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ABSTRACT 

 

 

     Many aspects of speculative multithreading have been under constant and 

crucial research in the recent times with the increased importance in exploiting 

parallelism in single thread applications. One of the important architectural 

optimizations that is very pertinent in this scenario is branch prediction. Branch 

Prediction assumes increased importance for multi-threading systems that execute 

threads speculatively, since wrong predictions can be much costlier here, in terms 

of threads, than a few instructions that occupy the pipeline in a uni-processor. 

Conventional branch prediction techniques have provided increasingly better 

prediction accuracies for uni-core processing. But the branch prediction itself takes 

on a whole new dimension when applied to multi-core architectures based on 

Speculative Multithreading. Dependence on global branch history has helped 

branch predictors to achieve high prediction accuracy in single thread applications. 

The discontinuity of global history created at the thread boundaries cripple the 

performance of branch predictors in a multi-threaded environment. 

 

Many studies in the past have tried to address the branch history problem to 

improve the prediction accuracy. Most of these have been found either to be 

architecture specific or complex in terms of the hardware needed to recreate or 
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approximate the right history to be given to the threads when they start executing 

out of order. This hardware overhead increases as the number and size of threads 

increase thereby limiting the scalability of the algorithms proposed so far. The 

current thesis takes a different direction and proposes a simple and scalable 

solution to effectively reduce the misprediction rates in Speculative Multithreaded 

systems. This is accomplished by making use of a synergistic interaction between 

threads to boost the inherent biased nature of branches and using less complex 

hardware to reduce aliasing between branches in the threads. The study proposes a 

new scheme called the Global Broadcast Buffer scheme to effectively reduce 

branch mispredictions in Speculative Multithreaded architectures. 
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Chapter 1 

Introduction and Motivation 

 

1.1 Introduction 

 Various methods to improve the computation speed of processors have been 

under development in the recent years. Amdahl's law [28] provided architects with the 

basic constraints in speeding up the pipeline and also the further thought processes that 

would lead to many innovations in the field of processor architecture, witnessed in the 

years that followed, and still continuing. As the complexity of applications increased 

over time, the need to speed up the execution demanded more out of the pipelines that 

were sticking to in-order execution. The key was to find and extract parallelism from 

the sequential applications. Evolution of various software and hardware 

methodologies to speed up execution by using the parallelism in programs gave rise a 

whole new area of research in the field of computer architecture, called Parallel 

Computing. 

Parallel Computing uses multiple processing elements simultaneously to solve 

a problem. This is accomplished by breaking the problem into independent parts so 

that each processing element can execute its part of the algorithm simultaneously with 

the others. The processing elements can be diverse and include resources such as a 

single computer with multiple processors, several networked computers, specialized 

hardware, or any combination of the above. The endeavor to extract available 

parallelism started at the instruction level where many instructions in a single program 
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were found to be independent of each other and could be executed in parallel. This 

transformed the traditional single fetch-execute model into the superscalar pipeline 

which achieved parallelism using multiple issue using dynamic scheduling. A series of 

new methods were devised at the compiler level [25] to support this and provide static 

issue pipelines with parallelized stream of instructions within a single program. 

 The first and the basic trials to parallelize execution were to find and exploit 

the available parallelism among instructions (ILP). Even in a purely sequential 

program there are many places where the contiguous instructions are data and control 

independent. Finding out this dependence, resolving it and allowing instructions to 

execute out of order brought in many new stages to the conventional five stage 

pipeline [25]. All these techniques, while increasing the pipeline depths to double or 

triple the conventional depths, increased the importance and criticality of branch 

prediction. The reason was simple. On a misprediction, the speculatively fetched or 

executed but not committed instruction needed to be flushed out of the pipeline and 

fetching needed to start from the right path. This penalty was significant as the 

pipeline complexity and depths shot up with innovations in architecture as well as 

silicon technology.  As architectures evolved from uni-processor to multicores, where 

parallelism was found and exploited not only in terms of instructions but a chunk of 

instructions (called threads), the importance of branch prediction rose to a level which 

needed a different approach in the design of branch predictors. In the context of 

various threads running at the same time speculatively, a misprediction could cause a 

thread flush, which is quite expensive in terms of both power and execution time. In 
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the following sections the basic branch prediction techniques are discussed followed 

by an introduction to Speculative Multithreading (SpMT). 

 

1.2 Branch Prediction 

 In simple terms, branch prediction is a mechanism which helps in speeding up 

execution in the processor pipeline without waiting for the branch instruction to 

execute and the outcome is known. Branch prediction is very critical in utilizing the 

instruction level parallelism (ILP) available in the applications in modern pipelines. 

Branches can be divided into two basic types, conditional and unconditional.  

Conditional branches take the course of execution in a direction which depends on the 

evaluation of a certain condition. An "if-else" statement is a very common example of 

a conditional branch. An unconditional branch takes the course of execution to a point 

without depending on the evaluation of any condition. Both conditional and 

unconditional branches are encountered very frequently in applications. In this thesis 

the focus is on conditional branches and how well they are predicted in a multicore 

environment.  

Branch prediction mechanism consists of two parts  

1) Predicting the direction that a branch will take  

2) Fetching of the instructions into the pipeline from the predicted path. 

The branch prediction mechanism provides the decision whether a branch is taken or 

not taken (direction) and a buffer called the Branch Target Buffer (BTB) provides the 

instructions in the predicted path. 
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 First of all, let us examine why branch prediction is an important aspect in 

pipeline design and how it helps improve the pipeline throughput. Consider the classic 

five stage pipeline (MIPS) [25] where an instruction goes through five stages, fetch, 

decode, execute, memory and write back. While an instruction is being executed, a 

later instruction in the program is being decoded and another one being fetched. Now 

consider a branch instruction being fetched. A branch instruction takes two paths, 

taken or not taken. We say a branch is not taken if the condition evaluated turns out to 

be false and the execution falls through to the sequential instruction in the program 

flow after the branch. If the condition is evaluated to be true, then the fetching should 

start from the instruction pointed by the new value of the instruction pointer, which is 

the taken address or the target. But whether to fetch the non-taken instruction or the 

target will be known only after the branch instruction is decoded and the outcome of 

the instruction is known. This leads to something we term as control hazard in 

pipeline. In other words this leads to useless pipeline cycles where we wait for the 

branch instruction to give the correct address of the next instruction to be fetched. In 

the classic five stage pipeline, one pipeline cycle is wasted on every conditional 

branch. The instruction after the branch in always fetched and then ignored. The 

fetching resumes again with the resolved address when the branch instruction is 

decoded. In the case of a non taken branch, the second fetch of the following address 

is redundant. In the absence of any optimization, one clock cycle is wasted in the 

pipeline. One stall cycle for every branch will result in a performance loss of 10% to 

30% depending on the branch frequency.  
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1.2.1 Static and Dynamic Branch Prediction  

 Very early solutions to overcome branch hazards in pipeline were to assume 

that the branches are either taken or not taken all the time or to use delayed branches. 

We call this static branch prediction. Delayed branches inserted a useful instruction 

into the pipeline right after the branch instruction so that irrespective of the branch 

outcome the delayed instruction will get executed. These methods were of use when 

dealing with smaller pipelines where the resolution of the branch target didn’t need a 

lot of pipeline cycles. But as the processors moved from simple in-order to superscalar 

out-of-order [1] with deeper pipelines, the penalty of going the wrong way on a 

misprediction became significant. Delayed branches couldn’t be used in such pipelines 

due to the difficulty in finding enough instructions to fill in the delay slots. The static 

methods did not take into account the runtime behavior of branches that became 

crucial in achieving high accuracy in more complex, deeper and wider pipelines. 

Dynamic branch predictors make use of the runtime behavior of branches to make 

predictions in a pipeline. 

 

1.2.2 A summary of Dynamic branch prediction schemes 

 Dynamic branch prediction is a hardware based prediction scheme. The most 

well known technique, referred to as bimodal branch prediction, makes a prediction 

based on the direction the branch took, the last few times it was  executed. More 

recent work has shown that significantly more accurate predictions can be made by 

utilizing branch history. One method considers the history of each branch 
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independently and takes advantage of repetitive patterns. Since the histories are local 

to each branch, we will refer to it as local branch prediction. Another technique uses 

the combined history of the recent branches in a program to predict a specific branch. 

This technique will be referred to as global branch prediction. Each of these different 

branch prediction strategies has distinct advantages. The bimodal technique works 

well when each branch is strongly biased in a particular direction. The local technique 

works well for branches with simple repetitive patterns. The global technique works 

particularly well when the direction taken by sequentially executed branches is highly 

correlated. 

 A bimodal predictor is implemented using a table of saturated counters indexed 

by a specific number of low order bits of the branch address. The value of the 

saturated counter predicts which direction the branch should take. The behavior of 

typical branches is far from random. Most branches are either usually taken or usually 

not taken [25]. Figure 1.2.2.1 depicts a bimodal predictor. T and NT denote taken and 

not taken directions. 

 

 

 

 

 

 

Figure 1.2.2.1 Bimodal Branch Prediction 
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A typical local branch prediction scheme is shown in figure 1.2.2.2. There are two 

levels of tables. A history table and a pattern history table (PHT). Each history table 

entry records the direction taken by the most recent N branches whose addresses map 

to this entry, where N is the length of the entry in bits. The PHT is an array of 2-bit 

counters identical to those used for bimodal branch prediction and are indexed by the 

branch history stored in the first table. 

 

 

 

  
 

 
 

Figure 1.2.2.2 Local Branch Prediction 

Global Branch Prediction comes in two flavors 

1) Global History with Index Selection (gselect). 

2) Global History with Index Sharing (gshare). 

  In the index selection scheme (figure 1.2.2.3.a) a specific number of least 

significant bits of the branch address is concatenated with the information in the 

history register to form an index to the saturating counters. This scheme provided 

more specificity to a particular branch in relation with the global history to provide 

better prediction. The main drawback of this scheme was the scalability. For 

increasing the unique correlation between a branch and the global history, more bits 
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needed to be used and this massively increased the size of the PHT. The solution was 

the index sharing scheme (gshare) (figure 1.2.2.3.b) [2]. In this scheme the history bits 

are XORed with an equal number of least significant bits of the branch address to 

create an index to the prediction table.  

 

 

 

 

 

 

 

 

  (a)       (b) 

Figure 1.2.2.3 gselect and gshare configurations of global branch prediction 
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speculative thread(s) in parallel with the non-speculative thread, the SpMT processor 

exploits thread level parallelism in a program. 

 Threads are speculative since they are data and control dependent on previous 

threads. If speculation is correctly performed, the execution time of the application is 

drastically reduced due to the additional exploitation of speculative thread-level 

parallelism. However, if a misspeculation occurs [18], roll-back mechanisms are 

necessary to return the processor to a correct state. Multi-Processors that are able to 

execute speculative threads are referred to as Speculative Multithreaded Processors. A 

speculative multithreaded processor consists logically of replicated processing 

elements that cooperatively perform the parallel execution of threads. Speculation is 

key: Without speculation, we can only divide programs conservatively into 

nonspeculative threads whose mutual independence and execution is guaranteed. 

Speculation enables more aggressive divisions that can exploit threads whose 

independence and execution may not be guaranteed but are parallel, and likely to be 

executed, with high probability. 

 In a typical SpMT model, a non-speculative thread runs first and spawns a 

speculative thread when it hits the Spawning Point (SP) [29]. The SP is an instruction 

that triggers the processor to create a new speculative thread. The speculative thread 

starts running from an instruction which is control independent of the SP. This 

instruction is called the Reconvergence Point (RIP). The RIP is the first instruction 

that the speculative thread executes. Each SP is mapped to a RIP. The non-speculative 

thread will stop execution when it arrives at its RIP and validates that control and data 
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is passed correctly from one thread to the other. The oldest speculative thread then 

becomes the non-speculative thread. When a speculative thread is found to be no 

longer valid, the thread is squashed. Branch prediction accuracy affects the number of 

squashed threads. If a branch outcome is predicted incorrectly, the incorrect path could 

encounter an SP. In this case, the processor spawns a speculative thread, but the thread 

is squashed when the correct branch target is resolved. 

 

1.4 Motivation 

1.4.1 What are we trying to solve – The history problem 

 Branch Prediction assumes greater importance in the multithreaded-multicore 

scenario. This is because of the fact that the concept of how we predict branches 

changes to a big extent from the traditional sequential flow of execution in a 

uniprocessor. The methods to predict branches in a uniprocessor have been developed 

over time by making use of the data available at any point of execution, from the past, 

in other words, the history of branches. This could be either the history of a single 

branch or the history of multiple branches in the program. In the case of a 

multithreaded environment, the situations that we come across are two-fold  

1) A multiprogrammed multithreaded model. (SMT) 

2) A single programmed multithreaded model. (SpMT) 

 The thesis uses a multi-core system for single thread applications based on 

Speculative Multithreading, discussed in chapter 3, to test various branch prediction 

algorithms. There are differences in the ways branches need to be predicted with good 
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accuracy in a multi-core multithread system and a multi-core single thread system. 

These differences are in terms of making use of the branch behavior in the scope of a 

single program or multiple programs. This results in the way prediction hardware is 

allocated and shared between threads. In a single thread sequential system, the branch 

prediction accuracy is a lot dependent on the way the history of branches is tracked 

and made use of, both globally and locally. Studies have shown that global branch 

prediction has a significant role in improving prediction accuracy. In conventional 

single-threaded processors, the branch history is recorded in program order; the 

recorded history thus depends only on the program being executed. Thus, the history 

available for a particular dynamic branch instance depends only on the program order 

and the specifics of the predictor, and not on any microarchitectural feature of the 

processor. In other words, apart from the specifics of the predictor, the 

microarchitecture does not play any role in deciding the history available for each 

branch prediction.  

 In a SpMT processor, by contrast, the multithreading aspect of the 

microarchitecture plays a major role in determining the history recorded in the branch 

predictor. When multiple threads are executed in parallel, instructions from these 

threads are generally fetched in an order different from that specified in the program. 

Naturally, branches from multiple threads are also likely to be fetched out-of-order. 

Because branch predictions are typically done in the fetch stage of the pipeline, branch 

predictions are also likely to happen out-of-order. This means that, quite often, the 

prediction for a branch is performed before several branches preceding it in the 
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dynamic program order have been encountered by the SpMT hardware. The history 

used by the predictor to perform a prediction for such a branch is not as per program 

order, and is dependent on the specifics of the microarchitecture. This results in 5 

types of recorded branch history: 

1) Insufficient history: the recorded history in very few updates. 

2) Discontinuous history: the recorded history does not include some of the 

 updates. 

3) Outdated history: the recorded history does not contain the latest updates. 

4) Scrambled history: the recorded history is updated in an incorrect order. 

5) Inaccurate history: the recorded history contains erroneous updates. 

 When the microarchitecture influences branch history in this manner, it is not 

obvious if the recorded history is capable of predicting future behavior accurately, 

because of the introduction of several uncertainties.    These issues that we encounter 

in speculative multithreading prompt us to think of the possible configurations of 

branch predictors to get around the problems encountered above. In particular, one can 

think of the following two options: 

1) Private predictors 

2) Shared predictor 

 In the first case, each of the parallelly executed threads uses a separate private 

branch predictor. That is, the multi-threaded processor has as many predictors as the 

maximum number of active threads permitted. When a new thread is initiated, it is 

assigned a private predictor. The residual history present in the predictor can be either 
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reset, or retained for use during the “cold start” period of the thread. In the former 

case, the history recorded in each private predictor tends to be insufficient, unless the 

threads are rather long. In the latter case, the history recorded in each private predictor 

is discontinuous. A motivation for using private predictors, especially for processors 

geared for large threads, is that they do not use a centralized hardware resource, and 

therefore permit the predictor hardware to be decentralized. When the thread size is 

small, the performance is likely to be poor because of insufficient history or 

discontinuous history: the history that a branch needs for making a correct prediction 

is split across multiple predictors.   

 Alternatively, a single predictor can be shared by all active threads of the 

processor. The motivation behind such a shared predictor is reduced hardware cost,  

which permits the use of a complex predictor. When a branch is fetched in any thread, 

the shared predictor is consulted to obtain a prediction. The exact history recorded in a 

shared predictor depends on the time at which the history is updated. 

 

1.4.2 Domain shift – From a program to a thread 

 In SpMT, the domain of branch prediction shifts from a full fledged 

application to a thread. In systems where thread hopping across the cores is much 

more frequent thanks to the variations in control independence, the thread sizes tend to 

be smaller.  Short threads do not give the branch predictors enough time to build up 

good enough history to make the right predictions. Long threads, on the other hand, 

are likely to develop enough self-history after their “cold start” period, and are likely 
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to perform well with private predictors. For shared predictors, the situation is just the 

opposite. Branches from two or more long threads are likely to cause more 

interference, whereas branches from short threads are less likely to cause interference. 

Control flow inside a thread, inter thread communication and thread execution style 

have bearing on the branch prediction inside threads.    The way in which threads are 

forked affects how branches could be updated and hence on how the predictors are 

distributed across cores. For a highly speculative system where there is a high chance 

of thread squashing, predictor tables need to be rolled back on wrong thread 

executions. When updates are not done in program order, it becomes very difficult to 

do these setbacks correctly. 

 

1.4.3 Identifying the objectives 

 From the analysis of problems associated with branch prediction when the 

paradigm shift happens from sequential to speculative execution, we reach a place 

where we know what could improve conditional branch prediction in SpMT systems. 

1) Alleviate the effect of problems brought in by the discontinuity in global 

 history as threads are forked. 

2) Provide mechanisms to improve the early predictions within a thread, so  that 

the short thread lengths do not set a bar on the training time of the  predictors 

in each core. 
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3) Try to make use of the information available from the bigger domain of the 

entire program and translate or adapt it to the smaller domain of the threads to 

take care of problems 1 and 2. 

4)  Make sure that the solution is scalable so that it fits into systems with both 

 high and low number of threads and core hopping. 

 

1.5 Contributions of the thesis 

 The thesis proposes an entirely new approach to confront the degradation of 

prediction accuracy in SpMT processors. Previous research done in this field have 

dealt mostly with methods that are specific to each thread. This thesis proposes a 

highly scalable solution, by combining both the global (across the whole program) and 

local (across the threads) behavior of branches. The thesis also proposes a new timing 

model to effectively simulate a multi-core system by using only one core instance. The 

dynamic allocation-deallocation of time based updates on a single value (section 5.6.1) 

successfully emulates parallel updates in time. This is a more efficient and a faster 

approach for doing performance analysis for multi-core architectures. 
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1.6 Thesis Outline 

The thesis is organized as follows: 

Chapter 1 gives an introduction to Branch Prediction and Speculative Multithreading 

and how prediction differs in the context of SpMT 

Chapter 2 looks at the prior work done in this field, their contributions, drawbacks and 

comparisons. 

Chapter 3 discusses Disjoint Out-of-Order Execution (DOE) architecture, the basic 

framework for the thesis, for which branch prediction algorithms were studied. 

Chapter 4 explains the simulation methodology adopted for the thesis.  

Chapter 5 presents the results.  

Chapter 6 proposes the future work along with the conclusions. 
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Chapter 2 

Related Work 

  

 This chapter will discuss and highlight the work done towards improving 

prediction accuracy for multithreaded architectures. Speculative multithreading 

systems have mostly been at the experimental phase since the time the concept was 

proposed to improve the performance of single thread applications. Many aspects of 

SpMT architectures are still under research and branch prediction is one amongst 

them. The previous work on branch prediction algorithms for SpMT was not widely 

available in forms of proven and implemented versions with realistic results. Most of 

the available literature dealt with possible solutions and experimental results based on 

simulator performance analysis. Most of the earlier work done was for handling 

branch predictions on sudden context switches. This approach was more inspired by 

the Simultaneous Multithreading (SMT) [26] architectures where thread switching 

happened between multiple programs. In this chapter the various studies undertaken in 

the direction of branch prediction for multi-threading will be discussed and at the end 

the contributions and shortcomings of these will be summarized. 

 

2.1 RAS and BTB optimizations for multithreaded architectures 

 The approach that has been used in many of the experiments done so far is to 

adopt the best strategy that works for single thread performance and use it in the 
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multithreading environment. Previous work in this direction included simulating a 

multithreaded environment with superscalar cores [5]. Se´bastien Hily & Andre´ 

Seznec [5] studied and analyzed the performance of the standalone 2 bit bimodal, 

gshare and gselect predictors on multiprogrammed multithreaded applications (SMT) 

and single programmed multithreaded applications (which are of interest to this 

thesis). The focus of their experiments was mainly on measuring the impact of Return 

address Stack (RAS) and Branch Target Buffer (BTB) [25] implementations on the 

misprediction rates. The study was also targeted at analyzing the misprediction rates of 

unconditional branches, which included function calls and returns.  RAS is used to 

predict the return address while coming out of a function in the program flow. The 

framework used 12 entry stacks for RAS. The BTB sizes were fixed at a base size of 

512 for each thread. While the method used to fork threads is unknown for this study, 

the benchmarks used for performance analysis were applications from SPLASH2 

series. Experiments were done by varying the sizes of BTB and the pattern history 

tables with different numbers of threads. The study concluded that gshare performs 

better than both 2 bit bimodal and gselect when multiple threads belonging to the same 

application are run in parallel. The performance of bimodal predictor deteriorated as 

the number of threads increased.  For all the three predictors, it was found that the 

predictor sizes needed to scale with the increasing number of threads for achieving 

decent prediction accuracy. Smaller predictor sizes increased the number of BTB 

misses thereby aggravating the misprediction rate. 
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2.2 Extrapolation and Correlation of Branch History 

 Manoj Franklin et al. [10] proposed how branch history can be recreated by 

extrapolation and correlation for SpMT architectures with short thread lengths. The 

simulation framework proposed by this work focuses on Per address predictors (Pag). 

The study looks at the following aspects of branch predictions first before coming up 

with the proposed solutions. 

1) Varying the thread size. 

2) Updating the history tables at branch resolution. 

3) Updating the history tables at branch commit. 

 The initial experiments done by Manoj et al. look separately at shared and 

private predictor configurations for SpMT systems based on a multiscalar [27] 

threading algorithm. In a shared predictor configuration, a single branch predictor is 

shared globally by all the cores. In a private predictor configuration, each core has its 

own branch predictor. For the shared predictor configuration, the performance of a 

bimodal counter, a per address predictor and a global gshare predictor was evaluated. 

The observations were as follows. 

1) For the bimodal predictor, the accuracy is hardly affected by outdated history 

(c.f. section 1.4.1). Also scrambled and inaccurate histories do have a small 

impact on its performance. 

2) For per address predictors the maximum deviation in misprediction rate was 

from 4% on a single thread system to 20% on a SpMT system.  
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3) For the global gshare, the misprediction rates were found to be very high for 

small thread sizes.  

 From his initial experiments Manoj concluded that branch prediction schemes 

that depend on pattern-based history tend to suffer the most in multi-threaded systems. 

For the private predictor experiments, one predictor was assigned to each core and 

performance analysis was done for each of the three predictors. The bimodal predictor 

was found to be hardly affected by discontinuous history. The performance of pattern-

based Pag scheme, which uses only per-address history, was somewhat affected when 

the thread size was decreased. Discontinuous history had a bigger impact on 

Pag, because the history used by Pag is “exact” in some sense, and not an “average”. 

However, the impact was not as severe as in gshare.  When the thread size 

was increased, private Pags began to perform better. This is because each thread has 

many instances of a branch, and once the “cold start” of each thread is over, 

the discontinuity in the recorded history slowly disappears. The results indicated that 

none of the private, per-thread predictors is adequate when the thread size is small, 

and that per-thread Pag predictor works well when the thread size is large.  

The experiments pointed towards correction of branch history in multithreaded 

systems. The study showed that when the threads are large, private, per-thread, branch 

predictors tend to perform quite well. When the thread size is small, neither the shared 

predictor nor the private predictors work well. 
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2.2.1 The extrapolation technique 

 The extrapolation technique attempts to reconstruct the history that would be 

available, had the processor been updating branch history in program order and in a 

timely manner.  Extrapolation is particularly useful for predicting the instances of 

branches that belong to a loop, and are fetched in program order. Figure 2.2.1.1 

represents a typical implementation of an extrapolation based Pag predictor. 

 

 

Figure 2.2.1.1 Extrapolation based predictor 

 

 The first level includes a Branch History Table (BHT) and the second level 

includes a Pattern History Table (PHT), just like in a typical two-level predictor. The 

BHT contains two parts, namely branch history and speculated updates. The former 

records the last few outcomes (non-speculative updates) of a branch, and the latter 

stores the subsequent predictions for the pattern present in the corresponding branch 
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history. The PHT contains Saturating Counters that keep track of the behavior of the 

patterns in the BHT. When a branch is fetched, a few bits from its PC are used to 

index into the BHT. Based on the extrapolation distance, the correct bit from the 

speculated updates part is chosen using a MUX. This gives the prediction for the 

branch. The extrapolation distance is calculated based on the number of active 

instances of the branch (fetched but yet to be committed) prior to this branch instance. 

When a branch gets committed, based on the pattern in the BHT and the branch 

outcome, the PHT is updated. After this, the pattern in the BHT is updated and the 

next few outcomes are speculated based on the current pattern, and are stored in the 

speculated updates part of the BHT. Because the updates are done at commit time, the 

correct order is maintained. 

 

2.2.2. Correlation with Thread-Level Information to Obtain Accurate 

 History: 

 The inherent problem with extrapolation scheme was that when branches are 

fetched out of order it fails. So a new scheme was proposed to correlate the branch 

outcomes with the control flow prediction by which the threads are forked. The 

scheme is illustrated in figure 2.2.2.1  
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Figure 2.2.2.1 Correlation based predictor 

 

 This scheme works on the principle that if the history is partitioned based on 

the thread context and recorded by multiple predictors (one for each context), then all 

four instances get to use up-to-date history, provided they belong to different contexts. 

 The experimental results indicate that both extrapolation-based and 

correlation-based schemes reduce the misprediction ratio by a considerable extent for 

most benchmarks. An exception is m88ksim for which the extrapolation 

scheme increases the misprediction ratio substantially. Extrapolation helps some 

branches to a large extent. At the same time it worsens the case for some others.  

 

2.3  Per thread history table 

 The studies done by Manoj or Seznec didn’t look at the dependency of 

branches on the global history. They also did not solve the problems encountered with 
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the discontinuity in global history in a Speculative Multithreaded environment. The 

studies and experiments done by Iwama et al. [19] was probably the first step towards 

addressing this issue. Their analysis looks at a very basic implementation of effective 

branch predictors that includes the hybrid predictors used for single thread 

applications and how they can be used to get around the discontinuities associated 

with global history. Iwama used the bimodal, a per address, a global and a hybrid 

predictor for the experiments 

 After initial experiments, Iwama et al. noted that global predictor suffers the 

most, losing its accuracy by 6.6%. Per-address and hybrid predictor suffer moderate 

performance degradation of 3.2%, while the accuracy loss of bimodal predictor is only 

0.5%. 

 Iwama attributed his observations to the following reasons: 

1) Increasing time to train counters.  

 This is the only factor that contributes to the performance loss of the 

 bimodal predictor. Since this loss is almost negligible compared to those of 

 the other predictors, we can deduce that the increased training time is not  the 

 limiting factor for performance in gshare, per-address or hybrid predictor. 

2) Increasing time to record repetitive patterns. 

     To record a repetitive pattern of a loop control branch, it takes N times more    

      iterations for speculative multithreading with N cores than for one core 

 carrying out single threaded execution. This affects prediction accuracy at  the 

 beginning of execution and increases compulsory mispredictions. 
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 3)  Incomplete branch history.  

 The branch history in a predictor which belongs to a core does not  contain 

 the results of branches executed in other cores. This prevents a predictor 

 from exploiting correct correlation information and leads to poor 

 performance, as shown by per-address, gshare and hybrid predictors.  

 4)  Global history inaccessibility.  

     Since one thread does not have access to the history register of other 

 threads, a gshare predictor cannot use recent branches’ history from the

 directly preceding thread. It can only use history of branches from previous 

 thread executed in the same core. This explains why a gshare predictor 

 suffers more severely than a per-address predictor. 

 After observing the above, the direction taken was to confront the 

discontinuities in branch history due to the timing and spatial differences of 

consecutive threads being executed in parallel in a SpMT system. The approach taken 

was to narrow down scope of the program flow to a thread from the entire program. 

Since this prediction scheme exploited the locality of branch correlation inside a 

thread, this scheme was called per-thread branch prediction. The scheme works as 

follows:  During the execution of a thread, the history of branch directions are 

recorded in a register local to the thread, and is used to predict branches in an identical 

way to the global prediction. When the execution is finished, this history is saved to a 

table accessible by all threads. This saved history will be used to initialize the history 

register when the same thread is executed again in the future. To solve the problem 
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when multiple instances of the same thread execute simultaneously, the history was 

read from the last committed thread. The per thread branch predictor is shown in 

figure 2.3.1 

 

 

Figure 2.3.1 Per thread predictor by Iwama 

     

 According to the results reported by Iwama, the per-thread predictor improved 

the performance of the gshare predictor by an average of 4.9%. One major setback for 

the per address predictor alone was that it didn't perform any better than a hybrid of 

gshare and per address predictor. So Iwama combined the per thread predictor with 

per address predictors for each thread. The hybrid of per-thread and per-

address predictor was more effective than a per-thread predictor of the same size. It 

outperformed the original hybrid of gshare and per-address predictor for many 

applications. By using the per thread prediction scheme, the prediction accuracy for 
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go, gcc, ijpeg, and vortex was improved by 1.7% - 2.9%. On an average, the hybrid of 

per-thread and per-address predictor was the best performing predictor for the 

speculative multithreading architecture, outperforming the original hybrid predictor by 

0.7%. 

 

2.4 Initializing the global history with a consistent starting point 

 The research done by Dean Tullsen [4] was found to be the most important and 

pertinent to this research work. Tullsen's focus was on Speculative Multithreading 

architectures for short threads. His research pointed to the dependency of the 

prediction accuracy on the correct Global History Register (GHR) value .The 

observation was that for threads of size 2000 instructions or less, the branch 

misprediction rate increases, becoming quite significant as the thread sizes get below 

500 instructions. As long as the GHR is correct, each predictor is able to warm up to 

the program's branch behavior separately. However, if we do not provide the exact 

GHR value, a new core makes use of the residual information from the last thread 

which executed on that core. This residual data in the GHR typically does not provide 

any relevant information for the execution of the new thread (unless the sequence of 

executed threads is highly repeatable). The misleading GHR value will be used in the 

indexing function to produce branch predictions. In addition, the counters associated 

with those indices will be polluted. Tullsen proposed that his experiments were 

applicable to any system with frequent thread spawning if not exactly matching the 

specific SpMT algorithm used in his setup. 
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 The simulation architecture used by Tullsen had little compiler support, to 

conform more to a dynamic system that made use of hardware structures to train the 

predictors.  For each core simulated, a 2BCgskew predictor [13] was used.  

 

2.4.1 Generating Global History 

 To improve prediction accuracy and reduce destructive behavior caused by 

meaningless GHR values, several approaches were considered. These approaches fall 

into two broad categories. In the first category are techniques that attempt to predict or 

re-create the expected GHR, using current or past information. The second category of 

techniques only seeks to provide a consistent starting point for the branch predictor 

every time a thread starts up. All techniques were compared with the original setup 

that retains whatever value was left in the GHR by the last thread which executed on a 

core.  

 

2.4.1.1 Providing a consistent starting point for the branch history 

 The idea was to provide a consistent history value for the register, each time a 

thread started executing. This approach comprised of three schemes. 

1) Initialize the history to zero. 

2) Use the Program Counter (PC) value of the RIP (c.f. section 3) to initialize the 

history. 

3) Use a XOR of the SP (c.f. section 3) and RIP to initialize the branch history. 
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 Tullsen reported improvement numbers of 38% for misprediction rates and 

11% for IPC speedup with the PC initialization scheme. He proposed that the PC 

scheme could even outperform an actual history (according to single thread flow), if 

the RIP is chosen such that there is not much of correlation between branches after 

RIP and the ones before it, by taking away unwanted history which induces noise in 

the history. He concluded that for threads whose control flow behavior is relatively 

independent of the pre-RIP branch history, using a single value is at least as good as 

using the real history. On the other hand, for those threads whose control flow is 

highly correlated to the pre-RIP history, a manufactured history that uses obsolete data 

is likely to do more harm than good. 

 

2.5 Summary and comparisons 

  The experiments done by Hily and Seznec were some of the first in the 

direction of improving branch prediction for multithreading architectures. Hily and 

Seznec worked on SMT based systems and not SpMT based systems that are different 

in the very way threads are created. One basic and major difference between SMT and 

SpMT is that in SMT the threads belong to different programs and in SpMT they 

belong to a single program. This affects how the branch behavior can be exploited 

over the scope of the thread relative to the entire program. Although some of the facts 

on context switching can be studied and understood from the studies of Hily and 

Seznec, their applicability to the current thesis is limited in terms of both improvement 

and scalability. Hily and Seznec propose BTB and RAS optimizations to improve the 
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prediction accuracy. This approach needs scaling in the sizes of both the structures 

mentioned, as the thread size or the thread numbers increases. (as concluded in the 

studies). Also, their study doesn’t take into consideration any aspect of history based 

prediction to optimize and improve prediction accuracy. 

        The studies and experiments done by Manoj et al. (c.f. section 2.2) dealt with the 

problems encountered with history in a thread switching environment. While his 

studies clearly elucidated the specific problems related to discontinuity in branch 

history, the experiments were done for systems with very small threads, of sizes in 

100s, whereas the architecture that this thesis uses is a more realistic model with 

thread lengths in the vicinity of 1000. Trying to recreate branch history using 

extrapolation and correlation is not a satisfactory solution in a scenario where the 

program flow dynamically changes. This fact is aggravated with the not-so simple 

logic to recreate the branch history as proposed by Manoj. The study itself concludes 

that extrapolation helps some benchmarks and worsens prediction accuracy in others. 

Extrapolation works well in a situation where multiple instances of the same branch 

are fetched in a sequential way. In a realistic multithreading model it is quite possible 

that multiple instances of the same branch will get executed simultaneously in 

multiple threads very frequently. Also, the study focuses mostly on per address branch 

predictors that are more effective while using loop intensive floating point benchmarks 

where the correlation is more on a per branch basis. Integer benchmarks which 

resemble the nature of common user applications more, show a global correlation of 

branches. This makes global history a very important aspect to consider while 
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designing branch predictors for multi-core architectures. Manoj's study doesn’t take 

into account any aspect relating to global history. One very important contribution that 

his studies made to this thesis is the fact that the discontinuities in history don’t affect 

the performance of bimodal predictors a lot. This fact has been made use of in 

designing the branch predictor for DOE architecture (c.f. section 3.1). 

 Iwama et al. proposed the first possible solution specifically for SpMT based 

multi-core architectures. The previous work done till then had mostly focused on 

Simultaneous Multithreading and did not deal directly and aptly with the branch 

behavior and issues specific to SpMT. The studies done by Iwama et al. directly 

addressed the global history issue faced by context switching in SpMT and proposed a 

novel method of initializing the global history each time a thread starts running on a 

core. Also, Iwama's proposals were one of the first to use the standard hybrid 

predictors instead of standalone predictors. The inherent flaw with Iwama's proposals 

was the usage of the branch history from a previous execution of a thread. This history 

is stored at the end of the thread execution and is used to initialize the history when the 

same thread executes again. This has two problems. 

1) The stored history corresponds to the end of thread and not the start of the 

thread.  

2) The branch history at the start of a thread will change dynamically during   

execution.  

This means that the history used for initializing the branch history is neither consistent 

nor thread specific. In fact, during the experimental phase of this thesis, Iwama’s 
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technique was used to initialize the history register for each thread, during the start of 

execution, by dynamically storing the history as part of the Spawning point (SP) - 

Control Independent Reconvergence Point (RIP) mapping table. This technique didn’t 

yield any improvement in prediction accuracy.  

 Dean Tullsen's work of improving prediction accuracy for short threads using 

initialization of the history register using the PC of the RIP has been the most useful 

lead in this thesis. His studies use a specific consistent value corresponding to a thread 

to initialize the history and reported improved misprediction rates. One point to note 

here is that this algorithm works best when the branches before and after the RIP are 

not correlated highly with each other. The improvements in misprediction rates in 

Tullsen's experiments indicate that the thread spawning algorithm that he used in his 

experiments was at places like procedure boundaries where the correlation of branches 

before and after RIP is less. But in a realistic SpMT framework it is not necessary that 

the threads should start at points with less branch correlation. The methods by which 

control flow is broken down into threads can be quite different from one SpMT 

framework to other and the technique of initializing the history register with a 

consistent value can only aid those threads which are spawned at points with less 

correlation. For this thesis, Tullsen's strategy of initializing the global history on each 

core when the thread starts running, was adopted. 
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Chapter 3 

Branch Prediction for Disjoint Out of Order Speculative Multithreaded 

Architecture 

 

This chapter will discuss the development of the branch prediction framework 

for the Disjoint Out of Order Architecture.  

3.1  Disjoint Out of Order Architecture 

            Disjoint Out of Order Architecture (DOE) [15] is a multi-core architecture 

based on Speculative Multithreading for improving the performance of single thread 

applications. The basic DOE architecture is presented in Figure 3.1.1  

 

 

Figure 3.1.1 DOE Architecture 
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    The architecture consists of a collection of cores connected in a ring network. 

The task dispatcher logic monitors the execution sequence in each core and assigns 

tasks to the available cores. A task (thread) is a set of contiguous instructions in the 

dynamic instruction stream. A core fetches and executes the task it is assigned until 

the end of task. The end of a task is the start of the next dispatched task since tasks are 

spawned in program order. Although dispatching tasks out of order is possible [3], 

dispatching tasks in order simplifies data communication since two consecutive tasks 

run on two adjacent cores in the ring. The tasks are selected to start at future control 

independent points (RIP) in the program (c.f. section 3). This ensures that regardless 

of branch execution within a task, the task will ultimately join the next dispatched 

task.  

The execution region within the dynamic instruction trace at a given time is 

bound by the first fetched instruction in the oldest task and by the last fetched 

instruction in the youngest task. However, instructions within the execution region are 

fetched, executed, and retired out of order. The program order of tasks matches the 

cores physical order in the ring. A head pointer and a tail pointer rotate around the 

ring. A new task is allocated a core at the tail of the ring, if that core is free. A task at 

the head commits after it executes all its instructions and reaches (i.e. joins) the first 

instruction of the next task. When a task commits, its assigned core is freed.  
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3.1.1  Control independent execution 

Each task is control independent of previous branches. DOE performs recovery 

from mispredicted branches locally within a core without squashing other tasks. This 

allows the architecture to exploit distant ILP far beyond mispredicted branches, unlike 

conventional processors which are limited to the amount of ILP available between 

mispredicted branches. 

 

3.1.2  Disjoint data threads execution  

Each core executes two disjoint data threads out-of-order. One data thread 

consists of all instructions that are data dependent on previous active tasks, and the 

other data thread consists of all instructions that are data independent of previous 

active tasks. The independent data thread starts execution immediately when a task is 

dispatched, while the dependent data thread is buffered outside the execution pipeline 

and executes when the previous task completes and commits. By this time all previous 

mispredicted branches have been corrected and input data propagated from the 

previous task. The dependent data thread therefore does not block the execution of the 

independent thread. This achieves two goals: 1) it supports control independent 

execution of tasks, and 2) it provides tolerance to the delays encountered on input data 

produced by other cores and communicated through the ring. 
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3.1.3 Checkpoint processing and recovery 

By using checkpoints for recovery [14],[15], completed independent 

instructions can pseudo-retire [15], freeing the pipeline resources. Two checkpoints 

are taken for any speculative thread, one at the beginning of the thread and the other at 

the end of the dependent instruction execution. In the case of an exception or 

misprediction in the dependent data thread, DOE restores precise state from the first 

checkpoint and restarts execution after flushing the pipeline and squashing the task. If 

the data dependent thread completes without exceptions or branch mispredictions, 

DOE integrates the results from the dependent and independent threads by merging 

states from two different checkpoints. 

  

3.2  DOE Core Microarchitecture 

 Figure 3.2.1 shows a block diagram of the DOE core microarchitecture. 

 

Figure 3.2.1 DOE Core Micro Architecture 
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3.2.1  Dependent Thread Buffer (DTB) 

The DOE core handles dependent instructions differently from independent 

instructions. When a task is spawned, a bit mask that identifies the set of influence 

registers (also called live-in registers) is loaded from the task predictor into a poison 

bit vector located in the decoder block of the core that is assigned to execute the 

spawned task. The influence registers are the ones which create data dependency 

between threads. The dependents of all live-in influence registers and their 

descendents are extracted from the task instruction stream using the poison bit vector 

in the pipeline decode stage and are stored in a Dependent Thread Buffer (DTB) 

outside the pipeline. The dependent thread instructions therefore do not consume or 

occupy precious pipeline resources such as issue and buffer slots or pipeline staging 

latches. This completely frees the pipeline resources for independent instructions to 

execute. Since dependent instructions do not tie pipeline resources, the core achieves a 

continual flow of execution [15] and can look ahead far into the task for independent 

instructions to process, until the task reaches the end or until the previous thread 

completes. When the previous task completes, a register checkpoint is taken and 

execution switches to the dependent instructions in the DTB. When all the DTB 

instructions execute, their results are merged with the independent instruction results 

from the checkpoint. The checkpoint is then discarded and execution resumes 

normally without having to go back to execute independent instructions again. 
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3.3 Branch Prediction for Disjoint Out of Order Architecture 

        The thesis focuses on conditional branch prediction for DOE. Since the 

threads are control independent of each other, the branch predictions are handled 

within each thread for DOE. The conditional branches in DOE can be divided into two 

categories. 

1) Independent conditional branches. 

2)  Dependent or poisoned conditional branches. 

The independent conditional branches are the normal branches that are 

encountered in a thread which are not dependent on any other thread through memory 

or registers. This means that the source of the branch instruction is not produced by 

any of the previous threads in the ring. They behave normally in each thread, as a 

branch would in the sequential execution, with the domain changing from the whole 

program to a thread. Whenever a branch misprediction occurs, the pipeline is flushed 

and the fetching starts from the right path. The second category of branches, which are 

poisoned, get drained into the DTB. These branches don’t commit, and reside in the 

DTB till the previous task finishes and then they execute out of the DTB. Once the 

poisoned branches re-issue from the DTB, they are predicted and if the prediction is 

right, then execution proceeds normally. If there is a misprediction, the processor rolls 

back to the last checkpoint which is the start of the thread. This makes the poisoned 

branches much crucial for DOE since the poisoned branch mispredictions can result in 

thread squashes and restart which is a heavy toll on both power and cycle time.  
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3.3.1 Initial framework and evolution 

The early thought process of branch prediction for DOE was similar to that of 

a Simultaneous Multithreaded System.  The basic implementation was a McFarling 

Configuration [2] of Bimodal and Gshare Predictors to see how branch prediction gets 

affected when the domain changes from a purely sequential execution to DOE mode. 

The initial implementations were a shared predictor for all the cores and a private 

predictor for each core.  These frameworks gave results with the shared predictor 

performing worse than the private predictors as corroborated by earlier studies. The 

shared predictor being subject to out of order updates from threads was not able to 

provide consistently correct predictions. This resulted in degraded prediction accuracy. 

So a private predictor scheme, where each core has its own branch predictor, was 

fixed as the baseline configuration for the experiments. 

Confronting the discontinuities in history was the next step in moving ahead. 

Previous studies [3],[4] showed that providing a consistent starting point for the 

Global branch History Register (GHR) at  the start of each thread was the most 

optimal way to reduce mispredictions in the absence of correct history. The best 

results with this setup were reported in the study by Tullsen et al. [4]. This scheme 

was adopted as an initial step to reduce mispredictions due to lack of proper history at 

the start of a thread. Since this scheme uses the address of the instruction which 

reconverges (c.f. section 3) we call this scheme the Reconvergence IP (RIP) scheme.  

Figure 3.3.1.1 depicts this scheme 
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Figure 3.3.1.1 RIP Initialization Scheme 
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3.3.2 The Aliasing Problem and choice of 2BCgskew as the base predictor 

  Traditional branch predictors (which include Gshare and Per address) which 

hash into the predictor tables with vectors derived from the address bits and the 

history, suffer from a problem called aliasing. Aliasing occurs when two branches 

with completely different directions point to the same Pattern History Table (PHT) [2] 

entry. This happens when the resultant vectors from combining the lower address bits 

and history bits for the two branches are the same. The problem of aliasing has 

plagued branch predictors since the development of the basic predictors. New schemes 

were developed to solve this. Aliasing takes a more dangerous dimension in DOE 

since the space for recovery from aliasing is narrowed down from the complete 

program to that of a thread. This effectively leads to  higher chances of misprediction 

which are costlier in DOE. The 2BCgskew predictor used in the legendary Alpha Ev8 

processor by DEC [13] has been proven one of the most efficient de-aliased predictors 

for single thread applications. The basic principle behind de-aliasing is using multiple 

indexing schemes with the same address and global history. If aliasing occurs in one 

indexing function, it may not occur in  the other one even though the sources of both 

combinations are same. Aliasing recovery can be quite time consuming and in small 

threads the training time is very less for the predictor tables.  

 

Figure 3.3.2.1 shows the architecture of a 2BCgskew predictor. 
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Figure 3.3.2.1  2BCgskew Predictor 

 

    2Bcgskew consists of four 2-bit counters banks. Bank BIM is the bimodal predictor, 

but is also part of the e-gskew predictor [22]. Banks G0 and G1 are the two other 

banks of the e-gskew predictor. Bank Meta is the  meta-predictor. The meta predictor 

chooses between the prediction from BIM and the majority vote on the predictions 

from G0, G1 and BIM. The bimodal component accurately predicts strongly biased 

static branches. Therefore, once the metapredictor has recognized this situation, 

the other tables are not updated and do not suffer from aliasing associated with easy-

to-predict branches.  
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3.3.3  Broadcast mechanism for DOE with Global Broadcast Buffer 

So far the focus has just been on how well the history can be modeled to 

emulate a sequential flow for SpMT systems. When the whole program in broken 

down into small threads in SpMT, the degree of freedom with respect to finding 

interactions between branches, which is crucial in updating the prediction counters, 

becomes very less. The training time for the predictors to reach a state where they can 

make correct predictions can be a considerable part of the total execution time of the 

thread. Any branch prediction scheme with heavy dependency on the history will 

suffer badly when plugged into this situation. In the context of DOE this becomes 

more crucial since we deal with thread sizes of 600 to 800 on an average. So the 

problem becomes twofold: a) How to reduce aliasing which could be really crucial for 

small threads b) How to provide a stable prediction mechanism so that the predictors 

need the least time to warm up or can make predictions correctly independent of the 

thread size. The broadcast scheme answers these two questions effectively. 

 

3.3.3.1 How to reduce aliasing in a smaller thread domain with minimal 

dependency on history and minimal counters: Bi-mode to YAGS 

One of the most remarkable features of branches in a program is that a 

considerable percentage of the total branches in the program are biased in one 

direction, either taken or not taken. According to the variations in history of the prior 

branches, sometimes the branches can go in a way that is opposite from their biased 

direction. This dependence of branches on branch history is unquestionable and can’t 
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be ignored in any design. At the same time the aliasing problem that cripples the 

history indexed predictors have to be looked at.  A simple solution which combines 

these aspects of the branches is the YAGS scheme [7]. YAGS is an improved version 

of the bimode predictor [6]. The following discussion will focus on how a bimode 

predictor effectively reduces aliasing for gshare schemes using simple mechanisms. 

Figure 3.3.3.1 depicts a bimode predictor. 

 

 

 

Figure 3.3.3.1 Bi-mode predictor 

 

In the bi-mode predictor, the saturating counter Pattern History tables (PHT), 

indexed  by the XORing of global  history and branch address, are divided into two 

tables. Each of these is called a direction predictor. Either of these is chosen by 
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another top level predictor which is called the choice predictor. The choice predictor is 

essentially a bimodal predictor indexed by the lower order address bits of the branch. 

Each branch has essentially a biased behavior. So whenever a branch is encountered, 

the choice predictor will choose the direction predictor corresponding to the biased 

behavior of the branch. This means that the direction predictor in the taken direction of 

the choice predictor will mostly be predicting "taken" as the direction, and same is the 

case with not taken branches. If two branches get aliased thanks to the resultant index 

pattern, still the choice predictor will choose the direction predictor in the biased 

direction of the branch. This helps the predictor to reduce aliasing effectively. When 

the direction of the branches takes the opposite direction to its biased direction thanks 

to a specific history, it will get updated at the corresponding direction predictor. Thus 

the limited number of instances where the branch deviates from its usual behavior is 

taken care of in the direction predictors. This behavior suggested by the bi-mode 

predictor, to effectively reduce aliasing, is quite suited for a framework like DOE with 

short threads and frequent context switching.  

The motivation behind YAGS is the observation that for each branch we need 

to store its bias and the instances when it does not agree with its bias. If we use a 

bimodal predictor to store the bias, as the choice predictor does in the bi-mode 

scheme, then all we need to store in the direction PHTs are the instances when the 

branch does not comply with its bias. This reduces the amount of   information stored 

in the direction PHTs, and therefore the direction PHTs can be smaller than the choice 

PHT. To identify those instances in the direction PHTs we add small tags (6-8 bits) to 



46 
 

each entry, referring to them now as direction caches. These tags store the least 

significant bits of the branch address and they virtually eliminate aliasing between two 

consecutive branches. When a branch occurs in the instruction stream, the choice PHT 

is accessed. If the choice PHT indicated “taken”, the “not taken” cache is accessed to 

check if it is a special case where the prediction does not agree with the bias. If there is 

a miss in the “not taken” cache, the choice PHT is used as a prediction. If there is a hit 

in the “not taken” cache it supplies the prediction. A similar set of actions is taken 

if the choice PHT indicates “not taken,” but this time the check is done in the “taken” 

cache. The “not taken” cache is updated if a prediction from it was used. It is also 

updated if the choice PHT is indicating “taken” and the branch outcome was “not 

taken.” The same happens with the “taken” cache.   
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Figure 3.3.3.2 depicts a YAGS predictor. 

 

 

Figure 3.3.3.2 YAGS Predictor 

The aspects of the YAGS predictor that help reduce aliasing and make 

decisions based on the biased nature of the branches made it the final choice for the 

framework for the broadcast scheme for DOE. 

 

3.3.3.2  How to reduce the warm up time for the predictors to start making the 

right predictions in the absence of a long sequence of instructions – Boosting the 

choice bias by broadcast 

The answer to the above question lies in the broadcast scheme. The underlying 

principle of the broadcast scheme is to exploit the interaction between cores in helping 

each core make the right decision. Broadcast mechanism has three key features. 
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a) Boost the biased nature of the branches by broadcasting updates as each branch in 

each core updates its PHT entry. 

b) Selectively sample the speculative updates made by other cores so that the initial 

decision made by the choice predictors in each core, as the thread starts running, is 

more accurate. 

c) Keep the local updates in each core to make decisions in the thread's domain. 

These features will be explained in the sections below. Figure 3.3.3.3 depicts 

the broadcast framework for a multi-core architecture with two cores. Each core uses a 

YAGS predictor as the base predictor in the broadcast scheme. There is a 

Global Broadcast Buffer (GBB) which is a pattern history table (PHT) of bimodal 

counters indexed by the branch address. Each core has a choice predictor which is a 

bimodal predictor. As each local choice predictor is updated, the result is broadcast 

speculatively into the GBB. The corresponding entry in the GBB is updated with 

multiple broadcasts from multiple threads. Whenever a thread starts executing in a 

core, the history register in that core is initialized with the starting address of the 

thread (according to the RIP scheme). For the choice predictor, each local choice 

predictor PHT entry is associated with a local update bit. This bit is reset to zero at the 

start of each thread. For every branch address, if the local update bit is zero, the choice 

predictor reads the PHT entry from the GBB. When the corresponding branch is 

committed, local as well as the GBB PHT entry is updated.  
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Figure 3.3.3.3 The broadcast scheme with GBB 

 

Once a branch updates the local PHT, the local update bit corresponding to that 

entry is set. So the next prediction of the branch happens from the local PHT itself.  

Figure 3.3.3.4 illustrates how one PHT entry is read and updated in the broadcast 

scheme. The broadcast scheme provides satisfactory answers to the two questions 
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raised at the start of this section. By buffering the broadcast updates from the local 

choice predictors over time, the global buffer reinforces the biased nature of branches 

which remains invariant irrespective of the point of execution of the branch in the 

entire program. This value when read initially at the start of each thread, potentially 

gives a good prediction for a branch that is executed for the first time in a thread out of 

order with other threads. The resident values in the direction predictors will mostly 

reflect the prediction based on the history available, a decent approximation provided 

by the consistent starting point given by the thread start address.  

For each branch in a thread, the direction chosen on the very first execution is 

very crucial. This is provided by the choice predictor with a buffered global read from 

GBB. The GBB values are sampled at thread boundaries and at the very first 

prediction of every branch in a thread. This increases the probability of each branch 

reading a stable value with respect to its bias. At the same time, once the GBB is read, 

preference is given to the local updates from then on, using the local update bit. This 

takes care of the local control flow inside each thread. 
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Figure 3.3.3.4 illustrates the predict and update of one local bimodal counter 

entry using the GBB scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.3.4 The Predict and Update using the GBB scheme 
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Chapter 4 

 

Simulation Methodology 

 

4.1  PTLsim - A cycle accurate simulator 

The framework chosen for this thesis is PTLsim, a cycle accurate x86 

simulator. PTLsim is a state of the art cycle accurate microprocessor simulator and 

virtual machine for the x86 and x86-64 instruction sets [16]. PTLsim models a modern 

superscalar out of order x86-64 compatible processor core at a configurable level of 

detail ranging from full-speed native execution on the host CPU all the way down to 

RTL level models of all key pipeline structures. In addition, the complete cache 

hierarchy, memory subsystem and supporting hardware devices are modeled with true 

cycle accuracy. PTLsim supports the full x86-64 instruction set of the Pentium 4+, 

Athlon 64 and similar machines with all extensions (x86-64, SSE/SSE2/SSE3, MMX, 

x87). PTLsim is written in C++ with extensive use of x86 and x86-64 inline assembly 

code. 

4.1.1  PTLSIM – in more detail 

PTLsim completely models a modern out of order x86-64 compatible 

processor, cache hierarchy  and key devices with true cycle accurate simulation. The 

basic microarchitecture of this model is a combination of design features from the 

Intel Pentium 4, AMD K8 and Intel Core 2, but incorporates some ideas from IBM 

Power4/Power5 and Alpha EV8.  The simulator directly fetches pre-decoded micro-
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operations but can simulate cache accesses as if x86 instructions were being decoded 

on fetch. The branch prediction is configurable. PTLsim includes various models 

including a hybrid g-share based predictor, bimodal predictors, saturating counters, 

etc. The front end pipeline in PTLsim has configurable number of cycles to simulate 

x86 decoding or other tasks and this is used for adjusting the branch misprediction 

penalty. Unlike in some microprocessors, PTLsim does not do speculative scheduling: 

the schedule and register read loop is assumed to take one cycle. Functional units, 

mapping of functional units to clusters, issue ports and issue queues and latencies are 

all configurable. The load and store queues use partial chunk address matching and 

store merging for high performance and easy circuit implementation. 

 

4.2  Branch Prediction in PTLsim 

         PTLsim comes with a basic hybrid McFarling [2] predictor. This combines a 

bimodal predictor and a gshare predictor and a meta predictor which chooses between 

them. Each table is 64K in size. The branch target buffer (BTB) comes with a size of 

4K. The BTB is shared between conditional and indirect branches and is implemented 

as a 4 way set associative table with 1024 sets and updated using Least Recently Used 

(LRU) algorithm.  Each branch is predicted at the fetch stage and the counters are 

updated at the commit stage of the pipeline. The different parts of the branch 

prediction mechanism are implemented using functions with configurable parameters. 

The basic framework provides the user with a large degree of customizability for 

implementing different prediction algorithms. The delays or latencies can be modeled 
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at each stage based on the size and location of a specific element in the entire 

framework.  

 

4.3  Implementing DOE in PTLsim 

         PTLsim implements a customizable out-of-order x86 pipeline. It can be tuned 

either as a single thread or a multithread (SMT) model. For customizing PTLsim into a 

SpMT model, initial experiments were done by instantiating multiple cores and 

emulating a full fledged multi-core scenario. Studies and initial research into the 

simulator framework proved that it is easier to use a single core and emulate the DOE 

multicore execution using a timing model without physically instantiating different 

cores. This is one important highlight of the thesis, based on which, further schemes 

including branch prediction were built. The forking algorithm for DOE is based on the 

Control Independence Prediction used in the Dynamic Multithreading Model [3], 

where each thread is forked on function calls. There is enough control independence 

on function calls for the threads to be forked that the main function runs on one thread 

and the parallel thread or the child thread starts running on a different core from the 

return point. So the function call becomes the spawning point (SP) and the return 

becomes the reconvergence point (RIP) (c.f. section 3), where the new thread starts.    
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4.3.1  Doe_cycle - A multi-core timing model using only a single core instance  

The basic timing element of the DOE simulation model is called the doe_cycle. 

The doe_cycle indicates the simulation time for the parallelized simulations of a single 

program. The simulator also has sim_cycle which indicates the timing of the purely 

sequential flow. Sim_cycle increments as an instruction goes through each stage of the 

pipeline. The doe_cycle increments along with the sim_cycle initially. When a 

function call is reached in the execution, which is a potential spawning point, the time 

is noted as the starting point of the speculative thread. As the execution continues, if 

the execution hits the reconvergence point according to the prediction algorithm, then 

the doe_cycle is pulled back to the thread starting time noted earlier  when the 

spawning point was encountered. This way a parallel timing corresponding to the 

DOE architecture is emulated.  The same thing happens when the speculative thread 

spawns another task. Since DOE works in a ring manner, where one thread forks only 

one task, this timing model suits better without the added overhead of instantiating 

multiple cores, which saves significantly on simulation run time and memory usage. 

Thus, in the simulator, all the threads run in a sequential way, but only the timing is 

modeled so that each thread is associated with a time, had those threads run in parallel. 

Doe_cycle is used as the basic timing element for the implementation of the broadcast 

scheme for branch prediction. Figure 4.3.1.1 explains the doe_cycle timing model. 
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Figure 4.3.1.1 DOE timing model explained 
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 The fetch mechanism , cache hierarchy and virtual memory mechanisms were 

kept as if they belonged to a single core. Also the indirect branch predictors and the 

Return address Stack were not altered. Retaining these parts of the architecture helped 

in two ways. 

1)  Keep the simulator complexity simpler. 

2) Idealizing the aspects other than the one under study helps in assessing the impact 

of altering only that aspect, in this case, branch prediction, on the entire architecture. 

 

4.4  SPEC1NT2000 benchmarks 

The simulations were run using the integer benchmarks from Standard 

Performance Evaluation Corporation (SPEC). SPEC CPU2000 focuses on compute 

intensive performance, which means these benchmarks emphasize the performance of 

the computer's processor (CPU), the memory architecture and the compilers used. 

SPEC CPU2000 consists of two subcomponents that focus on two different types of 

compute intensive performance: CINT2000 for measuring and comparing compute-

intensive integer performance and CFP2000 for measuring and comparing compute-

intensive floating point performance.  

SPEC CPU2000 provides a comparative measure of integer and/or floating 

point compute intensive performance. These benchmarks are developed from actual 

end-user applications and not synthetic. Hence the results of simulations done using 

these benchmarks are much closer to the ones obtained using realistic applications. 

The integer benchmarks closely resemble the behavior  of normal single thread 
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applications and hence were chosen for the research. For the thesis experiments the 

benchmarks that have a greater sensitivity to branch mispredictions were chosen. 

These are bzip2, gzip, gap, eon, parser, perlbmk, twolf and vpr. 

 

4.5 Implementing the 2BCgskew predictor and YAGS 

PTLsim comes with a very basic branch prediction scheme which is a 

McFarling predictor with a bimodal and gshare scheme and a choice predictor. This 

scheme was altered to create the frameworks that are the best to date. The 2BCgskew 

predictor [13] was chosen as the base predictor configuration and the comparison of 

the broadcast scheme was done with this scheme. For both schemes under study, the 

predictor instantiations were replicated to the number according to the number of 

cores used so that each core has one private predictor. Similarly the YAGS was also 

replicated for each core. Each table in the 2BCgskew and YAGS were chosen to be of 

size 64K, conforming to the base sizes that PTLsim came with. 

    

4.6  Implementing Broadcast scheme  

The broadcast scheme was implemented using the doe_cycle timing 

methodology to emulate parallelization using a single core instance (c.f. section 5.3.1). 

This necessitated emulating a scenario where one value gets updated over time and 

then the old values in time being read again as the doe_cycle is pulled back to the 

spawning time. The following example explains this: Thread1 (T1) starts at time 0 and 

forks Thread2 (T2) at time 100. This means that at time 100 T1 and T2 start running 
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parallely, whereas, in the simulator they run one after the other. As T1 runs, it updates 

the entries in the GBB. When T2 starts running, it should read the values from the 

GBB updated before time 100 or the time that any branch of T2 reads from the GBB. 

This needed storing all the values of the updates to one location in the GBB, as threads 

run, and allowing subsequent threads to read the values corresponding to time that was 

before the time of the read in terms of doe_cycle. This was implemented using an 

array of timestamps and values which were dynamically allocated and de-allocated as 

the execution progressed. This way, it is possible to emulate simultaneous updates 

with multiple threads with only a single core instance. The implementation was done 

with dynamically increasing and decreasing linked list and was a good exercise in 

understanding memory handling in a simulator like PTLsim. For the GBB a table is 

instantiated which is accessible to all the threads in addition to the private predictor 

instantiations.  The method is explained in the following section. 

 

4.6.1 Multiple timestamp allocation and de-allocation for emulating multi-

 threads using single core 

 Figure 4.6.1.1 explains how updates on a single value by multiple threads is 

emulated using a single core instance. 
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Figure 4.6.1.1 Emulation of parallel updates on a single value using sequential flow 
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 A single value is a base node of a dynamically increasing/decreasing array of 

values. As the value gets updated at different part of the program a new node is 

dynamically added (linked) to the base node or the last node added. This happens in 

the increasing order of doe_cycle. The objective is to preserve the updates of a single 

value over time. When the sequential execution reaches a point in the program where a 

reconvergence point (start of the new thread) is encountered, the timing is pulled back 

to the spawning point using doe_cycle as explained earlier. Also all the values but one 

before the spawning time is discarded since a new thread just needs only the set of 

values at the starting point. This dynamic allocation/de-allocation was quite useful in 

memory handling and also can be applied to other aspects of multi-core architectures 

like cache hierarchy. 

The simulations were run for a trace of 70 million instructions with no warm-

up. This means that the branch predictor tables are not trained before they started 

predicting the directions. Since the core hopping is much more frequent in the SpMT 

scenario, having a warm-up for the tables per core doesn’t make a lot of difference. 

This situation also suits the realistic situations more. The number of threads was set at 

4 for all the simulations.   
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Chapter 5 

Results 

 This chapter will discuss the results of the simulations with the different 

predictor configurations that have been studied in the thesis. 

5.1 Single thread execution 

 The decision to choose YAGS as the basic predictor for the DOE started with 

experiments done at the single thread. The configurations compared are the base 

McFarling predictor with the bimodal and gshare, 2BCgskew and the YAGS predictor. 

Figure 5.1.1 shows the comparison of misprediction rates of the three basic 

configurations 

 

Figure 5.1.1 Single thread misprediction rates 
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Table 5.1.1 shows the sizes of the tables used for all the three configurations. 

Predictor McFarling 2BCgskew YAGS 

Size 768 (192x4) 1M (256x4) 768(192x4) 

 

Table 5.1.1 Size budget for various schemes 

 

YAGS predictor provided misprediction rates for single thread execution better than 

both 2BCgskew and the McFarling predictors. The benchmarks gzip, mcf and vpr 

were showing exception for this behavior by a little margin. Eon showed the greatest 

improvement. The behavior for mcf, vpr and gzip could be explained by the fact that 

these benchmarks take advantage of the availability of the available history in the 

purely single thread sequential execution.  

5.2 Disjoint Out of order Execution 

5.2.1 DOE worst case 

 This represents the scenario in which each of the branch predictor per core 

reads whatever remnant values it has at the start of each thread. There is no 

optimization or improvement applied to any of the predictor. This was the first step in 

assessing the impact of multithreading using SpMT on the proven single thread 

schemes. Figure 5.2.1.1 illustrates the misprediction rates for each predictor in the 

multithreaded mode. 
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Figure 5.2.1.1 Worst case Multicore Misprediction rates  

 

 The results clearly show that the discontinuity in branch history is really taking 

a toll on the prediction accuracy. The McFarling predictor suffers the most with a huge 

percentage of degradation in misprediction rate. 2BCgskew performs worse than 

YAGS for only two benchmarks mcf and vpr. For the rest of the benchmarks YAGS 

provides the best misprediction rate at 3/4th

 After the initial experiments, McFarling was not included in the further studies 

since both 2BCgskew and YAGS were proven to be much more effective in 

preventing aliasing and achieving higher prediction accuracy. So the base model was 

fixed at the 2BCgskew (according to the best known scheme in the studies so far) [3].  

This scheme will be termed as baseline the further discussions. 
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5.2.2 DOE with RIP initialization of global history 

 The starting point of the studies in confronting discontinuities in history was to 

initialize the global history using a consistent pattern for each thread. This was chosen 

to be the address of the starting instruction of the thread and is called the RIP scheme. 

Figures 5.2.2.1 shows the comparison of both 2BCgskew and YAGS schemes with the 

RIP initialization schemes applied. 

 

Figure 5.2.2.1 Misprediction rates with RIP initialization 
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baseline scheme didn’t show any improvement for three out of the nine benchmarks 

simulated and worsened the misprediction rates for two and showed improvement for 

four, YAGS showed a worse performance for only mcf when compared to its worst 

case configuration without the history initialization, (by a minimal 0.7%) and showed 

improvement for all other benchmarks resulting in lower absolute accuracies except 

for mcf, gzip and vpr. 

5.2.3 Broadcast scheme for DOE 

 The first step in the implementation of broadcast mechanism in DOE 

architecture was to broadcast the updates of the history based components of the 

baseline scheme. This means the updates of the gshare and gselect components of the 

baseline scheme are broadcast as and when the local updates happen. This is called the 

gshare broadcast. The underlying assumption of a gshare broadcast is that a branch 

which depends on a specific pattern of history repeats its behavior at any point in the 

program and hence could benefit from future speculative updates. A comparison of the 

baseline scheme with and without broadcast is shown in Figure 5.2.3.1.  
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Figure 5.2.3.1 Gshare broadcast vs. 2BCgskew 

  

The above comparison for only the baseline scheme shows the potential benefits of the 

broadcast scheme for gshare predictors. It should be noted that the gshare broadcast 
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5.2.3.1 Final results for the Global Broadcast Buffer (GBB) scheme  

 Figures 5.2.3.1.1 and 5.2.3.1.2 show the misprediction rate comparisons of 

YAGS global broadcast buffer scheme (GBB) with the baseline scheme. The 

comparison is done for different size budgets. The results indicate that the broadcast 

and local update-read scheme using a GBB improves the misprediction rate from the 

best scheme evaluated so far. A look at the sizes of the tables for corresponding 

mispredictions reveals the effectiveness of the GBB scheme. 

 

Figure 5.2.3.1.1 Misprediction rate comparisons for 1M baseline and 640KB GBB 
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Figure 5.2.3.1.2  Misprediction rate comparisons for 512KB baseline and 640KB GBB 
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Figure 5.2.3.1.2  Misprediction Rate comparisons for 8 cores 

 % Improvement in mispredicted branches 

bzip2 1.44% 

gzip -2.43% 

mcf 6.90% 

parser 4.62% 

eon 11.52% 

gap 11.65% 

vpr -0.80% 

perlbmk 16.95% 

twolf 12.57% 

 

Table 5.2.3.1.1  Improvement of misprediction rates of GBB over 2BCgskew 
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 Finally we compare the very first broadcast scheme described here, gshare 

broadcast, and GBB scheme. The gshare broadcast is a core-to-core transfer 

mechanism and the sampling of the broadcast values is done all throughout the 

runtime as against thread boundaries for GBB. 

 

Figure 5.2.3.1.3 Comparison of gshare broadcast and GBB 

 Figure 5.2.3.1.3 shows that GBB outperforms gshare broadcast with less than 

2/3rd

 The results state that GBB scheme is a clear winner when existing prediction 

schemes are compared. One highlight of the GBB scheme is the fact that it is highly 

 the predictor size for all the benchmarks except vpr and gzip. Also it should be 

kept in mind that the gshare broadcast suffers from latency issues when modeled 

rightly. The study has not taken into account the effect of inter-core latency for gshare 

broadcast mechanism.  
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scalable. As the number of cores increase, the global buffer doesn’t need to scale with 

it and also the size of the local bimodal predictors in each core can be kept small. This 

is because of the following reasons. 

1. Since the global buffer essentially buffers the biased behavior of the branches 

in an application, the size really doesn’t need to go up with the core size for a 

single application. 

2. The local bimodal predictor handles the local updates in each thread. As the 

number of cores increase and thread hopping also goes up, these predictors 

essentially could be smaller since the initial read from the GBB gives bigger 

percentage of right predictions as the thread starts. 

3. The latency of transfer to the global buffer is masked by the fact that the values 

from the global buffer are read only when a branch executes for the first time 

in a thread. This infrequent read of the global buffers results in a high 

probability of reading the reinforced bias value over time more than reading a 

value in the wrong bias due to inconsistent updates. 

5.3  Indirect branches and Poisoned Branches 

 The thesis also led to the discovery of the fact that indirect branches 

significantly contribute to mispredictions in DOE. Even though conditional branch 

prediction accuracy is improved, to get performance corresponding to the 

improvement achieved, indirect branches also should be properly predicted. Indirect 

branches form a considerable chunk of the poisoned branches which are re-issued 
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from the DTB (c.f. section 3.2.1) and can result in thread squashing rather than just 

pipeline flushes if mispredicted.  Since the focus of the thesis is primarily on 

conditional branches, these areas are noted as observations. The GBB scheme shows 

improvement for poisoned conditional mispredictions by 25% for twolf, a benchmark 

which has considerable number of poisoned branches. The only other benchmark with 

significant number of poisoned branches is perlbmk where the improvement is close to 

1%. All the other benchmarks have negligible poisoned mispredictions. 

5.4 Hardware aspects and latency considerations 

 The GBB buffers speculative broadcast updates from all the cores at any point 

of time. This necessitates a multi-ported table for the implementation of the GBB. The 

number of read ports of this table will correspond to the number of cores used. For the 

write ports, there are two options. Either the number of ports equal to the number of 

cores could be used or a number less than the number of cores also can achieve 

comparable performance. This is due to the fact that the speculative broadcast updates 

from each core to the GBB carry out the purpose of boosting the biased nature of each 

branch. So the variation in the counter values is not going be a large deviation from 

either taken or not taken in the absence of a few writes from each core. The same 

principle holds good for the latency of the GBB updates from each core. The current 

thesis did not model the delays associated with the broadcasts from the cores to the 

GBB. This could be done effectively as part of an FPGA implementation in the future. 

For SpMT, the number of cores does not scale to a big number because the available 
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thread level parallelism in single thread applications does not support a big number of 

parallel cores. For the GBB scheme where the number of read/write ports need to scale 

with the number of cores, this is ideal since the port number also does not need to 

scale beyond a limit. 
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Chapter 6 

Conclusion and future work 

 

6.1  Conclusion 

 The thesis proposes a new and simple scheme which makes use of the inherent 

biased nature of the branches in a program. A new scheme is proposed where a global 

table is used to buffer the updates from multiple cores speculatively to take advantage 

of the biased nature of branches. Different from the existing schemes, the broadcast 

scheme doesn’t just look at how to resolve the issues relating to global history to 

improve prediction accuracy. It looks at a bigger domain outside the threads that can 

bring positive results.  The broadcast scheme is scalable when compared to many 

other schemes examined, since it is not specifically correlated to threads in its table 

size or working principle. For 80% of the benchmarks simulated, the broadcast 

scheme provides the best prediction accuracies in a SpMT model. 

 

6.2 Future work 

 The broadcast scheme could be applied to out-of-order cores and systems 

where the branch mispredictions are more crucial. To improve the accuracy of the 

dependent or poisoned branches, value prediction could be employed across threads. A 
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mapping between the values predicted and the branch outcomes for dependent 

branches could potentially lead to a big improvement in dependent branch execution 

which would boost the SpMT performance for DOE. The broadcast scheme itself 

could be studied in more depth in terms of the way in which the GBB counter values 

are selectively updated. This could further improve the prediction accuracy. 
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