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Abstract. New-particle formation (NPF) is a significant
source of aerosol particles into the atmosphere. However,
these particles are initially too small to have climatic impor-
tance and must grow, primarily through net uptake of low-
volatility species, from diameters ∼ 1 to 30–100 nm in or-
der to potentially impact climate. There are currently un-
certainties in the physical and chemical processes associ-
ated with the growth of these freshly formed particles that
lead to uncertainties in aerosol-climate modeling. Four main
pathways for new-particle growth have been identified: con-
densation of sulfuric-acid vapor (and associated bases when
available), condensation of organic vapors, uptake of organic
acids through acid–base chemistry in the particle phase, and
accretion of organic molecules in the particle phase to cre-
ate a lower-volatility compound that then contributes to the
aerosol mass. The relative importance of each pathway is un-
certain and is the focus of this work.

The 2013 New Particle Formation Study (NPFS) mea-
surement campaign took place at the DOE Southern Great
Plains (SGP) facility in Lamont, Oklahoma, during spring
2013. Measured gas- and particle-phase compositions dur-
ing these new-particle growth events suggest three distinct

growth pathways: (1) growth by primarily organics, (2)
growth by primarily sulfuric acid and ammonia, and (3)
growth by primarily sulfuric acid and associated bases and
organics. To supplement the measurements, we used the par-
ticle growth model MABNAG (Model for Acid–Base chem-
istry in NAnoparticle Growth) to gain further insight into the
growth processes on these 3 days at SGP. MABNAG sim-
ulates growth from (1) sulfuric-acid condensation (and sub-
sequent salt formation with ammonia or amines), (2) near-
irreversible condensation from nonreactive extremely low-
volatility organic compounds (ELVOCs), and (3) organic-
acid condensation and subsequent salt formation with am-
monia or amines. MABNAG is able to corroborate the ob-
served differing growth pathways, while also predicting that
ELVOCs contribute more to growth than organic salt for-
mation. However, most MABNAG model simulations tend
to underpredict the observed growth rates between 10 and
20 nm in diameter; this underprediction may come from
neglecting the contributions to growth from semi-to-low-
volatility species or accretion reactions. Our results suggest
that in addition to sulfuric acid, ELVOCs are also very im-
portant for growth in this rural setting. We discuss the limita-
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tions of our study that arise from not accounting for semi-
and low-volatility organics, as well as nitrogen-containing
species beyond ammonia and amines in the model. Quantita-
tively understanding the overall budget, evolution, and ther-
modynamic properties of lower-volatility organics in the at-
mosphere will be essential for improving global aerosol mod-
els.

1 Introduction

Atmospheric aerosols can affect climate directly, through the
absorption and scattering of solar radiation (Rosenfeld et al.,
2008; Clement et al., 2009), and indirectly, by modifying
cloud properties (Charlson et al., 1992). Both of these effects
depend on aerosol particle size, with particles with diameters
larger than 50–100 nm dominating the effects. Larger parti-
cles scatter and absorb radiation more efficiently than smaller
particles (Seinfeld and Pandis, 2006), and particles with di-
ameters larger than 50–100 nm have the potential to act as
cloud condensation nuclei (CCN; a full list of all abbrevia-
tions used in the paper is listed in Appendix A) (e.g., Sein-
feld and Pandis, 2006). CCN number and activity are instru-
mental in determining cloud properties, including precipita-
tion and albedo (Rosenfeld et al., 2008; Forster et al., 2007).
The predictions of these aerosol impacts on climate remain
amongst the largest uncertainties in climate models (Boucher
et al., 2013). Thus, in order to better constrain the climate ef-
fects of aerosols, atmospheric particle size distributions must
be accurately modeled.

The majority of atmospheric aerosols originate from pho-
tochemically driven new-particle formation (NPF) (e.g.,
Spracklen et al., 2008; Pierce and Adams, 2009). NPF is
regularly observed to occur throughout the troposphere (e.g.,
Kulmala et al., 2004; Kuang et al., 2010). We distinguish be-
tween nucleation and NPF as follows: nucleation is the for-
mation of stable particles∼ 1 nm in diameter from gas-phase
sulfuric-acid molecules and stabilizing vapors that could in-
clude water, ammonia, amines, diamines, and oxidized or-
ganic molecules (e.g., Kirkby et al., 2011; Chen et al., 2012;
Almeida et al., 2013; Riccobono et al., 2014; Jen et al., 2016).
NPF, however, includes the growth of these stable nuclei
to sizes frequently observed in the atmosphere (larger than
3–10 nm). In order to grow to climate-relevant sizes, new
particles must grow through uptake of vapors while avoid-
ing being lost to coagulation by larger particles. This com-
petition between growth and coagulational scavenging de-
pends primarily on initial and final particle size, growth rate,
and the concentration of pre-existing aerosols (Kerminen et
al., 2004; Pierce et al., 2007; Kuang et al., 2010; Wester-
velt et al., 2013, 2014). Large impacts of NPF on CCN are
most favorable under conditions of fast particle growth rates
and low pre-existing aerosol concentrations (small coagula-
tion sinks). Thus, it is important to understand both particle

growth and the time-evolving particle size distributions in or-
der to model the resulting CCN concentrations from new-
particle events accurately. In this work, we focus upon the
growth of particles from these NPF events.

Particle growth from NPF events is chemically complex
and poorly understood. Irreversible condensation of sulfuric-
acid vapor (produced through gas-phase oxidation of SO2
by the hydroxyl radical) is known to be a major contribu-
tor to growth. The effective equilibrium vapor pressure of
sulfuric acid in the presence of tropospheric water vapor is
negligible compared to ambient sulfuric-acid concentrations
(Marti et al., 1997), and sulfuric acid readily condenses to the
smallest stable particles, often forming inorganic salts with
associated bases when available. However, observed particle
growth often exceeds that which can be explained by the con-
densation of sulfuric acid alone (Weber et al., 1997; Stoltzen-
burg et al., 2005; Riipinen et al., 2007; Iida et al., 2008;
Kuang et al., 2010; Smith et al., 2010; Pierce et al., 2012).
These and other studies have shown that the uptake of low-
volatility organic vapors is also important and even explains
the majority of growth for some regions (e.g., Smith and
Rathbone, 2008; Kuang et al., 2009; Riipinen et al., 2011;
Bzdek et al., 2014; Xu et al., 2015). Growth by organics
may involve a large number of species and multiple growth
pathways (Riipinen et al., 2012). We propose that particle
growth rate can be modeled as the sum of the following pro-
cesses: irreversible condensation of sulfuric acid (GRH2SO4),
reversible or nearly irreversible condensation of semivolatile
or low-volatility organic compounds (GRorg cond), uptake of
organic acids through acid–base chemistry in the particle
phase (GRacid–base), and growth from the accretion of two or
more organic molecules in the particle phase to form a lower-
volatility compound that can then contribute to aerosol mass
(GRaccret):

GR= GRH2SO4 +GRorg cond+GRacid–base+GRaccret. (1)

The contribution of atmospheric vapors to observed growth
rates through condensation of these organic vapors (with-
out reactions in the particle phase) depends heavily upon the
volatility of the organics in the gas phase. It is estimated that
the equilibrium vapor pressure required for near-irreversible
condensation of vapors onto nanoparticles (defined here to be
aerosol particles with an ambient diameter less than 50 nm)
must be around 10−7 Pa (∼ 10−12 atm) or less, correspond-
ing to a saturation concentration of 10−4–10−3 µg m−3 (Don-
ahue et al., 2011; Pierce et al., 2011).

The presence of essentially nonvolatile organic vapors in
the atmosphere, referred to here as extremely low-volatility
organic compounds (ELVOCs), defined to have saturation
concentrations of around 10−4 µg m−3 or less (Murphy et
al., 2014), have been detected in both laboratory and am-
bient measurements (Ehn et al., 2012; Zhao et al., 2013,
Jokinen et al., 2015). Ehn et al. (2014) proposed a possi-
ble chemical pathway in which large atmospheric organic
parent molecules (e.g., terpenes) undergo initial oxidation to
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form peroxy radicals followed by rapid autoxidation (self re-
action), creating highly oxygenated, yet still large (e.g., 10
carbons), molecules. This pathway has since been confirmed
by Jokinen et al. (2014) and Rissanen et al. (2014). Joki-
nen et al. (2015) determined ELVOC yields from five major
biological volatile organic compound (BVOC) species from
both ozonolysis and OH oxidation, including isoprene and
four monoterpenes (limonene, alpha-pinene, myrcene, and
beta-pinene). The ELVOC yield for isoprene from the two
oxidation pathways is low (0.01 and 0.03 %, respectively);
however, since isoprene emissions are the highest among all
non-methane BVOCs (Guenther et al., 2006), these path-
ways could contribute an appreciable amount of ELVOCs
in high isoprene-emitting regions (e.g., Yu et al., 2014).
The monoterpenes have much higher ELVOC yields, rang-
ing from 0.12 to 5.3 %, depending on both the monoterpene
structure and oxidation pathway. Subsequent global aerosol
simulations have indicated that the ELVOCs produced from
the observed monoterpene yields increased NPF and growth
globally, which in turn increased total number concentrations
across most of the continental regions and moderately in-
creased the number of CCN (Jokinen et al., 2015).

Ammonia can form inorganic salts in atmospheric parti-
cles with sulfuric acid and nitric acid (Jaeschke et al., 1998;
Seinfeld and Pandis, 1998); these reactions shift the equi-
librium of ammonia (the partitioning species) to the parti-
cle phase, as the inorganic salts are lower in volatility than
their individual constituents (Pankow, 2003; Pinder et al.,
2007). Amines (nitrogen-containing bases with at least one
carbon) and organic acids also are observed in growing new
atmospheric particles (e.g., Mäkelä et al., 2001; Smith and
Rathbone, 2008; Smith et al., 2010; Wang et al., 2010; Tao
et al., 2015). Since the vapor pressures of these compounds
are higher than is favorable for contributing to new-particle
growth by nonreactive condensation alone, the formation of
organic salts (formed from organic acids reacting with ei-
ther amines or ammonia) has been suggested as a potential
mechanism for reducing the volatility of these compounds
(Barsanti et al., 2009). The presence of these organic-acid
and base species in the particle phase depends on the ther-
modynamic properties of these species (volatility and pKa)
(Barsanti et al., 2009) as well as the amount of sulfuric acid,
which will preferentially react with bases.

Accretion products are formed from a large variety of re-
actions, through which organic molecules may contribute to
particle mass by reactions between organic molecules that
reduce the volatility of the parent molecules (Barsanti and
Pankow, 2004; Pun and Seigneur, 2007). Assessing the ten-
dency of atmospheric molecules to undergo accretion re-
actions via thermodynamic considerations showed that gly-
oxal and methylglyoxal and acetic, malic, maleic, pinic, and
likely other similar mono- and dicarboxylic acids have the
thermodynamic potential to contribute significantly to parti-
cle growth under the right kinetic conditions (Barsanti and
Pankow, 2004, 2005, 2006). Matsunaga et al. (2005) found

that small multifunctional compounds (e.g., methylglyoxal)
in the ambient atmosphere had a much higher particle-phase
affinity than predicted by their Henry’s law constants; they
proposed oligomerization as a possible pathway. Several lab-
oratory studies have confirmed the presence of accretion
products in secondary organic aerosols (SOA) formed from
a variety of precursor species (Limbeck et al., 2003; Tolocka
et al., 2004; Heaton et al., 2007; Wang et al., 2010). On a
mass basis, polymers and oligomers have been found to ac-
count for up to 50 % of the SOA formed from ozonolysis
(Gao et al., 2004; Kalberer et al., 2004; Hall and Johnston
et al., 2011). Wang et al. (2010) directly observed oligomers
from glyoxal reactions in growing particles from 4 to 20 nm
in diameter, indicating that accretion products have the po-
tential to contribute to new-particle growth. While there are
studies showing that accretion could be an important process
for particle growth, there are still many uncertainties associ-
ated with it.

Despite the growing body of evidence for multiple growth
pathways for new-particle growth, current global and re-
gional model studies of aerosol impacts focus on growth
through the condensation of vapors only, generally sulfuric
acid and lumped organics (e.g., Yu et al., 2011; D’Andrea
et al., 2013; Jokinen et al., 2015; Scott et al., 2015). Of-
ten, global and regional models with online aerosol micro-
physics have made simplified assumptions about SOA yields
and the size-dependent uptake of organic vapors to particles.
Many microphysics models assume fixed SOA yields (e.g.,
Pierce et al., 2009; Spracklen et al., 2010, 2011; Westervelt
et al., 2013), as size- and volatility-resolved vapor condensa-
tion / evaporation is a computationally burdensome system;
others explicitly include volatility-dependent yields (e.g., Za-
veri et al., 2008; Yu et al., 2011). The fixed-yield models ei-
ther treat SOA as ideally semi-volatile, with the assumption
that organic vapors reach instantaneous equilibrium with the
aerosol and condense proportionally to the pre-existing par-
ticle mass distribution, or the models assume that the SOA
is effectively nonvolatile and condenses proportionally to the
pre-existing Fuchs-corrected surface area (Pierce et al., 2011;
Riipinen et al., 2011; Zhang et al., 2012a).

Generally, regional and global models do not account
explicitly for the possible particle-phase reactions (organic
acid–base chemistry and oligomerization) with some excep-
tions (e.g., Carlton et al., 2010). To our knowledge, no re-
gional or global modeling study has investigated the role of
these particle-phase reactions on new-particle growth. The
studies discussed above are simply attempting to account
for all growth via traditional nonreactive gas-phase conden-
sation. However, there are several process-based box mod-
els that implicitly or explicitly simulate particle-phase pro-
cesses in addition to condensation and nonreactive partition-
ing, including the oligomer formation framework of Pun and
Seigneur (2007) and Ervens et al. (2010); the kinetic mod-
eling framework of Pöschl et al. (2007), extended by Shi-
raiwa and co-workers to build multi-layer kinetic models of
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gas–aerosol interactions (Shiraiwa et al., 2009, 2010, 2012);
and the Model for Acid–Base chemistry in NAnoparticle
Growth (MABNAG; Yli-Juuti et al., 2013), a single-particle
growth model that simulates particle-phase acid–base reac-
tions as well as condensation / evaporation. These detailed,
process-based aerosol models may be used to determine the
relative contributions of the various potential growth path-
ways (GRH2SO4 , GRorg cond, GRacid–base, GRaccret) but to our
knowledge have not been used extensively in conjunction
with detailed measurements of growth events. Ultimately,
well-tested and measurement-informed process-based mod-
els should be used in the future to create next-generation
particle-growth schemes for more realistic global and re-
gional aerosol models.

In this study, we seek to understand the species and mech-
anisms that drove the growth of new particles observed dur-
ing the Southern Great Plains (SGP) New Particle Forma-
tion Study (NPFS) in April–May 2013 in Oklahoma, USA.
We attempt to find closure in particle growth rates and par-
ticle composition between a state-of-the-art process-based
growth model (MABNAG) and detailed measurements of
particle growth, particle composition, and gas-phase species.
We consider GRH2SO4 , GRorg cond, and GRacid–base. We do
not consider GRaccret as we do not have sufficient measure-
ments to constrain these rates. Through this closure process,
we provide estimates of the dominant species and mecha-
nisms for three specific growth events observed during the
study. Section 2 provides an overview of our measurement
and modeling methods. Section 3 closely examines three
NPF events observed during the NPFS at SGP and compares
these events to modeling results using MABNAG. Conclu-
sions and future work are discussed in Sect. 4.

2 Methods

The SGP NPFS took place from 13 April to 24 May 2013
(http://www.arm.gov/campaigns/sgp2013npfs). The primary
objectives of the campaign were to study the formation and
evolution of aerosols and the impacts of the newly formed
particles on cloud processes. The majority of the measure-
ments (and all of those used in this work) took place at
the US Department of Energy (DOE) Atmospheric Radia-
tion Measurement (ARM) SGP Central Facility in the Guest
Instrument Facility. The site is representative of the large
Great Plains region, with agricultural activities, such as cattle
and pig husbandry, as well as oil and gas extraction. To our
knowledge, the nucleation and growth in the Great Plains re-
gion has not been studied in detail. For more information on
the site and campaign, visit the DOE and campaign report
websites (http://www.arm.gov/sites/sgp and http://www.arm.
gov/campaigns/sgp2013npfs). Thirteen new-particle forma-
tion events were observed during the NPFS. In this paper, we
focus on three new-particle formation events that occurred on
19 April, 9 May, and 11 May; these were the days when NPF

was observed and all the available equipment was operating
properly. Figure 1 shows the observed size distributions and
derived back trajectories from the HYbrid Single-Particle La-
grangian Integrated Trajectory (HYSPLIT) model (Draxler
and Rolph, 2012; Rolph, 2012) for these 3 days. These data
will be described in detail later.

2.1 Measurements

During the 6-week campaign, 13 new-particle formation
events were observed at Lamont by a battery of three scan-
ning mobility particle sizers (SMPSs) operated in parallel.
They included the DEG SMPS (a TSI 3085 Nano DMA
operated with a laboratory prototype laminar flow diethy-
lene glycol condensation particle counter detector; Jiang et
al. (2011); 1.9–13.6 nm mobility diameter), a nano SMPS (a
TSI 3085 nano DMA operated with a TSI 3025A laminar
flow ultrafine butanol CPC detector; 2.8–47 nm mobility di-
ameter), and a conventional SMPS (a home-built long col-
umn DMA with dimensions similar to the TSI 3071 with a
TSI 3760 CPC detector; 23–528 nm mobility diameter). For
all systems, filtered ambient air was used for the DMA sheath
air, without adjusting the water vapor partial pressure. There-
fore, the relative humidity was close to ambient relative hu-
midity, and particle water content was close to that in the
atmosphere.

Nanoparticle composition data were collected using the
Thermal Decomposition Chemical Ionization Mass Spec-
trometer (TDCIMS) (Voisin et al., 2003; Smith et al., 2004).
For the observations reported here, we used the recently de-
veloped time-of-flight mass spectrometer version of the in-
strument (TOF-TDCIMS) (Lawler et al., 2014). The TD-
CIMS measures the molecular composition of size-selected
atmospheric nanoparticles in near real time. It performs this
measurement by first charging and size-selecting nanoparti-
cles using unipolar chargers and differential mobility ana-
lyzers, respectively. Charged, size-selected particles are col-
lected by electrostatic precipitation onto a platinum filament
for approximately 30 min. Following this, the filament is
moved into the ion source of a chemical ionization mass
spectrometer and undergoes a current ramp to reach an es-
timated maximum temperature of 600 ◦C. This heating ther-
mally desorbs and/or decomposes the sample to produce gas-
phase analyses. Two different chemical ionization reagents
are used to detect the chemical species desorbed from the
sample: H3O+(H2O)n (n= 0–3), hereafter referred to as
“positive ion chemistry”, detects base compounds such as
ammonia and amines as well as carbonyl-containing com-
pounds and some alcohols; O−2 (H3O)n (n= 0–3), hereafter
referred to as “negative ion chemistry”, detects organic and
inorganic compounds with acid groups, as well as other oxy-
genated compounds with high electron affinities. During the
campaign, the instrument cycled roughly hourly between
positive and negative ion chemistry. We classify the detected
ions into the following categories: ammonia, amine/amide,
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Figure 1. (a–c) The growth events for 19 April, 9 May, and 11 May 2013, as captured by a scanning mobility particle sizer at SGP. Each
plot shares the same color bar. (d–f) The associated 48 hr HYSPLIT back trajectories for each day as calculated using the NOAA HYSPLIT
Model with NAM meteorological data, initialized at 250 m a.g.l.

organics with sulfur, organics with nitrogen, organics with-
out sulfur or nitrogen, sulfate, and nitrates that are either oxi-
dized (no carbons) or inorganic (see Figs. 2, 4, and 6c–d). At
the present time, we have not identified marker compounds
for the condensation of ELVOCs; however, a prior labora-
tory study has shown that the detection of organic acids in
nanoparticles correlates with the early growth of nanoparti-
cles from the oxidation of α-pinene (Winkler et al., 2012).
We are also unable to distinguish between the oxidized ni-
trates and the inorganic nitrates; thus we have grouped these
ions together (the nitrate (ox/inorg) category in Figs. 2, 4,
and 6c–d).

Ambient gas-phase sulfuric acid (both monomers and
dimers), malonic acid, and oxalic acid were measured with
the cluster CIMS using nitrate core ion (present primarily as
dimer, HNO3

qNO−3 ) as the chemical ionization reagent ion
(Zhao et al., 2010). Sulfuric acid, malonic acid, and oxalic
acid were detected atm/z 160, 166, and 152 respectively (the
molecules clustered with a nitrate ion). The cluster CIMS
measures those acids with unit mass resolution. The detec-
tion of sulfuric acid in the CIMS has been quantified and
calibrated, and the uncertainties for the concentrations of the
monomers and dimers of sulfuric acid are estimated to be
factors of 1.5 and 3, respectively (Chen et al., 2013). How-
ever, the detection of oxalic acid and, to a much lesser extent,
malonic acid may not be as efficient as sulfuric acid due to
gas-phase proton affinities of the organic acids compared to
that of nitric acid. A calibration comparison with a differ-
ent cluster CIMS using acetate (CH3CO2H qCH3CO−2 ) as the
reagent ion (Jen et al., 2015) showed up to 2 orders of mag-
nitude higher inferred oxalic-acid concentration and approx-
imately similar malonic concentrations as the nitrate cluster
CIMS. Therefore, the estimated systematic uncertainty in the
oxalic-acid concentration measured via nitrate chemical ion-

ization is approximately up to a factor 100 times lower than
reported, indicating that the actual concentration could be up
to 100 times higher than observed. We explore the sensitivity
of the model to these organic-acid uncertainties in this paper.

Ambient gas-phase amines and ammonia concentrations
were measured using the Ambient pressure Proton transfer
Mass Spectrometer (AmPMS) (Hanson et al., 2011; Freshour
et al., 2014), a quadrupole instrument (unit mass resolu-
tion) with high sensitivities for ammonia and amines. Signals
at the protonated parent masses for methylamine, dimethy-
lamine (DMA), and trimethylamine (TMA) (C1–C3 amines)
were assigned with confidence; also detected was a suite of
larger alkylamines with four to seven carbons (C4–C7). Less
is known about the speciation of these larger amines, as am-
bient measurements of amines larger than C3 are not often
made (e.g., Ge et al., 2011). Contribution of amides to the
signals at the masses of the larger amines may also be signif-
icant; as such, no structure information was assigned to the
C4–C7 amines, as many isomers are possible. Uncertainties
in the AmPMS data for this campaign are discussed further in
Freshour et al. (2014) and are estimated to be +150/− 60 %
overall.

A proton transfer reaction mass spectrometer (PTR-MS)
based on the design of Hanson et al. (2011) was operated
unattended during the campaign and was set to measure a
suite of volatile organic compounds (VOCs), including iso-
prene and monoterpenes. However, only one calibration was
done for the PTR-MS on 18 May, 35 days into the campaign,
and during processing, unexplainable spikes were seen in the
data at irregular intervals. Further, monoterpene mixing ra-
tios were nearly always unreasonably high (often ranging
between 10 and 100 ppbv). For comparison, a field site in
Manitou, Colorado, comprised of a ponderosa pine stand,
had maximum monoterpene mixing ratios of 1–2 ppbv dur-
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ing the mid-summer (Ortega et al., 2014), and we expect the
monoterpene emissions near the SGP (with few trees) site in
April and May to be lower than the forested Manitou site in
summer. We thus lack confidence overall in the VOC data ob-
tained by the PTR-MS, so we use an alternative method for
estimating monoterpene concentrations, which is described
below.

2.2 ELVOC estimate

Rather than using the PTR-MS for VOC data, which suffered
from calibration issues, we estimate monoterpene emissions
and concentrations using the Model of Emissions of Gases
and Aerosols from Nature version 2.1 (MEGAN2.1) (Guen-
ther et al., 2006, 2012; Sindelarova et al., 2014) in the
Goddard Earth Observing System chemical-transport model
(GEOS-Chem; http://geos-chem.org). We ran MEGAN2.1 in
GEOS-Chem at a 2×2.5◦ resolution to estimate monoterpene
emissions rates (monoterpenes are not tracked as prognos-
tic species in these GEOS-Chem simulations). The specific
monoterpenes estimated are α-pinene, β-pinene, limonene,
sabinene, myrcene, 3-carene, ocimene, and the lumped sum
of other monoterpenes (see Guenther et al., 2012 for a
complete list). These GEOS-Chem simulations use GEOS-
FP meteorological fields generated by the Goddard Mod-
eling and Assimilation Office (GMAO, http://gmao.gsfc.
nasa.gov/) and include biogenic emission-factor updates to
MEGAN2.1 based on Guenther et al. (2012) and Sinde-
larova et al. (2014). For a discussion on the uncertainties
associated with emissions from MEGAN2.1, see Guenther
et al. (2012). We estimate pseudo-steady-state monoterpene
concentrations by assuming that the emitted monoterpenes
are well mixed up to the boundary-layer (BL) height mea-
sured at SGP and that emissions are balanced by chemical
loss by ozonolysis. (The BL height measurements were ob-
tained by the ARM value-added product radiosonde (PBL-
HTSONDE) at the SGP Central Facility.) For ozonolysis, we
used a rate constant, k, of 8.1× 10−17 cm3 molecule−1 s−1

for all monoterpenes, from IUPAC (http://www.iupac.org).
For the ozone concentrations, we used hourly ozone moni-
tor measurements from the closest EPA monitoring site, at
Dewey, OK, which is 120 miles (∼ 190 km) SW of the SGP
site. The uncertainty in ozone concentration due to the dis-
tance between measurements is a source of potential error in
our monoterpene concentration calculation; however, since
we expect ozone concentrations to be relatively homoge-
neous regionally, we expect other errors (such as ELVOC
yields) to be more significant sources of ELVOC uncertainty.

We estimate the gas-phase ELVOC from the oxidation
of the monoterpene (MT) concentrations obtained from
MEGAN, assuming a pseudo-steady state between its chem-
ical production and loss by irreversible condensation and ne-
glecting dry deposition as the condensation sink timescales
are faster than the dry-deposition timescales (Pierce and
Adams, 2009):

[ELVOC] =
0.03k[O3][MT]

CS
, (2)

where CS is the condensation sink, calculated from the
SMPS aerosol size-distribution measurements. We note that
the SMPS measurements only go up to ∼ 650 nm mobility
diameter, so the condensation sink calculated represents a
lower limit on the actual condensation sink. The prefactor,
0.03, is the ELVOC molar yield from the α-pinene + ozone
reaction found in Jokinen et al. (2015). α-Pinene represents
∼ 30 % of the MEGAN-estimated monoterpenes present at
SGP during the campaign, which is the largest fraction by
any of our estimated monoterpene species. Thus, we assume
the α-pinene yield to be representative of all of the monoter-
penes; in reality, some monoterpene species have higher or
lower yields. We do not know the ELVOC yield from oxida-
tion processes for all monoterpene species; thus, this estimate
of the ELVOC concentration should be taken as one possible
outcome of monoterpene oxidation. We also acknowledge
that our modeled monoterpene concentrations depend on the
modeled ozone concentrations, whereas we used the mea-
sured ozone concentrations to determine the ELVOC yield.
The errors in this assumption are likely small compared to
our uncertainties in the ELVOC yield.

2.2.1 Model description

MABNAG has been developed by Yli-Juuti et al. (2013)
to simulate the growth and composition of a single parti-
cle resulting from both condensation of low-volatility va-
pors and acid–base reactions in the particle phase. The ver-
sion of MABNAG used for this study accepts as inputs the
gas-phase concentrations and properties of water, sulfuric
acid, a representative organic acid, ammonia, a representative
amine, and a representative nonreactive organic, taken here
to be an ELVOC. The organic compounds are represented in
MABNAG with the chemical properties (e.g., pKa, molec-
ular mass, equilibrium vapor pressure) of one organic acid,
one amine, and one ELVOC; thus, we must make assump-
tions about the properties of the organic acid, amine, and
ELVOC inputs that are representative for the wide ranges of
organic-acid, amine, and ELVOC species. MABNAG also re-
quires an initial particle size and composition; for simplicity
in this study, the initial particle is formed from 20 molecules
of each input species, creating a particle approximately 3 nm
in diameter. The choice of molecules in forming the initial
particle has negligible influence on the growth rate and com-
position in the 10–20 nm size range. We assume a particle
density of 1.5 g cm−3 and a surface tension of 0.03 N m−1.
A sensitivity case using 0.05 N m−1 for the surface tension
did not affect our results at the particle diameters where we
compare to measurements (above 10 nm).

The uptake rates of sulfuric acid, the organic acid, and the
ELVOC are calculated as gas-phase diffusion-limited mass
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transfer based on their ambient vapor pressures, equilibrium
vapor pressures, and gas-phase diffusivities. Water and the
bases are assumed to instantly reach equilibrium between
the gas and particle phases due to their higher diffusivities
and pure-species vapor pressures. Upon uptake, subsequent
acid dissociations and base protonations in the particle phase
are calculated by the Extended Aerosol Inorganics Model (E-
AIM) (http://www.aim.env.uea.ac.uk/aim/aim.php, Clegg et
al., 1992; Clegg and Seinfeld, 2006a, b; Wexler and Clegg,
2002). It is assumed that the ELVOC does not dissociate in
the particle phase. This vapor pressure is low enough that up-
take of ELVOCs is essentially irreversible, even at the small-
est simulated particle sizes. We do not consider any addi-
tional particle-phase reactions beyond the acid–base reac-
tions: this includes possible accretion reactions that could
contribute to growth. We have estimated ELVOC concentra-
tions as they have been shown to have a direct oxidation path-
way from monoterpene species to ELVOC species (e.g., Joki-
nen et al., 2015). However, the estimations of the concentra-
tions of semivolatile organic compounds (SVOCs), organics
with saturation concentrations of 100–102 µg m−3 (Murphy
et al., 2014), and the contribution to growth from oligomer-
ization are much less constrained: one must know how the
SVOCs are reversibly partitioning to the full aerosol size dis-
tribution (as opposed to irreversible condensation to the con-
densation sink for ELVOCs), and oligomerization rates and
the involved SVOC species are highly uncertain. For these
reasons, we will not attempt to estimate the SVOC concen-
tration present at SGP and will neglect oligomerization re-
actions in this work. SVOCs may also directly contribute to
particle growth through condensation, as can low-volatility
organic compounds (LVOCs), organics with saturation con-
centrations of 10−3–10−1 µg m−3 (Murphy et al., 2014). The
condensation of SVOCs and LVOCs depends on particle size;
the likelihood of irreversible condensation increases with in-
creasing particle size (Pierce et al., 2011). Pierce et al. (2011)
estimate that SVOCs and LVOCs can begin contributing to
particle growth at diameters as small as ∼ 10 and ∼ 3 nm,
respectively, but there are still considerable uncertainties as
to the extent to which LVOCs and SVOCs partition to these
smaller particle sizes. Thus, omitting LVOCs, SVOCs, and
resultant condensational growth and/or oligomerization re-
actions from SVOCs that contribute to growth is a limitation
of this study and will be discussed further in the conclusions.

MABNAG assumes that species that enter the particle are
instantaneously and homogeneously mixed into a liquid par-
ticle phase. This ignores potential particle-phase diffusion
limitations that can arise from heterogeneous particle phases.
SOA has been observed to have solid and semi-solid phases
in both the laboratory and the field (Virtanen et al., 2010,
2011). Riipinen et al. (2012) estimated the importance of po-
tential diffusion limitations as a function of size: they argue
that diffusion does not limit growth for particles smaller than
20 nm diameter but is potentially important for particles 20–

50 nm. However, this remains an uncertainty, and we will ad-
dress this later.

2.2.2 Model inputs

Inputs to MABNAG were the gas-phase concentrations from
observations or MEGAN-based modeling (Table 1) and
chemical properties (Table 2) of water, sulfuric acid, ammo-
nia, an amine, an organic acid, and a nonreactive organic.
Relative humidity (RH) is used as a proxy for the water
concentration and was obtained from the 60 m tower data
maintained by ARM at the Central Facility. Atmospheric
temperature was also obtained from the 60 m tower data.
The SGP measurement data described earlier provide the
gas-phase concentrations of sulfuric acid, ammonia, a suite
of amines, and two organic acids, malonic and oxalic acid.
The nonreactive organic input will be our ELVOC concen-
tration estimate from the MEGAN monoterpene emissions.
ELVOCs consist of a large range of high-molecular-weight
compounds with currently unknown structures (Ehn et al.,
2014). We assume that our representative ELVOC is one
of the dominant ELVOC monomer peaks seen in the mass
spectra measured by Ehn et al. (2014), C10H16O9, molec-
ular weight of 280 g mol−1, with the possible structure of
three COOH groups, four CH groups, three CH2 groups,
and three OH groups. (Chemical structure is required for the
UNIFAC activity coefficient calculations in E-AIM in MAB-
NAG.) However, as the vapor pressure of this ELVOC is ex-
tremely low (assumed to be 10−9 Pa), simulations are gen-
erally insensitive to ELVOC chemical structure. No direct
measurements have been made for the saturation vapor pres-
sure of ELVOCs; we assume a saturation vapor pressure of
×10−9 Pa (corresponding to a saturation concentration (C*)
of 1×2×10−4 µg m−3 at 283 K). This vapor pressure is low
enough that uptake of ELVOCs is essentially irreversible,
even at the smallest simulated particle sizes.

MABNAG currently simulates one amine and one organic
acid, so we ran a suite of sensitivity cases to assess the
range of atmospheric acid and base conditions that could
help explain observed particle growth. For the amine input,
we tested the chemical properties of two amines with sin-
gle amino groups: DMA or TMA. We denote these cases as
DMA and TMA. The pKas of these species are 10.7 (DMA)
to 9.8 (TMA), so amines within this pKa range are repre-
sented in our sensitivity studies. We tested the sensitivity to
the amine concentration input by using the sum of the light
amines only (methylamine, DMA, and TMA only; denoted
as Lam) or the sum of all the amines measured (including
the C4–C7 amines but excluding the diamines; denoted as
Tam) as the input. For the Lam cases, we used the chem-
ical properties of DMA or TMA (denoted DMA_Lam and
TMA_Lam, respectively). We assumed the larger amines,
which made up over 50 % of the total amines (by mass),
have a lower pKa than the light amines and therefore use
properties similar to that of TMA for the Tam cases (denoted
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Table 1. Gas-phase concentration and temperature inputs to MABNAG for each day.

Day T

(C)
RH (%) Sulfuric acid

(cm−3)
Organic acid:
mal+ox/
mal+10ox/
mal + 100ox
(cm−3)

Ammonia
(cm−3)

Amine:
light/
total
(cm−3)

ELVOC
(cm−3)

4/19/13 11.6 32 2.4× 106 1.17× 107/
2.17× 107/
1.10× 108

2.98× 1010 2.91× 109/
4.8× 1010

1.22× 107

5/09/13 12.7 69 1.97× 107 7.15× 107/
1.49× 108/
9.11× 108

8.94× 109 1.01× 109/
2.41× 1010

4.3× 106

5/11/13 16.4 36 5.3× 106 2.66× 107/
6.43× 107/
4.14× 108

1.11× 1010 1.54× 109/
1.85× 1010

4.1× 106

Table 2. Chemical properties for each species input in MABNAG.

Species Molar mass
(g mol−1)

pKa 1 pKa 2 Vapor pressure
of pure com-
pound (Pa)
(µg m−3)

Henry’s Law
constant
(mol
kg−1 atm−1)

Diffusion
coefficient
(m2 s−1)

Sulfuric acid 98.1 −3 1.99 0 n/a 9.4× 10−6

Malonic acid 104.1 2.85 5.7 4× 10−5

(1.8× 10−5)
n/a 8.4× 10−6a

Oxalic acid 90.03 1.46 4.4 4× 10−3

(1.5× 10−3)
n/a 8.4× 10−6b

Ammonia 17.03 9.25 n/a n/a 60.7c n/a
DMA 45.1 10.7 n/a n/a 31.41d n/a
TMA 59.1 9.8 n/a n/a 9.6d n/a
ELVOCe 280 n/a n/a 1× 10−9

(1.2× 10−3)
n/a 5× 10−6

a Calculated using the Fuller et al., method (Eqs. 11–4.4 in Poling et al., 2014).
b Assumed to be the same as malonic acid.
c Haar and Gallagher (1978).
d http://webbook.nist.gov/chemistry/.
e Assumed properties of the ELVOC species.

TMA_Tam). This prevents the overestimation of the poten-
tial contribution of large amines due to salt formation. The
assumption that all larger amines behave similarly with low
pKas is likely true for alkylamines with a single amino group
but does not apply for diamines. Future studies need to exam-
ine how diamines react with acids (e.g., dicarboxylic acids to
form nylons) and contribute to nanoparticle growth. Regard-
less, the range of amine pKas and concentrations examined
here illustrate the sensitivity of particles to various parame-
ters. For the organic-acid input, we tested using the chem-
ical properties of oxalic or malonic acid, as these were the
organic-acid species measured at SGP. These cases are de-
noted as OX or MAL. We acknowledge that there is a large
range of organic acids in the atmosphere, and other monocar-

boxylic and dicarboxylic acids have been measured in ambi-
ent particles (e.g., Rogge et al., 1993; Sempere et al., 1994;
Khwaja et al., 1995; Kawamura et al., 1996; Limbeck and
Puxbaum, 1999). However, aerosol data from urban, rural,
and remote regions have shown that malonic acid tends to
be among the dominant organic-acid species in the particle
phase, with oxalic acid as the dominant organic-acid aerosol
species at all measurement locations (e.g., Grosjean et al.,
1978; Kawamura and Ikushima, 1993; Rogge et al., 1993;
Sempere et al., 1994; Kawamura et al., 1995, 1996; Khwaja
et al., 1995; Kawamura and Sakaguchi, 1999; Limbeck and
Puxbaum et al., 1999; Kerminen et al., 2000; Narukawa et al.,
2002; Mochida et al., 2003; Sempere and Kawamura, 2003).
Thus, we estimate that the contribution of organic acids pre-
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dicted by MABNAG represents a lower bound of the total
contribution of organic acids to particle growth but might be
a reasonable estimate.

There is uncertainty in the saturation vapor pressures of
organic acids. A review of dicarboxylic acids and complex
mixtures compiled by Bilde et al. (2015) shows the best-fit
saturation vapor pressure of the subcooled liquid states of
malonic and oxalic acid as functions of temperature (Figs. 7
and 8 of the review). As there are variations between differ-
ent reported measurements at the same temperature, we have
selected to use the saturation vapor pressure values for the
subcooled liquid states of oxalic and malonic acid obtained
from the best-fit functions in Bilde et al. (2015). Addition-
ally, we include a sensitivity case of reducing the saturation
vapor pressures by 1 order of magnitude below the values
shown in Table 2. This reduction is within the range of un-
certainty in Bilde et al. (2015). We denote simulations using
the properties of oxalic acid with the saturation vapor pres-
sure reduced by 1 order of magnitude as OX_LoVP; we use
similar notation for the malonic-acid cases (MAL_LoVP).

We further performed sensitivity studies for the concentra-
tion of oxalic acid. Due to the uncertainty in the oxalic-acid
detection efficiency from the cluster CIMS, the real oxalic-
acid concentration could be up to 100x the reported concen-
tration (Figs. 2, 4, and 6a). Thus, we ran three sets of concen-
tration input tests: the sum of the reported malonic and ox-
alic acids (denoted as 1ox), the sum of the reported malonic
and 10x the oxalic-acid concentration (denoted as 10ox), and
the sum of the reported malonic and 100x the oxalic-acid
concentrations (denoted as 100ox). Note that since our sim-
ulations include the sum of the oxalic-acid and malonic-acid
concentrations, the scaling of the oxalic-acid concentrations
implicitly also allows for testing uncertainties in malonic-
acid uncertainties, although we believe these to be smaller
(Eisele and Tanner, 1993). Thus, we tested three dimensions
of sensitivities for the organic-acid inputs: pKa, vapor pres-
sure, and organic-acid concentrations.

In total, there are 36 sensitivity cases for each day (Ta-
bles 4–6). We present the case MAL/10ox/DMA_Lam as the
base case for each day, to which other cases will be com-
pared to Figs. 2–4e–f. The choice of this case is somewhat
arbitrary, but it generally gives intermediate results relative
to other simulations, as will be shown later. For each case, we
set MABNAG to run until the particle reaches 40 nm in diam-
eter or, if the mean particle growth rate is below 3.3 nm h−1,
the model will stop after 12 h of simulated time.

2.3 Growth-rate calculations

2.3.1 Observed growth rate (SMPS)

We have calculated the observed growth rates between 10
and 20 nm for each day of our analysis from the SMPS data
(Fig. 1a–c). This size range is used since we constrain our
analysis of particle composition to the TDCIMS data. Dur-

ing the NPFS campaign, the TDCIMS was set to measure at
∼ 40 nm mode diameter when new-particle formation events
were not ongoing. Then, when the onset of a new-particle for-
mation event was detected, the TDCIMS was set to measure
smaller particle sizes, around 20 nm mode diameter, in order
to determine what species were in the freshly growing par-
ticles. Thus, our growth-rate calculations represent the size
range that the TDCIMS measured in during the events of our
analysis.

The plots for 9 and 11 May indicate that there could be
two separate nucleation events, whereas 19 April shows one
event. Similar to 9 and 11 May, the SMPS data for 12 May
show what appears to be two nucleation events occurring
at the surface where the SMPS collected size distributions.
Tethered-balloon flight profiles for 12 May indicate that nu-
cleation potentially occurred aloft. These observations will
be described in detail in a paper currently in preparation but
are briefly described here: the balloon payload consisted of
two portable condensation particle counters (model 3007,
TSI, Inc.) operating at different minimum size-cut points,
which allowed the vertically resolved measurement of 10 to
20 nm diameter particle number concentrations, N10−20 nm.
On 12 May, high concentrations of particles in this size range
were detected at 600 m above ground level, exactly coinci-
dent with, or slightly prior to, ground-level observations of
high concentrations of N10−20 nm. We hypothesize the fol-
lowing explanation for the “double” nucleation events ob-
served on 9, 11, and 12 May: nucleation and growth begins to
occur aloft in the residual layer. Once the mixed-layer depth
grows into the residual layer, these new particles (that may
have already grown to∼ 10 nm) then mix down and are mea-
sured at the surface. This hypothesis is supported by the pres-
ence of a high concentration of larger particles (Dp = 10–
30 nm) that have already undergone growth at the “begin-
ning” of the first event as measured by the SMPS on 9 and 11
May. Then, the second event, which presumably begins near
the surface, shows a high concentration of freshly growing
particles (3–5 nm, close to the limit of the SMPS detection)
before larger particles appear.

As a result, we decided to calculate the growth rate based
only on the second growth event for 9 and 11 May, as the
second growth events are likely more representative of our
ground-based measurements. There is considerable noise in
the SMPS data (Fig. 1a–c), especially for 9 and 11 May, due
possibly to the hypothesized mixing down of particles and
possible inhomogeneities in the air mass. For this reason,
we have calculated the growth rate between 10 and 20 nm
for each using three different methods. The first method, re-
ferred to here as the leading-edge method, is adapted from
Lehtipalo et al. (2014) and finds the time at which the binned
aerosol distribution between 10 and 20 nm reaches one half
of its maximum dN/dlogDp for each bin. A linear fit be-
tween the bin’s median diameter and the associated time de-
termines the growth rate. The second method, referred to here
as the Dp-mode method, tracks the change in diameter of
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Table 3. Observed growth-rate ranges between 10 and 20 nm for
each day.

Day Leading-edge Dp-mode Visual method
method (nm h−1) method (nm h−1) (nm h−1)

19 April 8.8 1.6 3.3
9 May 11.3 2.4 5.0
11 May 7.5 5.6 8.3

the maximum dN/dlogDp of the aerosol size distribution be-
tween 10 and 20 nm; a linear fit between the diameters and
time determines the growth rate. When plotted against the
size distribution (see Supplement, Figs. S1–S3), it is seen
that the leading-edge and Dp-mode method both do not al-
ways track the growing size distribution well. For this reason,
we have included a third method, which we call the visual
method, in which we have made a linear growth rate between
10 and 20 nm for each day based upon visual inspection of
the size distribution (see Supplement, Figs. S1–S3), using
Eq. (3):

GRobs =
dDp

dt
∼=
1Dp

1t
. (3)

These three methods provide a range of growth rates (Ta-
ble 3) for the particles between 10 and 20 nm; the specific
results for each day will be discussed in Sect. 3. We do not
attempt to provide uncertainty estimates for each method due
to the overall noise in the data. Instead, we present the ranges
of calculated growth rates as a possible range of the actual
growth rates. On 9 and 11 May there tend to be higher growth
rates: this could be from the influence of the continued mix-
ing down from nucleation aloft and not actually represen-
tative of the growth rates of the particles forming near the
surface.

2.3.2 MABNAG growth rate

MABNAG provides the wet diameter as a function of time:
we calculated the rate of change of these diameters using
Eq. (3) to get the modeled growth rate. Growth rates in MAB-
NAG generally increase with size due to the reduction of the
Kelvin effect with size (gas-phase concentrations are held
fixed). The growth rates generally do not change much at di-
ameters larger than 10 nm, so we provide the average growth
rate between diameters of 10 and 20 nm, the same range used
to determine the observed growth rates.

2.4 HYSPLIT back trajectories

In order to assess the influence of air mass source upon
each event, the NOAA HYSPLIT model (Draxler and Rolph,
2012; Rolph, 2012) with NAM meteorological data was used
to obtain 48 h air mass back trajectories (Fig. 1d–f). The
model was initialized at ∼ 250 m above ground level (a.g.l.)

at the time of the observed NPF onset for each trajectory; a
total of 24 trajectories were output for each event day using
the HYSPLIT ensemble feature that perturbs the start height
by small increments vertically and horizontally.

3 Results

3.1 19 April: growth by primarily organics

On 19 April 2013, an NPF event was recorded by the
SMPS beginning around 12:00 central daylight time (CDT)
(Fig. 1a); the three growth-rate methods (see Sect. 2.4.1)
provided a possible growth-rate range of 1.6–8.8 nm h−1

(Table 3). The gas-phase concentrations of each measured
species, averaged through this 10–20 nm diameter growth pe-
riod, are presented in Table 1, and the time series of these
observations in Fig. 2a–b. Note that oxalic acid was not mea-
sured by the cluster CIMS for this day. The ratio of mea-
sured oxalic-acid concentration to measured malonic-acid
concentration was approximately 0.1 throughout the cam-
paign when oxalic-acid data were available; thus, we assume
that a baseline concentration of oxalic acid was present at
0.1 times the measured concentration of malonic acid for
this day. Some notable features of the gas-phase data for 19
April (Fig. 2a–b) include relatively low sulfuric-acid concen-
trations (∼ 2× 106 cm−3), which should only contribute to
growth rates of about 0.08 nm h−1 (assuming kinetic regime
growth, an accommodation coefficient of 1, and a tempera-
ture of 283 K), or approximately 10 % of the observed rates.
Conversely, the concentrations of ammonia and amines are
sufficiently high (100–1000 pptv) that they could play a role
in sulfuric-acid neutralization and organic-salt formation.
The TDCIMS particle-phase ion-fraction data (Fig. 2c–d)
show primarily organics with some amines present in the
particle phase, indicating that growth by acid–base reactions
of organic acids and amines and/or irreversible condensa-
tion of ELVOCs is possible. As mentioned previously, we
currently have no unequivocal way to distinguish between
organic acids and ELVOCs or higher-volatility nonreactive
organics in the TDCIMS. The organics categories presented
(organics, organics with S, and organics with N) should be
taken as the sum total of organics (excluding amines) de-
tected by the TDCIMS. The TDCIMS also shows a pres-
ence of nitrate (the nitrate (ox/inorg) category) later on in the
growth event. We do not expect to see significant inorganic
nitric acid in the growing of sub-50 nm particles, as ammo-
nium nitrate tends to undergo equilibrium-limited growth in
submicron particles and partition proportionally to the par-
ticle mass distribution (Zhang et al., 2012b). The possibil-
ity that much of the observed ox/inorg nitrate signal arises
from decomposition or ion–molecule reactions of organic ni-
trates cannot be excluded. Furthermore, the TDCIMS shows
heightened sensitivity to inorganic nitrate with respect to sul-
fate (Smith et al., 2004; Lawler et al., 2014). Due to all of
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these uncertainties, we hesitate to attribute significant growth
from inorganic nitrate.

The 48 h HYSPLIT trajectory for 19 April (Fig. 1d) shows
the flow coming from the northwest. The predicted trajecto-
ries appear to be subsiding from the free troposphere over the
time period and thus likely only experience surface emissions
during the last 18 h before passing through the Central Fa-
cility at Lamont, OK. The surface emissions would likely be
coming from central/western Kansas, through primarily agri-
cultural regions and no major urban areas, consistent with the
low sulfuric-acid concentrations. Based on these back trajec-
tories, we hypothesize that the air mass obtained biogenic
SOA precursors from the region north of the SGP site as well
as high levels of gas-phase bases due to emissions from agri-
cultural practices.

The MABNAG simulations for this day are able to corrob-
orate the predominance of organics in the particle phase. Our
base simulation, MAL/10ox/DMA_Lam (Fig. 2e–g; Fig. 3)
predicts a growth rate of 1.4 nm h−1 with 16 % mole frac-
tion from sulfuric acid,� 1 % from organic acid, 24 % from
ammonia, 9.1 % from amines, and 50 % from ELVOCs. Fig-
ure 3 shows the final dry particle compositions by mole
fraction (left-hand bars) and mass fraction (right-hand bars)
across our sensitivity cases. Details of MABNAG-predicted
ion concentrations are given in Table S1 of the Supplement.
On a molar basis across cases, MABNAG shows (Fig. 3)
negligible (< 5 %) amounts of organic acid in the particle
phase, except for MAL_LoVP/100ox cases (an upper bound
for organic-acid uptake due to lowered vapor pressure and
increased gas-phase concentration), which show up to 18 %
of the particle was composed of organic acid. Malonic acid
has a lower vapor pressure than oxalic acid, and thus more
malonic acid is able to enter the particle phase than oxalic
acid. The ELVOC mole fraction tends to be around 50 %
for most cases, corresponding to ELVOCs composing over
80 % of the dry particle by mass fraction. There is a smaller
(around 35 %) ELVOC mole fraction predicted for the high
organic-acid cases. Since we do not know the actual contri-
butions to growth from ELVOCs (or higher-volatility non-
reactive organics) versus organic acids from the TDCIMS
data, we cannot determine the accuracy of these individual
species predictions. However, as the TDCIMS shows very
small particle-phase contributions from bases even though
high gas-phase base concentrations were also observed, this
corroborates that the growth may be dominated by nonreac-
tive organics. We see that MABNAG predicts that approxi-
mately ∼ 16 % of the particle is composed of sulfuric acid
by mole (with associated ammonia). No sulfuric acid ap-
pears directly in the TDCIMS ion spectra: thus, MABNAG
appears to overpredict the contribution of sulfuric acid (and
associated ammonia) for this day relative to the TDCIMS ion
fractions. However, since sulfuric-acid vapor concentrations
were non-zero, we expect some sulfuric acid in the parti-
cle phase. The most likely reason for the discrepancy is low
signal-to-noise in the TDCIMS during this period, resulting

from low collected particle mass. The TDCIMS data show
some amine/amides in the particle phase: the most amine was
predicted with DMA_Lam cases (9–11 % by mole) and this
compares most closely to the TDCIMS ion fractions of the
amine particle-phase predictions. All TMA_Lam cases pre-
dict less than 1 % amines by moles in the particle phase and
thus likely are not realistic inputs for this day. The majority of
our simulations predict that less than 1 % of the particle is or-
ganic acid by mole; thus, the contribution to particle growth
from organic salt formation would be negligible, even when
including the contribution from associated bases. Thus, we
expect the majority of growth from organics to be coming
from nonreactive organics (ELVOCs in our simulations) for
this day.

The modeled growth rate is around 1.4 nm h−1 for most
cases with a few cases (MAL_LoVP/100ox cases) reaching
up to 1.7 nm h−1. When we compare the modeled growth
rates to our three growth-rate methods that attempt to cap-
ture the observed growth rates, we see that the leading-edge
method gave the highest growth-rate estimate at 8.8 nm h−1

and the Dp-mode method gave the lowest estimate, at
1.6 nm h−1. However, a visual inspection of the best-fit lines
of these two methods (Fig. S1) shows that the leading-edge
method appears to overpredict the growth rate (the slope of
the best-fit line is the growth rate in nm h−1). The Dp-mode
method could be slightly underpredicted the growth rate but
is not an unreasonable estimate. The visual method predicts a
rate of 3.3 nm h−1. Therefore, we are more inclined to believe
that the growth lies between these two latter estimates, e.g.,
1.6–3.3 nm h−1. Thus, all MABNAG cases come close to or
slightly underpredict the observed growth rates. We do note
that the organics with N and N (ox/inorg) ion categories dom-
inate the overall TDCIMS spectrum; as MABNAG currently
does not account for nitrogen-containing species beyond am-
monia and amines, this could account for some of the poten-
tial discrepancies in the particle growth rate and composi-
tion between model and observations. As organics are a very
important part of this day’s particle growth, our results are
sensitive to our precursor and yield assumptions of ELVOCs,
and for this day where ELVOCs dominated growth, a 50 %
uncertainty in ELVOC yield would correspond to close to a
50 % uncertainty in growth rate (ELVOCs dominate the sim-
ulated volume fraction). Having more-direct measurements
of VOCs and associated ELVOC yields will better constrain
the ELVOC budget. However, even a 50 % underprediction
of the contribution from ELVOCs to growth would lead to
a maximum growth rate of 2.1 nm h−1, which is on the low
end of the growth-rate range that we have calculated from
the measurements. Thus, our low bias in growth rate for this
day may not be from the ELVOC concentration uncertainties
alone. Our lack of LVOCs, SVOCs, and accretion reactions
from SVOCs likely also contribute to our potential underpre-
diction, as these species will contribute more with increasing
particle size.
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Figure 2. Measurements and MABNAG predictions for the base-case simulation, MAL/10ox/DMA_Lam, for 19 April 2013. (a) Gas-phase
acids and ELVOC estimate. Oxalic acid was not measured for this day; the cluster CIMS was not operational before 09:00 CDT for this day.
(b) Gas-phase bases. (c–d) Particle-phase data. The TDCIMS was not operational before 14:00 CDT. (e) Size distribution from the three
merged SMPSs with the modeled growth rate (black line). Overlaid is the mean collection diameter from the TDCIMS for the positive (red
points) and negative (black points) signals. (f–g) Modeled particle composition as a function of size: (f) shows the lumped mole fractions
(excluding water) of each species, including any dissociation products; (g) shows the individual mole fractions of each species and its
dissociation products. NH3 and DMA are not shown as both species dissociate almost entirely to NH+4 and DMA+, respectively. OH− is
not shown as its concentration is extremely low (∼ 10−15).

Overall, the observations from 19 April clearly show that
organic species contribute heavily to growth: the MABNAG
results corroborate this, and the MABNAG simulations fur-
ther show that ELVOCs dominate over organic acids for all
sensitivity cases. As the TDCIMS shows small amounts of
particle-phase ions from bases even though high gas-phase
base concentrations were also observed, this corroborates
that the growth may be dominated by nonreactive organ-
ics. Furthermore, as ELVOCs are larger molecules than the
other species considered here, their contributions to growth
rates are even larger than their contribution to mole or ion
fractions. Finally, we hypothesize that LVOCs, and perhaps

SVOCs or accretion reactions, are contributing to growth
within the 10–20 nm diameter range, as MABNAG possibly
underestimates growth without these species/reactions.

3.2 9 May: growth by primarily sulfuric acid and
ammonia

On 9 May 2013 (Fig. 4), two growth events were observed;
we focus our analysis on the second event, which began
around 13:00 CDT. The SMPSs and cluster CIMS both ex-
perienced instrument failure from 17:30 CDT onwards on
this day; the cluster CIMS was also not operational before
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A. L. Hodshire et al.: Multiple new-particle growth pathways 9333

1ox
DMA_Lam
1.4 nm h−1

10ox
DMA_Lam
1.4 nm h-1

100ox
DMA_Lam
1.0 nm h−1

1ox
TMA_Lam
1.4 nm h−1

10ox
TMA_Lam
1.4 nm h−1

100ox
TMA_Lam
1.4 nm h−1

1ox
TMA_Tam
1.4 nm h−1

10ox
TMA_Tam
1.4 nm h−1

100ox
TMA_Tam
1.4 nm h−1

0.0

0.2

0.4

0.6

0.8

1.0

m
o
le

 f
ra

c
ti

o
n

m
a
s
s
 fra

c
tio

n

Organic acid = malonic
ELVOC

Organic acid

Amine

Ammonia

Sulfuric acid

1ox
DMA_Lam
1.4 nm h−1

10ox
DMA_Lam
1.5 nm h−1

100ox
DMA_Lam
1.7 nm h−1

1ox
TMA_Lam
1.4 nm h−1

10ox
TMA_Lam
1.4 nm h−1

100ox
TMA_Lam
1.6 nm h−1

1ox
TMA_Tam
1.4 nm h−1

10ox
TMA_Tam
1.4 nm h−1

100ox
TMA_Tam
1.7 nm h−1

0.0

0.2

0.4

0.6

0.8

1.0

M
o
le

 f
ra

c
ti

o
n

M
a
s
s
 fra

c
tio

n

Organic acid = malonic at reduced vapor pressure
ELVOC

Organic acid

Amine

Ammonia

Sulfuric acid

1ox
DMA_Lam
1.4 nm h−1

10ox
DMA_Lam
1.4 nm h-1

100ox
DMA_Lam
1.4 nm h−1

1ox
TMA_Lam
1.4 nm h−1

10ox
TMA_Lam
1.4 nm h−1

100ox
TMA_Lam
1.4 nm h−1

1ox
TMA_Tam
1.4 nm h−1

10ox
TMA_Tam
1.4 nm h−1

100ox
TMA_Tam
1.4 nm h−1

0.0

0.2

0.4

0.6

0.8

1.0

M
o
le

 f
ra

c
ti

o
n

M
a
s
s
 fra

c
tio

n

 Organic acid = oxalic
ELVOC

Organic acid

Amine

Ammonia

Sulfuric acid

1ox
DMA_Lam
1.4 nm h−1

10ox
DMA_Lam
1.4 nm h−1

100ox
DMA_Lam
1.4 nm h−1

1ox
TMA_Lam
1.4 nm h−1

10ox
TMA_Lam
1.4 nm h−1

100ox
TMA_Lam
1.4 nm h−1

1ox
TMA_Tam
1.4 nm h−1

10ox
TMA_Tam
1.4 nm h−1

100ox
TMA_Tam
1.4 nm h−1

0.0

0.2

0.4

0.6

0.8

1.0

M
o
le

 f
ra

c
ti

o
n

M
a
s
s
 fra

c
tio

n

Organic acid = oxalic at reduced vapor pressure
ELVOC

Organic acid

Amine

Ammonia

Sulfuric acid

Figure 3. The final dry particle composition for each sensitivity case for 19 April 2013, as both lumped mole fraction (left-hand bars) and
lumped mass fraction (right-hand bars). The top and third rows represent each case that uses the properties of malonic acid and oxalic acid,
respectively, at the best-fit vapor pressure from Bilde et al. (2015) for the chemical properties of the organic-acid inputs. The second and
forth rows represent each case that uses the properties of malonic acid and oxalic acid, respectively, at 1 order of magnitude less in vapor
pressure than the best-fit value for the chemical properties organic-acid inputs. 1ox, 10ox, and 100ox refer to cases using the measured (1ox)
concentration, 10 times (10ox) the measured concentration, and 100 times (100ox) the measured concentration of oxalic acid, respectively,
each summed with the measured malonic-acid concentration, for the organic-acid concentration input. DMA and TMA refer to cases using
the properties of dimethylamine and trimethylamine, respectively, for the chemical properties of the amine inputs. Lam and Tam refer to cases
using the sum of the concentrations of only the light amines measured (methylamine, DMA, and TMA) and the sum of the concentrations
of the total amines measured (including C4–C7 amines but excluding diamines), respectively, for the amine concentration input. The bottom
row of each case label shows the growth rate for that case in nm h−1. The bolded case label (first row, second case) represents our base case
(see Fig. 2 and text).
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Figure 4. Measurements and MABNAG predictions for the base-case simulation, MAL/10ox/DMA_Lam, for 9 May 2013. (a) Gas-phase
acids and ELVOC estimate. The cluster CIMS was not operational between 17:30 and 23:00 CDT for this day. (b) Gas-phase bases. The
AmPMS was not operational between 02:00 and 06:00 CDT for this day. (c–d) Particle-phase data. The TDCIMS was not operational before
09:00 CDT for this day. (e) Size distribution from the three merged SMPSs with the modeled growth rate (black line). Overlaid is the mean
collection diameter from the TDCIMS for the positive (red points) and negative (black points) signals. The SMPSs were not operational after
17:30 CDT for this day. (f–g) Modeled particle composition as a function of size: (f) shows the lumped mole fractions (excluding water) of
each species, including any dissociation products; (g) shows the individual mole fractions of each species and its dissociation products. NH3
and DMA are not shown as both species dissociate almost entirely to NH+4 and DMA+, respectively. OH− is not shown as its concentration
is extremely low (∼ 10−15).

12:00 CDT. However, the two instruments captured enough
of the event to inform our analysis and provide modeling
inputs. By 17:30, the three growth-rate methods provide a
possible growth-rate range of 2.4–11.3 nm h−1. The clus-
ter CIMS measured high sulfuric acid for this day (∼ 2×
107 cm−3), sufficiently high for sulfuric acid to contribute
significantly to condensational growth. The ammonia con-
centrations are somewhat higher than the amine concentra-
tions. The TDCIMS shows a high amount of ammonia and
sulfate, indicating the presence of ammonium sulfate con-
tributing strongly to the growth of the particles. A small, but

nontrivial, amount of organics and amines is seen in the par-
ticle phase as well.

The HYSPLIT back trajectory for 9 May (Fig. 1e) shows
flow from the south, through much of central/east central
Texas. The predicted trajectories are entirely in the BL, al-
lowing for the possibility of the air mass experiencing surface
emissions throughout the entire previous 48 h. Many of the
possible trajectories pass over or near the major metropolitan
Dallas/Fort Worth region and extend into the industrial gulf-
coast region; some of the trajectories extend towards the ma-
jor metropolitan region of Houston. Both possible trajectory

Atmos. Chem. Phys., 16, 9321–9348, 2016 www.atmos-chem-phys.net/16/9321/2016/
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Figure 5. The final dry particle composition for each sensitivity case for 9 May 2013, as both lumped mole fraction (left-hand bars) and
lumped mass fraction (right-hand bars). The top and third rows represent each case that uses the properties of malonic acid and oxalic acid,
respectively, at the best-fit vapor pressure from Bilde et al. (2015) for the chemical properties of the organic-acid inputs. The second and
forth rows represent each case that uses the properties of malonic acid and oxalic acid, respectively, at 1 order of magnitude less in vapor
pressure than the best-fit value for the chemical properties organic-acid inputs. 1ox, 10ox, and 100ox refer to cases using the measured (1ox)
concentration, 10 times (10ox) the measured concentration, and 100 times (100ox) the measured concentration of oxalic acid, respectively,
each summed with the measured malonic-acid concentration, for the organic-acid concentration input. DMA and TMA refer to cases using
the properties of dimethylamine and trimethylamine, respectively, for the chemical properties of the amine inputs. Lam and Tam refer to cases
using the sum of the concentrations of only the light amines measured (methylamine, DMA, and TMA) and the sum of the concentrations
of the total amines measured (including C4–C7 amines but excluding diamines), respectively, for the amine concentration input. The bottom
row of each case label shows the growth rate for that case in nm h−1. The bolded case label (first row, second case) represents our base case
(see Fig. 4 and text).
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paths could contribute SO2 emissions to the air mass. Local
agricultural practices could have contributed ammonia and
amines to the air mass, explaining the high base concentra-
tions present at the SGP site.

The MABNAG simulations for this day are able to capture
ammonium-sulfate formation as the dominant growth path-
way. Our base simulation, MAL/10ox/DMA_Lam (Fig. 4e–
g; Fig. 5), predicts a growth rate of 3.2 nm h−1 with 31 %
of the particle composition by moles from sulfuric acid,
2.2 % from organic acid, 42 % from ammonia, 20 % from
amines, and 4.3 % from ELVOCs. Most sensitivity cases
(Fig. 5) predict approximately 60–90 % of the particle is
composed of sulfuric acid and ammonia by mole fraction.
Only the MAL_LoVP/100ox (upper bound for organic-acid
uptake) cases predict otherwise; these cases show over 60 %
of the particle to be organic acid by moles. However, these
cases also show unrealistically high growth rates (∼ 48–
57 nm h−1). Based on these growth rates, we conclude that,
at least for this day, growth cannot be realistically captured
by the MAL_LoVP/100ox inputs; these cases will not be dis-
cussed further. The TDCIMS shows a small amount of or-
ganics and an even smaller amount of amine/amide in the
particle composition. MABNAG predicts roughly 5–25 % of
the particle by moles to be organics (ELVOC plus organic
acids) with less than 1 % up to 5 % of the organics by moles
coming from ELVOCs. Thus, unlike 19 April, organic acid is
predicted to dominate the organics contribution for this day.
However, given that most cases predict a negligible amount
(< 3 % by mole) of the particle to be composed of organic
acid, the contribution to particle growth from organic-salt
formation is still predicted to be minor for this day. On a mo-
lar basis, less than 1 % up to 21 % of the particle is predicted
to be amines.

MABNAG predicts growth rates between 2.9 and
5 nm h−1, with the highest growth rates seen for LoVP cases.
These LoVP cases tend to predict a moderate (∼ 15–25 % by
mole fraction) amount of organics (organic acid + ELVOC)
and (∼< 1 to 20 % by mole fraction) amines in the parti-
cle phase, leading us to believe that the reduced vapor pres-
sure of organic acids allows for the best-fit simulations com-
pared to the measurements of particle growth and composi-
tion. When we consider our three growth-rate methods that
attempt to capture the observed growth rates (Fig. S2), we
again see that the leading-edge method predicts the highest
growth rates, at 11.3 nm h−1, and the Dp-mode method pre-
dicts the lowest, at 2.4 nm h−1. However, again, the best-fit
line shows that the leading-edge method appears to be again
overpredicting the actual growth rate – some of the larger di-
ameters appear to be influenced by the mixing down of the
first nucleation event. TheDp-mode method could be slightly
underpredicting the growth rates but the best-fit line does
not seem unreasonable enough for us to preclude this growth
rate. The visual method provides a growth rate of 5 nm h−1,
but we acknowledge that there is still some uncertainty in this
estimate. If we consider the range provided by the Dp-mode

and visual methods, 2.4 to 5.0 nm h−1, our MABNAG cases
either match or slightly underpredict the observed growth
rates. Any possible underprediction could again be from the
uncertainty from the nitrogen-containing species that appear
in the TDCIMS but are not accounted for in MABNAG, as
well as our uncertainty in ELVOC concentrations and lack of
LVOCs, SVOCs, and accretion reactions.

Overall, the observations from 9 May show a strong con-
tribution from ammonia and sulfate (presumably ammo-
nium sulfate), and the MABNAG simulations corroborate
this growth pathway, with the highest average mole fractions
of sulfuric acid and ammonia predicted in the particle phase
of the 3 days. This growth pathway should be well repre-
sented in regional/global models provided that emissions are
well resolved.

3.3 11 May: growth by sulfuric-acid/bases/organics

11 May 2013 (Fig. 6), similar to 9 May, shows two growth
events; we focus our analysis on the second event, which
began around 15:00 CDT. All instruments were fully oper-
ational during the growth event, which is observed to ex-
tend into 12 May. The particles grow to about 25–35 nm
in diameter, and our three growth-rate estimates provide
a possible growth-rate range of 5.6–8.3 nm h−1 in the 10–
20 nm diameter range. The sulfuric-acid concentration on
this day (∼ 4× 106 cm−3) is in between those from the other
2 growth days. As with the other days, there are high ammo-
nia and amines concentrations (100–10 000 pptv) through-
out the event. The TDCIMS shows a mixed view of what is
present in the particle phase during the growth event. There
is a fairly constant and significant relative amount of sul-
fate present in the particle. However, at the beginning of the
event, amines are the dominant base present, but by 21:00 the
relative amine signal has decreased and at 23:00 ammonia is
dominant. Both the positive and negative signals show sig-
nificant contributions from organics. The TDCIMS negative
ion data also indicate the presence of nitrate; as stated previ-
ously, we hesitate to attribute significant growth from nitrate
due to the unknown sensitivity of the TDCIMS to nitrate.
Overall, from the TDCIMS, it appears that both sulfate and
organics, as well as bases, are important for growth, but we
cannot assess the relative importance of ammonia to amines
for growth from the observations.

The HYSPLIT back trajectory for 11 May originates pri-
marily from the north, traveling through central Kansas and
Nebraska before reaching SGP. Some of the predicted tra-
jectories stay in the BL for the full 48 h; others show subsi-
dence from the free troposphere, making it difficult to assess
how much of the air mass was influenced from surface emis-
sions over the previous 48 h. Regardless, the air mass passed
through primarily agricultural regions and no major urban ar-
eas, similar to 19 April, but we are unsure of the source of the
sulfate on 11 May.
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Figure 6. Measurements and MABNAG predictions for the base-case simulation, MAL/10ox/DMA_Lam, for 11 May 2013. (a) Gas-phase
acids and ELVOC estimate. (b) Gas-phase bases. (c–d) Particle-phase data. (e) Size distribution from the three merged SMPSs with the
modeled growth rate (black line). Overlaid is the mean collection diameter from the TDCIMS for the positive (red points) and negative
(black points) signals. (f–g) Modeled particle composition as a function of size: (f) shows the lumped mole fractions (excluding water) of
each species, including any dissociation products; (g) shows the individual mole fractions of each species and its dissociation products. NH3
and DMA are not shown as both species dissociate almost entirely to NH+4 and DMA+, respectively. OH− is not shown as its concentration
is extremely low (∼ 10−15).

Similar to the TDCIMS data, the MABNAG simulations
for this day show varying mixtures of sulfuric acid, organ-
ics, and bases. Our base simulation, MAL/10ox/DMA_Lam
(Fig. 6e–g; Fig. 7), predicts a growth rate of 0.9 nm h−1

with 29 % of the particle composition by mole from sulfuric
acid, � 1 % from organic acid, 46 % from ammonia; 11 %
from amines, and 14 % from ELVOCs. Across cases (Fig. 7),
we see that roughly 10–30 % by mole fraction of the parti-
cle is predicted to be sulfuric acid, in reasonable agreement
with the TDCIMS data. MAL_LoVP/100ox (upper bound
for organic-acid uptake) cases predict up to 46 % of the par-
ticle moles to be organic acid; the rest of the cases predict
less than 1 % up to 5 % of the particle moles to be organic

acid. Conversely, MABNAG predicts roughly 5–25 % of the
moles in the particle to be from ELVOCs, with the lowest rel-
ative ELVOC contribution seen in MAL_LoVP/100ox cases.
Since the TDCIMS shows a variable amount of organics
throughout the event, and we do not know the actual individ-
ual contributions from ELVOCs and organic acids nor are we
accounting for any higher-volatility neutral organic species
(e.g., LVOCs and SVOCs), we cannot conclude which set
of organics inputs best captures this day and do not exclude
any set of inputs for being unrealistic. MABNAG predicts
mole fractions of 35–55 % for ammonia and less than 1 %
up to 11 % for amines (with less than 1 % amines predicted
for all TMA cases). As the TDCIMS shows a large amount
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Figure 7. The final dry particle composition for each sensitivity case for 11 May 2013, as both lumped mole fraction (left-hand bars) and
lumped mass fraction (right-hand bars). The top and third rows represent each case that uses the properties of malonic acid and oxalic acid,
respectively, at the best-fit vapor pressure from Bilde et al. (2015) for the chemical properties of the organic-acid inputs. The second and
forth rows represent each case that uses the properties of malonic acid and oxalic acid, respectively, at 1 order of magnitude less in vapor
pressure than the best-fit value for the chemical properties organic-acid inputs. 1ox, 10ox, and 100ox refer to cases using the measured (1ox)
concentration, 10 times (10ox) the measured concentration, and 100 times (100ox) the measured concentration of oxalic acid, respectively,
each summed with the measured malonic-acid concentration, for the organic-acid concentration input. DMA and TMA refer to cases using
the properties of dimethylamine and trimethylamine, respectively, for the chemical properties of the amine inputs. Lam and Tam refer to cases
using the sum of the concentrations of only the light amines measured (methylamine, DMA, and TMA) and the sum of the concentrations
of the total amines measured (including C4–C7 amines but excluding diamines), respectively, for the amine concentration input. The bottom
row of each case label shows the growth rate for that case in nm h−1. The bolded case label (first row, second case) represents our base case
(see Fig. 6 and text).
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of amine/amides at the beginning of the event and a large
amount of ammonia at the end of the event, we cannot de-
termine which set of base inputs best capture this day either.
The majority of our simulations predict < 5 % by mole of the
particle to be organic acid, thus again leading to only minor
contributions from organic-salt formation to particle growth.

Similar to 19 April and 9 May, MABNAG tends to under-
predict the growth rate for this day, with most cases predict-
ing growth at around 0.9–1 nm h−1. Our three growth-rate
methods are in moderately close agreement with each other
for this day, with a possible range of 5.6 to 7.5 nm h−1. It is
difficult to distinguish between the first and second growth
events for this day, and our observed growth rates could be
biased high due to mixing from the first growth rate. How-
ever, the majority of MABNAG cases predict a growth rate
of 0.9–1 nm h−1; even if our observed growth rates are biased
high, it is still likely that MABNAG underpredicts growth
rates for this day. We do note that the MAL_LowVP/100ox
cases show slightly higher growth rates at 2.7–3.4 nm h−1,
which come closer to the possible observed growth rates.
We do note that as MABNAG appears to be underpredict-
ing the growth rates more than for 19 April or 9 May that
the MABNAG-predicted particle compositions (Figs. 6 and
7) are possibly less representative of the actual particle com-
positions. However, we reiterate our hypothesis that the un-
derpredictions could be from the nitrogen-containing species
that are detected in the TDCIMS but are not accounted for
in MABNAG, as well as our uncertainty in ELVOC concen-
trations and lack of LVOCs, SVOCs, and accretion reactions.
Furthermore, this day shows a more variable particle-phase
spectrum than 19 April or 9 May, as well as a more poorly
defined second growth event (Fig. 1c), making the observed
growth rates difficult to determine. The TDCIMS particle
composition information is only qualitative. Thus, we will
not speculate what differences are possible between observed
and modeled particle composition.

Overall, the observations from 11 May show that organ-
ics, sulfate, and bases (either amines or ammonia) are all im-
portant for the evolution of this new-particle growth event.
The MABNAG simulations corroborate this, with the or-
ganic contribution being from ELVOCs. Growth by LVOCs,
SVOCs, and/or organic accretion may also be important, as
MABNAG simulations generally underestimated growth and
the mole fraction of organics on this day, relative to obser-
vations. The back trajectories on this day are similar to those
from 19 April, though we are unsure of the reason for the dif-
ference in sulfuric-acid concentrations between the 2 days.
Similar to 19 April, the TDCIMS tends to show more or-
ganics than bases that would remain after neutralizing the
observed particle-phase sulfuric acid, corroborating that the
organics in the particle phase are likely dominated by nonre-
active organics.

3.4 Synthesis across days

For the 3 days analyzed here, new-particle growth at SGP
can be driven by combinations of sulfuric acid (with associ-
ated bases) and nonreactive organics, of which ELVOCs con-
tribute a substantial fraction (at least for the yields assumed
here). The exact mixture of these pathways depends on the
air mass history. We found that the contribution of small or-
ganics and organic salts, such as oxalic and malonic acid and
associated salts formed with ammonia and amines, to growth
may be minor at SGP. However, decreasing the assumed va-
por pressure and/or increasing the vapor-phase concentration
of the organic acids (within uncertainty ranges) increased
the contribution of the small organic acids on some days.
Both modeling and measurements show that both ammonia
and amines can act as the bases in growing nanoparticles at
SGP. While the MABNAG simulations here are limited in
the number of species and growth processes considered, the
model is capable of qualitatively differentiating the dominant
particle-phase compositions between the 3 days: organics on
19 April, inorganics on 9 May, and a mixture on 11 May. We
do not see that one set of assumptions in MABNAG best cap-
tures all 3 days (Figs. 3, 5, and 7) and instead present these
results as a basis for further research, especially into the con-
tribution of higher-volatility organic species to growth.

Although not discussed above, we also considered the ef-
fects of RH uncertainty on our results: 19 April and 11 May
both have much lower relative humidities (32 and 36 %, re-
spectively) than 9 May (69 %). MABNAG shows a moderate
sensitivity to RH. We ran a simulation of all days and all
cases at 80 % RH (not shown); the simulations showed an
increase in the dissociation of both malonic and oxalic acids
as well as an increase in growth rate for all cases (in part
due to increased water uptake), with most cases showing an
associated increase in the mole fraction of organic acid. The
increase in growth rate depended on the organic-acid concen-
tration input and vapor pressure, with the highest increases
seen for LoVP/100ox cases. These higher-RH results may be
applicable since the BL was well-mixed on the three nucle-
ation days, and the RH increases with height within well-
mixed BLs. Thus, using surface-based measurements for RH
may be a lower bound for RH and cause growth underesti-
mates.

3.5 Limitations of this study

While we have shown that MABNAG can quantitatively cap-
ture the dominant species that contribute to growth for ob-
served growth events, this study is limited in its scope due to
the following uncertainties and limitations.

– There are significant uncertainties in both the mea-
sured organic-acid concentrations and chemical prop-
erties. The measured oxalic-acid concentrations could
be up to 100 times too low due to the uncertainty in
the oxalic-acid detection efficiency in the cluster CIMS.
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Also, the malonic-acid sensitivity is not known. The sat-
uration vapor pressures of malonic and oxalic acid show
variation amongst the reported values, and our simula-
tion results are sensitive to their vapor pressures within
the reported ranges.

– There is not yet a constrained ELVOC budget from the
oxidation of atmospheric VOCs. The yields from differ-
ent species and under different atmospheric conditions
are just beginning to be quantified. The fixed 3 % yield
that we used here is preliminary and must be refined as
the community continues to learn more about ELVOCs.
The confidence in our estimated ELVOC budget also is
limited by uncertainties stemming from using MEGAN
output for the monoterpene-concentration estimate and
by uncertainties in the local ozone concentrations.

– Large (greater than C3) amines are relatively unstudied
in the field as of yet, and the exact identification of these
molecules is difficult with current instrumentation. As a
result, estimating the thermodynamic properties such as
pKa and vapor pressure that determine abilities of these
amines to participate in acid–base reactions is difficult,
and we can only provide estimates of these contribu-
tions.

– Our particle-phase composition measurements from the
TDCIMS provide only qualitative information for the
organic species present in the growing particles. We do
not know the exact molar contributions to the particles
from each species, as the TDCIMS is not calibrated
for each of the many organic compounds that are de-
tected due to fragmentation during desorption as well
as chemical ionization of desorbed gas-phase ions. Per-
haps more significantly, particle-phase “matrix effects”
may impact the efficiency by which organic compounds
are desorbed and ionized; such matrix effects are diffi-
cult to assess since they depend on the coexisting com-
pounds in the particles and the phase of the particles.

– We did not know the parent molecule(s) of the nitrate
signal in the TDCIMS ions that is classified as either
inorganic or oxidized nitrate. This signal appears non-
trivially during part of every growth event analyzed, but
we are without knowledge of its origin.

– The MABNAG model, as used here, only simulates one
organic acid and one amine in any individual simula-
tion. This limits our ability to determine the contribu-
tion of combinations of organic acids and amines to
growth through acid–base reactions and condensation
(for the less-volatile organic acids). Instead, we present
only limiting cases that inform us of the potential contri-
butions of organic acids and amines if the sum of oxalic
and malonic acid had the properties of one these species.

– We did not account for the contribution of LVOCs or
SVOCs to condensational growth as there were no gas
concentration measurements of such compounds. As
particles grow beyond initial cluster sizes, the LVOCs
will begin to contribute to growth and likely are a sig-
nificant contributor for particles as they approach diam-
eters of 10 nm (Pierce et al., 2011). As the particle con-
tinues to grow, the SVOCs may also be a nontrivial con-
tributor to growth (Pierce et al., 2011). Thus, the growth
by nonreactive organics is likely underestimated in this
study.

– We did not account for accretion reactions that could
contribute to particle growth as there were no observa-
tions to constrain the contribution of accretion products
to new-particle growth during this study. Accretion has
been observed in the laboratory in particles greater than
4 nm in size (Wang et al., 2010) and thus has the poten-
tial to contribute to growth even at these smaller particle
sizes.

– We assumed in MABNAG that all species in the particle
phase instantaneously homogeneously mix into a liquid
phase: this assumption ignores any particle-phase diffu-
sion limitations that can arise from heterogeneous parti-
cle phases. It is estimated that such diffusion limitations
can begin to matter at particle sizes greater than 20 nm
in diameter.

– We use RH measured at the surface, which may be an
underestimate of RH in other portions of a well-mixed
BL. MABNAG sensitivity simulations with increased
RH showed increased growth rates and contributions
from organic acids.

4 The Southern Great Plains: comparison to other
campaigns

The NPFS provided unique insights into new-particle for-
mation events for the region during the spring of 2013, as
both gas-phase and particle-phase measurements were taken
concurrently in order to assess the species contribution to
growth. We see that from 3 days of the campaign where all
instruments were running, three different dominant growth
mechanisms are present, from growth by primarily organics
to growth by primarily ammonium sulfate to a mixture of
growth from organics, sulfuric acid, and bases.

Previous field campaigns have taken place to similarly
assess the growth of new-particle formation events in the
continental BL. A review paper by Kulmala et al. (2004)
and references therein considered over 100 field campaigns,
both long-term and intensive, primarily at continental BL
sites. Growth rates were found to be mainly within the 1–
20 nm h−1 range in the mid-latitudes, and our events are
within this range. Furthermore, for campaigns in which
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growth rates and gas-phase sulfuric acid were measured, it
was found that sulfuric acid tended to account for only 10–
30 % of the observed growth rates (Kulmala et al., 2004);
although water and ammonia accounted for some of the re-
maining growth, organic compounds are thought to comprise
the remaining growth. Studies within the past few years have
reported growth from either primarily organics (e.g., Smith
et al., 2008; Kuang et al., 2010; Riipinen et al., 2011; Pierce
et al., 2012) or inorganic components, primarily sulfate or
ammonium sulfate (e.g., Bzdek et al., 2012).

Online particle-composition measurements of sub-micron
aerosols are a relatively new and still-evolving measurement
technique. Smith et al. (2004) reported the first such mea-
surements, using the TDCIMS to examine 6–20 nm particles.
Another recently developed instrument is the nano aerosol
mass spectrometer (NAMS) (Wang et al., 2006; Wang and
Johnston, 2006; Pennington and Johnson, 2012), which re-
ports quantitative elemental composition of nanoparticles
in the 10–30 nm range. Of the recent studies that have
used combined gas-phase measurements with particle-phase
measurements (using either the TDCIMS, NAMS, or both)
to determine dominant growth mechanisms (e.g., Smith et
al., 2008; Bzdek et al., 2012, 2014), this study is, to our
knowledge, unique in reporting distinctly different dominant
growth pathways for separate yet temporally closely spaced
new-particle growth events. However, it is highly unlikely
that SGP is truly unique in this regard; instead the findings
of this paper point towards the value of investigating more
field sites influenced by mixtures of anthropogenic and bio-
genic emission using similar combinations of gas-phase and
particle-phase measurements.

5 Conclusions

In this study, we sought to understand the
species / mechanisms that contribute to the growth of
newly formed particles at the US Department of Energy
Atmospheric Radiation Measurement program SGP field site
in Oklahoma, US, and to find closure in particle growth rates
and composition between the SGP measurements and the
growth model, MABNAG. We analyzed data collected from
13 April to 25 May 2013 for the SGP NPFS. We focused the
analysis on three new-particle formation and growth events
occurring on 19 April, 9 May, and 11 May. These days had
different dominant species contributing to growth: 19 April
was primarily from organics, 9 May was from ammonium
sulfate, and 11 May was from organics, amines / ammonia,
and sulfate. MABNAG was constrained by the measured
gas-phase concentrations of key atmospheric species present
during the growth event for each day, and we found that
MABNAG qualitatively simulated the observed dominant
species for each day under certain sets of assumptions. We
saw that during the NPFS campaign, new-particle growth
events can be explained by either sulfuric acid forming

salts with atmospheric bases (either ammonia or amines),
the condensation of primarily nonreactive organics, or a
combination of these two. MABNAG can qualitatively
capture different dominant growth pathways. It appears
from the TDCIMS that most of the organics measured are
likely nonreactive: when we assume equivalent detection
efficiencies, there are generally more organics than there
are bases. The MABNAG simulations support that the
organics in the growing particles are likely nonreactive, with
the nonreactive-organic ELVOC input species dominating
the organic contribution to the particle growth over the
organic-acid input species in almost every sensitivity case.

MABNAG tends to underpredict the observed growth
rates. Due to the strong organics signals in the TDCIMS, we
propose that these low growth rates are mainly due to an un-
derrepresentation of organic uptake in MABNAG, either by
nonreactive condensation of LVOCs or SVOCs or particle-
phase accretion. Furthermore, the discovery of ELVOCs is
relatively new and the ELVOC budget remains largely un-
constrained.

Although we have not achieved complete closure in par-
ticle growth rates and composition between the SGP mea-
surements and MABNAG simulations, we present this work
as an important step towards understanding new-particle for-
mation and growth events. We find that the relatively poorly
understood ELVOC species can play a key role in the growth
of particles through nonreactive condensation. However, or-
ganics of higher but still sufficiently low vapor pressures
(∼< 100 µg m−3 saturation mass concentration) are likely
also important for growth and increase in importance with in-
creasing particle size. Based on these findings, we encourage
more field-based measurements that focus on the speciation
and properties of organics, both in the gas phase and in par-
ticles. In particular, gas-phase ELVOC, LVOC, and SVOC
measurements, found either through speciation or volatil-
ity measurements, would greatly inform future modeling ef-
forts. These measurements are exceedingly challenging but
as experimental techniques evolve, they will be invaluable in
understanding and modeling both aerosol fundamentals and
aerosol impacts on climate and human health.

6 Data availability

The data from the New Particle Formation Study campaign
that were used in the analysis of this paper are available
on the ARM DOE website by request (http://www.arm.gov/
campaigns/sgp2013npfs). E-AIM is freely available online at
http://www.aim.env.uea.ac.uk/aim/aim.php.
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Appendix A: List of abbreviations

a.g.l. above ground level
AmPMS ambient pressure proton transfer

mass spectrometer
ARM Atmospheric Radiation Measure-

ment
BL boundary layer
BVOC biological volatile organic com-

pound
CCN cloud condensation nuclei
CDT central daylight time
CIMS chemical ionization mass spectrom-

eter
CPC condensation particle counter
CS condensation sink
DMA dimethylamine
DOE Department of Energy
Dp particle diameter
E-AIM Extended Aerosol Inorganics

Model
ELVOC extremely low-volatility organic

compound
EPA Environmental Protection Agency
GR growth rate
HYSPLIT HYbrid Single-Particle Lagrangian

Integrated Trajectory
IUPAC International Union of Pure and Ap-

plied Chemistry
Lam sum of light (C1–C3) amines mea-

sured at SGP
Lo-VP reducing the vapor pressure of the

organic-acid input in MABNAG by
10−1

LVOC low-volatile organic compound
MABNAG Model for Acid–Base chemistry in

NAnoparticle Growth
MAL malonic acid
MEGAN Model of Emissions of Gases and

Aerosols in Nature
NAM North American Mesoscale model
NAMS nano aerosol mass spectrometer
NOAA National Oceanic and Atmospheric

Administration
NPF new-particle formation
NPFS New Particle Formation Study
OX oxalic acid
PTR-MS proton transfer reaction–mass spec-

trometer
RH relative humidity
SGP Southern Great Plains
SMPS scanning mobility particle sizer
SOA secondary organic aerosol
SVOC semi-volatile organic compound
Tam sum of total amines measured at

SGP
TDCIMS thermal decomposition chemical

ionization mass spectrometer
TMA trimethylamine
UNIFAC UNIquac Functional-group Activ-

ity Coefficient method
VOC volatile organic compounds
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The Supplement related to this article is available online
at doi:10.5194/acp-16-9321-2016-supplement.
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