2  
DATA: FILE = "CombinedInvarMeanOrdinal.dat"; 
VARIABLE:  
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group;  
CATEGORICAL ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12; 
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12; 
GROUPING = group (1 = NonSTEM 2 = STEM); 
 
ANALYSIS: PARAMETERIZATION=THETA; 
 
MODEL: 
! Model with standardized loading of first item on each factor 
! Assigning a parameter name to each loading value (L1-L12) 
  IC BY I1@1 I2 I3 I4 (L1-L4); 
  CC BY I5@1 I6 I7 I8 (L5-L8); 
  AC BY I9@1 I10 I11 I12 (L9-L12); 

 
! Freeing Thresholds 
  [I1$1-I12$1*]; 
  [I1$2-I12$2*]; 
  [I1$3-I12$3*]; 
  [I1$4-I12$4*];  
   
! Set factor means to 0   
  [IC@0]; 
  [CC@0]; 
  [AC@0]; 
 
! Set error variances to 1 
  I1-I12@1 
   
MODEL STEM: 
  IC BY I1@1 I2 I3 I4 (L1-L4); 
  CC BY I5@1 I6 I7 I8 (L5-L8); 
  AC BY I9@1 I10 I11 I12 (L9-L12); 
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  ! Freeing Thresholds  
  [I1$1-I12$1*]; 
  [I1$2-I12$2*]; 
  [I1$3-I12$3*]; 
  [I1$4-I12$4*];  

 
  ! Set factor means to 0   
  [IC@0]; 
  [CC@0]; 
  [AC@0]; 
 
 ! Set error variances to 1 
  I1-I12@1 
   
OUTPUT: 
STANDARDIZED;  
 

 Step 3: Scalar Invariance (Strong) 
Mplus and lavaan differ in their default settings when thresholds are constrained equal across 

groups. To mimic the lavaan output the factor means and error variance terms for the second 
group are freed in the Mplus code. Freeing these parameters also aligns scalar invariance testing 
in the categorical data with the same step for the continuous data. Recall that the goal of Step 3 is 
to determine if the factors are being measured on the same scale in each group so that factor 
means can be compared across groups. Therefore, one group should have a mean of zero in order 
to function as a reference while the mean of the other group is freely estimated. 

 
TITLE: Categorical Combined Dataset with Mean Differences Step 3  
DATA: FILE = "CombinedInvarMeanOrdinal.dat"; 
VARIABLE:  
NAMES = I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 group;  
CATEGORICAL ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12; 
USEVARIABLES ARE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12; 
GROUPING = group (1 = NonSTEM 2 = STEM); 
 
ANALYSIS: PARAMETERIZATION=THETA; 
 
MODEL: 
  IC BY I1@1 I2 I3 I4 (L1-L4); 
  CC BY I5@1 I6 I7 I8 (L5-L8); 
  AC BY I9@1 I10 I11 I12 (L9-L12); 

 
  [I1$1-I12$1*]; 
  [I1$2-I12$2*]; 
  [I1$3-I12$3*]; 
  [I1$4-I12$4*];  
   
  [IC@0]; 
  [CC@0]; 
  [AC@0]; 
 
  I1-I12@1 
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MODEL STEM: 
  IC BY I1@1 I2 I3 I4 (L1-L4); 
  CC BY I5@1 I6 I7 I8 (L5-L8); 
  AC BY I9@1 I10 I11 I12 (L9-L12); 
   
! Fix thresholds equal by not specifying for this group 
   
! Set factor means free   
[IC*]; 
[CC*]; 
[AC*]; 
    
! Set error variances free 
I1-I12* 
   
OUTPUT: 
STANDARDIZED; 

 

Fit Indices for Invariance Testing Steps with other Simulated Categorical Data 

Tables ESI4 & 5 show the data-model fit output from R produced from following the 
previous steps with the two other categorical datasets: combined.ord and 
combined.invar.load.ord.  
 
Table ESI4. Measurement Invariance Testing for the PRCQ Instrument Comparing STEM 
Majors and Non-STEM Majors With combined.ord Simulated Categorical Data for 
Illustration 
Step Testing level  χ2 df p-value CFI RMSEA Δχ2 Δdf p-value ΔCFI ΔRMSEA 

0 STEM majors 
Baseline 81 51 0.005 0.996 0.024 - - - - - 

0 Non-STEM majors 
Baseline 61 51 0.162 0.999 0.014 - - - - - 

1 Configural 142 102 0.006 0.997 0.020 - - - - - 

2 Metric 145 111 0.017 0.998 0.018 3 9 0.964 0.001 0.002 

3 Scalar 869 144 <0.001 0.953 0.071 724 33 < 0.001 0.045 0.053 
Note. STEM majors n = 1000. Non-STEM majors n = 1000. Simulated data was used and altered at the scalar level 
(intercepts) for illustrative purposes; fit indices are from R.  
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Table ESI5. Measurement Invariance Testing for the PRCQ Instrument Comparing STEM 
Majors and Non-STEM Majors With combined.invar.load.ord Simulated Categorical 
Data for Illustration 
Step Testing level  χ2 df p-value CFI RMSEA Δχ2 Δdf p-value ΔCFI ΔRMSEA 

0 STEM majors 
Baseline 81 51 0.005 0.996 0.024 - - - - - 

0 Non-STEM majors 
Baseline 40 51 0.869 1.000 0.000 - - - - - 

1 Configural 119 102 0.120 0.999 0.013 - - - - - 

2 Metric 383 111 < 0.001 0.982 0.050 264 9 < 0.001 0.017 0.037 

3 Scalar 1305 144 < 0.001 0.925 0.090 922 33 < 0.001 0.057 0.040 
Note. STEM majors n = 1000. Non-STEM majors n = 1000. Simulated data was used and altered at the scalar level 
(intercepts) for illustrative purposes; fit indices are from R.  
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