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Graph clustering has been a hot research topic and is widely used in many fields, such as community detection

in social networks. Lots of works combining auto-encoder and graph neural networks have been applied to

clustering tasks by utilizing node attributes and graph structure. These works usually assumed the inherent

parameters (i.e., size and variance) of different clusters in the latent embedding space are homogeneous, and

hence the assigned probability is monotonous over the Euclidean distance between node embeddings and

centroids. Unfortunately, this assumption usually does not hold since the size and concentration of different

clusters can be quite different, which limits the clustering accuracy. In addition, the node embeddings in deep

graph clustering methods are usually L2 normalized so that it lies on the surface of a unit hyper-sphere. To

solve this problem, we proposed Deep Adaptive Graph Clustering via von Mises-Fisher distributions, namely

DAGC. DAGC assumes the node embeddings H can be drawn from a von Mises-Fisher distribution and

each cluster k is associated with cluster inherent parameters ρk which includes cluster center μ and cluster

cohesion degree κ. Then we adopt an EM-like approach (i.e., P (H |ρ) and P (ρ |H ), respectively) to learn the

embedding and cluster inherent parameters alternately. Specifically, with the node embeddings, we proposed

to update the cluster centers in an attraction-repulsion manner to make the cluster centers more separable.

And given the cluster inherent parameters, a likelihood-based loss is proposed to make node embeddings more
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concentrated around cluster centers. Thus, DAGC can simultaneously improve the intra-cluster compactness

and inter-cluster heterogeneity. Finally, extensive experiments conducted on four benchmark datasets have

demonstrated that the proposed DAGC consistently outperforms the state-of-the-art methods, especially on

imbalanced datasets.

CCS Concepts: • Mathematics of computing → Graph algorithms; • Theory of computation → Unsu-

pervised learning and clustering; • Computing methodologies→ Learning latent representations;

Additional Key Words and Phrases: Graph embedding, graph clustering, vMF
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1 INTRODUCTION

The goal of graph clustering is to divide the nodes in a large graph into different clusters such that

the inter-cluster similarity is low and the intra-cluster similarity is high [40]. Graph clustering

techniques are very useful for detecting connected relationships with nodes’ similar properties in

a large graph [66], where it is critical to identify the specific patterns or structures efficiently. And

deep learning has been widely applied to many tasks and achieved lots of improvements [35], in-

cluding the clustering approach [45]. In this paper, we focus on the deep graph clustering approach.

Recently, deep graph clustering has attracted intensive attention and achieved great success in

many fields [48, 49], such as co-saliency [19], community detection [44], and image segmenta-

tion [7, 9]. With the emerging representation learning [18, 27, 29, 38, 51], many deep clustering

approaches have been proposed to investigate the deep graph clustering efficiency. Specifically,

some researchers proposed a method that can learn feature representations and cluster assign-

ments using deep neural networks by partitioning the nodes into several disjoint datasets in [55].

Some researchers jointly consider the local structure preservation in deep clustering, optimizing

cluster labels assignment and learning features by integrating the clustering loss and auto-encoder

reconstruction loss [14]. The authors in [59] applied the Gaussian mixture model (GMM) as the

prior in VAE to improve the learned embeddings. The authors in [5] designed a delivery operator

and a dual self-supervised mechanism to combine the auto-encoder representation and the graph

convolutional networks (GCNs) representation. And the authors in [46] proposed a dynamic

cross-modality fusion mechanism and a triplet self-supervised strategy, and so on.

However, these existing works are all based on the assumption that the clusters are homoge-

neous and learned by the Euclidean distance between points in a given feature space, inevitably

limiting the representation learning and clustering efficiency. First, most existing deep graph clus-

tering works combined with auto-encoder and graph neural networks do not consider the dis-

crepancy in cluster size. But in many real-world applications from both academia and industry,

clusters are usually unequal in size [2, 17, 50, 52], e.g., the communities are imbalanced in social

network [1]. Second, each cluster has a particular cluster distribution. That is, given a cluster, the

maximum distance between all the points and the centroid is the unique property of the cluster.

And the radii of different clusters may be different. But most methods mentioned above do not con-

sider the cluster cohesion degree. For example, in Figure 1, the length of Red dotted line represents

the Euclidean distance between the target point and centroid a, denoted as da . Likewise, the length

of Blue dotted line, db is the distance between the target point and centroid b. Obviously, distance

da is longer than the distance db in both Figure 1(a) and Figure 1(b). Then the target point will be

ACM Transactions on the Web, Vol. 18, No. 2, Article 22. Publication date: January 2024.
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Fig. 1. A toy example of clustering. The target point will be assigned to the cluster b due to the distances

between target point and the centroids. Specifically, it is correct to assign target point into cluster a when

cluster a and cluster b have similar inherent parameters as shown in Figure 1(a). But the target point should

be assigned into cluster a by considering the different inherent parameters of cluster a and cluster b as shown

in Figure 1(b).

assigned into the cluster b as the target point is closer to centroid b. However, it is not very suitable

to assign target point into the cluster b in the scenario shown in Figure 1(b) without considering

the cluster cohesion degree. More specifically, Figure 1(a) shows it is appropriate to assign target

point into the cluster b when cluster a and cluster b have similar inherent parameters. But on the

contrary, as 1(b) shows, without utilizing the inherent parameters of clusters, the nodes may be

assigned into inappropriate groups. In addition, the target point should be assigned to the cluster

a by considering the cluster cohesion degree.

Meanwhile, the general idea of the clustering algorithm is to find the best centroid for each

cluster. A centroid is the geometric center of a convex object, which can be considered as the

generalization of the mean. Given a specific feature space, the clustering method assigns the points

into the clusters with the shortest distances between candidate points and centroids. Probabilistic

clustering algorithms such as K-means clustering method [16], Multinomial Mixtures [60], and

Gaussian Distributions [59], have been used to discover the latent structures and relations in deep

graph clustering. However, these assumptions are questionable to be directly used in deep graph

clustering to learn the node embeddings. For example, in a citation graph, the documents usually

are represented as a point on a unit-sphere. Similarly, in Image-modeling, the unit normalized

spatial pyramid vector is a common representation [13]. Thus, the popular clustering assumptions

such as Gaussian or Multinomial are not appropriate. Can we develop models that are suitable to

model the inherent parameter of clusters on a unit-sphere?

To tackle the challenges mentioned above, inspired by [13], we propose a deep adaptive graph

clustering method (DAGC) via von Mises-Fisher (vMF) distributions. Firstly, in a specific

graph, each node represented as a point on a unit-sphere is assumed to be drawn from one vMF

distribution. Given a specific cluster, the nodes are drawn from the same vMF distribution. The

centroid of the cluster could be modeled by the mean direction of vMF distribution. And the cluster

cohesion degree could be modeled by the concentration parameter of vMF distribution. Then, we

can model the distribution of the latent embedding space by considering the inherent parameters

of clusters. It is almost not possible to obtain the node embeddings and the inherent parameters at

the same time. Therefore, we use an EM-like [56] approach to optimize the model. On the E-step,

with the node embeddings, we estimate the assigned probability by the posterior of mixture dis-

tribution and reassign it by Sinkhorn’s theorem [42] to capture the imbalance of cluster size. And

then we can adjust the cluster inherent parameters automatically. After that, on the M-step, we

ACM Transactions on the Web, Vol. 18, No. 2, Article 22. Publication date: January 2024.
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propose to update the node embeddings based on the cluster assignment and the cluster inherent

parameters. Given the cluster inherent parameters, we take advantage of a likelihood-based loss

function to make the representations in the same cluster more compact. Along this line, DAGC can

simultaneously improve the intra-cluster compactness and inter-cluster heterogeneity. We also

present detailed experimental comparisons of the proposed algorithms DAGC with the start-of-art

methods related to deep graph clustering. Our key contributions can be summarized as follows:

• We propose a deep adaptive graph clustering method via vMF distributions, which can ef-

fectively capture the heterogeneity of clusters by modeling the node embeddings with the

cluster inherent parameters.

• We design an efficient learning strategy, an EM-like approach, which updates the clustering

parameters and node embeddings alternately, which can increase the inter-class heterogene-

ity and intra-class compactness, respectively.

• We conduct experiments on four challenging real-world graph datasets, the experimental

results show our approach can outperform the state-of-the-art deep graph clustering models,

especially on imbalanced datasets. Comprehensive ablation experiments have also proved

that every component of our method is indispensable.

2 RELATED WORK

2.1 Attributed Graph Embedding

Graph embedding has attracted increasing attention in many applications [4, 11, 24, 30, 31, 57, 61].

Graph embedding, also known as network embedding [6] or network representation learning [62],

aims to learn low-dimensional representations for nodes in graphs. In addition, attributed graph

embedding methods assume node attribute information is available and exploit both topological

information and attribute features simultaneously [12]. TADW [58] proved that DeepWalk can

be interpreted as a factorization approach and proposed an extension to DeepWalk to explore

node features. DANE [25] deals with the dynamic environment with an incremental matrix

factorization approach, and LANE [20] incorporates the label information into the optimization

process to learn a better embedding. [43] proposes an attributed graph embedding model with

the node/edge attributed information by constructing a heterogeneous graph. [65] proposes a

framework to learn node representations from a sequence of temporal interactions with two

coupled memory networks to store and update node embeddings in external matrices. [8] design

a non-parametric Laplacian smoothing filter that preserves optimal denoising properties to filter

out high-frequency noises to learn node embeddings. The authors in [64] integrate both structure

and feature information into the kernel matrix via a higher-order graph convolution to make

the spectral loss well-adapt to attributed graphs. In [32], the authors treat the protein-protein

interaction prediction problem as a link prediction problem in attribute networks, then they

use an attributed embedding approach to predict the interactions between proteins in the PPI

network. The work in [39] proposes an unsupervised graph embedding method to efficiently

capture structural properties as well as node labels and attributes in a graph. Although these

algorithms are well designed for graph data, they have largely ignored the node embedding

distribution, which may result in poor representation in the real graph data.

2.2 Deep Graph Clustering

Recently, due to the strong representation power of deep neural networks, many deep clustering

methods have been proposed and achieved impressive performance [14, 15, 26, 34, 37, 55, 63].

Auto-encoder [18] is one of the most commonly used unsupervised deep neural networks, which

plays a crucial role in deep clustering. DEC [55] is the most popular method which used the

auto-encoder to learn the deep representations by mining divergence between assignment

ACM Transactions on the Web, Vol. 18, No. 2, Article 22. Publication date: January 2024.
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distribution and target distribution. To exploit the structural information underlying the data,

some GCNs based clustering methods were proposed [5, 23, 33, 36, 46, 48]. [23] proposed using

the GAE and VGAE to learn the graph-structured data via iteratively aggregating neighborhood

representations around each central node. [48] provided DAEGC to encode the topological struc-

ture and node contents by introducing the attentional neighbor-wise fusion strategy on the GAE

framework. ARGA adversarially regularized GAE further improved the clustering performance by

introducing an adversarial learning scheme to learn the graph embedding [33]. SDCN [5] designed

a delivery operator and a dual self-supervised mechanism. [36] proposed an attention-based deep

graph clustering method by considering the dynamic fusion strategy and the multi-scale features

fusion. DFCN [46] designed a dynamic cross-modality fusion mechanism and a triplet self-

supervised strategy. Although these methods improve the clustering performance, they merely

concern the design of the backbone but ignore the heterogeneity of clusters in the clustering stage.

3 PRELIMINARIES

In this section, we first present some preliminary graph notations about the graph data. Then

we formulate the specific problem setting of graph clustering. Finally, we simply introduce the

framework of our proposed approach.

3.1 Notations

Given a graph G = (V,E,X ,A), V = {v1,v2,v3, . . . ,vN } is a set of N nodes in the graph and

E ⊆ V × V is the edge set of graph. Each edge ei j in E describes the connection between two

different nodesvi andvj , and hence ei j can be represented as (vi ,vj ), wherevi ,vj ∈ V and nodes

vi andvj are adjacent nodes.A ∈ {0, 1}N×N is the adjacency matrix of a graph, and each element in

the adjacency matrix A represents whether or not two nodes are connected in a graph. We denote

by an N × N matrix A for the adjacency matrix of a graph G. Namely, for ∀vi ,vj ∈ V , Ai j = 1

if there exists an edge between node vi and node vj , otherwise, Ai j = 0. We assume there are

self-loops in the graph, thus Aii = 1 for all i . In addition, X = [x1,x2,x3, . . . ,xN ]T is the attribute

features of nodes where xi ∈ RF and F is the total number of node attributes. Given a vector x , we

write ‖x ‖2 as the its Euclidean norm. Given a subset S ⊆ V , we write |S | as the number of nodes in S .

3.2 Problem Statement

In line with the aforementioned graph notations, given a specific graph G = (V,E,X ,A), the

graph clustering methods focus on mapping each nodevi ∈ V to the low-dimensional embedding

hi ∈ Rd based on its original attributes xi ∈ RF and the graph structure, and separates the node

set V into K disjoint subsets V = V1
⋃V2 · · ·

⋃VK such that each Vk is corresponding to a

specific semantic. The main goal of graph embedding is to encode nodes into low-dimensional

space while preserving the information of graph structure and node attributes, thus the node

similarity in the latent embedded space can approximate the node similarity in the original

high-dimensional graph. Then we assume H = [h1,h2,h3, . . . ,hN ]T is the latent embedding

which can preserve the graph structure properties and node pairwise similarity in the embedded

latent space facilitates an approximation of the corresponding node similarity in the original

space. And we denote the set c = [c1, c2, c3 . . . , cN ] as the clustering assignment for all nodes,

each element ci can indicate the label for node vi . We will simultaneously learn the embedding H
and clustering assignments c in this paper.

3.3 Framework Overview

To begin with, we assume that each node is drawn from one of the K vMF distributions and each

node belongs to a specific cluster in the graph G. Based on this assumption, we propose a deep

ACM Transactions on the Web, Vol. 18, No. 2, Article 22. Publication date: January 2024.
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Fig. 2. Framework Overview of Deep Adaptive Graph Clustering via von Mises-Fisher Distributions. The

representations of graph attention auto-encoder and parameters of the clusters based on vMF distributions

can be updated with an efficient EM-like approach.

adaptive graph clustering model, the framework is illustrated in Figure 2. Specifically, we develop a

graph attention auto-encoder as a backbone that can effectively integrate both the graph structure

information and node attribute information to learn the hidden representations for all nodes. Then

we use an adaptive model to fit the hidden representations via vMF distributions. During iteration,

we adopt an efficient EM-like updating approach, which alternatively updates the representations

of graph attention auto-encoder and parameters of the clusters based on vMF distributions. More

details are given in the following section.

4 METHOD

According to the mathematical problem setting of graph clustering in Section 3, we will introduce

the components of the deep adaptive graph clustering approach via Von Mises-Fisher. First, we

present the graph attention auto-encoder and give the reconstruction loss of attributes and struc-

ture. Then we propose the deep adaptive graph clustering model based vMF distribution. Finally,

we show the details of the parameter updating process with an efficient EM-like approach.

4.1 Graph Attention Auto-encoder

Graph attention auto-encoder includes an encoder that maps nodes from the attribute space to the

latent space and a decoder performing an inverse mapping. For the sake of neat notation, we denote

z (l )
i as the output representation of nodevi in the l-th feed-forward layer, then the attribute feature

vector xi = z (0)
i , hi = z (L)

i /‖zi ‖2 is the hidden representation of node vi on the unit hypersphere

and x̂i = z (2L)
i is the reconstructed representation.

To represent both graph structure information and node attribute information in a unified frame-

work, we consider graph attention network (GATs) [47] as the encoder, i.e.,

z (l+1)
i = σ ��

�

∑

j ∈Ni

α (l )
i j W

(l )z (l )
j
��
�

(1)

ACM Transactions on the Web, Vol. 18, No. 2, Article 22. Publication date: January 2024.
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where Ni denotes the neighbors of node vi , σ is a non-linear function, and α (l )
i j is the attention

coefficient that indicates the importance of neighbor nodevj to nodevi , which can be computed by:

α (l )
i j =

exp
(
LeakyReLU(a (l )T [W (l )z (l )

i | |W (l )z (l )
j ])
)

∑
k ∈Ni

exp
(
LeakyReLU(a (l )T [W (l )z (l )

i | |W (l )z (l )
k

])
) (2)

where a (l ) is the parametric weight vector, | | is the symbol of concatenation operation, and (·)T

denotes transpose operation.

4.2 Attributes and Structure Reconstruction

In this work, our decoder is a combination of the inner product layer and the encoder symmetric

GATs layers following the same propagation style defined in the Equation (1). Attributes recon-

struction loss is the basic paradigm of auto-encoder, which minimizes the difference between the

input and output of auto-encoder with the following formula:

LX =
1

N

N∑

i=1

‖xi − x̂i ‖22 (3)

Different from the previous works [33, 46, 48] about the structure reconstruction loss of graph link

structure A, we minimize the structure reconstruction loss by measuring the difference between

Â and pairwise similarity matrix S :

LA =
1

N 2

N∑

i, j=1

(Âi j − Si j )
2 (4)

where Si j =
xi

T x j

‖xi ‖2 ‖x j ‖2 is the cosine similarity of attribute features between node vi and node vj ,

Âi j = hi
Thj is the cosine similarity of embeddings between node vi and node vj . The final recon-

struction loss is a hybrid of the content reconstruction loss and the structure reconstruction loss:

Lr = LA + LX (5)

4.3 Adaptive Model based vMF

In this paper, we assume the nodes are drawn from the K von Mises-Fisher (vMF) distributions.

The von Mises-Fisher (vMF) distribution defines a probability density over points on a unit-sphere.

It is parameterized by two parameters, mean parameters μ and concentration parameter κ. μ de-

fines the mean value in the distribution andκ determines the spread of the probability mass around

the mean. Specifically, to efficiently capture the variable inter-cluster dispersion and intra-class

compactness, we assume the node embeddings H can be drawn from K vMF distributions adeptly.

For each cluster k ∈ {1, . . . ,K }, we defined the cluster inherent parameters ρk = (μk ,κk ), where

μk is the centroid and κk is the magnitude parameter. Thus, μk defines the mean embedding in the

cluster k and κk determines the spread of the probability mass around the cluster centroid. Then,

if any h belongs to cluster k , the probability density function for node representation h ∈ Rd is

given by following:

f (h |ρk ) = Cd (κk ) exp(κkμ
T
kh), (6)

where ‖μk ‖ = 1, κk ≥ 0 and Cd (κk ) is the normalizer which is expressed as:

Cd (κk ) =
κ

d
2 − 1

(2π )
d
2 I d

2 −1 (κ)
, (7)

ACM Transactions on the Web, Vol. 18, No. 2, Article 22. Publication date: January 2024.
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where I is the modified Bessel function of the first kind. Then given node embeddings H , cluster

assignment c and cluster inherent parameters ρ = (ρ1, . . . , ρK ), the likelihood function can be

written as:

P (H |c, ρ) = ΠN
i=1Cd (κci

) exp(κci
μT

ci
hi ). (8)

Since H , c , and ρ are all unknown, it is impossible to infer all of them at one time. Here we

will adopt an EM-like updating approach, i.e., alternatively updating H , c and ρ by maximizing

P (H |c, ρ ) and P (c, ρ |H ), respectively. By maximizing P (c, ρ |H ), it can increase the inter-cluster

separability, while it can improve the intra-cluster compactness by maximizing P (H |c, ρ).

4.4 Cluster Assignment

Denote t ∈ {I0, I1, I2, . . . , IM } as the iteration index, when given the t-th updated latent embedding

H (t ) , clustering assignment c (t ) and cluster inherent parameters ρ (t ) , we can calculate π (t )
k
=

|c (t )=k |
N

, where π (t )
k

can be viewed as the proportion of samples for cluster k . Intuitively, we can

calculate the assignment probability matrix P (t ) by:

P (t )
ik
= p (ci = k |h (t )

i ; ρ (t )
k

)

=
π (t )

k
f (h (t )

i |ρ
(t )
k

)
∑K

k ′=1 π
(t )
k ′

f (h (t )
i |ρ

(t )
k ′

)

(9)

where P (t )
ik

is the probability of i-th node belongs to k-th cluster. For a typical classification prob-

lem with deterministic labels, the learning goal can be summarized as the minimization of the

average cross-entropy loss. However, node labels are not accessible in unsupervised clustering.

Considering that pseudo labels are relaxed to be the posterior probability matrix P (t ) , where each

row represents the cluster assignment probabilities of one node with the schema defined in the

Equation (9). And there exist degenerate solutions by assigning all data points to a single (arbi-

trary) label. To avoid this extreme case, we add the constraints that the label distribution must be

consistent with the mixing proportions. Therefore, the updated posterior probability matrix Q (t )

should satisfy the following optimization problem:

min
Q (t )

−Q (t ) logP (t ) − 1

λ
H(Q (t ) )

s.t. Q (t ) ∈ RN×C
+ ,

Q (t )
1C = 1N and Q (t )T

1N = Nπ (t )

(10)

where H is the entropy function and λ is the smoothness parameter that can control the equilibrium

of clusters. Apparently, the existence and unicity of the solution are guaranteed by Equation (10).

Furthermore, Sinkhorn’s theorem [42] states that there exist diagonal matrices diag(u) and diag(v )

such that diag(u)P (t )λdiag(v ) has i-th row sum 1 and c-th column sum Nπ (t )
c and can be computed

with Sinkhorn’s fixed point iteration. In addition, the posterior probability updating process can

be shown in Algorithm 1.

4.5 E-step: Updating c and ρ

Given the latent embedding H (t ) and the assignment probability matrixQ (t ) of iteration t , we can

update c and ρ by

maximize P (c, ρ |H (t ) ).
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ALGORITHM 1: The posterior probability updating algorithm

Require: The posterior probability P (t ) ;

Row sum constraint 1N ;

Column sum constraint Nπ (t ) ;

Ensure: The updated posterior probability matrix Q (t ) .

1: Initialize u = 1N andv = 1C .

2: loop

3: u = IN (P (t )λv )−1;

4: v = diag(Nπ (t ) ) (P (t )λT
u)−1;

5: end loop

6: Q (t ) = diag(u)P (t )λdiag(v ).

Updating cluster assignment c. Similar to the EM algorithm for the Gaussian mixture model,

we can update c simply by

c (t+1)
i = arg max

k
Q (t )

ik
(11)

Updating cluster center μ. Generally, the sum of distances between data points and the corre-

sponding center is regarded as the objective to measure whether centers are preferable. We aim to

find the optimal cluster centers closed to associating data points, i.e.,

min
{μk }K1

K∑

k=1

N∑

i=1

Q (t )
ik
‖h (t )

i − μk ‖22

s.t. ‖μk ‖2 = 1 k = 1, 2, . . . ,K

(12)

If Q (t )
ik

is binary and follows the hard-assignment scheme, the solution of the above optimization

problem is the centroids estimation in spherical k-means [10]. If Q (t )
ik

follows the soft-assignment

scheme, with the gradient descent method, the updated center can be computed by

μ (t+1)
k

=
μ (t )

k
+ η · ∇μ (t )

k

‖μ (t )
k
+ η · ∇μ (t )

k
‖2

(13)

∇μ (t )
k
=

N∑

i=1

Q (t )
ik

(h (t )
i − μ

(t )
k

) (14)

where η is the updating rate. Note that when we set updating rate as η = 1/
∑N

i=1 Q
(t )
ik

, the updating

scheme degenerates to the centroids updating method in [3]. However, the node embeddings keep

changing during the learning process, it is unsuitable to update the center so quickly. Note that the

updating strategy of Equation (14) would cause different centers which collapse to one data point,

which is harmful to the node embedding learning. Besides, from the Equation (14), we can observe

that if node vi has a high posterior probability on the k-th cluster, then it has a strong attraction

to pull μ (t )
k

with displacement distance (η · Q (t )
ik

; Θ(t ) ) (h (t )
i − μ (t )

k
). Therefore, for each cluster, we

encourage the center to move close to the data points with the high posterior probabilities and

away from the data points with the low posterior probabilities, i.e.,

∇μ (t )
k
=
∑

Q
(t )
ik
≥τ

(t )
k

Q (t )
ik

(h (t )
i − μ

(t )
k

)

−
∑

Q
(t )
ik

<τ
(t )
k

Q (t )
ik

(h (t )
i − μ

(t )
k

)
(15)
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where τ (t )
k

is the Nπ (t )
k

-largest probability in the k-th column of probability matrix Q (t ) .

Updating cluster cohesion degree κ . As for the concentration parameter, the larger value of

κ (t )
k

implies a higher cohesion degree of the cluster. In particular, when κ (t )
k
= 0, f (h (t )

i |μ
(t )
k
,κ (t )

k
)

reduces to the uniform density, and as κ (t )
k
→ ∞, f (h (t )

i |μ
(t )
k
,κ (t )

k
) degenerated to one-point dis-

tribution. Additionally, inspired by the concentration parameter estimation in [3], we utilize the

reasonable updating formulation as follows

κ (t+1)
k

=
Ad (κ (t )

k
)d −Ad (κ (t )

k
)3

1 −Ad (κ (t )
k

)2
(16)

where Ad (κ (t )
k

) =
Id/2 (κ

(t )
k

)

Id/2−1 (κ
(t )
k

)
.

4.6 M-step: Updating H

Given cluster assignment c (t+1) and cluster inherent parameters ρ (t+1) , we will update H by

maximize P (H |c (t+1), ρ (t+1) ).

It is equivalent to minimize the following loss function:

Lp = −
1

N

N∑

i=1

κ
c

(t+1)
i

μT

c
(t+1)
i

h (17)

By including the construction loss, the overall loss function for updating H

L = Lr + γLp = LA + LX + γLp (18)

where γ is a hyper-parameter that balances the weight of reconstruction loss and prediction loss.

Then we can obtain H (t+1) by SGD algorithm.

4.7 Overall Algorithm

In practice, we first pre-train the graph attention auto-encoder in a reconstruction task, then

conduct K-means on the node embeddings to initialize the clustering parameters. After that,

to learn more discriminative node representations, we leverage an alternate learning strategy.

When fixing the node embeddings, we update the clustering parameters to adjust the deflected

mixture distribution. Given the current clustering parameters, we update the parameters of

graph attention auto-encoder by minimizing the overall loss L. This process enables the learned

node embeddings close to their associating cluster centroids. The details are summarized in the

Algorithm 2.

4.8 Complexity Analysis

Along the proposed model DAGC, we denote the dimensions of layers in graph attention

auto-encoder as d1,d2, . . . ,d2L , then the time complexity of graph attention auto-encoder can be

expressed as O (N (d1F + d2d1 + · · · + d2Ld2L−1) + |E |(d1 + d2 + · · · + d2L−1)), where F is the total

number of node attributes. And the time complexity of the mixture parameter learning process

is O (NKd ), where N is the total number of nodes, K is the number of divided clusters, and d
is the dimension of latent embedding. Since attribute number F , dimensions of auto-encoder

d1,d2, . . . ,d2L , and parameters K ,d can be regarded as constants, the overall time complexity is

linearly related to the numbers of nodes and edges.
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ALGORITHM 2: Deep Adaptive Graph Clustering via vMF Distributions

Require: Attribute feature matrix X ;

Graph adjacent matrix A;

Number of clusters K ;

The number of iteration M .

Ensure: Clustering results c = {ci }Ni=1 .

1: Pre-train graph attention auto-encoder by minimizing the final loss as shown in Equation (5).

2: Conduct K-Means on the node embeddings learned by the pre-trained auto-encoder.

3: Initialize cluster centers {μk }Kk=1
with K-Means.

4: Initialize clustering assignment {ck }Kk=1
by the hard assignment and initialize the proportion

of clusters {πk }Kk=1
.

5: Initialize concentration parameter {κk }Kk=1
by the average sample-based parameters.

6: for iteration from 1 to M do

7: Generate node embedding H (t ) ;

8: Compute the posterior probability matrix P (t ) ;

9: Compute the updated posterior probability matrix Q (t ) through Sinkhorn’s fixed point iter-

ation;

10: update c (t+1) by the Equation (11);

11: update μ (t+1) by the Equation (13);

12: update κ (t+1) by the Equation (16);

13: update the parameters of graph attention auto-encoder by minimizing Equation (18)

14: end for

15: Return the clustering results c (M ) .

5 EXPERIMENT

In order to show the effectiveness of our proposed model. In this section, we first introduce the

four public benchmark datasets widely used in graph clustering tasks. Then we show the compared

baselines and the evaluation metrics used in this paper. In addition, we present the implementation

details and show the performance of the proposed model. Finally, we also conducted some addi-

tional experiments to show the effectiveness of our proposed model including an ablation study,

visualization, parameter sensitivity, and efficiency analysis.

5.1 Datasets

Our proposed DAGC is evaluated on four public benchmark datasets including multiple types

of graphs. The statistical information of these datasets is provided in Table 1 and the detailed

descriptions are the followings:

• ACM1 [53]: This is a paper network from the ACM dataset. There is an edge between two

papers if they are written by the same author. Paper features are the bag-of-words of the

keywords. We select papers published in KDD, SIGMOD, SIGCOMM, and MobiCOMM and

divide the papers into three classes (database, wireless communication, data mining) by their

research area.

• DBLP2 [53]: This is an author network from the DBLP dataset. There is an edge between the

two authors if they are the co-author relationship. The authors are divided into four areas:

1https://dl.acm.org/.
2https://dblp.uni-trier.de.
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Table 1. The Statistics of the Datasets

Dataset Network Type Nodes Classes Dimension

ACM Paper 3025 3 1870

DBLP Author 4058 4 334

Citeseer Citation 3327 6 3703

Amazon Item 7650 8 745

database, data mining, machine learning, and information retrieval. We label each author’s

research area according to the conferences they submitted. Author features are the elements

of a bag-of-words represented by keywords.

• Citeseer3 [22]: This is a citation network that contains sparse bag-of-words feature vectors

for each document, and a list of citation links between documents. The labels contain six

areas: agents, artificial intelligence, database, information retrieval, machine language, and

HCI.

• Amazon4 [41]: This is an item co-purchased network, where nodes represent goods, edges

indicate that two goods are frequently bought together, node features are bag-of-words en-

coded product reviews, and class labels are given by the product category.

5.2 Baselines

We compare the performance of our proposed method with seven baseline methods:

• K-means [16]: A classical clustering method based on the raw data.

• AE [18]: It performs K-means on the representations learned by auto-encoder.

• DEC [55]: It employs a clustering loss to supervise the process of clustering with the auto-

encoder backbone.

• DAEGC5 [48]: It uses an attention network to learn the node representations and employs

a clustering loss to supervise the process of graph clustering.

• SDCN6 [5]: It is representative of hybrid methods which take advantage of both AE and

GCN modules for clustering.

• AGCN7 [36]: It utilizes the attention-based method by considering the dynamic fusion strat-

egy and the multi-scale features fusion.

• DFCN8 [46]: It designs a dynamic cross-modality fusion mechanism and a triplet self-

supervised strategy.

5.3 Metrics

To show the effectiveness of the proposed method, we employ four popular metrics [54]. For each

metric, the larger value implies a better clustering result. The best map between cluster ID and

class ID is found by using the Kuhn-Munkres algorithm [28]. The four specific evaluation metrics

are as follows:

• ACC: Accuracy shows the quality between the predicted labels and the true labels. After

achieving the best map between the class ID and the cluster ID by using the Kuhn-Munkres

3https://citeseerx.ist.psu.edu/index.
4https://www.amazon.com/.
5https://github.com/kouyongqi/DAEGC.
6https://github.com/bdy9527/SDCN.
7https://github.com/ZhihaoPENG-CityU/AGCN.
8https://github.com/WxTu/DFCN.
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Table 2. Clustering Results on Four Benchmark Datasets (mean±std)

Dataset Metric K-Means AE DEC DAEGC SDCN AGCN DFCN DAGC

ACM

ACC 67.31±0.71 81.83±0.08 84.33±0.76 86.94±2.83 90.45±0.18 90.59±0.15 90.84±0.15 92.02±0.12

NMI 32.44±0.46 49.30±0.16 54.54±1.51 56.18±4.15 68.31±0.25 68.38±0.45 69.39±0.36 71.68±0.11

ARI 30.60±0.69 54.64±0.16 60.64±1.87 59.35±3.89 73.91±0.40 74.20±0.38 74.93±0.37 77.77±0.14

F1 67.57±0.74 82.01±0.08 84.51±0.74 87.07±2.79 90.42±0.19 90.58±0.17 90.78±0.16 92.04±0.12

DBLP

ACC 38.65±0.65 51.43±0.35 58.16±0.56 62.05±0.48 68.05±1.81 73.26±0.37 76.02±0.77 81.46±0.19

NMI 11.45±0.38 25.40±0.16 29.51±0.28 32.49±0.45 39.50±1.34 39.68±0.42 43.65±1.01 52.51±0.41

ARI 6.97±0.39 12.21±0.43 23.92±0.39 21.03±0.52 39.15±2.01 42.49±0.31 46.95±1.51 58.28±0.36

F1 31.92±0.27 52.53±0.36 59.38±0.51 61.75±0.67 67.71±1.51 72.80±0.56 75.74±0.75 80.10±0.21

Citeseer

ACC 39.32±3.17 57.08±0.13 55.89±0.20 64.54±1.39 65.96±0.31 68.79±0.23 69.54±0.15 70.60±0.06

NMI 16.94±3.22 27.64±0.08 28.34±0.30 36.41±0.86 38.71±0.32 41.54±0.30 43.93±0.22 44.85±0.19

ARI 13.43±3.02 29.31±0.14 28.12±0.36 37.78±1.24 40.17±0.43 43.79±0.31 45.45±0.26 47.05±0.18

F1 36.08±3.53 53.80±0.11 52.62±0.17 62.20±1.32 63.62±0.24 62.37±0.21 64.27±0.20 65.87±0.06

Amazon

ACC 43.24±4.37 59.72±3.87 59.84±0.24 71.56±3.34 75.51±1.92 76.80±0.40 79.13±0.90 84.95±0.08

NMI 30.74±4.33 51.89±3.70 54.67±0.30 60.68±2.58 63.26±2.05 63.17±0.72 71.12±0.98 74.05±0.17

ARI 17.78±2.82 40.47±3.06 42.21±0.25 52.05±3.76 54.95±2.23 55.67±0.84 62.41±1.58 69.43±0.20

F1 30.34±7.45 47.76±6.04 47.72±2.87 67.55±3.39 69.44±1.34 68.32±0.62 72.92±0.81 83.17±0.09

algorithm, clustering accuracy can be computed by ACC =
∑N

n=1 In
N

, where In is an indicator

function, In = 1 when the predicted label and the true label are the same, and In = 0

otherwise.

• NMI: Normalized Mutual Information, a symmetric index computing the similarity be-

tween two clustering solutions based on the confusion matrix (also referred to as the contin-

gency matrix).

• ARI: Adjusted Rand Index, ARI shows the ratio of the number of node pairs similarly

classified in both solutions, divided by the total number of pairs. It compares two clusterings

with the number of cluster membership agreements and disarrangements.

• F1: F1 score can combine the precision and recall into a single metric by taking their

harmonic mean with equation F1 = 2∗Pr ecision∗Recall
Pr ecision+Recall

, where Precision = T P
T P+F P

and

Recall = T P
T P+F N

. Similar to ACC, the macro F1-score can be computed after achieving the

best map between the class ID and the cluster ID with the Kuhn-Munkres algorithm.

5.4 Implementation Details

In the experiments, we implement our proposed model based on PyTorch. For baseline methods,

we report the results listed in their papers. The embedding size d is fixed to 16 for all datasets,

which is suitable for the model to learn strong representations [5, 48]. We optimize DAGC with

Adam [21] optimizer having a learning rate 0.005 for all datasets, weight decay 0.005 for ACM

and Citeseer, 5e−4 for DBLP and Amazon. And the number of epochs is fixed to 100. In terms of

updating rate of centroid η, we set it as 1e−3 for ACM, 5e−4 for DBLP and Citeseer, 1e−5 for Amazon.

As two introduced hyper-parameters loss balance coefficient and smoothness parameter, we apply

grid search, and {γ , λ} are set to {0.5, 10} for ACM, {1, 3} for DBLP, {0.7, 5} for Citeseer and {1, 5}
for Amazon.

5.5 Overall Clustering Performance

The clustering results of DAGC are averaged over 10 runs with random seeds, and we report the

mean values and the corresponding standard deviations. The overall results are shown in Table 2.

We have the following observations:

• For each metric, our method DAGC achieves the best results in all four datasets. In partic-

ular, compared with the best results of the baselines, our approach achieves a significant
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Fig. 3. Correlation demonstration of cluster proportion distribution between ground truth and DAGC.

improvement of 4.35% on ACC, 7.45% on NMI, 10.65% on ARI, and 5.95% on F1 score, av-

eragely. Different from other methods such as DFCN and AGCN which focus on fusing the

attributes and graph structure, DAGC pays more attention to the clustering process. It uses

a deep adaptive model to handle the latent embedding and adopts an EM-like updating ap-

proach, which can simultaneously improve the intra-cluster compactness and inter-cluster

heterogeneity. This is why DAGC can achieve better performance than state-of-the-art

baselines.

• For two imbalanced datasets DBLP and Amazon, DAGC obtains a remarkable improvement

of 9.03% on ACC, 12.21% on NMI, 17.69% on ARI, and 9.89% on F1, averagely. Existing deep

graph clustering methods are incompetent in dealing with imbalanced datasets and intrin-

sically tend to produce balanced clusters. On the contrary, DAGC takes cluster inherent

parameters (both cluster size and intra-cluster variance) into consideration and can auto-

matically estimate the latent parameters. As shown in Figure 3, the estimated cluster size

by DAGC is highly consistent with the ground-truth, the performance shows our model can

capture the inter-cluster dispersion and intra-compactness even on imbalanced datasets, it

also demonstrates the superiority of DAGC.

5.6 Ablation Study

We conduct ablation studies to evaluate the contributions of the centroid updating strategy, mix-

ing proportion, and concentration parameter. Particularly, we introduce the following model vari-

ants: DAGC-h takes hard-assignment scheme and updates centroids with the means of data points;

DAGC-s utilizes a soft-assignment strategy and replaces the binary patterns with the posterior

probability; and DAGC-t considers the Student’s t-distribution given in DEC to compute the poste-

rior probability. DAGC-π sets mixing proportion πc = 1/C; DAGC-κ regards cohesion coefficient

κc as the inverse of the variance of all data points.
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Table 3. Ablation Study on Centroid Updating Strategy

Dataset Metric DAGC-h DAGC-s DAGC

ACM

ACC 90.44±0.12 90.98±0.11 92.02±0.12

NMI 68.32±0.19 68.84±0.16 71.68±0.11

ARI 74.87±0.14 75.01±0.13 77.77±0.12

F1 90.94±0.09 91.02±0.12 92.04±0.12

DBLP

ACC 79.64±0.16 80.56±0.24 81.46±0.19

NMI 50.47±0.34 50.70±0.28 52.51±0.41

ARI 54.79±0.25 55.96±0.47 58.28±0.21

F1 78.07±0.49 79.69±0.27 80.10±0.21

Citeseer

ACC 68.69±0.09 69.36±0.05 70.06±0.06

NMI 42.66±0.16 43.48±0.18 44.85±0.19

ARI 44.41±0.13 45.52±0.19 47.05±0.18

F1 64.51±0.07 64.57±0.04 65.87±0.06

Amazon

ACC 80.74±0.14 82.77±0.13 84.95±0.08

NMI 70.28±0.24 72.32±0.16 74.05±0.17

ARI 62.44±0.23 65.43±0.11 69.43±0.20

F1 79.80±0.18 81.80±0.10 83.17±0.09

Table 4. Ablation Study on Mixing Proportion and Cohesion Degree

Dataset Metric DAGC-t DAGC-π DAGC-κ DAGC

ACM

ACC 90.94±0.15 91.09±0.05 91.44±0.18 92.02±0.12

NMI 68.65±0.47 69.49±0.29 70.30±0.58 71.68±0.11

ARI 74.93±0.38 75.33±0.14 76.28±0.47 77.77±0.12

F1 90.98±0.15 91.12±0.05 91.48±0.17 92.04±0.12

DBLP

ACC 79.67±0.21 81.13±0.16 80.73±0.33 81.46±0.19

NMI 50.20±0.23 51.82±0.19 51.07±0.50 52.51±0.41

ARI 53.85±0.31 57.03±0.32 56.56±0.65 58.28±0.21

F1 79.29±0.24 79.65±0.15 79.71±0.38 80.10±0.21

Citeseer

ACC 66.60±0.07 67.22±0.08 69.12±0.09 70.06±0.06

NMI 41.33±0.08 41.83±0.19 43.30±0.09 44.85±0.19

ARI 42.04±0.11 42.84±0.15 45.76±0.12 47.05±0.18

F1 63.96±0.08 64.28±0.08 65.28±0.11 65.87±0.06

Amazon

ACC 78.61±0.39 80.31±0.35 82.85±0.15 84.95±0.08

NMI 68.32±0.30 69.98±0.12 72.15±0.10 74.05±0.17

ARI 58.23±0.35 61.12±0.89 65.20±0.17 69.43±0.20

F1 77.45±0.48 79.24±0.55 81.94±0.11 83.17±0.09

Table 4 and 3 show the following observations :

• First, compared to DAGC-h, DAGC-s improves the performances due to the fact that the

soft-assignment strategy considers the otherness with the probability if two data points are

assigned to the same cluster;

• Second, DAGC has acceptable improvement on DAGC-s, which indicates that our centroid

updating strategy can estimate the preferable centroids via pushing cluster centroids away

from low confident points.
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Fig. 4. 2D visualization on four benchmark datasets. Black circles indicate the cluster centroids.

• Finally, Table 4 shows, that both DAGC-π and DAGC-κ jointly considering cluster size and

cluster cohesion outperform DAGC-t based on the simple distance measure, but they are not

as good as DAGC in comparison.

Therefore, it is essential to consider the cluster inherent parameters for learning the node

embeddings.

5.7 Visualization

In order to show the superiority of the representation obtained by our proposed method, PCA is uti-

lized to visualize the feature space. The visualizations on four datasets are given in Figure 4. From

up to down, they are the space of raw data, initialization embeddings, and learned embeddings

(epoch 10 and epoch 100) of DAGC, respectively. We can see that the representations obtained

by DAGC are discriminative, and each cluster is compact. The discriminate cluster distributions

indicate the clusters could be distinguished clearly in the feature space.

5.8 Parameter Sensitivity

In order to demonstrate the robustness of the proposed model, we further study the influence of

hyper-parameters including loss balance coefficient γ and smoothness parameter λ. Figure 5 and

Figure 6 illustrate the effect of γ and λ varying from 0.1 to 10 and 1 to 50, respectively. Specifically,

for loss balance coefficient γ , our method performs stably over a wide range of its values as shown
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Fig. 5. Performance of DAGC on four benchmark datasets w.r.t. different loss balance coefficient γ .

Table 5. Running Time of the Proposed Model DAGC and the

Baseline Model DFCN (mean±std, Time Unit: Second)

Dataset ACM DBLP Citeseer Amazon

DFCN 18.50±0.22 29.51±0.27 37.52±0.27 68.54±0.56

DAGC 18.42±0.21 25.78±0.38 26.87±0.31 65.67±0.45

in Figure 5. And since λ is the smoothness parameter controlling the equilibrium of clusters and the

dataset Amazon is more imbalanced than other datasets. Thus, the parameter λ is more sensitive

on the dataset Amazon, and there is a small peak in the Amazon data set as shown in Figure 6. In

other cases, the performance is relatively stable.

5.9 Efficiency Analysis

To show the efficiency of the proposed method, we compare the running times of the proposed

model DAGC and one representative baseline model DFCN [46]. Specifically, the unit of running

time we used in this paper is seconds. Table 5 shows that the running times of the models have

the same order of magnitude. In addition, the proposed model DAGC requires less running time

compared with DFCN.
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Fig. 6. Performance of DAGC on four benchmark datasets w.r.t. different smoothness parameter λ.

6 CONCLUSION

In this paper, we study the deep graph clustering problem. To address the issue that the density of

different clusters can be quite different, we proposed a new method named deep adaptive graph

clustering via vMF distributions. Specifically, we model the cluster distribution via considering the

cluster inherent properties to better evaluate the distances between candidates and centroids by

assuming the nodes can be drawn from vMF distributions. Then, we design an EM-like clustering

parameters updating strategy to adjust the mixture distribution guiding the embedding learning.

Finally, extensive experiments on four benchmark datasets have been conducted to demonstrate

the proposed DAGC consistently outperforms the state-of-the-art methods, especially on imbal-

anced datasets. In the future, we will develop our method on large-scale or multi-relational graph

datasets for the clustering task.
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