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Abstract
The vast majority of surface water resources in the semi-arid western United States start as winter
snowpack. Solar radiation is a primary driver of snowmelt, making snowpack water resources
especially sensitive to even small increases in concentrations of light absorbing particles such as
mineral dust and combustion-related black carbon (BC). Here we show, using fresh snow
measurements and snowpack modeling at 51 widely distributed sites in the Rocky Mountain
region, that BC dominated impurity-driven radiative forcing in 2018. BC contributed three times
more radiative forcing on average than dust, and up to 17 times more at individual locations.
Evaluation of 2015–2018 archived samples from most of the same sites yielded similar results.
These findings, together with long-term observations of atmospheric concentrations and model
studies, indicate that BC rather than dust has dominated radiative forcing by light absorbing
impurities on snow for decades, indicating that mitigation strategies to reduce radiative forcing on
headwater snow-water resources would need to focus on reducing winter and spring BC emissions.

1. Introduction

Snowmelt is the primary source of surface water
in the semi-arid western United States [1], with
high-elevation mountain snowpacks serving as cru-
cial winter reservoirs that slowly release water to
streams and rivers during the growing season in late
spring and summer [2, 3]. Pristine seasonal snow is
highly reflective [4–6] but even small amounts of light
absorbing particles (LAP) deposited on snow darken
the surface, thereby lowering albedo and increasing
absorbed solar energy [7–10]. This positive radiat-
ive forcing at the snow surface drives earlier and
faster snowmelt [9, 11–13] particularly as LAP con-
centrate on the snowpack surface in spring [14],
thereby reducing water storage and advancing the
timing of streamflow [15]. Enhanced snowmelt res-
ults in earlier snow disappearance, contributing to
atmospheric warming because of the ‘snow albedo
feedback’ [6, 7, 10, 16, 17] while extending periods
of summer forest growth and late-summer drought.

Together, these effects exacerbate late season soil
moisture deficits [18] and contribute to increasing
forest fire activity [19, 20].

LAP includemineral dust from desert regions and
agricultural areas [14, 21], as well as black carbon
(BC) from fires (wild [22–25], domestic [26]), and
fossil-fuel combustion (coal, diesel) [14, 27]. Organic
debris from nearby forests [28–30], together with
BC and burned woody debris from standing burned
forests [31–33], also contribute to LAP concentra-
tions in snow, although effects are largely local. Min-
eral dust concentrations generally are much higher
than BC concentrations in seasonal snow [34], but
BC is orders of magnitude more effective at absorb-
ing solar energy in the visible wavelengths (0.38–
0.7 nm) [10]. Recent understanding of BC and dust
concentrations in western snowpacks are based on
few and spatially limited snow measurements often
from areas of relatively high atmospheric dustiness
[27, 34, 35]. Moreover, BC and dust rarely have been
measured concurrently in western seasonal snow so
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climate model simulations of the effects of LAP in
snow on radiative forcing, snowmelt, and hydrocli-
mate [36, 37] generally have been evaluated against
sparse measurements of either dust or BC snow con-
centrations, but seldom both [11]. To reduce snow
radiative forcing and preserve valuable snow-water
resources in the semi-aridwesternUnited States, find-
ings from these studies have been used to promote
reductions in activities that lead to increased dust
emissions including over-grazing and off-road vehicle
use in sensitive areas such as the Colorado Plateau
[21]. The objective of our research was to quantify the
broad scale spatial variability of radiative forcing on
seasonal snow by LAP and evaluate the relative con-
tribution of BC and dust-related radiative forcing on
seasonal snow across the Intermountain West.

2. Methods

To quantify the radiative forcing due to LAP in sea-
sonal snow, we used co-registered measurements of
both BC and mineral dust in snow samples collected
from more than 50 widely distributed Rocky Moun-
tain sites each year from 2015 to 2018, together with
snowpack radiative transfer modeling (figure 1).

2.1. Measuring light absorbing particles in snow
As part of the ongoing U.S. Geological Survey
Rocky Mountain Snowpack Chemistry project
(https://co.water.usgs.gov/projects/RM_snowpack),
column-integrated snow samples were collected
between 2015 and 2018 at more than 50 alpine
and sub-alpine sampling sites located between
36◦ N and 49◦ N latitude, and between 115◦ W
and 105◦ W longitude (table S1 available online at
stacks.iop.org/ERL/17/054045/mmedia), with the
number of sites slightly varying from year to year.
Near surface samples of the upper 30 cm and sur-
face samples also were collected in 2018. All snow
samples were collected using sterile techniques and as
near as possible to peak snowwater equivalent (SWE)
accumulation. At each location, snowpack paramet-
ers including snow density, snow depth, and SWE
were collected, and data are available in the U.S. Geo-
logical Survey National Water Information System
(https://doi.org/10.5066/F7P55KJN). Snowmelt pro-
cessing for 2018 and LAP analyses for all years were
subsequently completed at the Desert Research Insti-
tute Ice Core Laboratory. Samples collected in 2018
were kept frozen until immediately prior to analysis
in the lab. Samples from 2015 to 2017, as well as a
split of the 2018 samples, were melted, refrozen, and
archived until 2018 when they were melted immedi-
ately prior to analysis.

We evaluated LAP concentrations in the snow
samples using three primary measurements: (a)
BC mass concentrations using the well-established
single-particle incandescence method originally
developed for ice-core analyses [38], (b) mineral dust

mass concentrations based on semi-quantitative, size-
resolved insoluble particle measurements [39] and
confirmed using total cerium concentration meas-
urements [40], and (c) organic and inorganic mass
concentrations of large particles using gravimetric
filtering and loss-on-ignition, similar to ‘dust’ meas-
urements reported in much of the literature [9, 21,
41]. Although LAP concentrations of BC and dust
were used to determine radiative forcing on snow by
LAP, we also calculated depositional fluxes (LAP con-
centration multiplied by annual snow accumulation)
to facilitate understanding of potential sources [42].

To ensure uniformity in the column-integrated
sample, we melted, homogenized, and then divided
the samples into three sub-samples with separate vials
for different analyses. To evaluate the mass of small
LAP including BC and mineral dust, the first sub-
sample was analyzed using a continuous flow ana-
lysis system similar to that used for ice core meas-
urements [43]. Samples were pumped through a
20 µm stainless steel filter to remove large particles
and prevent clogging the sample lines, and then
into a low-volume debubbler. From the debubbler,
the sample stream was split for measurements of
BC approximately in the size range of 0.09–0.6 µm
using an incandescence-based Single Particle Soot
Photometer® (SP2; Droplet Measurement Techno-
logies), and insoluble particles using an Abakus®

laser-based particle counter (Abakus) that determines
semi-quantitative, size-resolved particle counts in the
size range 0.8–10 µm [44].

BC calibrations were conducted twice daily using
three different standard concentrations. Under-
recovery during measurements of BC concentra-
tions in snow samples that have been melted and
refrozen is well known [45], so our study primarily
focused on 2018 when fresh, previously unmelted
samples (BCfresh) were available. To extend the ana-
lysis over three additional years, however, we also
analyzed previously melted and refrozen archived
samples obtained from most of the same sites each
year from 2015 through 2018 (BCrecov), but corrected
the measurements of BC for under-recovery using
a correction factor of 2.72 determined by comparing
measurements in the fresh and archived samples from
2018 collected from the same snowpit face (figure S1).
The under-recovery or ‘undercatch’ we observed was
in the range of previously documented BC loss in
snow samples from hydrophobic particles adhering
to the bottle walls [45]. This correction also accounts
for observed loss of BC which may be due to the
refreezing of the archived snow samples and asso-
ciated structural changes in measured BC. All BC
measurements in refrozen samples therefore were
approximately corrected for under-recovery (BCrecov)
by multiplying the measured concentrations by the
2.72 factor. For completeness, results from both fresh
and archived 2018 samples are shown in figure S1. A
similar evaluation of mineral dust recovery showed
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Figure 1. Snow sampling across the Rocky Mountain seasonal snow zone in the western United States. (a) Moderate Resolution
Imaging Spectroradiometer (MODIS) satellite image of true color corrected reflectance showing seasonal snow cover on 27
January 2017 obtained from NASAWorldview. Shown are 2018 snow sampling (filled black circles) sites and Interagency
Monitoring of Protected Visual Environments (IMPROVE) long-term atmospheric aerosol measurement sites (filled red circles)
in the northern (cyan) and southern (yellow) Rocky Mountains. (b) Averaged 1988–2018 IMPROVE measurements available at,
http://vista.cira.colostate.edu/Improve/, indicate declines in winter-season (January, February, and March) elemental carbon (EC)
as a BC proxy (purple) and particulate matter (PM) as a dust proxy (orange). The EC/PM ratio (black) shows no trend, indicating
similar,∼50% declines in wintertime atmospheric concentrations of both aerosols during the past 30 years.

no statistically significant difference (99% confid-
ence interval) in recovery between fresh and refrozen
samples. From replicate analyses of ice cores and
snow samples, typical errors in BC concentration
measurements with the SP2-based methods are <5%
for previously unmelted samples [22, 46, 47].

The size-resolved insoluble particle counts from
the Abakus were binned into four sizes for the
radiative transfer model simulations (0.8–1, 1–2.5,
2.5–5, and 5–10 µm) and converted into mass-
equivalent mineral dust concentrations assuming
spherical particles and a density of 2650 kg m−3.
We verified that insoluble particle concentrations
from the Abakus were composed primarily of min-
eral dust using measurements of total concentrations
of a broad range of elements, including rock-forming
rare earth elements (REE) [48]. These measurements
were made on the second sub-sample using high-
resolution inductively coupled plasma mass spectro-
metry (HR-ICP-MS; Thermo® Element 2) and fol-
lowing standard procedures [48]. Melted samples
were transferred into acid-cleaned plastic vials in a
class-100 clean room, acidified to 1% HNO3 using
concentrated ultrapure nitric acid, and stored for
three months prior to analysis to allow for acid leach-
ing [49]. Ultrapure nitric acid spikedwith indiumwas
used as an internal standard and introduced to the

sample line just prior to sample injection into theHR-
ICP-MS instrument. Comparisons between insoluble
particle and REE concentrations including cerium,
praseodymium, gadolinium, and dysprosium, indic-
ated that the insoluble particles measured by the
Abakus were composed largely of crustal dust (e.g.
comparing cerium and insoluble particle concentra-
tions, r = 0.67, p < 0.01).

To compare these dust measurements based on
insoluble particle concentrations to other published
work in snow hydrology [21, 34, 35], we analyzed the
third sub-sample to determine the mass and organic
composition of larger impurities in the snowpack.
The samples were melted in Whirl-Pak bags and
vacuum-filtered using Whatman® Grade GF/F glass
fiber filters (average pore space 0.7 µm). Using loss-
on-ignition to distinguish organic versus inorganic
debris concentrations on snowpack [50], the filters
were combusted in a muffle furnace for two hours at
530 ◦C and the organic debris calculated as the differ-
ence in mass before and after combustion.

2.2. Modeling radiative forcing from light
absorbing particles in snow
To estimate the additional solar energy
absorbed by a snowpack as a result of relative
contributions of BC and mineral dust, we used

3
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the well-established Snow, Ice, and Aerosol Radi-
ation (SNICAR) model [16, 51] available online
at http://github.com/EarthSciCode/SNICARv2 and
the measured LAP concentrations assuming that
the impurities were distributed uniformly within
the snowpack. SNICAR uses a two-stream radiative
transfer solution [52] to calculate snow albedo with
known concentrations of BC and dust, snow-grain
size, and incident-solar-flux characteristics. Radiative
forcing of snow is determined primarily by smaller
particles [10, 53], so only the BC and size-resolved
mineral dust concentrations were used in the SNI-
CAR modeling, not the large particle concentrations
determined by filtering and loss-on-ignition. The
radiative forcing calculations were conducted assum-
ing externallymixed uncoated BC, dust particles from
0.05 to 5.0 µm in size, and spherical snow grains. The
assumption of external mixing state of LAP in snow
may underestimate the overall radiative forcing con-
tribution from BC by 30%–60% [53] and from dust
by 10%–30% [54] across the visible part of the spec-
trum in snow. In addition, the assumption of spher-
ical snow grains may increase the radiative forcing
from BC in snow by up to 31% [53] and from dust
in snow by up to 45% [54] relative to non-spherical
snow grains.

To isolate the impacts of LAP variability on radi-
ative forcing from geographic location (e.g. slope,
aspect, latitude), we calculated the snow albedo
for LAP-impacted and pristine snow using con-
sistent parameters for snowpack and LAP condi-
tion in SNICAR for each site location (i.e. effect-
ive grain size of 200 µm, snowpack density of
250 kg m−3). These parameters were chosen as rep-
resentative of mid-winter RockyMountain snowpack
conditions before substantial grain growth and
snowpack densification occurs during ablation [41,
55]. For each sampling location the solar zenith
angle was derived from the University of Oregon
Solar Radiation Monitoring Laboratory Solar Pos-
ition Calculator Tool available online at http://
solardata.uoregon.edu/SolarPositionCalculator.html.
Radiative forcing was calculated as the difference in
net shortwave radiation at the snow surface between
modeled albedo values of snowwith andwithout LAP
impurities and using daily radiation values on March
21 near the spring equinox for all years sampled
as a representative consistent date for the snow
sample collection.

An alpha value of 0.01 was used throughout this
study as a measure of significance. All geospatial ana-
lysiswas conducted usingArcInfo 10.4.1 [56]. All stat-
istical analyses were conducted using R software [57].

3. Results

BC concentrations measured in the previously
unmelted, column-integrated 2018 samples (BCfresh)
ranged from 3.7 to 27.4 ng g−1 (mean = 7.3 ng g−1,

sd = 3.9 ng g−1) (figure 2). While dust concen-
trations measured in the previously unmelted,
column-integrated 2018 samples (dustfresh) were 10–
100 times higher ranging from 0.05 to 1.9 µg g−1

(mean = 0.61 µg g−1, sd = 0.47 µg g−1) (figure 2).
Concentrations generally were higher in the surface
and near-surface samples, with BCfresh concentrations
ranging from 1.4 to 78.3 ng g−1 (mean= 9.8 ng g−1,
sd = 13.0 ng g−1) and from 1.5 to 20.7 ng g−1

(mean = 6.6 ng g−1, sd = 4.5 ng g−1) in the sur-
face and near-surface samples, respectively (table
S2). Dust concentrations ranged from 0.03 to
10.3 µg g−1 (mean = 0.9 µg g−1, sd = 0.7 µg g−1)
in the surface samples and from 0.05 to 3.9 µg g−1

(mean = 0.6 µg g−1, sd = 0.7 µg g−1) in the near-
surface samples (table S2). These dust concentra-
tions are comparable to those reported from 1993 to
2014 for some of the same sites [58], but with differ-
ences in measurement methodologies. Organic and
inorganic debris concentrations in the 2018 column-
integrated samples (figure S2) ranged from 0.5 to
300 µg g−1 (mean= 30 µg g−1, sd= 50 µg g−1) and
0.5–40 µg g−1 (mean= 20 µg g−1, sd= 010 µg g−1),
respectively. Although spatially variable, these con-
centrations also were consistent with the few pre-
viously reported measurements at nearby sampling
sites [21, 35].

The snowpack measurements and SNICARmod-
eling show that BC was the dominate driver of radi-
ative forcing at nearly all of the sampling sites in
2018 (figure 2), with BC greater than dust-driven
forcing at 48, 50, and 50 of the 51 sites for integ-
rated, near-surface and surface samples, respectively
(table S2). For the column-integrated samples, the
average ratio of BC to dust-driven forcing was 3.0
(sd = 2.4), with ratios varying from 0.9 to 17.1.
Total SNICAR-simulated radiative forcing from BC
and mineral dust in the snowpack ranged from 1.8 to
10.4 W m−2 (mean = 3.9 W m−2, sd = 1.6 W m−2)
(figure 2), with average hourly BC-driven radiative
forcing of 1.6–9.1 W m−2 (mean = 3.1 W m−2,
sd = 1.2 W m−2) and dust-driven forcing ran-
ging from 0.1 to 3.8 W m−2 (mean = 1.4 W m−2,
sd= 0.9 W m−2) (figure S3).

Similar to the 2018 fresh snow measurements,
the archived column-integrated snowpack measure-
ments and modeling show that BC was the dom-
inate driver of radiative forcing at more than 98%
of the measurement sites between 2015 and 2018,
with an average of 2.9 (sd = 1.0), and up to 7.7
times more forcing from BC than from mineral
dust (figure 3). Concentrations measured in archived
samples—scaled by 2.72 to correct for estimated
under-recovery in BC measurements of previously
melted and refrozen samples (BCrecov, figure S4)—
ranged from 1.2 to 27.7 ng g−1 (mean = 6.5 ng g−1,
sd = 2.2 ng g−1), whereas dust concentrations
in these samples ranged from 0.05 to 4.3 µg g−1

(mean = 0.5 µg g−1, sd = 0.3 µg g−1, figure S5).
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Figure 2. BC and mineral dust concentrations in 2018 fresh snow samples and associated radiative forcing on snow at 51 sampling
locations (table S2). (a) BC concentration (ng g−1), (b) dust concentration (µg g−1), (c) sum of BC and dust-driven radiative
forcing (W m−2), and (d) ratio of BC to dust-driven radiative forcing (R.F.). Insets show cross plots comparing BC and dust
values, with colors reflecting the ratio of BC to dust radiative forcing.

Average hourly BC-driven radiative forcing ranged
from 0.1 to 9.1 W m−2 (mean = 2.8 W m−2,
sd= 0.8Wm−2) (figure S6), and dust-driven forcing
ranged from 0.1 to 6.5 W m−2 (mean = 1.2 W m−2,
sd = 0.5 W m−2) (figure S7). Total SNICAR-
simulated radiative forcing fromBC andmineral dust
in the snowpack ranged from 1.8 to 11.1 W m−2

(mean = 3.5 W m−2, sd = 0.9 W m−2) (figure S8),
and was consistently greatest in the southern Rocky
Mountains demonstrating a strong latitudinal gradi-
ent in impurity-driven radiative forcing. The BC/dust
ratio was greatest in the northern Rocky Mountains
but with high interannual variability observed at spe-
cific sites (figure 3). Peak SWE volume also demon-
strated high interannual variability across the Rocky
Mountains (figure S9).

4. Discussion

BC and dust concentrations in snowmeasured in this
study from Rocky Mountain subalpine and alpine
snowpackswere in the range of limitedmeasurements
of BC and dust concentrations in snow from ice cores,
glaciers, and snowpacks around the world [26]. Gen-
erally, the midlatitudes have moderate and highly
variable LAP concentrations similar to those found in
this study [8, 27]. In remote locations such as Antarc-
tica andGreenland, LAP concentrationswere up to an
order of magnitude lower than observed in this study
[26, 38, 59]. Specific locations, such as the Tianshan

Mountains central Asia for BC, or the southern Rock-
ies in central North America for dust, have excep-
tionally high periodic LAP concentrations, particu-
larly during the spring ablation period [8, 26].

Previous BC-on-snow studies demonstrated
how even small BC concentrations can profoundly
increase the solar radiation absorbed by the snowpack
[10, 16, 38]. At only one of the 51 sites in 2018—Wolf
Creek Pass, located in the San Juan Mountains of
southwest Colorado—was the radiative forcing on
winter snow from dust greater than that from BC
concentrations (table S1). This site had the highest
dustfresh concentration of all sites (0.9 µg g−1), which
is consistent with previous work [21] focused on the
nearby Senator Beck Basin in the San Juan Moun-
tains [60]. BCrecov dominated the radiative forcing
on winter snow in 54 of 55 sites in 2015, 57 of 57
sites in 2016, 56 of 57 sites in 2017, and 55 of 57
sites in 2018, sampled across the West (figure 3, table
S1). The 1.8% of archived snow sample sites where
dustrecov dominated BCrecov impurity-driven radiat-
ive forcing, included Four Mile Meadow located in
western Wyoming, and Ripple Creek and Slumgul-
lion Pass, located in western Colorado, both near
agricultural dust sources.

LAP concentrations at isolated locations may not
accurately represent larger regions, however, or the
associated regional radiative forcing [21, 34, 35]. To
place the point snowpack measurements in larger
spatial perspective, we also compared the snowpack

5
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Figure 3. Ratio of BC to mineral dust-driven radiative forcing of snow from 2015 to 2018 (table S1). Radiative forcing was
calculated using recovery-corrected BC and dust concentrations measured in archived snow samples from (a) 2015, (b) 2016, (c)
2017, and (d) 2018. Color scale is the same as for 2018 fresh snow samples (figure 2(d)). Insets show cross plots comparing BC
and dust values.

measurements with modelled BC and dust values
in snow previously reported by [37]. These were
based on 2009 simulations across a large area of the
Rocky Mountains using the Weather Research and
Forecasting model coupled with Chemistry (WRF-
Chem) on a 4 km grid. [37] found that BC domin-
ated perturbations to the snow surface energy bal-
ance compared to dust for 2009 when integrated over
mountainous terrain bymore than 2Wm−2. Consist-
ent with our results, [37] found dust concentrations
in snow decreased northward, unlike BC concentra-
tions in snow, due to the southern Rockies proximity
to dust emission sources. The WRF-Chem modeling

concluded that BC radiative forcing dominated dust
radiative forcing, leading to BC-related snow darken-
ing which lead to earlier snowmelt, earlier snow dis-
appearance, and earlier associated streamflow across
the Rocky Mountains [37].

Our measurements clearly indicate that for-
cing from BC dominated overall snowpack radiative
forcing throughout much of the Rocky Mountain
region between 2015 and 2018, but earlier samples
are not available to extend these findings. To place
the 2015–2018 LAP measurements reported here
in a longer temporal context, we instead evaluated
the 1988–2018 winter-season (January, February,

6
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and March) records of atmospheric BC and min-
eral dust aerosols from the Interagency Monitor-
ing of Protected Visual Environments (IMPROVE)
network [61] at sites from similar regions of the
Rocky Mountains as the snowpack measurements.
IMPROVE data were obtained from the online data
portal at, http://vista.cira.colostate.edu/Improve/.
For BC and dust comparisons, we used elemental
carbon fraction (EC) and particulate matter (PM10-
2.5) from the IMPROVE observations, respectively
(figure 1). Regional patterns in the IMPROVE meas-
urements are consistent with the general trends in
the snowpack-derived BC and dust concentrations,
with EC concentrations in the southern Rockies twice
those in the northern Rockies (0.04 compared to
0.02 µg m−3) and PM10-2.5 concentrations about
25% higher (3.2 compared to 2.7 µg m−3). How-
ever, we observed no consistent site-to-site relation-
ship when comparing 2018 atmospheric EC values
with snowpack BCfresh measurements at sites located
within 20 km or less of each other, or when compar-
ing atmospheric PM10-2.5with snowpack dustmeas-
urements. For the longer 2015–2018 period repres-
ented by the archived snow samples, we found weak
relationships between EC and 2015–2018 archived
BCrecov concentrations (R2 = 0.1, p < 0.0001), and
somewhat stronger relationships between PM10-2.5
and snowpack dustrecov concentrations (R2 = 0.21,
p<0.0001). Further evaluation using semi-variogram
analyses identified weak, broad-scale regional spa-
tial autocorrelation of the snowpack-derived BCfresh

concentrations, and no spatial autocorrelation of
snowpack-derived dustfresh concentrations (figure
S10). Similar evaluation of atmospheric EC and
PM10-2.5 measurements showed no spatial autocor-
relation at any scale, suggesting that local atmospheric
emissions overwhelm any regional variations in dust
and BC concentrations (figure S11).

5. Conclusions

As the American West continues to endure a multi-
decadal megadrought [62], extreme heat waves [63,
64], and unrelenting large wildfires [65, 66], snow-
water resources are more important than ever for
water security [67]. Our findings, developed from
detailed measurements of combustion-related BC
and mineral dust in snow samples collected from
more than 50widely distributedRockyMountain loc-
ations and consistent with WRF-Chem model simu-
lations, demonstrate that BC-driven radiative forcing
was three times greater than dust-driven forcing on
average across sampling sites every year from 2015
through 2018. Evaluation of atmospheric measure-
ments from the IMPROVE network, moreover, indic-
ate that although wintertime concentrations of both
dust and BC-related aerosols have broadly declined
by ∼50% between 1988 to 2018, BC-driven forcing

has dominated dust-driven radiative forcing for dec-
ades (figures 1 and S11). Our analysis indicates a con-
trary trend in dust aerosols from Clow et al [58], who
found site specific variability, with overall increases
in dust particularly in the southern Rockies. We
note that they examine a shorter time period (1993–
2014) and a different parameter (fine-soil compon-
ent of dust aerosols) from IMPROVE data [58].
Because snow darkening from LAP increases net
shortwave radiation at the snow surface which ulti-
mately enhances snowmelt particularly during late
spring and early summer, these findings indicate that
mitigation strategies to retain important snow-water
resources in the Rocky Mountains would need to
focus on reducingwinter and spring LAP emissions—
especially those processes responsible for BC emis-
sions such as domestic wood burning and fossil-fuel
combustion in the region.
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