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Abstract 

McKinney Butte, a late Tertiary andesite vent and flow complex, is located 

near the town of Sisters, Oregon, in the upper Deschutes Basin, and is situated along 

the structural trend that forms the eastern margin of the High Cascades graben (Sisters 

fault zone and Green Ridge). Rapid development and over appropriated surface water 

resources in this area have led to an increased dependence upon groundwater 

resources. A primary concern of resource managers is the potential impact of 

expanding groundwater use on stream flows and spring discharge. Two sets of springs 

(McKinney Butte Springs and Camp Polk Springs) discharge to Whychus Creek along 

the east flank of McKinney Butte, and during low-flow conditions supply a substantial 

component of the total flow in the creek. Despite their contribution to Whychus Creek, 

the springs along McKinney Butte are small-scale features and have received less 

attention than larger volume (> 2 m3/s) springs that occur in the basin (i.e., Metolius 

Spring and Lower Opal Springs). 

This study used discharge measurements in Whychus Creek upstream and 

downstream of the springs, and mixing models using measurements of electrical 

conductivity and temperature in the springs and Whychus Creek to determine the 

contribution of the springs to the creek. Isotopic, thermal, and geochemical signatures 

for the McKinney Butte and Camp Polk Springs, and local streams (Whychus Creek 

and Indian Ford Creek) and springs (Metolius Spring, Paulina Spring, Alder Springs, 

and Lower Opal Spring) were assessed to determine the source(s) of the McKinney 
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Butte and Camp Polk Springs. The discharge and hydrochemical data along with 

hydraulic head data from local wells were used in the development of a conceptual 

model of groundwater flow for the McKinney Butte area. 

Discharge from the McKinney Butte Springs supplies the majority of water to 

Whychus Creek on the east flank of McKinney Butte (~0.20 m3/s), provides up to 

46% of the flow in the creek, and is relatively stable throughout the year. Discharge 

from the Camp Polk Springs is less than 0.05 m3/s. 

Isotopic, thermal, and geochemical signatures indicate distinct sources for the 

McKinney Butte and Camp Polk Springs. Groundwater discharged at the McKinney 

Butte Springs is depleted in heavy stable isotopes (δD and δ18O) relative to the Camp 

Polk Springs. Recharge elevations inferred from stable isotope concentrations are 

1800-1900 m for the McKinney Butte Springs and 950-1300 m for the Camp Polk 

Springs. Elevated water temperature in the McKinney Butte Springs relative to the 

average air temperature at the inferred recharge elevation indicates the presence of 

geothermal heat and implies deep circulation in the flow system. The temperature in 

the Camp Polk Springs is not elevated. The Camp Polk Springs, though not the 

McKinney Butte Springs, contain elevated concentrations of ions Cl, SO4, and NO3 

that are indicative of contamination. 

The study results indicate the source of the Camp Polk Springs is shallow 

groundwater whereas the McKinney Butte Springs discharge water that has circulated 

deep in the groundwater flow system. Additionally, the hydrochemical traits of the 

McKinney Butte Springs are similar to Metolius Spring, suggesting discharge from the 
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McKinney Butte Springs is controlled by the structural trend that forms the eastern 

margin of the High Cascades graben. The significant difference in discharge between 

the McKinney Butte Springs and Metolius spring may be related to the size of faults 

that occur locally.
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Chapter 1 – Introduction 

The Deschutes River is a major river draining 27,000 km2 of north-central 

Oregon (O’Connor et al., 2003) on the eastern, leeward side of the Oregon Cascade 

Range, a water-resource limited environment in which competitive demands for 

municipal, domestic, and irrigation water and adequate stream flows for aquatic 

habitats and recreation are severe. The Deschutes River on whole displays a 

remarkably consistent flow thanks to substantial input from large, regional spring 

systems (Gannett et al., 2003). However, local tributaries may be severely impacted by 

water diversions. Whychus Creek is one such stream that originates on the flanks of 

the Broken Top and Three Sisters volcanoes, flows northeast through the town of 

Sisters, and ultimately discharges into the Deschutes River (Figure 1). Although a 

significant tributary of the Deschutes River, a large percentage (historically, up to 

100%) of Whychus Creek’s flow is diverted for irrigation 5 to 9 km upstream of 

Sisters (Gannett et al., 2001). Because Whychus Creek is severely impacted by 

irrigation withdrawals, spring discharge downstream from diversions becomes critical 

for maintaining streamflow and aquatic habitat. 

One set of springs in particular, the McKinney Butte Springs (Frank Springs 

and Chester Springs on Figure 2), discharge to Whychus Creek approximately 10 km 

downstream from irrigation diversions. These springs may contribute a significant 

portion of total flow in Whychus Creek from Sisters to Alder Springs, 24 km 

downstream and provide important thermal refuge for anadromous fish during periods 
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of severe thermal stress (Brown et al., 2007; Friedrichsen, 1996). McKinney Butte is 

bounded by the Tumalo fault (Sherrod et al., 2004; Wellik, 2008), part of the Sisters 

fault zone, a southern extension of the Green Ridge fault zone, which has been 

associated with discharge of regional groundwater to Metolius Spring (James, 1999; 

Gannett et al., 2001), the source of the Metolius River on the north side of Black 

Butte. Understanding how the McKinney Butte Springs fit into the larger 

hydrogeologic framework, specifically their overall impact on Whychus Creek flow 

and whether the springs originate from local or regional groundwater flow systems, is 

critical in evaluating their importance, long-term stability, and susceptibility to 

increasing groundwater withdrawals. 

The objectives of this study are to: 1) quantify the magnitude and seasonal 

variation of flow from the McKinney Butte Springs; 2) quantify the relative 

contribution of the spring flow to the total flow of Whychus Creek on a seasonal basis; 

3) determine the thermal impact of spring flow on Whychus Creek; 4) identify the 

source(s) of spring water via the hydrochemistry of the McKinney Butte Springs and 

local surface waters; and 5) develop a conceptual groundwater-flow model that 

accounts for the spatial and temporal distribution of discharge, hydraulic head, 

chemistry, and temperature within the geologic framework of the area. 



 

 
Figure 1. Location of study area and large spring complexes along the eastern flank of the 
Cascade Range. 
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Figure 2. Digital Ortho Photo of McKinney Butte area. Sisters city limits are shown in pink. 
Sampling sites are also shown. Indian Ford Creek flows south along the west side of McKinney 
Butte and Whychus Creek flows north along the east side. The McKinney Butte Springs are 
Frank and Chester springs. The Camp Polk Springs are Camp Polk Springhouse and Anderson 
Springs. 
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Background 

Location and Geography of Study Area 

The McKinney Butte study area encompasses approximately 275 km2 (square 

kilometers) in the Deschutes River drainage basin in central Oregon (Figure 1). 

Whychus Creek, which originates on the slopes of Broken Top and the Three Sisters 

volcanoes on the east side of the central Oregon Cascade Range, is the largest stream 

in the rapidly developing area around the town of Sisters. Indian Ford Creek flows 

south from its headwaters (Paulina Spring near Black Butte) along the west side of 

McKinney Butte until its confluence with Whychus Creek at the south end of the butte 

(Figure 3). Land surface elevations range from 1220 m (meters) above sea level in the 

southwest corner of the study area to 880 m in the northeast corner. The town of 

Sisters is the major population center in the study area. Principal industries include 

agriculture, forest products, tourism, and service industries. 

Study area boundaries were positioned several kilometers from McKinney 

Butte to provide a larger area from which hydrologic and geologic data could be 

collected. The following sections comprise the study area: T14S/R09E sec. 13,14, 23-

26; T14S/R10E sec. 13-36; T14S/R11E sec 15-22, 27-34; T15S/R09E sec. 1,2, 11-14, 

23-26; T15S/R10E sec. 1-30; T15S/R11E sec. 3-10, 15-22, 27-30. USGS 7.5 minute 

quadrangle topographic maps in the study area include Sisters, Henkle Butte, and parts 

of Three Creek Butte, Tumalo Dam, and Black Crater. 



 

 6

The climate in the area is controlled by air masses that move eastward from the 

Pacific Ocean, across western Oregon and into central Oregon (Lite and Gannett, 

2002). Orographic processes result in large amounts of precipitation in the Cascades 

Range (located less than 10 km west of the study area), with precipitation locally 

exceeding 508 cm/yr, mostly as snow during the winter (Taylor, 1993). Rates of 

precipitation diminish rapidly toward the east to less than 30 cm/yr at the eastern 

margin of the study area (Figure 4). Temperatures also vary across the study area. 

Records from the Oregon Climate Service show that mean monthly minimum and 

maximum temperatures at Santiam Pass in the Cascade Range (period of record 1963 

to 1985) range from -7 and 1 °C (degrees Celsius) in January to 6 and 23 °C in July 

(Oregon Climate Service, 2008). Temperatures are warmer at lower elevations within 

the study area. The mean monthly minimum and maximum temperatures in Sisters 

(period of record 1961 to 2007) range from -6 and 5 °C in January to 6 and 29 °C in 

July (Oregon Climate Service, 2008). 

Significance of Study 

The origin of springs along McKinney Butte has been the subject of 

speculation by area water managers for many years (Lite, personal communication, 

2011). A commonly held, yet unconfirmed view is that the springs receive water from 

losing reaches of Indian Ford Creek on the west side of the butte. While the source of 

the springs was unknown, their contribution to an over appropriated Whychus Creek 

has long been recognized. In 1994, springs along McKinney Butte provided the only 
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flow to a 20 km reach of Whychus Creek below Indian Ford Creek and above Alder 

Springs (OWRD seepage run data in Gannett et al., 2001). Despite the fact that these 

springs at times provide a significant amount of the flow in Whychus Creek, very little 

is known about the physical and chemical characteristics of the water they discharge. 

This study examines the discharge rates and hydrochemistry of groundwater 

discharged at springs along McKinney Butte in an attempt to discern their source(s) 

and quantify their discharge and thermal contributions to Whychus Creek. 

The thermal contribution of the McKinney Butte Springs may provide an 

important refuge for steelhead, red band trout, bull trout and Chinook salmon during 

periods of severe thermal stress (Friedrichsen, 1996; Brown et al., 2007). Recent re-

licensing of the Pelton and Round Butte dams on the Deschutes River allowed for the 

construction of a new fish passage, which will enable anadromous fish to migrate 

upstream to Whychus and other creeks in the upper Deschutes Basin that were 

historically important for fish rearing and spawning (Cramer and Beamesderfer, 

2006). Thirty-four km of Whychus Creek (including the reach examined in this study) 

are on the Oregon Department of Environmental Quality (ODEQ) 303(d) list 

(identifies water bodies not meeting water quality standards) for exceeding the 

maximum allowable temperature for salmon rearing and spawning (ODEQ, 2007). If 

the McKinney Butte Springs discharge low temperature water, they could offer 

aquatic species thermal refuge during hot summer months. 

Another important aspect of this study is the potential impact of recent 

development in the Sisters area on groundwater resources, including the springs along 
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McKinney Butte. The degree to which a spring may be affected by groundwater 

withdrawals and contamination depends on the spatial scale of groundwater flow. A 

groundwater flow system can be divided into “local”, “intermediate”, and “regional” 

flow (e.g. Tóth, 1963). Local groundwater flow circulates to shallow depths and 

discharges close to the recharge area, while intermediate and regional groundwater 

flow generally circulate to much greater depths and discharge far from the inferred 

recharge area (Tóth, 1963). Intermediate- and regional-scale groundwater flow result 

in springs with little seasonal variation in discharge and temperature, while springs 

discharging local-scale groundwater often exhibit seasonal variations in both discharge 

and temperature. Additionally, springs discharging local-scale groundwater are more 

likely to be influenced by short-term variations in recharge and are more susceptible to 

contamination from shallow anthropogenic sources (e.g. septic systems and irrigation 

chemicals). 

The scale of groundwater flow discharged at the springs has implications for 

the role of local geologic structures in the groundwater flow system. The springs along 

McKinney Butte occur at the westernmost edge of the Sisters fault zone, the southern 

extension of the Green Ridge fault zone (Sherrod et al., 2004). The Green Ridge fault 

(the major fault in the Green Ridge fault zone) marks the eastern boundary of the High 

Cascades axial graben (Allen, 1966; Priest, 1990) and is responsible for the 

tremendous amount of groundwater discharging to Metolius Spring at the headwaters 

of the Metolius River (Gannett et al., 2003). Chemical analysis suggests that the water 

discharged from Metolius Spring includes a large component of deep regional 
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groundwater, implying vertical permeability along the Green Ridge escarpment 

(Gannett et al., 2003). Hydrochemical data collected from springs along McKinney 

Butte will provide new insights into the groundwater flow system in the vicinity of 

McKinney Butte and will help refine existing regional groundwater flow models.
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Figure 4. 1971-2000 average annual precipitation in the study area (cm/year) (data from Oregon 
Climate Service, 2008). 
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Previous Work 

The hydrology and chemistry of surface and groundwaters in the central 

Oregon Cascades are reported by Russell (1905), Henshaw et al. (1914), Meinzer 

(1927), Ingebritsen et al. (1988, 1992, 1994), Manga (1996, 1997, 1998, 2001), James 

(1999), James et al. (1999, 2000), Evans et al. (2002, 2004), and Gannett et al. (2003). 

Several studies conducted by the United States Geological Survey (USGS) in 

cooperation with the Oregon Water Resources Department (OWRD) have examined 

the hydrogeology of the upper Deschutes Basin (Caldwell and Truini, 1997; Caldwell, 

1998; Gannett et al., 2001; Lite and Gannett, 2002; Sherrod et al., 2002; Gannett and 

Lite, 2004). Additionally, OWRD has conducted synoptic measurements of discharge 

(also referred to as seepage runs) in Whychus and Indian Ford creeks. These studies 

provide the framework for my research. Of particular interest for the current study are 

the chemistry, hydrology, and isotopic variations in cold springs and streams as well 

as the impact of geology and geologic structures on groundwater flow. 

James (1999) and James et al. (1999, 2000) examined the temperature and 

isotopes of O, H, C, and noble gases of several large volume cold springs in the central 

Oregon Cascade Range. Hydrogen and oxygen isotope analyses were integrated with 

temperature measurements in an attempt to provide a conceptual model of 

groundwater flow for the region. Temperatures well above the average annual surface 

temperature of the inferred recharge elevation in several springs were attributed to 
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geothermal warming. Additionally, the relationship between 18O and elevation in local 

precipitation was used to estimate the recharge elevation of cold springs. 

Manga (2001) examined the chemical and physical characteristics of several 

springs in the central Oregon Cascades. He used isotopic, chemical, and temperature 

data to determine the mean residence time of groundwater, infer the spatial pattern and 

extent of groundwater flow, estimate basin-scale hydraulic properties, calculate 

regional heat flow, and quantify the rate of magmatic intrusion beneath the volcanic 

arc. 

Evans et al. (2002, 2004) examined the geochemistry and temperature of 

streams and springs in the Separation Creek drainage of the Three Sisters area. They 

attributed anomalously high chloride concentrations in Separation Creek to the input 

of thermal fluid. 

The groundwater resources and hydrogeologic characteristics of the upper 

Deschutes basin have been reported in U.S. Geological Survey Water-Resources 

Investigations Reports and Open-File Reports (Caldwell and Truini, 1997; Caldwell, 

1998; Gannett et al., 2001; Lite and Gannett, 2002; Gannett and Lite, 2004). These 

reports contain information concerning the hydrogeologic characteristics of specific 

hydrogeologic units (hydraulic conductivity, yield, specific capacity, coefficient of 

storage, and recharge), groundwater levels, hydrographs of water level fluctuations in 

specific wells, water chemistry, well log information from driller’s reports, and water 

well and spring locations. 
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OWRD staff conducted seepage runs on Whychus Creek in April 1994, August 

2005, March 2006, and September 2006 and on Indian Ford Creek in February 1992, 

March 2006, and September 2006. Measurement locations in Whychus Creek included 

the Sisters gage station and Camp Polk Road (Figure 2). Gains of 0.17 m3/s (April 

1994), 0.06 m3/s (August 2005), 0.17 m3/s (March 2006), and 0.10 m3/s (September 

2006) were measured along the reach between Sisters and Camp Polk Road. Indian 

Ford Creek discharge decreased from 0.19 m3/s at Camp Polk Road to 0.0 m3/s at 

Barclay Dr. in March 2006; the creek was dry at Camp Polk Road in February 1992 

and September 2006. 
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Chapter 2 – Hydrogeologic Framework 

Regional Setting 

Most of the upper Deschutes Basin lies within two major geologic provinces 

(Figure 1), the Cascade Range and the Basin and Range Province (Baldwin, 1981). 

The Cascade Range is a north-south trending zone of compositionally diverse volcanic 

centers with deposits extending from southern British Columbia to northern California 

(Baldwin, 1981; Sherrod and Smith, 2000). Although the Cascades Range primarily 

represents a constructional feature, growth of the range has been accompanied, in 

places, by the development of a north-south trending graben (Allen, 1966; Smith et al., 

1987).  

The central Oregon part of the Cascade Range is divided into two provinces, 

the Western Cascades and the High Cascade Range (Smith et al., 1987). The Western 

Cascades are composed of late Eocene to late Miocene tholeiitic and calc-alkaline 

basaltic lava flows, tephras, and basaltic to rhyolitic intrusions and are located west of 

the current Cascades crest (Smith et al., 1987; Ingebritsen et al., 1994). In central 

Oregon, the crest of the High Cascades is composed of coalesced basalt and basaltic 

andesite lava flows erupted by primarily early Pleistocene shield volcanoes and cinder 

cones (Smith et al., 1987). 

The Basin and Range province is a region of crustal extension and is 

characterized by subparallel fault-bounded down-dropped basins separated by fault-

block ranges. Individual basins and intervening ranges are typically 15 to 30 km 



 

 16

across. The Basin and Range province covers much of the interior of the Western 

United States encompassing parts of Oregon, Nevada, Utah, California, Arizona and 

New Mexico (Baldwin, 1981). Extension and subsequent faulting in the Basin and 

Range province has been accompanied by widespread mafic volcanism (Draper, 1991; 

Camp and Ross, 2004). 

Stratigraphic Units and Hydrogeologic Characteristics 

John Day Formation 

The John Day Formation is the oldest rock unit within the upper Deschutes 

basin. Rocks of this formation range in age from 20 to 40 million years. The John Day 

Formation is composed of several hundred meters of diagenetically altered volcanic 

and volcaniclastic sedimentary deposits (Robinson et al., 1984). Deposits of the John 

Day Formation thicken and coarsen from east to west and are similar in age to deposits 

associated with early Western Cascade volcanism. These factors led investigators to 

conclude that the John Day Formation is composed of distal deposits derived from 

vents in the Western Cascades (Waters, 1954; Peck, 1964; Robinson, 1975; Robinson 

et al., 1984). While Western Cascade volcanoes are probably the source of some John 

Day Formation deposits, recent work by the Oregon Department of Geology and 

Mineral Industries (e.g., McClaughry et al., 2009a, 2009b) have identified large 

Paleogene calderas located well east of previously postulated sources, suggesting a 

local origin for much of the John Day Formation. 



 

 17

Devitrification (conversion of glass to clays and other minerals) of tuffaceous 

materials and weathering and secondary mineralization of lava flows has resulted in 

very low permeability in John Day Formation rocks (Gannett et al., 2001). As a result 

of the low permeability, groundwater does not easily transmit through the John Day 

Formation and the unit acts as a barrier to regional groundwater flow (Gannett et al., 

2001). In the study area, the top of John Day age rocks occurs at an estimated 

elevation of approximately 300 m (cross section B, plate 1, Lite and Gannett, 2002). 

Deschutes Formation 

The Deschutes Formation represents an assemblage of lava flows, ignimbrites, 

and volcanogenic sediments, primarily from Cascade volcanism occurring between 7 

and 4 Ma (Smith et al., 1987). The thickest exposure of Deschutes Formation material 

is along Green Ridge, located in the western part of the basin, where over 700 m of 

mostly lava flows are visible (Smith, 1986). The formation thins to the east to 250 m 

along the Deschutes River where mostly volcaniclastic sediments, ignimbrites, and 

lava flows are exposed, and to the northeast near Madras where the formation is less 

than 75 m in thickness, and is dominated by material derived from eroded John Day 

Formation domes, lava flows, and ignimbrites (Smith, 1986). According to Smith et 

al. (1987), Deschutes Formation units were also likely derived from the site of the 

present-day Cascade Range. Around 5.4 Ma, the tectonic regime shifted from 

compressional to extensional and the early High Cascades subsided into an extensional 
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basin (Smith, 1991). The western escarpment of Green Ridge was formed by one of 

the faults bounding the basin (Smith et al., 1987). 

Deschutes Formation deposits are the major groundwater-bearing units in the 

upper Deschutes basin (Lite and Gannett, 2002). The permeability of the Deschutes 

Formation ranges from relatively low in fine-grained sedimentary deposits, dense lava 

flows, and pyroclastic flows, to high in coarse-grained unconsolidated sediments and 

vesicular and brecciated lava flows (Lite and Gannett, 2002). East of the Tumalo fault, 

the deposits occur at land surface or at shallow depth in the subsurface. 

Cascade Range Volcanics 

Several hundred meters of down-to-the-west displacement confined Pliocene 

to Holocene volcanic deposits to an intra-arc graben (Smith et al., 1987). Volcanic 

activity in the High Cascades since the late Pliocene (about 3 Ma) has subsequently 

buried volcanic centers that produced the Deschutes Formation. The present day High 

Cascades Range in central Oregon is composed of coalesced basalt and basaltic 

andesite shield volcanoes and cinder cones that are locally overlain by larger glaciated 

late Pleistocene to Quaternary stratovolcanoes (Hughes and Taylor, 1986; Hildreth, 

2007). 

Cascade Range volcanic deposits are highly permeable at shallow depths. The 

near-surface deposits are often highly fractured or otherwise porous and generally lack 

secondary mineralization (Gannett et al., 2001). The Cascade Range is the major 

recharge area for the upper Deschutes basin and these deposits provide the primary 
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pathway for groundwater movement from the recharge area to the basin (Gannett et 

al., 2001, 2003; Ingebritsen et al., 1992, James et al., 2000; Lite and Gannett, 2002; 

Manga, 1996, 1997, 1998). Cascade Range volcanics are an important source of 

groundwater west of the Tumalo fault. 

Quaternary Glacial Outwash 

Several Quaternary-age sedimentary deposits are found within the upper 

Deschutes Basin (Lite and Gannett, 2002). Two major periods of glaciation during 

Pleistocene time left deposits in the upper Deschutes Basin, the older Jack Creek and 

the younger Cabot Creek (Sherrod and Smith, 2000). The Cabot Creek glaciation is 

divided into Suttle Lake and Canyon Creek advances (Sherrod and Smith, 2000). 

Deposits of Jack Creek are limited to an area east of Three Fingered Jack. Easterbrook 

(1986) correlated Jack Creek glaciation to Hayden Creek glaciation in Washington, 

which is thought to be 140,000 years in age. The Suttle Lake advance was the last 

major glacial advance in central Oregon, occurring about 25,000 years ago (Sherrod 

and Smith, 2000). Outwash of the Suttle Lake advance covers much of the Metolius 

River valley and is up to 40-m thick in the vicinity of Sisters (Sherrod and Smith, 

2000; Lite and Gannett, 2002). Holocene deposits were formed by mass wasting of 

upland deposits, deposition of alluvium by both low- and high-energy streams, and 

deposition into lakes. These deposits can be locally up to 60 meters thick (Lite and 

Gannett, 2002). 
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Glacial outwash and intercalated High Cascades lavas deposited on the west 

side of the Tumalo fault form the principal aquifer in the town of Sisters (Lite and 

Gannett, 2002). Well reports for wells penetrating the outwash indicate it is comprised 

mostly of sand and gravel. These unconsolidated coarse-grained sediments and lavas 

have very high permeability. Hydraulic conductivity estimates are on the order of 50 

m/d (Gannett et al., 2001). 

Tectonic Structures 

The fault zone in the area between Bend and Sisters has been previously 

referred to as the Tumalo fault zone (Priest, 1990) and the Sisters fault zone (Sherrod 

et al., 2004). Wellik (2008) referred to the western part of the fault zone as the Tumalo 

fault zone, and the eastern part as the Sisters fault zone. The current study follows the 

nomenclature of Sherrod et al. (2004); faults around the city of Sisters are referred to 

as the Sisters fault zone, and faults in the vicinity of Green Ridge are part of the Green 

Ridge fault zone (Figure 3). 

The Sisters fault zone trends north-northwest from Newberry Volcano to Black 

Butte (Lite and Gannett, 2002). The sense of movement along the most prominent 

fault, (the Tumalo fault) which extends through the study area along the west side of 

McKinney Butte, is down-to-the-west (Taylor, in preparation, fide Sherrod et al., 

2004). Other faults exhibit down-to-the-east or down-to-the-west displacement. As 

much as 55 to 60 m of dip separation along the Tumalo fault has occurred near upper 

Tumalo Reservoir (10 km south of the study area) (Lite and Gannett, 2002). The 
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westernmost fault strands of the Sisters fault zone that exhibit down-to-the-west 

displacement (particularly the Tumalo fault) were partial barriers to streams flowing 

eastward from the Cascade Range and, thus, formed depositional centers for 

Pleistocene volcanic and glacial outwash deposits (Lite and Gannett, 2002). The 

Tumalo fault escarpment along the west side of McKinney Butte has provided a 

depositional center for up to 40 m of glacial outwash in the Sisters area (Lite and 

Gannett, 2002). 

The escarpment of Green Ridge represents the east margin of an intra-arc 

graben within the Cascade Range (Taylor, 1981, Smith et al., 1987). The Green Ridge 

fault zone is comprised of many parallel north-south normal faults with down-to-the-

west net displacement in excess of 600 m (Conrey, 1985). Displacement on the Green 

Ridge fault zone took place during late Miocene and early Pliocene (Conrey, 1985). 

Geologic Controls on the Occurrence of Springs 

Much of the groundwater discharge in the upper Deschutes Basin occurs as 

springs in two principal settings: 1) near the confluence of the Deschutes and Crooked 

Rivers; and 2) in and adjacent to the Cascade Range (Gannett et al., 2003). The 

distribution and rates of groundwater discharge in these settings is controlled by 

complex structural and stratigraphic interactions. 

Groundwater discharge near the confluence of the Deschutes and Crooked 

Rivers is the result of deep incision by the rivers (Gannett et al., 2003). Locally, the 

Deschutes and Crooked Rivers have incised canyons exposing much of the Deschutes 
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Formation section, intercepting the regional groundwater surface and resulting in large 

spring complexes in the canyon walls (Gannett et al., 2003). Additionally, 

approximately 15 kilometers north of the confluence area, near Pelton Dam the 

Deschutes River has cut entirely through the highly permeable Deschutes Formation to 

the much less permeable John Day Formation, diverting all groundwater flow to the 

surface (Gannett et al., 2003). Lower Opal Springs, found in the canyon wall of the 

Crooked River, discharges groundwater that contains geothermal heat and magmatic 

gasses, both indications of deep regional-scale groundwater flow (James, 1999). 

Groundwater discharged at Lower Opal Springs has travelled over 50 km in the 

subsurface. 

Large spring systems such as the headwaters of Brown’s Creek and the Quinn 

and Cultus Rivers are found on the east flanks of the central Oregon Cascade Range 

(Figure 1). These springs issue from the edges or ends of highly permeable Quaternary 

lava flows at the contact with less permeable fine-grained sediments that have filled 

the Shukash structural basin (Gannett et al., 2003). Groundwater discharged from the 

springs has followed shallow local-scale groundwater flow paths (Manga, 1998; James 

et al., 2000; Gannett et al., 2003). 

Large-volume springs such as Spring River and Metolius Spring are found at 

the eastern margin of the Cascade Range (Gannett et al., 2003). Spring River is located 

at the western edge of the Shukash structural basin in the southern part of the upper 

Deschutes Basin. Metolius Spring, the headwaters of the Metolius River, occurs along 

the Green Ridge fault, which marks the eastern edge of the High Cascades graben 
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(Allen, 1966; Priest, 1990). Vertical movement along the Green Ridge fault system is 

estimated to be over 600 m (Conrey, 1985). According to Gannett et al. (2001), the 

impediment to eastward groundwater flow at the base of Green Ridge could be due to 

a low- permeability gouge zone along the fault planes or the juxtaposition of 

permeable strata on the west side of the fault system against low-permeability material 

on the east. Groundwater discharged at Metolius Spring contains geothermal heat and 

magmatically derived carbon and helium-3 (James, 1999). The presence of elevated 

temperature and magmatic gasses indicates that Metolius Spring discharges water that 

has circulated deep in the groundwater flow system and suggests there is vertical 

permeability along the Green Ridge escarpment (Gannett et al., 2003). 

Study Area Geology 

Geologic maps of the majority of the study area have been generated by 

Oregon State University Emeritus Professor Dr. Ed Taylor. His maps of the Sisters 

(Taylor, in preparation), Henkle Butte (Taylor, 1998), Tumalo Dam (Taylor and Ferns, 

1994) and Three Creek Butte (Taylor and Ferns, 1995) 7.5 minute quadrangles have 

been incorporated into a geologic compilation map of the Bend 30- x 60-minute 

quadrangle (Sherrod et al., 2004). Lite and Gannett (2002) included a generalized 

version of the map later published by Sherrod et al., (2004). In this study, I present an 

ArcGIS coverage of the study area based on the geologic map generated by Lite and 

Gannett (2002) (Figure 5). 
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The oldest rocks exposed in the study area are basalt flows, sedimentary 

deposits, and pyroclastic flows of the Deschutes Formation (Tb, Ts, and Tp in Figure 

5). These rocks are present mostly east of the Sisters fault zone, although a few 

isolated dome remnants and cinder cones are found west of McKinney Butte. 

Deschutes Formation sedimentary deposits (Ts) underlie Deschutes Formation basalt 

flows (Tb) in the study area, and are only exposed where modern drainages have 

incised through the basalt. A Deschutes Formation partially to moderately welded 

pyroclastic flow deposit (Tp) is exposed along, and underlies, the east side of 

McKinney Butte (Taylor, written communication, February 6, 2008).  

McKinney Butte is composed of late Pliocene high-Fe andesite lavas erupted 

from cinder cones on the ridge crest (Taylor, written communication, February 6, 

2008). Lava on the north side of the butte has an age of 3.3±0.2 Ma (K-Ar, whole 

rock; Armstrong et al., 1975). 

The west margin of the Sisters fault zone generally marks the basinward limit 

of Quaternary Cascade Range deposits in the study area. However, several basalt 

flows (Qb) have erupted from vents located east of the Tumalo fault (e.g. Henkle 

Butte). Glacial outwash of the Suttle Lake advance (Qs) has been deposited in the 

Sisters area west of the Tumalo fault. Quaternary sedimentary deposits exposed east of 

the fault are generally of late Pleistocene age and are thought to be products of glacial 

outburst floods originating in the Cascades (Sherrod et al., 2004). 



 

 
Figure 5. Study area geologic map. Modified from Lite and Gannett (2002). 
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Chapter 3 – Study Design and Methods 

Study Design 

This section describes the naming system used in identifying sites visited 

during this study and previous studies and gives a brief background of the McKinney 

Butte area and local springs. The rationale behind the selection of this study’s sample 

sites is also provided. 

Well, Spring, and Stream Data 

Six springs and a total of twelve stream locations, nine along Whychus Creek 

and three along Indian Ford Creek were sampled during this study (see Figures 2 and 3 

for site locations). Additionally, hydrologic and geologic data (from previous studies) 

from 111 wells, 44 springs, 39 snow core sites, and 7 surface water sites were 

examined. 

Sampling sites visited during this study were assigned names unless they had 

been named during previous studies or were named on a USGS topographic map. 

Previously unnamed surface water sites on Whychus and Indian Ford creeks were 

assigned names according to location (e.g., Indian Ford Creek at Barclay Dr., 

Whychus Creek at Sisters gage). Five of the seven springs visited during this study 

were identified on USGS topographic maps. Of these, three were named in prior 

studies (Metolious Spring, Paulina Spring, and Alder Springs). The two unnamed 

springs that were identified on USGS topographic maps were assigned names based 



 

 27

on property ownership (Anderson Springs) or location (Camp Polk Springhouse). The 

two springs that were not identified on USGS topographic maps were assigned names 

based on property ownership (Frank Springs and Chester Springs). The well visited 

during this study was also named according to property ownership and OWRD well 

log-id (Lamb well, DESC 54659). 

Wells not visited during this study are identified by their OWRD well log-id. 

The OWRD well log-id is a combination of a four-letter county code and a well-log 

number with up to 6 digits (e.g. DESC 1294) which uniquely identifies each water 

well report in Ground Water Resource Information Distribution (GRID), a statewide 

computer database maintained by OWRD. 

Sample Site Background 

OWRD seepage runs in 1994, 2005, and 2006 indicated Whychus Creek was 

gaining streamflow between the Sisters Gage station and Camp Polk Rd. (see Previous 

Work section; site locations on Figure 2). The bulk of the increased flow had been 

attributed to springs in the vicinity of Camp Polk Rd. (Anderson Springs and Camp 

Polk Springhouse, Figure 6), but never verified (throughout this paper, Anderson 

Springs and Camp Polk Springhouse will also be referred to as the Camp Polk Springs 

when the topic applies to both springs). Visual inspection of these springs in 

September 2006 suggested it was unlikely they were supplying the majority of the 

gain in streamflow to Whychus Creek; their combined discharge was estimated to be 

much less than the 0.06-0.17 m3/s gain measured along this reach. Consequently, the 
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reach of Whychus Creek on the east side of McKinney Butte was searched for other 

possible sources. Frank Springs and Chester Springs were observed approximately 2.0 

and 2.5 km upstream from Camp Polk Rd. These springs (specifically Frank Springs) 

appeared to be discharging a much greater volume of water than the Camp Polk 

Springs (Frank Springs and Chester Springs will be referred to as the McKinney Butte 

Springs when the subject matter applies to both). 

The morphologies of Frank and Chester Springs are considerably different. 

Chester Springs is a point source that surfaces in the bottom of a pond located 

approximately 70 m west of Whychus Creek (Figure 7). The pond is connected to 

Whychus Creek via a narrow channel extending from its east side to the creek. 

Conversely, Frank Springs materializes from the base of McKinney Butte, not at a 

single point, but along an approximately 25- to 50-m linear section. Near the end of 

this section, Frank Springs discharges via a short (<10 m) channel into the creek 

(Figure 8). Although the morphologies of Frank and Chester Springs are quite 

different, the physical characteristics of their outflow channels are surprisingly similar. 

Both springs have shallow and narrow outflow channels. These traits precluded direct 

measurement of their discharge. It is also likely that some groundwater bypasses the 

springs outflow channels and discharges directly to Whychus Creek. 

Sample Site Selection 

Sample sites were selected to address the following questions: 1) What is the 

magnitude and seasonal variation of flow from the McKinney Butte Springs? 2) What 



 

is the relative contribution of the springs to the total flow of Whychus Creek on a 

seasonal basis? 3) What is the thermal impact of spring flow on Whychus Creek? and 

4) What is the source(s) of the McKinney Butte Springs? Additionally, sites were 

selected to assist in developing a local conceptual groundwater flow model. 

 
Figure 6. Sisters USGS 7.5 minute quadrangle topographic map. Spring (triangles), stream 
(circles), and well (square) sampling sites are shown. 
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Given the geologic framework of the study area, initial plausible sources for 

the McKinney Butte Springs included: 1) the reappearance of Whychus Creek and or 

Indian Ford Creek surface water that was intermittently lost to high-permeability 

gravel deposits up gradient from the springs; 2) preferential movement of shallow 

groundwater through McKinney Butte (~west to east) via faults or fractures; 3) deep 

regional groundwater flow that is migrating through faults bounding the west side of 

McKinney Butte; 4) return water from irrigation uses; or 5) seasonal precipitation on 

McKinney Butte. 

 
Figure 7. West facing view of Chester Springs. The springs discharge to the bottom of this pond at 
the base of McKinney Butte (shown in background). 

 
The magnitude and seasonal variation of flow from the McKinney Butte 

Springs (question 1) and their relative contribution to Whychus Creek (question 2) 

were examined via seepage runs on Whychus Creek and simple mixing models that 

compared temperature, and electrical conductivity in Whychus Creek and the springs. 
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The morphology of the McKinney Butte Springs outflow channels precluded direct 

measurement of discharge; consequently, spring discharge was calculated from the 

difference in Whychus Creek discharge directly upstream (Whychus Creek above 

Chester Springs) and downstream (Whychus Creek below Frank Springs) from the 

springs. Likewise, mixing models using temperature and electrical conductivity data 

collected at the same locations on Whychus Creek and at the McKinney Butte Springs 

were also used to estimate discharge from the McKinney Butte Springs. In the mixing 

models, temperature and conductivity data were considered a proxy for discharge 

where a change of some amount in discharge is proportional to a change in 

temperature or conductivity. Discharge was also measured on one occasion at 

Whychus Creek below Chester Springs to determine the individual discharges of 

Chester Springs and Frank Springs. The Whychus Creek at Sisters gage site was used 

to examine the change in discharge between Sisters and the McKinney Butte springs. 

Sites below the McKinney Butte springs were used to examine the discharge of the 

Camp Polk Springs (Whychus Creek at Camp Polk Rd.) and to examine the change in 

discharge from McKinney Butte to Camp Polk meadow (Whychus Creek at DRC 

gage). Seepage runs were conducted in Indian Ford Creek to quantify the flow in the 

creek and the amount of seepage occurring along the west side of McKinney Butte. 

Temperature data collected at the McKinney Butte springs and at locations on 

Whychus Creek above and below the springs was used to assess the thermal impact of 

the springs on Whychus Creek (question 3). Additional sites on Whychus Creek 



 

(Sisters gage, Camp Polk Rd., and DRC gage) were monitored to examine thermal 

conditions at locations distant from the springs. 

Chemical and isotopic data were used to identify the source(s) of the 

McKinney Butte Springs. The chemical and isotopic concentrations of the McKinney 

Butte Springs were compared to other area springs (Paulina Spring, Metolius Spring, 

and Alder Springs) to establish a source area for the springs. Alder Springs and the 

Metolius Spring are thought to discharge mostly regional-scale groundwater, while 

Paulina Spring is recharged locally (Caldwell, 1998; James, 1999). Additionally, data 

from the Camp Polk Springs was examined to determine their source. Whychus and 

Indian Ford creeks were also compared with the McKinney Butte Springs to determine 

if they were the source of the springs. 

 
Figure 8. North facing view of Frank Springs outlet channel. The springs discharge from the base 
of McKinney Butte (not visible, but immediately to the right of the image). The confluence of the 
outflow channel and Whychus Creek is immediately below the visible area of the image. 
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Methods 

Discharge Measurements 

Surface-water discharge measurements were made on a seasonal basis between 

April 2007 and January 2008 (measurement locations shown on Figure 2). 

Groundwater flow to or from streams was estimated using sets of streamflow 

measurements known as seepage runs. A seepage run consists of a series of 

streamflow measurements taken a few hundred feet to several miles apart along a 

stream over a short enough period that temporal variations in streamflow are minimal 

(Gannett et al., 2001). Tributary inflow and diversions are measured as well. Any 

temporal changes in streamflow occurring during the measurement period are also 

measured or otherwise accounted for. 

Sources of errors and uncertainties in determining stream discharge via 

seepage runs include 1) random errors related to the method of measurement (e.g. 

errors in the measurement of stream channel dimensions), 2) systematic errors caused 

by improperly calibrated equipment and other factors, and 3) variation in streamflow 

during the seepage run. These errors are discussed in Appendix A. The total 

uncertainty for each measurement site and for calculated spring discharge is presented 

in the Results section of Chapter 4. 



 

Spring- and Surface-water Sampling 

Spring- and surface-water samples were collected from locations identified in 

the McKinney Butte area between September 2006 and January 2008 (sampling 

locations shown on Figure 2). Additional samples were collected from Paulina Spring, 

Indian Ford Creek at Hwy 20, and Metolius Spring, near Black Butte; and Alder 

Springs, near the confluence of Whychus Creek and the Deschutes River (sampling 

locations shown on Figure 3). The reader is referred to the Sample Site Selection 

section in this chapter for explanations behind the selection of sampling sites. The 

samples were filtered at each location using dedicated 0.45-μm nylon membrane 

syringe filters. Cation samples were acidified using 2% by volume nitric acid. All 

samples were stored in polyethylene bottles and placed in an ice chest in the field and 

were immediately refrigerated upon return to the lab. One field-equipment blank was 

collected during each sampling campaign as a check for potential contamination. 

Specific electrical conductance, pH, and temperature measurements were made 

in the field using a YSI 556 MPS multi-meter with appropriate probes. The YSI meter 

was calibrated in the field the day of sampling to ensure accurate and consistent 

measurements. Calibration procedures are outlined in Table 1. 

Table 1. Calibration standard and procedures. 

Parameter Standard Method
pH 4, 7, 10 3 point calibration

Specific
Conductance 147.0, 1407 (µS/cm) calibration in lab and field check
Temperature na no calibration  

 34
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Cation, Anion, and Silica Analysis 

Anion concentrations were determined with a Dionex Model 2500 ion 

chromatograph equipped with an IonPac AS14A column and using an 8.0-mM 

carbonate-1.0-mM bicarbonate eluent at a pumping rate of 1.0 ml min-1. Typically, 

four external standards prepared from commercial stock solutions were used to 

calibrate the instrument prior to each sample batch. Quality control samples – 

laboratory blanks and check standards – were analyzed prior to analyzing samples and 

repeated after every 10 samples to monitor accuracy and precision. 

Alkalinity as HCO3 was determined in the lab using the Gran Plot Method. 

Samples were titrated to pH < 4.0 with a 0.009741 N solution of Na2CO3 in HCl. The 

amount of titrant added to reach the inflection point was determined by extrapolating 

the straight-line portion of the curve of pH versus Gran Function. 

Major cation concentrations were measured with a Perkin Elmer AAnalyst 300 

atomic absorption spectrometer. All cations were analyzed using an air-acetylene 

flame with the wavelengths and slit widths presented in Table 2 (Perkin Elmer, 1994). 

Instrument calibration was performed using three external standards, prepared by 

dilution from commercially available standard solutions, prior to each analytical run. 

Dilutions were made when initial sample concentrations were significantly (>10%) 

greater than the highest standard. A discussion of analytical error for anion, cation, 

and silica analysis is presented in Appendix B. 

Silica analysis was performed on a Beckman Coulter DU 730 ultraviolet 

visible spectrophotometer (UV-Vis) using the molybdate yellow method. Silica 



 

concentrations were determined from a calibration curve created from seven standards 

of known concentration. All samples were diluted to bring silica concentrations under 

the highest standard (10 ppm). 

Table 2. Atomic Absorption parameters used for cation analysis. 
Ion Optimal Range (ppm) Wavelength (nm) Slit Width (mm) Fuel Mix

Ca2+ 0.2 - 20 422.7 0.70 air-acetylene
K+ 0.1 - 2 766.5 0.70 air-acetylene
Na+ 0.03 - 1 589 0.20 air-acetylene
Mg2+ 0.02 - 2 285.2 0.70 air-acetylene  

Isotope Analysis 

Isotopic samples collected in September 2006 and April 2007 were sent to 

Geochron Laboratories in Cambridge, Massachusetts and samples collected in June, 

August, and September 2007 and January 2008 were sent to the Colorado Plateau 

Isotope Laboratory (CPIL) at Northern Arizona University for stable oxygen and 

hydrogen isotope analysis. Isotopic sample preparation was by the water-CO2 

equilibration method (Epstein and Mayeda, 1953) for oxygen isotopes, and by the zinc 

reduction method for deuterium (Coleman et al., 1982). Samples sent to Geochron 

Laboratories were analyzed on a VG Micromass gas source stable isotope ratio mass 

spectrometer (IRMS), while samples sent to CPIL were analyzed on a Thermo 

Finnigan DeltaPLUS XL IRMS configured with a GasBenchII gas preparation and 

introduction system. At each lab, one duplicate analysis on separate aliquots of the 

original sample was performed during each batch. Isotopic values are reported in the 

standard δ-notation as per mil (‰) deviations from the VSMOW (Vienna Standard 
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Mean Ocean Water) reference standard. Analytical precision is ±0.1‰ and ±1.0‰ for 

oxygen and deuterium, respectively. 

Temperature Measurements 

Onset StowAway Tidbit Temperature Loggers with ±0.2°C accuracy were 

deployed at discharge measurement locations along Whychus and Indian Ford creeks 

and the McKinney Butte springs in late August 2007. The loggers were set using 

BoxCar 3.7 software to record temperature measurements every ten minutes. Data 

from three locations was downloaded in early September 2007 to confirm the loggers 

were operating properly. Loggers were removed in January 2008. 

All loggers were placed in as much shade as possible to reduce temperature 

effects from exposure to direct sunlight. The loggers were tied to heavy-duty string 

and either attached to a tree on the stream bank, or secured to a stake and hammered 

into the channel bottom. At some point during the course of their deployment, it 

appears that loggers at Whychus Creek – Sisters Gage, Whychus Creek – above 

Chester Springs, Whychus Creek – below Frank Springs, and Indian Ford Creek – 

Camp Polk Rd were removed from the stream. Two loggers on Whychus Creek, at 

Sisters Gage and below Frank Springs, were found on the bank, apparently moved 

during a high discharge event. The string attached to the logger on Indian Ford Creek 

was found cut. The logger at Whychus Creek – above Chester Springs was found in a 

block of ice that had formed during the course of the winter. Upon examination of the 

data, it was apparent that the logger at Whychus Creek – below Frank Springs was the 
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first to be removed from the stream. On approximately 10/20/2007, the temperature 

began displaying much greater diurnal fluctuations than it had been up until then (high 

temperatures near 30°C and low temperatures below 0°C). As a precaution, only data 

collected before 10/16/2007 has been analyzed in this study. 

Groundwater temperature was measured in the Lamb Well (DESC 54659) 

every two hours from 01/11/2007 to 10/31/2007 via an internal sensor on a Unidata 

WDP 8007 20 psi transducer. The temperature sensor is accurate to ±0.5ºC. 

Groundwater Level Measurements 

Continuous water-level measurements were monitored at the Lamb well using 

a battery operated electronic data recorder. The water level in the well was measured 

with a submersible pressure transducer. The water level was measured every two 

hours using a Unidata WDP 8007 20 psi transducer for the period between January 11, 

2007 and October 31, 2007. A Druck 1830 20 psi transducer was used to measure the 

water level every 15 minutes during the period from September 10, 2007 to October 

31, 2007. Both models of transducers are accurate to 0.1% of full scale (0.015 m). 

Additionally, both transducers were vented to land surface in order to compensate for 

barometric effects on water levels in the well bore. The transducers measured the 

pressure due to the weight of the overlying water column and converted it to the height 

above the transducer (1 psi = 0.704 m). The height of the water column was then 

subtracted from the depth of the transducer below land surface to obtain the water 

level below land surface. Water levels measured by the transducers were recorded by a 
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Unidata 7000B Macrologger. The recorded data include the date and time of 

measurements and the height of the water column above the transducer. 

The water-level recorder was visited on a 1- to 3-month schedule. Data were 

recorded to a computer file and graphed in the field to verify operation of the sensor. 

The current reading of the sensor was verified by an electronic tape (e-tape) manual 

water-level measurement. The e-tape is accurate to 0.003 m. 

Groundwater Level Data 

Groundwater-level data along with well location information for 70 study area 

wells were obtained from the OWRD water level database and used to generate water 

level contour maps for the shallow and deep parts of the groundwater flow system. 

Periods of record vary considerably for each well but measurement dates ranged from 

06/12/1959 to 01/06/2011. Quarterly water level measurements from two OWRD 

State Observation Wells (DESC 2929 and DESC 3016) were used produce a 

hydrograph for the purpose of examining long-term water level trends in the study 

area. Periods of record are 07/15/1977 to 01/06/2011 for DESC 2929 and 02/21/1962 

to 01/06/2011 for DESC 3016. 

Water level data in the OWRD database were generally provided by three 

sources, previous USGS studies, OWRD staff measurements, or as a part of a permit 

condition on a water right. The errors and uncertainties associated with groundwater 

level measurements are discussed below. Also discussed are the criteria used to 

produce the water level contour maps. 
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Errors and Uncertainties 

Errors and uncertainties associated with groundwater-level measurements stem 

from two major sources. The first source is measurement error or instrument error. 

This error is generally small, but differences in measurement or calibration techniques 

or the use of different equipment can produce errors on the order of ± 0.15 m. The 

second source comes from the conversion from water level below land surface to 

water level elevation above mean sea level. Converting to an elevation normalizes the 

data and allows production of water level contour maps. The water level below land 

surface is converted to water level elevation by subtracting the water level below land 

surface from land surface elevation at the well head. The major source of error in this 

process is the well head elevation, which is interpolated from USGS 7.5 minute 

topographic maps. At best, the error associated with interpolation from topographic 

maps is ± ½ of the contour interval. In the study area, contour intervals are 20 feet (6 

m), accordingly, well elevation errors are ± 3 m. 

Water Level Elevation Contour Maps 

The following criteria were used to generate separate sets of water-level 

elevation contours for the shallow and deep parts of groundwater flow system in the 

study area: 1) the total depth of wells used to generate contours for the shallow part of 

the groundwater system was typically < 100 m. The exception is DESC 50481, which 

is the westernmost and highest elevation well. DESC 50481 was originally drilled to a 

depth of 122 m and had a static water level elevation of 1052 m (approximately 30 m 
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below land surface). Although the well is relatively deep compared to other wells used 

in the analysis, the water level is interpreted to represent the shallow part of the 

groundwater system because it is located close to the regional groundwater recharge 

area where vertical hydraulic gradients are large. This interpretation is supported by 

the deepening well log for DESC 50481 (DESC 51803). After the well was deepened 

to 181 m, the water level elevation was 953 m, a drop of 99 m; 2) the total depth of 

most wells used to generate contours for the deep part of the groundwater system were 

>100 m, and were commonly >150 m; 3) land surface elevations of springs that were 

determined to discharge local-scale groundwater were used in the generation of 

shallow water level contours and elevations of springs interpreted to discharge 

regional-scale groundwater were used to generate deep water level contours. 

Interpretations of the scale of groundwater discharged at study area springs are 

presented in Chapter 6; 4) rising or pumping water level measurements were not 

included in the analysis; 5) water levels from the driller’s well report were excluded 

from analysis unless they represented the only available information in a given area; 6) 

the mean water level for each well was calculated for the entire period of record, and 

7) the importance of each well was determined by the number of water level 

measurements (i.e. wells with more water level measurements were weighted more 

heavily). Due to the lack of a highly permeable, shallow aquifer east of McKinney 

Butte, the water table depth increases eastward and wells with total depths <100 m are 

uncommon. As a result, contour mapping for the shallow aquifer stopped 

approximately 0.5 km east of the butte. 
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The preceding information is summarized in Table 3 (shallow water level 

contours) and Table 4 (deep water level contours). Water level elevations were plotted 

and contoured by hand prior to digitizing using ArcMap 9.3 geographical information 

system software. 

Errors and Uncertainties 

Uncertainties associated with using this method to produce water level contour 

maps result from the fact that groundwater level fluctuations in the upper Deschutes 

Basin are driven primarily by decadal climate cycles. Decadal water-level fluctuations 

of 6 m have been observed in wells near the margin of the Cascade Range. The 

magnitude of these fluctuations diminishes toward the east with increasing distance 

from the Cascade Range (Gannett et al., 2001). The calculated mean water level in 

wells whose period of record does not span an entire decadal climate cycle may under 

estimate or over estimate the “true” mean water level depending on the timing of 

water-level measurements relative to climate induced fluctuations. This indicates that 

uncertainty in water level elevations due to decadal climate cycles could be as large as 

± 6 m in the western part of the study area. This error coupled with the uncertainty in 

land surface elevations of wells and springs (± 3 m) could result in uncertainty on the 

order of ± 9 m.
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Chapter 4 – Physical Hydrogeology 

Results from Previous Work 

Previous studies by OWRD and the USGS have examined physical 

hydrogeologic characteristics of the study area. OWRD has examined groundwater 

flow from and to streams via synoptic discharge measurements along Whychus and 

Indian Ford creeks, and, as part of their Upper Deschutes Basin study, the USGS 

measured the discharge of springs, groundwater levels in wells, and generated a basin-

scale potentiometric surface map. Some results of these studies are presented below. 

Stream Discharge Measurements 

OWRD staff conducted seepage runs on Whychus Creek in April 1994, August 

2005, March 2006, and September 2006. Seepage runs were conducted on Indian Ford 

Creek in February 1992, March 2006, and September 2006. Measurement locations 

are shown on Figure 9 and results are presented in Tables 5 and 6. Discharge errors 

were assigned by OWRD staff and were based on field conditions. Error values are 

5%, 10%, or 15% of the measured discharge. Discharge in relation to river mile is 

shown in Figure 10 for Whychus Creek and in Figure 11 for Indian Ford Creek. 

In general, Whychus Creek loses discharge in the reaches upstream of Sisters, 

from Three Sisters Diversion Canal to Sisters (RM 24 to 21), although in March 2006 

it gained streamflow from B-S Log Road to Sisters (RM 22.4 to 21). The creek also 

loses discharge in the reach from Sisters to Willow Lane (RM 21 to 19.4). Whychus 
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Creek gains streamflow along the reaches from Willow Lane to Camp Polk Road (RM 

194 to 16.6) and Camp Polk Road to Henkle Butte (RM 16.6 to 14.6). Irrigation return 

flows from Sokol Ditch and Reed Ditch were measured in September 2006. Both 

sources contribute minor amounts of streamflow, 0.019 m3/s and 0.014 m3/s, 

respectively. 

Indian Ford Creek loses discharge along the reach from Camp Polk Road to the 

confluence with Whychus Creek (RM 2.1 to 0.0). The creek was dry at Barclay Drive 

(RM 0.8) in February 1992 and March 2006, and was dry at Camp Polk Road in 

September 2006. OWRD staff has never observed flow in Indian Ford Creek at the 

confluence with Whychus Creek (LaMarche personal communication, 2007). 



 

  
Figure 9. Previous OWRD discharge measurement locations. 
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Table 5. Instantaneous discharge measurements for Whychus Creek (La Marche, personal 
communication 2007). 

Location River Mile Date

Discharge

(m3/s)

Error

(m3/s)

Whychus Cr at Sisters 21.0 04/13/1994 0.000 0.000
Whychus Cr at Willow Ln. 19.4 04/13/1994 0.000 0.000
Whychus Cr at Camp Polk Rd. 16.6 04/13/1994 0.187 0.019
Whychus Cr at Henkle Butte 14.6 04/13/1994 0.207 0.021
Whychus Cr at Sisters 21.0 08/03/2005 0.147 0.015
Whychus Cr at Henkle Butte 14.6 08/03/2005 0.198 0.020
Whychus Cr below Three Sisters Diversion Canal 24.0 03/30/2006 0.382 0.019
Whychus Cr at B-S Log Rd. 22.4 03/30/2006 0.250 0.013
Whychus Cr at Sisters 21.0 03/30/2006 0.351 0.018
Whychus Cr at Willow Ln. 19.4 03/30/2006 0.314 0.016
Whychus Cr at Camp Polk Rd. 16.6 03/30/2006 0.518 0.026
Whychus Cr at DRC gage 15.7 03/30/2006 0.547 0.027
Whychus Cr at Henkle Butte 14.6 03/30/2006 0.558 0.028
Whychus Cr below Three Sisters Diversion Canal 24.0 09/07/2006 0.538 0.027
Whychus Cr below Sokol Diversion 22.8 09/07/2006 0.430 0.022
Whychus Cr at B-S Log Rd. 22.4 09/07/2006 0.388 0.019
Sokol Ditch Return Flows 21.9 09/07/2006 0.019 0.001
Whychus Cr at Sisters 21.0 09/07/2006 0.329 0.016
Whychus Cr at Willow Ln. 19.4 09/07/2006 0.309 0.015
Mouth of Reed Ditch Return Flows 19.2 09/07/2006 0.014 0.002
Whychus Cr near Borrow Pit, below Reed Ditch 19.1 09/07/2006 0.326 0.016
Whychus Cr at Camp Polk Rd. 16.6 09/07/2006 0.428 0.021
Whychus Cr at DRC gage 15.7 09/07/2006 0.442 0.022  
 
Table 6. Instantaneous discharge measurements for Indian Ford Creek (La Marche, personal 
communication 2007). 

Location River Mile Date

Discharge

(m3/s)

Error

(m3/s)

Indian Ford Cr at Camp Polk Rd. 2.1 02/05/1992 0.086 0.009
Indian Ford Cr at Barclay Dr. 0.8 02/05/1992 0.000 0.000
Indian Ford Cr at Whychus Cr 0.0 02/05/1992 0.000 0.000
Indian Ford Cr at Camp Polk Rd. 2.1 03/30/2006 0.188 0.028
Indian Ford Cr at Barclay Dr. 0.8 03/30/2006 0.000 0.000
Indian Ford Cr at Camp Polk Rd. 2.1 09/07/2006 0.000 0.000
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Discharge Measurements of Other Significant Springs in the Region 

Spring discharge values were obtained from measurements by OWRD staff 

and a USGS publication, Caldwell (1998), and are presented in Table 7. Discharge 

from Lower Opal Springs and Alder Springs were estimated, the former by an 

employee of Deschutes Valley Water, and the latter by Caldwell (1998). The estimate 

for Lower Opal Springs is an average discharge while the estimate for Alder Springs is 

instantaneous. Discharge from Metolius Spring was measured by OWRD staff 16 

times between 06/25/2007 and 03/03/2011 (OWRD, 2011a), and Paulina Spring was 

measured by OWRD staff on 07/12/1995 (Caldwell, 1998). The accuracy or 

uncertainty of each discharge was not provided, but measurements are assumed to be 

within 10% of the true discharge and estimates are assumed to be within one order of 

magnitude (± 100%). Discharge from Alder Springs and Paulina Spring is much lower 

than Lower Opal Springs and Metolius Spring (locations shown in Figure 3). 

Table 7. Discharge values for local springs. 
 Location Date Discharge (m3/s) Remarks
Lower Opal Springs 1996 6.8 estimated average flow rate*
Alder Springs 01/18/1996 0.11-0.14 estimated flow rate*
Paulina Spring 07/12/1995 0.176 measured by OWRD staff*
Metolius Spring 06/25/2007 - 03/03/2011 1.92-2.83 measured by OWRD staff  
* From Caldwell (1998) 

Potentiometric Surface Mapping 

 52

A potentiometric surface map of the Upper Deschutes basin was produced by 

Gannett and Lite (2004). Figure 12 shows their contours in the vicinity of the current 

study area. Their work demonstrated that groundwater flows from high-elevation 

recharge areas in the Cascade Range toward low-elevation discharge areas near the 



 

 53

margins of the Cascade Range and near the confluence of the Deschutes, Crooked, and 

Metolius Rivers. Their map also shows a steep groundwater flow gradient in the 

Cascades that becomes increasingly flat toward the center of the basin near the town 

of Sisters.
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Results from Current Study 

Stream Discharge 

Instantaneous stream discharge was measured on a seasonal basis between 

April 2007 and January 2008 and the results are presented in Tables 8 and 9 

(measurement locations shown on Figure 2) Discharge in relation to river mile is 

shown in Figure 13 for Whychus Creek and in Figure 14 for Indian Ford Creek. 

In both Whychus and Indian Ford creeks, discharge increased during the 

winter and decreased during the summer (Tables 8 and 9, Figures 13 and 14). 

Discharge in Indian Ford Creek decreased downstream indicating it is losing water to 

the groundwater system. On 06/25/2007 and 09/21/2007 Indian Ford Creek went dry 

upstream from Camp Polk Road, and on 04/16/2007 and 01/30/2008 the creek went 

dry between Camp Polk Road and Barclay Drive. No water was observed in Indian 

Ford Creek at its confluence with Whychus Creek. Discharge in Whychus Creek 

typically increased downstream (Table 8 and Figure 13), but occasional downstream 

decreases in discharge were observed. 

Measurement sites on Whychus Creek have been divided into four reaches 

based on location to better facilitate analysis and discussion (Figure 13). Reach 1 

extends from Sisters to above Chester Springs (RM 21 to RM 18.4), Reach 2 begins at 

the above Chester Springs site and extends to below Frank Springs (RM 18.4 to RM 

17.5), Reach 3 begins at the below Frank Springs site and ends at Camp Polk Road 



 

(RM 17.5 to RM 16.6), and Reach 4 starts at Camp Polk Road and ends at DRC gage 

(RM 16.6 to RM 15.7). 

Table 8. Discharge measurements and calculated errors for Whychus Creek. 

Location River Mile Date

Discharge

(m3/s)

Sq

(%)

Esv

(m3/s)

Et

(m3/s)

Whychus Cr at Sisters 21.0 04/16/2007 0.552 4.40 0.009 0.033
Whychus Cr at Willow Ln. 19.4 04/16/2007 0.581 4.28 0.009 0.034
Mouth of Reed Ditch 19.2 04/16/2007 0.000 - - -
Whychus Cr below Reed Ditch 19.1 04/16/2007 0.564 4.31 0.009 0.033
Whychus Cr above Chester springs 18.4 04/16/2007 0.547 4.31 0.009 0.033
Whychus Cr below Chester springs 17.9 04/16/2007 0.552 4.35 0.009 0.033
Whychus Cr below Frank springs 17.5 04/16/2007 0.734 4.33 0.009 0.041
Whychus Cr at Camp Polk Rd. 16.6 04/16/2007 0.745 4.34 0.009 0.041
Whychus Cr at Sisters 21.0 06/25/2007 0.249 4.53 0.025 0.036
Whychus Cr above Chester springs 18.4 06/25/2007 0.199 4.43 0.025 0.034
Whychus Cr below Frank springs 17.5 06/25/2007 0.340 4.45 0.025 0.040
Whychus Cr at Camp Polk Rd. 16.6 06/25/2007 0.379 4.43 0.025 0.042
Whychus Cr at DRC gage 15.7 06/25/2007 0.368 4.43 0.025 0.041
Whychus Cr at Sisters 21.0 09/21/2007 0.396 4.48 0.027 0.045
Whychus Cr above Chester springs 18.4 09/21/2007 0.346 4.36 0.027 0.042
Whychus Cr below Frank springs 17.5 09/21/2007 0.538 4.35 0.027 0.050
Whychus Cr at Camp Polk Rd. 16.6 09/21/2007 0.513 4.38 0.027 0.049
Whychus Cr at DRC gage 15.7 09/21/2007 0.501 4.35 0.027 0.049
Whychus Cr at Sisters 21.0 01/30/2008 1.694 4.22 0.020 0.091
Whychus Cr above Chester springs 18.4 01/30/2008 1.648 4.22 0.020 0.089
Whychus Cr below Frank springs 17.5 01/30/2008 1.849 4.23 0.020 0.098
Whychus Cr at Camp Polk Rd. 16.6 01/30/2008 1.878 4.24 0.020 0.100
Whychus Cr at DRC gage 15.7 01/30/2008 1.994 4.22 0.020 0.104  
Sq = standard error, Esv = error due variability in stream discharge, and Et = total error. 
 
Table 9. Discharge measurements and calculated errors for Indian Ford Creek. 

Location River Mile Date

Discharge

(m3/s)

Error

(m3/s)

Indian Ford Cr at Camp Polk Rd. 2.1 04/16/2007 0.091 0.013
Indian Ford Cr at Barclay Dr. 0.8 04/16/2007 0.000 0.000
Indian Ford Cr at Camp Polk Rd. 2.1 06/25/2007 0.000 0.000
Indian Ford Cr at Barclay Dr. 0.8 06/25/2007 0.000 0.000
Indian Ford Cr at Camp Polk Rd. 2.1 09/21/2007 0.000 0.000
Indian Ford Cr at Barclay Dr. 0.8 09/21/2007 0.000 0.000
Indian Ford Cr at Camp Polk Rd. 2.1 01/30/2008 0.081 0.012
Indian Ford Cr at Barclay Dr. 0.8 01/30/2008 0.000 0.000  
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As shown in Figure 15, measured discharge decreased along Reach 1. 

However, the difference in discharge between Sisters and above Chester Springs was 

within the margin of measurement error and may not represent actual losses. Within 

Reach 1, measured discharge increased from Sisters to Willow Lane (RM 21 to 19.4, 

04/16/2007 seepage run) and decreased from Willow Lane to below Reed Ditch (RM 

19.4 to 19.1, 04/16/2007 seepage run). Once again, however, the calculated gains and 

losses were within measurement error, and may not represent actual changes in 

discharge. 

Streamflow measurements along Reach 2 were used to estimate discharge from 

the McKinney Butte Springs. Therefore, results for this reach will be presented in the 

McKinney Butte Springs Discharge section later in this chapter. 

Measured discharge along Reach 3 increased on 04/16/2007, 06/25/2007, and 

01/30/2008, and decreased on 09/21/2007 (Figure 16). However, the gains and losses 

were less than calculated errors and therefore may not represent actual gains or losses. 

Similar to Reach 3, measured discharge along Reach 4 decreased during some 

seepage runs (06/25/2007 and 09/21/2007) and increased during others (01/30/2008), 

but once again, the magnitude of the gains or losses were less than the calculated 

errors (Figure 17). Discharge was not measured at the DRC gage during the 

04/16/2007 seepage run, thus no gain/loss value is presented.
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Discharge from the McKinney Butte Springs 

Discharge from the McKinney Butte Springs was determined by subtracting 

the measured discharge in Whychus Creek above Chester Springs from the measured 

discharge in Whychus Creek below Frank Springs. These two measurement sites, 

along with the site below Chester Springs define flow along Reach 2 as described in 

the previous section. 

Seepage runs indicated Whychus Creek gained discharge along Reach 2 

(Figure 18) and measured gains were sufficiently large with respect to measurement 

error to be considered meaningful. Table 10 provides the calculated gain on each date 

and the error associated with each gain. The calculated gain column in Table 10 

represents the estimated discharge from the McKinney Butte Springs. Errors were 

calculated using equation A13; a complete discussion of errors is presented in 

Appendix A. Calculated discharge from the McKinney Butte Springs ranged from 

0.141 ± 0.052 m3/s on 06/25/2007 to 0.201 ± 0.132 m3/s on 01/30/2008. Although the 

discharge was largest on 01/30/2008, the associated error was also largest, and as a 

result, the actual springs discharge could vary by up to 64% (true discharge could 

range from 0.072 to 0.330 m3/s) from the calculated discharge (Table 10). In addition 

to measurement sites above Chester Springs (RM 18.4) and below Frank Springs (RM 

17.5), discharge was measured below Chester Springs (RM 17.9) on 04/16/2007. 

From the above Chester Springs site to the below Chester Springs site, the measured 

discharge in Whychus Creek increased from 0.547 m3/s to 0.552 m3/s. This gives an 



 

 64

estimate of 0.005 m3/s discharge from Chester Springs. However, the estimated 

discharge is much less than the calculated error of 0.047 m3/s, so the true discharge 

from Chester Springs is uncertain. On the same date, discharge in Whychus Creek 

from below Chester Springs to below Frank Springs increased from 0.552 m3/s to 

0.734 m3/s, providing an estimated discharge of 0.182 m3/s from Frank Springs. The 

associated error is 0.053 m3/s (29% uncertainty), which indicates the true discharge 

from Frank Springs on 04/16/2007 was between 0.129 m3/s and 0.235 m3/s.
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Table 10. Measured discharge along Reach 2 of Whychus Creek. 

Date

Discharge
below Frank 

springs

(m3/s)

Discharge
above Chester 

springs

(m3/s)

Calculated
Gain

(m3/s)
% Variability

((error/gain)*100)

Minimum
Gain

(m3/s)

Maximum
Gain

(m3/s)

4/16/2007 0.734 ± 0.041 0.547 ± 0.033 0.187 28 0.134 0.240
6/25/2007 0.340 ± 0.040 0.199 ± 0.034 0.141 37 0.089 0.193
9/21/2007 0.538 ± 0.050 0.346 ± 0.042 0.192 34 0.127 0.257
1/30/2008 1.849 ± 0.098 1.648 ± 0.089 0.201 66 0.069 0.333  
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Automated groundwater level measurements were collected at the Lamb Well 

on McKinney Butte (DESC 54659, site location on Figure 2) from 01/11/2007 to 

10/31/2007. Data were collected at 2-hour intervals from 01/11/2007 to 10/31/2007 

(Figure 19), and at 15-minute and 2-hour intervals from 09/10/2007 to 10/31/2007 

(Figure 20). Manual water level measurements were collected periodically between 

11/15/2006 and 03/06/2008. Water level elevations fluctuate seasonally with the 

highest elevations occurring in winter and spring, and the lowest levels in summer and 

fall. The total amount of fluctuation during the continuous data collection period was 

1.50 m; water level elevations ranged from 941.27 m above mean sea level (msl) on 

01/11/2007 to 939.77 m above msl on 10/05/2007. The highest manually measured 

water level elevation was 941.70 m above msl on 03/06/2008 (Figure 19). From April 

2007 to October 2007 water levels in the well fluctuated diurnally by approximately 

0.3 m (Figure 19). These diurnal fluctuations are more readily seen on Figure 21, a 

plot showing water levels in the Lamb Well during July 2007. The maximum daily 

water level typically occurred between 16:00 and 20:00 and the daily minimum 

occurred at 06:00 (Figure 21). Diurnal fluctuations of this magnitude coincide with the 
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local irrigation season and were not observed before April 2007 or after October 2007 

(Figure 19). 

A comparison of water level trends in the Lamb Well with accumulated 

precipitation at the Three Creeks Meadow SNOTEL site is presented in Figure 22. The 

location of Three Creeks Meadow relative to Sisters and the Lamb Well is shown in 

Figure 3. Water level trends in the Lamb Well appear to be influenced, at least during 

some parts of the year, by precipitation. Water levels in the well rise during times of 

higher precipitation and fall during periods of lower precipitation (Figure 22). 

Water levels trends in the Lamb Well are also very similar to discharge trends 

in Whychus Creek. Figure 23 is a plot of daily mean discharge at the OWRD gage in 

Sisters and water level elevations in the Lamb Well. Peaks in discharge appear to 

coincide with water level peaks.
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Hydrographs 

Figure 25 is a plot of water levels in the Lamb Well (DESC 54659) and the 

two state observation wells nearest to McKinney Butte. DESC 3016, located west of 

McKinney Butte, is 70 m deep and is completed in Quaternary lavas of the Cascades 

Range, while DESC 2929 is 59 m deep and is completed in the Deschutes Formation. 

Well locations are shown on Figure 24. Long-term water level trends for these wells 

show fluctuations in response to decadal climate cycles (Figure 25). The magnitude of 

the response is greater in DESC 3016 because it is closer to the regional recharge area, 

but historically, both wells responded to climatic cycles almost concurrently. 

However, DESC 2929 has not responded to the current period of higher precipitation 

that began in 2006, while the water level in DESC 3016 has risen almost 3 m (Figure 

25). The period of record in the Lamb Well is not long enough to determine if it is 

following decadal climate cycles.
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Water Level Contour Mapping 

Separate sets of water-level elevation contours were generated for the shallow 

(Figure 26) and deep (Figure 27) parts of groundwater flow system in the study area. 

Water level elevation contours in the shallow part of the system to the west of 

McKinney Butte are more widely spaced than contours east of the butte, indicating 

that the horizontal groundwater gradient increases across the butte (Figure 26). The 

same can be said for contours in the deep part of the system; however, the gradient 

west of McKinney Butte is extremely small (approximately 4 m/km) while the 

gradient east of the butte is exceptionally large (approximately 60m/km) (Figure 27). 

Vertical gradients between the shallow and deep parts of the system are highest in the 

western part of the study area (60 m difference) and decrease to about 15 m on the east 

edge of McKinney Butte.
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Chapter 5 – Chemical Hydrogeology 

The geochemistry of groundwater and surface water sources in and around the 

study area are described in this section. Results from analysis of field parameters and 

common ions are presented first, followed by stable isotopes and temperature. Data 

from previous studies are presented for comparison purposes. 

Results 

General Chemistry 

A total of 52 samples were collected from study area springs and streams. 

Thirty-one samples were collected from Whychus and Indian Ford creeks, and 21 

samples were collected from the McKinney Butte Springs, the Camp Polk Springs, 

Paulina Spring, Alder Springs, and Metolius Spring. Site location information and 

field parameters (temperature, pH, and electrical conductivity) are presented in Table 

11; major-element chemistry and stable isotope data are listed in Table 12. Charge 

balance errors (CBEs) were calculated using Visual Minteq and ranged from -18.04 to 

to 8.39% (Table 11). The majority of samples (43 of 52) had CBEs < 10%, and only 

three samples had CBEs > 15%. PO4 was detected in many samples, however, 

measured concentrations were typically below the minimum reporting limit; 

consequently, PO4 concentrations were excluded from further analysis. The reader is 

referred to Appendix B for a discussion of the determination of the minimum reporting 

limit. 
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Several graphs, designed to display similarities and differences among 

samples, are presented later in this section. In order to reduce clutter and promote 

clarity, in some instances Whychus Creek samples from sites upstream from any 

spring inputs were plotted as one group called "Whychus Creek above the McKinney 

Butte Springs". Sites included in this group are Whychus Creek at Sisters Gage, 

Whychus Creek at Reed Ditch, and Whychus Creek above Chester Springs. Similarly, 

samples from sites downstream from the McKinney Butte Springs were plotted as the 

group "Whychus Creek below the McKinney Butte Springs". Sites in this group are 

Whychus Creek below Frank Springs, Whychus Creek at Camp Polk Rd, and 

Whychus Creek at DRC Gage. Samples from all sites on Indian Ford Creek were 

grouped together and plotted as "Indian Ford Creek". 

Water samples have traditionally been classified on the basis of dominant 

cationic and anionic species (Hem, 1985). Waters in which more than 50 percent of 

cations (expressed in milliequivalents per liter (meq/L)) are Mg, Na + K, or Ca are 

described as Mg, Na or Ca waters, respectively. Similarly, waters in which more than 

50 percent of anions are SO4, Cl, or CO3 + HCO3 are described as SO4, Cl, or HCO3 

waters. If no ionic species comprises more than 50 percent of the total cationic or 

anionic concentration, the water is classified as mixed-type. Thirty-four of the fifty-

two samples analyzed during this study are mixed cation-bicarbonate water. Sixteen 

samples are sodium-bicarbonate water and two samples are magnesium-bicarbonate 

water. Bicarbonate is the dominant anionic species in all samples, commonly 

comprising up to 90% of total anion concentration (Figure 28). 



 

Table 11. Location information and summary of field parameters collected sampling locations 
during the current study and previous studies. Blank records indicate the parameter was not 
measured. 

Latitude Longitude Name Elev.
(m)

Date
(mo/d/yr)

Temp.
(°C)

pH Cond.
(μS/cm)

Whychus Creek
44.288010 -121.543908 at Sisters Gage 963 09/22/2006 4.9 6.96

11/16/2006 2.3 6.76 20.4
04/07/2007 10.8 7.24 27.1
06/25/2007 6.1 6.54 14.0
09/21/2007 5.2 6.86 18.0
01/24/2008 0.0 7.49 18.0

44.287522 -121.514296 at Reed Ditch 945 09/22/2006 9.3 6.55

44.295307 -121.507243 above Chester Springs 932 04/07/2007 8.3 7.07 27.7
932 06/25/2007 7.7 6.86 16.0

09/21/2007 5.5 6.81 19.0
01/24/2008 0.0 6.93 15.0

44.307020 -121.510378 below Frank Springs 925 11/16/2006 3.9 6.35 29.5
04/07/2007 8.5 7.13 35.8
06/25/2007 9.9 7.43 38.0
09/21/2007 7.8 7.43 33.0
01/24/2008 0.9 28.0

44.318463 -121.515250 at Camp Polk Rd. 908 11/16/2006 3.1 6.59 25.0
04/07/2007 9.5 7.15 36.9
06/25/2007 15.2 8.37 37.0
09/21/2007 10.1 7.96 33.0
01/24/2008 0.0 7.38 28.0

44.325805 -121.502531 at DRC Gage 895 09/22/2006 10.7 8.00
06/25/2007 16.6 8.17 37.0
09/21/2007 12.1 8.03 33.0
01/24/2008 0.0 7.29 28.0

Indian Ford Creek
44.320296 -121.538357 at Camp Polk Rd. 960 09/22/2006 10.3 6.86

11/16/2006 3.6 6.71 65.5
04/07/2007 13.2 7.24 55.4
01/22/2008 0.1 6.36 44.0

44.303556 -121.528976 at Barclay Dr. 956 11/16/2006 3.9 7.00 67.0

44.356582 -121.615107 at Hwy. 20 987 06/25/2007 12.9 7.59 34.0  
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Table 11. – Continued. Location information and summary of field parameters collected at 
sampling locations during the current study and previous studies. Blank records indicate the 
parameter was not measured. 

Latitude Longitude Name Elev.
(m)

Date
(mo/d/yr)

Temp.
(°C)

pH Cond.
(μS/cm)

McKinney Butte Springs
44.299501 -121.509843 Chester 930 11/16/2006 8.9 6.80 115.7

04/07/2007 11.0 7.46 106.3
06/25/2007 9.9 7.43 72.0
09/21/2007 9.6 6.93 65.0
01/24/2008 8.9 7.12 65.0

44.303469 -121.510194 Frank 929 11/16/2006 8.4 6.96 111.0
04/07/2007 9.6 7.43 103.9
06/25/2007 8.9 7.12 61.0
08/29/2007 8.9 7.07 63.0
09/21/2007 8.9 6.99 63.0
01/24/2008 8.9 62.0

Camp Polk Springs
44.314701 -121.514641 Anderson 921* 09/22/2006 7.9 7.24

44.316128 -121.514667 Anderson at Whychus Creek 914* 09/22/2006 8.6 6.80

44.318916 -121.517512 Camp Polk Springhouse 924* 11/16/2006 8.6 6.26 125.0
04/07/2007 10.2 108.0
06/25/2007 9.2 7.53 66.0
09/21/2007 9.3 6.62 86.0
01/24/2008 9.0 6.70 74.0

Other Springs
44.367103 -121.668697 Paulina 1024 08/29/2007 4.3 6.80 30.0

44.441551 -121.346522 Alder 695 09/20/2007 10.5 7.80 67.0

44.434348 -121.638067 Metolius 914 01/23/2008 8.9 7.70 63.0
Previous Studies

44.441551 -121.346522 Alder Springs (Caldwell, 1998) 695 01/19/1995 10.5 8.00 136.0

44.491111 -121.296944 Lower Opal Springs (Caldwell, 1998) 597 01/09/1995 12.0 8.10 128.0

44.367103 -121.668697 Paulina Spring (Caldwell, 1998) 1024 01/11/1995 4.5 7.20 60.0
Paulina Spring (Ingebritsen, 1988) 07/26/1987 30.0

44.434348 -121.638067 Metolius Spring (Evans, 2004) 914 08/05/2002 8.7 7.71 124.0
Metolius Spring (Ingebritsen, 1988) 09/27/1986

Metolius Spring (James, 1999) 10/18/1997 8.3 7.60 120.2
11/01/1997 8.1 7.60 119.5
05/30/1998 8.3 7.50 119.5
06/25/1998 8.2 7.40 120.6  

*Elevation of sampled location. Orifice elevations are 945 m for Anderson Springs and 942 m for Camp 
Polk Springhouse.
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In general, ionic concentrations were higher in spring samples (average total 

ionic concentration = 72.5 mg/L) than in stream samples (average total ionic 

concentration = 29.5 mg/L) (Table 13). Paulina Spring was the exception; its total 

ionic concentration of 35.4 mg/L was similar to average concentrations in Whychus 

(25.9 mg/L) and Indian Ford (44.07 mg/L) creeks. Samples from Whychus Creek 

above the McKinney Butte Springs had a lower average ion concentration (17.4 mg/L) 

than samples below the McKinney Butte Springs (32.7 mg/L). Similar total ionic 

concentrations were found in Chester Springs (76.3 mg/L), Frank Springs (73.4 mg/L), 

Camp Polk Springhouse (78.2 mg/L), Alder Springs (84.5 mg/L), and Metolius Spring 

(81.2 mg/L). The average total ionic concentration in Anderson Springs (54.8 mg/L) 

was higher than stream samples but lower than all spring samples except Paulina 

Spring. 

Table 13. Total ionic concentration for various site types (mg/L). 

Sample Type Average
Standard
Deviation

Number of
Samples

All Streams 29.4 12.0 31
All Springs 72.5 12.1 21
Whychus Creek all samples 25.9 10.6 25
Whychus Creek above McKinney Butte Springs 17.4 1.7 11
Whychus Creek below McKinney Butte Springs 32.7 9.7 14
Indian Ford Creek 44.1 2.5 6
Chester Springs 76.3 5.7 5
Frank Springs 73.4 4.3 6
Anderson Springs 54.8 0.3 2
Camp Polk Springhouse 78.2 7.5 5
Paulina Spring 35.4 1
Alder Springs 84.5 1
Metolius Spring 81.2 1  
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Although the general geochemical characteristics of streams and springs 

analyzed during this study are quite similar (all samples were classified as mixed 

cation- , sodium- , or magnesium- bicarbonate waters), distinct differences emerge 

when individual ions and ion ratios are compared. Schoeller and simple variation 

diagrams aided in discerning differences between samples. Schoeller diagrams, 

consisting of ionic concentrations (expressed in milliequivalents per liter) plotted on a 

logarithmic scale allowed comparison of multiple ionic species from multiple samples 

on one chart. Differences identified on Schoeller diagrams were then more closely 

examined on variation diagrams. 

Concentrations of Ca, Mg, Na, Cl, SO4, and HCO3 for all samples are 

displayed on a Schoeller diagram in Figure 29. Ca, Na and HCO3 concentrations plot 

in a relatively narrow range – less than one order of magnitude separates minimum 

and maximum concentrations (Camax/Camin = 7.4, Namax/Namin = 7.5, 

HCO3max/HCO3min = 6.7) – while Mg, Cl, and SO4 have a wider range of 

concentrations (Mgmax/Mg min = 58.0, Clmax/Clmin = 28.9, SO4max/SO4min = 50.8). Also 

noticeable on Figure 29 are concentration differences among spring samples, 

especially between Cl and SO4. These concentration differences are more easily seen 

when average concentrations for each spring are plotted (Figure 30). Concentrations 

are lowest in Paulina Spring. High Cl and SO4 concentrations in Camp Polk 

Springhouse distinguish it from the McKinney Butte Springs, Alder Springs, and 

Metolius Spring, which all have similar concentrations of Cl and SO4. The low Mg 

concentration in Metolius Spring (0.234 meq/L) is comparable to Mg concentrations 
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in Chester Springs (0.232 meq/L), and Frank Springs (0.225 meq/L) sampled during 

the same time of year (January 2008). 

Differences in concentrations of Cl, NO3, and SO4, are seen more easily on the 

following variation diagrams: Cl vs NO3 (Figure 31), Cl vs SO4 (Figure 32), and Cl vs 

Na (Figure 33). Data for samples from Metolius Spring, Paulina Spring, Alder Spring, 

and Lower Opal Spring collected during previous studies are shown for comparison. 

Field parameters for samples collected during previous studies are presented in Table 

11 and major element chemistry and stable isotope data are shown in Table 12. 

The most obvious observations are the elevated Cl concentrations in Camp 

Polk Springhouse (Figures 31, 32, and 33), and the high concentration of NO3 in the 

Metolius Spring sample from the current study (Figure 31). The Metolius Spring 

sample from Evans et al. (2004) contains < 0.005 mg/L NO3. Concentrations of SO4 

and NO3 in Camp Polk Springhouse are also elevated relative to other springs and 

streams (with the exception of NO3 in Metolius Spring) (Figures 31 and 32) NO3 

concentrations in samples from Whychus and Indian Ford creeks were typically very 

low, and several samples from both creeks did not contain measureable NO3. Camp 

Polk Springhouse displays a chloride "shift" in Figure 33, where Na concentrations in 

Camp Polk Springhouse are similar to concentrations in the McKinney Butte Springs 

and are slightly lower than concentrations in Metolius Spring, Alder Springs and 

Lower Opal Springs, but Cl concentrations in Camp Polk Springhouse are 

considerably larger than concentrations in any of the other springs.
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Stable Isotopes 

A total of 31 samples (12 from Whychus Creek, 4 from Indian Ford Creek, 7 

from the McKinney Butte Springs (6 from Frank Springs and 1 from Chester Springs), 

5 from the Camp Polk Springs (4 from Camp Polk Springhouse and 1 Anderson 

Springs), and one each from Paulina Spring, Alder Springs, and Metolius Spring) were 

analyzed for 2H and 18O concentrations and are reported as delta values (‰) relative to 

Vienna Standard Mean Ocean Water (VSMOW) (Table 12). Samples plot on a line 

given by δ2H = 6.3 δ18O – 14.0, which has a lower slope than the Global Meteoric 

Water Line (GMWL) defined as δ2H = δ18O + 10 by Craig (1961) (Figure 34). 

However, several samples plot above the GMWL. The measured isotopic variation in 

all samples ranges from -86.0 to -112.0‰ and -11.7 to -15.0‰ for δ2H and δ18O, 

respectively. Indian Ford Creek, Paulina Spring, and the Camp Polk Springs are 

isotopically enriched relative to Whychus Creek, the McKinney Butte Springs, Alder 

Springs, and Metolius Spring. δ2H and δ18O delta values ranged from -86.0 to -95.0‰ 

and -11.7 to -13.5‰ in Indian Ford Creek, and from -94.7 to -102.0‰ and -12.6 to -

13.2‰ in the Camp Polk Springs. Ratios in Paulina Spring were -13.1‰ for δ18O and 

-94.1‰ for δ2H. δ2H and δ18O delta values ranged from -112.0 to -100.0‰ and -14.2 

to -15.0‰ in Whychus Creek, and -104.0 to -108.0‰ and -14.2 to -14.3‰ in the 

McKinney Butte Springs. Alder Springs and Metolius Spring were most depleted in 

δ2H and δ18O with delta values of -15.0‰ and -111.1‰ in Alder Springs and -14.7‰ 

and -110.0‰ in Metolius Spring for δ2H and δ18O, respectively. 
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Isotopic concentrations from previous studies by Ingebritsen et al. (1988), 

Caldwell (1998), and James (1999) are shown in Figure 35. Local Meteoric Water 

Lines (LMWLs) for each study are also shown. LMWLs for Ingebritsen (1988) and 

James (1999) have lower slopes than the GMWL and are similar to the LMWL from 

the current study, while samples from Caldwell (1998) plot on a line with the same 

slope as the GMWL (Figure 35).
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Temperature 

Temperature data collected every 10 minutes from several locations in 

Whychus Creek and in the McKinney Butte Springs from 08/30/2007 to 10/15/2007 

along with measurements collected at study area streams and springs during water 

sampling events are presented below. Temperature data collected every two hours in 

the Lamb Well (DESC 54659) from 01/11/2007 to 10/31/2007 are also presented. 

Temperature variations are generally larger in creeks than in springs. Standard 

deviation from mean values range from 3.7 to 7.0 °C in Whychus and Indian Ford 

creeks and from 0.4 to 0.9 °C in the McKinney Butte and Camp Polk springs (Table 

14). Of the springs, the lowest temperature was measured in Paulina Spring (4.3 °C) 

and the highest was measured in Alder Springs (10.5 °C). Chester Springs has a higher 

mean temperature and a larger standard deviation (9.7 °C, σ = 0.9 °C) than the other 

springs on McKinney Butte; the mean temperature and standard deviation in Frank 

Springs and Camp Polk Springhouse are 8.9 °C, σ = 0.4 °C and 9.3 °C, σ = 0.6 °C, 

respectively. The temperature in both Metolius Spring and Frank Springs in January 

2008 was 8.9 °C. 

Temperature measurements collected every 10 minutes from 08/30/2007 to 

10/15/2007 above Chester Springs and below Frank Springs on Whychus Creek, and 

in Frank Springs and Chester Springs are shown along with daily minimum and 

maximum air temperatures recorded in Sisters in Figure 36. The temperature variation 

at any location in Whychus Creek generally follows that of the local air temperature, 
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exhibiting diurnal fluctuations related to daily high and low air temperatures, although 

variation in the creek is not as pronounced as air temperature differences (Figure 36). 

The magnitude of temperature fluctuations in Whychus Creek below Frank Springs 

site is less than those above Chester Springs (Figure 36). 

Water temperatures recorded in the Lamb Well (DESC 54659) are displayed 

with temperatures from McKinney Butte Springs in Figure 37. Average temperatures 

in Frank and Chester springs during the period of continuous monitoring was 9.04 °C 

(σ = 0.04 °C) and 9.42 °C (σ = 0.15 °C), respectively. The average temperature in the 

Lamb Well during same period was 9.20 °C (σ = 0.01 °C). Temperatures in the well 

are similar to, but more stable than, temperatures in the springs. The “angular” 

appearance of the temperature data for the McKinney Butte Springs shown in Figure 

37 is an artifact of the resolution limits (0.15 °C) of the temperature probes used in the 

springs.
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Chapter 6 – Discussion 

Camp Polk Springs Discharge 

The Camp Polk Springs are located in Reach 3 of Whychus Creek as described 

in Chapter 4 (Figure 13, locations shown on Figure 2). Measured discharge along 

Reach 3 increased on 04/16/2007, 06/25/2007, and 01/30/2008, and decreased on 

09/21/2007 (Figure 16). However, the gains and losses were less than calculated errors 

and therefore may not represent actual gains or losses. Despite measurement 

uncertainties, discharge from the Camp Polk Springs provides a logical explanation 

for increases in discharge along reach 3 during late spring, early summer, and winter. 

As will be shown in the following sections, the Camp Polk Springs discharge shallow, 

local-scale groundwater. Springs that are supplied by shallow groundwater tend to 

have greater seasonal fluctuations in discharge than those that discharge groundwater 

that has circulated deeper in the flow system. Expected discharge from the Camp Polk 

Springs would be larger during times of greater recharge (late fall and winter due to 

precipitation, and spring and early summer due to snowmelt) and would be lower 

during times of less recharge (late summer). 

McKinney Butte Springs Discharge 

Estimates of discharge from the McKinney Butte Springs presented in the 

Physical Hydrogeology chapter (Chapter 4) were determined via seepage runs on 

Whychus Creek. One limitation of estimating discharge from springs using seepage 



 

runs is that the differences measured at higher stream flow conditions represent a 

significantly smaller percentage of total flow and, hence, are subject to greater error. 

For example, on 01/30/2008, stream discharges of 1.648 m3/s and 1.849 m3/s were 

measured at Whychus Creek above Chester Springs and at Whychus Creek below 

Frank Springs, respectively. Propagation of the calculated errors (0.089 and 0.091 

m3/s; Table 10) results in an error of 0.132 m3/s for a total difference (calculated 

discharge from springs) of 0.201 m3/s (i.e., 66% uncertainty). 

In an attempt to better constrain discharge estimates for the McKinney Butte 

Springs, two simple mixing models, one using electrical conductivity (EC) and one 

using temperature data from Whychus Creek and the McKinney Butte Springs were 

employed. The models assume that EC and temperature contributions to Whychus 

Creek from the McKinney Butte Springs are proportional to the discharge 

contribution. Also assumed is that EC and temperature measured in Frank Springs is 

representative of the entire McKinney Butte Springs complex. Equation 1 was used to 

calculate the fraction of EC in Whychus Creek provided by the McKinney Butte 

Springs: 

)(

)(

ACMS

ACBF
MS ECEC

ECEC
fEC

−
−=        (1) 

where fECMS is the fraction of the EC measured in Whychus Creek that was provided 

by the McKinney Butte Springs, ECBF and ECAC are the EC values in Whychus Creek 

below Frank Springs and above Chester Springs (µS/cm), and ECMS is the EC 
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measured in the McKinney Butte Springs (µS/cm). Equation 2 was used to estimate 

the discharge of the McKinney Butte Springs: 

WCBFMSMS QfECQ ∗=         (2) 

where QMS is McKinney Butte Springs discharge (m3/s) and QWCBF is the measured 

discharge at the Whychus Creek below Frank Springs seepage run site (m3/s). 

Equation 2 requires discharge measured during seepage runs and EC measured during 

water sampling events; consequently, McKinney Butte Springs discharge estimates 

from EC data were only calculated when seepage runs and water sampling events 

occurred concurrently (i.e., 06/25/2007 and 09/21/2007). Estimated discharges from 

the McKinney Butte Springs determined by the EC mixing model were 0.166 m3/s on 

06/25/2007 and 0.171 m3/s on 09/21/2007 (Table 15). 

Uncertainty in the estimates of discharge from the McKinney Butte Springs via 

the EC mixing model result from two primary sources; 1) error in the measurement of 

QWCBF, and 2) error in measurements of ECBF, ECAC, and ECMS. Errors associated with 

QWCBF measurements, previously discussed in the Study Design and Methods chapter 

and presented in the Results section of the Physical Hydrogeology chapter, were 0.04 

m3/s on 06/25/2007, and 0.05 m3/s on 09/21/2007 (Table 15). 

Uncertainty in EC measurements can be attributed to accuracy of the EC 

meter. The accuracy of the EC meter used in this study was the greater value between 

±0.5% of the reading or ±1 µS/cm (YSI, 2002). The amount of error assigned to the 

EC meter in m3/s was determined by solving for fECMS in equation 1 using values of 

ECBF, ECAC, and ECMS that were 1 µS/cm greater than or less than the measured 
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values. Minimum values for fECMS were calculated when an ECBF value 1 µS/cm less 

than the measured value, and ECMS and ECAC values 1 µS/cm greater than their 

measured values were substituted into equation 1. Maximum values for fECMS were 

calculated when ECBF was 1 µS/cm greater than its measured value, and ECMS, and 

ECAC, were 1 µS/cm less than their measured values. Minimum and maximum values 

of fECMS were substituted into equation 2 to solve for QMS. Minimum and maximum 

values of QMS were 0.151 and 0.177 m3/s on 06/25/2007, and 0.154 and 0.187 m3/s on 

09/21/2007. The percent error attributed to the accuracy of the EC meter was 9% on 

06/25/2007 and 10% on 09/21/2007. The total uncertainty associated with estimating 

QMS via the EC mixing model was calculated using equation 3, where ETEC is the total 

error, in m3/s, eqbf is the calculated discharge error at the measurement site below 

Frank Springs, in m3/s, and eec is the error in discharge attributed to the accuracy of 

the EC meter, in m3/s (Table 15). 

22
ecqbfTEC eeE +=

       
(3) 

Table 15. Estimates of Discharge from the McKinney Butte Springs. ECAC and ECBF are electrical 
conductivities measured in Whychus Creek above Chester Springs and below Frank Springs. 
ECMS is the electrical conductivity measured in Frank Springs and represents electrical 
conductivity in the McKinney Butte Springs complex. fECMS is the fraction of EC in Whychus 
Creek provided by the McKinney Butte Springs as calculated in equation 1; and QWCBF is the 
discharge in Whychus Creek below Frank Springs measured during seepage runs. QMS is the 
estimated discharge from the McKinney Butte Springs calculated from electrical conductivity 
data using equation 2. 

Date

ECAC

(µS/cm)
measured 

ECBF

(µS/cm)
measured

ECMS

(µS/cm)
measured fECMS

QWCBF

(m3/s) 
measured

QMS

(m3/s)
calculated

eqbf

(m3/s)

eec

(m3/s)

ETEC

(m3/s)

06/25/2007 16 38 61 0.489 0.34 0.166 0.04 0.015 0.043
09/21/2007 19 33 63 0.318 0.54 0.171 0.05 0.017 0.053  
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The temperature mixing model utilized temperature probe measurements 

collected every 10 minutes from 08/30/2007 to 10/15/2007 as another means of 

constraining estimates of discharge from the McKinney Butte Springs. Unlike the EC 

model which used instantaneous measurements of discharge and EC to estimate 

discharge from the McKinney Butte Springs, the temperature model used mean daily 

discharge in Whychus Creek recorded at the OWRD Gage Station in Sisters (QSISTERS), 

mean daily temperatures from Whychus Creek above Chester Springs (TAC) and 

Whychus Creek below Frank Springs (TBF), and the mean temperature during the 

continuous data collection period in the McKinney Butte Springs (TMS) to estimate the 

average discharge from the McKinney Butte Springs during the continuous data 

collection period (QMS). A major assumption in this model is that no significant gains 

or losses in streamflow occur between the gage in Sisters and the McKinney Butte 

Springs. As described in the Results section of the Chapter 4, while streamflow losses 

were measured between Sisters and the springs during each seepage run, the measured 

losses were within the margin of measurement error and may not represent actual 

losses. 

The temperature model also differs from the EC model in that the equations 

used in the temperature model were not solved for QMS. Instead, specified values of 

QMS ranging from 0.10 to 0.20 m3/s (i.e. 0.10, 0.15, 0.17, 0.18, 0.185, 0.187, 0.19, and 

0.20 m3/s) were used to solve equations 4 and 5 for the fractions of total streamflow in 

Whychus Creek below the McKinney Butte Springs (QTOTAL) supplied by discharge 

from Whychus Creek above the McKinney Butte Springs (fQSISTERS) and by discharge 



 

from the McKinney Butte Springs (fQMS), where QTOTAL is the sum of QSISTERS and 

QMS. fQSISTERS and fQMS were then used to solve equation 6 for TBF. The predicted 

values of TBF calculated in equation 6 were compared to the observed values of TBF 

measured by the temperature probe. Mean daily temperatures for TAC and TBF 

calculated from temperature probe readings were used in equation 6 because discharge 

readings at the OWRD Gage Station in Sisters were only available in that form. The 

average temperature of Frank Springs (9.04 ºC) during the continuous data collection 

period was used for TMS in equation 6 because its standard deviation (σ = 0.04 °C) was 

less than the accuracy of the temperature probes (±0.2 °C). 

TOTAL

SISTERS
SISTERS Q

Q
fQ =         (4) 

TOTAL

MS
MS Q

Q
fQ =         (5) 

)*()*( MSMSSISTERSACBF fQTfQTT +=      (6) 

Predicted values of TBF for given estimates of QMS are compared graphically 

with measured TBF values in Figure 38. An estimated discharge of 0.10 m3/s from the 

springs under- or over-estimates TBF; this is dependent on TAC. A discharge of 0.20 

m3/s fits the observed data better, but so do several other values (only 0.185 m3/s is 

shown, but 0.17, 0.18, and 0.187 m3/s all plot similarly). To quantify the goodness of 

fit between the predicted and observed values of TBF, the sum of the squares of the 

differences between the observed and predicted values of TBF were calculated using 

equation 7. 
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2
)(1 )( )( iBFpredct

n

i iBFobs TTSS −= =
      (7) 

Where, SS is the sum of squares, n is the number of sample observations, TBFobs(i) is the 

observed mean daily temperature at Whychus Creek below Frank Springs, and 

TBFpredict(i) is the predicted mean daily temperature at Whychus Creek below Frank 

Springs. The SS values determined from equation 7 are presented in Table 16. A 

constant spring discharge of 0.185 m3/s produces predicted temperatures with the 

lowest SS value (0.614) which indicates it is the best fit to the observed data, and is 

likely a reasonable estimate of discharge from 08/30/2007 to 10/15/2007. 

Uncertainty in estimates of discharge from the McKinney Butte Springs 

through the use of the temperature mixing model probably stem from 1) error in 

discharge measurements recorded at OWRD Gage Station in Sisters, and 2) the 

assumption that gains and losses between the gage in Sisters and the McKinney Butte 

Springs are minimal. Discharge measurements from the OWRD Gage Station in 

Sisters that were used in this study were considered “final” and were published by 

OWRD. The error associated with final data is generally no greater than 10% of the 

recorded discharge. The uncertainty associated with the assumption that no gains or 

losses in streamflow occur between Sisters and the McKinney Butte Springs is not as 

easily quantified. Losses of approximately 0.05 m3/s in streamflow between Sisters 

and the McKinney Butte Springs were measured during seepage runs on 06/25/2007, 

09/21/2007, and 01/30/2008, and had associated errors of 0.05, 0.06, and 0.13 m3/s, 

respectively. Although the uncertainties are as large as or larger than the measured 

losses, an assumed loss of 0.05 m3/s was used to account for the potential loss in 

 110



 

 111

streamflow. The median streamflow recorded at the Sisters Gage during the 

continuous data collection period (08/30/2007 to 10/15/2007) was 0.39 m3/s. The 

assumed loss was divided by the median streamflow to approximate the uncertainty. 

The approximate uncertainty due to loss of streamflow between Sisters and the 

McKinney Butte Springs during the continuous data collection period was 13%. The 

total error associated with estimation of QMS through the use of the temperature mixing 

model was calculated using equation 8 where ETT is the total error, in percent, esisters is 

the error in discharge measurements recorded at the OWRD Gage Station in Sisters, in 

percent, and eloss is the uncertainty due to potential loss in streamflow between Sisters 

and the McKinney Butte Springs, in percent. 

22
losssistersTT eeE +=         (8) 

Table 16. Sum of Squares (SS) of differences between observed and predicted temperature values 
at Whychus Creek below Frank Springs for selected estimates of discharge from the McKinney 
Butte Springs (QMS). A discharge of 0.185 m3/s is the best fit to the data, and represents the 
estimated discharge from the McKinney Butte Springs for the period between 08/30/2007 and 
10/15/2007. 

QMS

(m3/s) SS
0.100 7.058
0.150 1.503
0.170 0.762
0.180 0.628
0.185 0.614
0.187 0.618
0.190 0.633
0.200 0.761
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Discharge from the McKinney Butte Springs was estimated using the 

following three methods: 1) measurements of discharge in Whychus Creek above and 

below the springs (seepage runs), 2) electrical conductivity measurements in the 

springs and at sites on Whychus Creek above and below the springs, and 3) continuous 

temperature monitoring of the springs and locations in Whychus Creek above and 

below the springs. Uncertainty associated with each method was quite large and 

ranged from 28% to 66% for seepage runs, 26% to 31% for electrical conductivity, 

and 16% for temperature. However, estimates of discharge using all three methods on 

09/21/2007 fell in a narrow range from 0.171 m3/s (electrical conductivity), to 0.192 

m3/s (seepage runs) (Table 17, Figure 39). The agreement of discharge values 

calculated through the use of independent techniques suggests that although the 

uncertainty associated with each method is relatively large, when examined 

collectively, these methods provide a focused range of potential discharge from the 

McKinney Butte Springs. Based on discharge estimates presented in Table 17 and 

Figure 39, low (0.10 m3/s), mean (0.20 m3/s), and high (0.30 m3/s) estimates of 

discharge from the McKinney Butte Springs are used in the following section to 

examine the seasonal variability in their contribution to flow in Whychus Creek. 
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Table 17. Estimates of discharge from the McKinney Butte Springs (QMS). Discharge was 
estimated via seepage runs on Whychus Creek and through the use of electrical conductivity and 
temperature data collected in the McKinney Butte Springs and at locations in Whychus Creek. 
Measured or calculated discharge estimates are presented along with minimum and maximum 
discharge values calculated from associated uncertainties. 

Seepage Runs Electrical Conductivity Temperature

Date

QMS

minimum

(m3/s)

QMS

measured

(m3/s)

QMS

maximum

(m3/s)

QMS

minimum

(m3/s)

QMS

measured

(m3/s)

QMS

maximum

(m3/s)

QMS

minimum

(m3/s)

QMS

measured

(m3/s)

QMS

maximum

(m3/s)
04/16/2007 0.134 0.187 0.240
06/25/2007 0.089 0.141 0.193 0.123 0.166 0.209
08/30/2007 0.155 0.185 0.215
09/21/2007 0.127 0.192 0.257 0.118 0.171 0.224 0.155 0.185 0.215
10/15/2007 0.155 0.185 0.215
01/30/2008 0.069 0.201 0.333
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Discharge Contribution to Whychus Creek 

The flow regime of Whychus Creek is typical of a runoff-dominated stream 

(Whiting and Stamm, 1995). Historically, Whychus Creek has exhibited large seasonal 

variations in discharge with peak flows generally occurring in late spring and early 

summer in response to spring snowmelt, and low flows occurring in late summer and 

early fall due to low precipitation (Figure 40). However, recent data suggests, at least 

during years of below normal early summer precipitation (i.e. 2007), peak discharge 

may occur during late fall or early winter (Figure 41). As a result, the percentage of 

total discharge in Whychus Creek provided by the McKinney Butte Springs can vary 

widely on both seasonal and yearly time scales. Discharge values of 0.10 m3/s (low 

estimate), 0.20 m3/s (mean estimate), and 0.30 m3/s (high estimate) were used to 

estimate the percent of streamflow in Whychus Creek supplied by the McKinney 

Butte Springs on daily and monthly bases from 01/2006 to 02/2008 (Figure 42). 

Estimated monthly discharge contributions from the McKinney Butte Springs to 

Whychus Creek range from as little as 3-7% during winter (January – February 2006, 

November 2006 – March 2007 and November 2007 – February 2008) and early 

summer (June – July 2006) months; to as much as 24-46% during late summer 

months. Estimated daily contributions range from 1% to 59% of total stream 

discharge. The estimates of contributed discharge presented in Figure 42 indicate that 

the McKinney Butte Springs will have the most impact on Whychus Creek during 

times of low flow in the creek.
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Thermal Contribution to Whychus Creek 

Temperature measurements collected every 10 minutes from 08/30/2007 to 

10/15/2007 were analyzed to assess the thermal contribution of the McKinney Butte 

springs to Whychus Creek. Locally, the springs act as a buffer against temperature 

variations in Whychus Creek (Figure 43). Figure 43 is similar to Figure 36, however it 

does not show Sisters air temperature. This was done to reduce the temperature scale, 

making the temperature difference above Chester Springs and below Frank Springs 

easier to see. Above Chester springs, the difference between low and high 

temperatures is greater than below Frank springs. The magnitude of the springs’ 

impact on Whychus Creek is a function of the temperature and discharge in the creek 

above the springs. Similar to the discharge contribution discussed in the previous 

section, the McKinney Butte Springs will have a greater thermal impact during times 

of low flow in Whychus Creek. The thermal contribution from the springs will be 

greatest 1) when the temperature difference between the springs and Whychus Creek 

is large, and 2) during low-flow conditions. As indicated in Figure 40, the timing of 

low-flow conditions in Whychus Creek may vary from year to year, however, 

discharge is generally lowest in mid to late summer.
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Source of McKinney Butte and Camp Polk Springs 

Springs are windows into subsurface flow systems. Determination of a spring’s 

source can provide information about local geology and the spatial scale of 

groundwater flow. Because springs discharge water that may be recharged at several 

locations along the length of an aquifer, “source” refers to an area where most of the 

recharge originates and the subsequent path(s) groundwater takes on its way to a 

spring. Tóth (1963) identified three different “scales” of ground-water flowpaths: 

local, intermediate, and regional. Local groundwater flow systems typically circulate 

to shallow depths and discharge proximal to recharge areas, while intermediate and 

regional groundwater circulate to greater depths and discharge far from inferred 

recharge areas. Generally, groundwater that circulates to greater depths in an aquifer is 

less susceptible to contamination and short-term variations in recharge than 

groundwater that circulates to shallow depths. Thus, understanding the spatial scales 

of groundwater flow in an area is valuable when addressing water quality and water 

resource management issues. 

Establishing the source of a spring involves measurement and interpretation of 

its physical, chemical, thermal, and isotopic characteristics. Seasonal variations in 

discharge and temperature are related to the scale of groundwater flow; deeper (and 

consequently longer) flowpaths attenuate fluctuations. Chemical characteristics (i.e. 

dissolved ions, alkalinity, conductivity, pH) will vary depending on the amount of 

time a mass of groundwater has spent in an aquifer (residence time) and the geologic 
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materials it contacts. The stable isotopes of oxygen and hydrogen fractionate 

predictably as they pass through the hydrologic system, as a result, isotopic signatures 

are a function of recharge elevation. Comparing the hydrogeologic characteristics of a 

spring with nearby springs and surface water sources provides another avenue for 

determining the source area of a spring. Analysis of physical and chemical 

hydrogeologic data provides a framework for distinguishing source regions and 

flowpaths of groundwater discharged at springs. 

In this section, light stable isotope data and water chemistry and water quality 

parameters of the McKinney Butte Springs, Camp Polk Springs, Paulina Spring, Alder 

Springs, Metolius Spring and Whychus and Indian Ford creeks are examined with the 

goal of determining the source and scale of groundwater flow discharging at the 

McKinney Butte and Camp Polk Springs. 

Major Ions 

The amount of time water is in the ground, known as residence time, increases 

as the water flows from recharge areas in a groundwater system to areas of discharge. 

The greater the residence time, the longer the water has to react with aquifer material 

and dissolve minerals. Therefore, the concentration of dissolved ions in groundwater 

generally increases along regional flowpaths. In a study of the geochemistry of surface 

water and groundwater in the upper Deschutes Basin, Caldwell (1998) showed that 

concentrations of dissolved ions were lowest in the regional recharge area in and 

around the Cascade Range, and dissolved ion concentrations generally increased to the 
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east in the regional discharge area near the confluence of the Deschutes and Crooked 

rivers. 

Concentrations of major ionic species in study area springs and streams were 

used in the examination of source area and potential groundwater flowpaths for the 

springs on McKinney Butte (springs on McKinney Butte include: The McKinney 

Butte Springs (Chester Springs and Frank Springs) and The Camp Polk Springs 

(Camp Polk Springhouse and Anderson Springs)). Source areas for several of the 

springs sampled during the current study have been determined in previous 

investigations (Metolius Spring, Paulina Spring, and Alder Springs). In her 

examination of the use of isotope tracers in the Oregon Cascades, James (1999) 

concluded that groundwater discharging from Metolius Spring was recharged at high 

elevations near the crest of the Cascades and followed deep regional flowpaths. 

Caldwell (1998) showed that discharge from Alder Springs is comprised mainly of 

regional-scale groundwater flow, but contains a component of locally recharged 

groundwater; Paulina Spring, the source of Indian Ford Creek, discharges locally 

derived groundwater; and Lower Opal Springs, a high volume spring located in the 

regional discharge area, discharges groundwater that has followed regional-scale 

flowpaths from the Cascades. Major ion data from these springs serve primarily as a 

comparison for streams and springs sampled during this study. 

In general, the major ion geochemistry of streams and springs sampled during 

this study are similar. HCO3 is the dominant anionic species in all 52 samples, and no 

cationic species is dominant in 34 samples, while 13 samples from Whychus Creek, 
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two samples from The McKinney Butte Springs and the sample from Metolius Spring 

are slightly Na dominant, and two samples from Camp Polk Springhouse are slightly 

Mg dominant. Total ionic concentrations are generally higher in samples from springs, 

with the exception of Paulina Spring whose total ionic concentration was similar to 

Whychus Creek below the McKinney Butte Springs and lower than Indian Ford 

Creek. Differences do exist, however, and are most prominent in NO3, Cl, and SO4. 

Concentrations of Cl and NO3 in Camp Polk Springhouse (4.32 to 5.59 mg/L and 2.59 

to 4.52 mg/L, respectively) are more than two times greater than concentrations at 

most other sites and SO4 concentrations (1.74 to 3.01 mg/L) are approximately 1.5 

times greater than at other sites. The sample from Metolius Spring is an exception, 

with an NO3 concentration of 7.59 mg/L. Whychus and Indian Ford creeks generally 

have the lowest NO3, Cl, and SO4; however some variability exists in Cl 

concentrations in Indian Ford Creek, which range from 0.46 to 2.26 mg/L. 

High concentrations of NO3, Cl and SO4 in Camp Polk Springhouse are of 

particular interest because concentrations of these ions in Anderson Springs and the 

McKinney Butte Springs, located 0.2 and 2.0 to 2.5 km upstream from Camp Polk 

Springhouse, are significantly lower. Additionally, NO3, Cl, and SO4 concentrations in 

springs that discharge regional-scale groundwater (Lower Opal, and Alder Springs) 

are also significantly lower than concentrations in Camp Polk Springhouse. Also of 

interest is the elevated NO3 concentration in Metolius Spring. 

There is commonly a relationship between the chemical characteristics of 

groundwater and the mineralogical properties of the geologic material with which it 



 

has been in contact. The geological units of the upper Deschutes Basin consist mainly 

of lavas, tuffaceous material, and volcaniclastic sediments of Cascade Range origin. 

These rocks of igneous origin are composed of silicate minerals such as olivine, 

pyroxene, amphibole, mica and feldspar. Dissolution of silicate minerals is the major 

process that controls groundwater chemistry in igneous terrain and typically results in 

the formation of clay and the release to aqueous solution of dissolved silica in the form 

of silicic acid (H4SiO4) and metal cations such as Ca, Na, Mg, and K. The weathering 

of albite, a Na feldspar, to kaolinite, a clay, is representative of these reactions: 

44
2

4522283 42)(922 SiOHNaOHOSiAlOHHONaAlSi ++→++ ++  (9) 

Minerals in which NO3, Cl, and SO4 are essential components are not very common in 

igneous rocks (Hem, 1985), suggesting a process other than water-rock interaction 

controls the amount of these anions in Camp Polk Springhouse and the amount of NO3 

Metolius Spring. 

Elevated concentrations of NO3, Cl, and SO4 are regularly found in 

anthropogenic sources such as septic effluent, fertilizers, and animal wastes (Canter 

and Knox, 1985). In the vicinity of McKinney Butte, potential anthropogenic sources 

are limited to septic effluent and fertilizers; confined feed lots or high density grazing 

(major sources of animal waste) are not locally present in areas up-gradient from the 

springs. Irrigation occurs in the area around McKinney Butte; however, only an 

average of 8.8% of the acreage in sections on, and bordering the west side of, 

McKinney Butte are covered by irrigation water rights (OWRD, 2011b) (Table 18). 

The low occurrence of irrigation locally suggests septic-tank effluent is the most likely 
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source of elevated NO3, Cl, and SO4 concentrations in Camp Polk Springhouse. 

Additional evidence supporting a septic effluent source is considerably lower NO3, Cl, 

and SO4 concentrations in Anderson Springs and the McKinney Butte Springs. 

Fertilizers used for irrigation purposes are typically applied evenly over the land 

surface, and should therefore be more evenly distributed in the subsurface. Lower 

NO3, Cl, and SO4 concentrations in Anderson Springs and the McKinney Butte 

Springs suggest the source responsible for the elevated concentrations in Camp Polk 

Springhouse is localized. As is shown later in this chapter, the McKinney Butte 

Springs discharge groundwater that has circulated deep in the aquifer system, which 

explains its low NO3, Cl, and SO4 concentrations . Conversely, like Camp Polk 

Springhouse, Anderson Springs discharges groundwater that has followed shallow 

flow paths and should contain elevated concentrations of NO3, Cl, and SO4 if fertilizer 

is the source. The most reasonable explanation for the variation in NO3, Cl, and SO4 

concentrations in proximally located springs is a point source origin such as a septic-

tank effluent plume. The fact that many small acreage parcels, each with their own 

septic system, are found on McKinney Butte is also consistent with a septic-tank 

effluent origin. 

Hinkle et al. (2007) found that elevated concentrations of Cl, NO3, and SO4 in 

shallow wells in the LaPine basin (located in the southern portion of the upper 

Deschutes basin) were caused by contamination of the aquifer from septic-tank 

effluent and concluded that heterogeneous distributions of NO3 concentrations in the 

subsurface is consistent with a number of point sources of septic-tank derived NO3 



 

rather than a uniform nonpoint source such as agricultural sources. These findings are 

also consistent with the argument presented above for a septic-tank effluent source of 

elevated Cl, NO3, and SO4 concentrations in Camp Polk Springhouse. 

Table 18. Total acreage covered by irrigation water rights in sections bordering the west side of 
McKinney Butte and sections on McKinney Butte. Data from Oregon Water Resources 
Department Water Rights Information System (WRIS) database. 

Township Range Section
Acres on Irrigation

Water Rights
Total Acres
in Section

% of Total Acres
on Irrigation
Water Rights

West of McKinney Butte

14S 10E 16 7.30 640 1.1
14S 10E 21 110.70 640 17.3
14S 10E 33 110.94 640 17.3
15S 10E 3 28.55 640 4.5
15S 10E 4 119.81 640 18.7

On McKinney Butte

14S 10E 34 8.00 640 1.3
15S 10E 2 8.50 640 1.3

Total Acres

393.80 4480 8.8  
 

Determination of the source of elevated NO3 concentrations in Metolius Spring 

is not as straightforward. Land use patterns in the Metolius Spring area are broadly 

similar to those around McKinney Butte; irrigation is limited and small-acreage 

residential lots are abundant. Black Butte Ranch, a local resort community, is the site 

of the only up-gradient irrigation and residential development in the Metolius Spring 

area. However, unlike the McKinney Butte area, many homes in Black Butte Ranch 

are served by gravity sewers and fewer homes have septic-tanks (Black Butte Ranch, 

2010). Two 18-hole golf courses at the ranch are maintained with 361.5 acres of 

irrigation water rights (the water right certificate is for 361.5 acres) (OWRD, 2011b). 

Septic effluent and irrigation water are both potential sources of NO3 in Metolius 
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Spring. Additional complications stem from the fact that Black Butte Ranch is located 

over 7 km south of Metolius Spring, allowing ample time for mixing of multiple NO3 

sources and, potentially, denitrification in the subsurface. 

In contrast to Camp Polk Springhouse, concentrations of Cl and SO4 in 

Metolius Spring are not elevated and are comparable to concentrations found in the 

McKinney Butte Springs, Anderson Springs, Alder Springs, and Lower Opal Springs. 

This suggests that the source of NO3 in Metolius Spring does not contain elevated 

concentrations of Cl and SO4. Possible explanations include differences in the 

chemical constituents found in septic-tank effluent in the Metolius Spring area versus 

the McKinney Butte area, or fertilizer that contains significantly more NO3 than Cl or 

SO4. The latter interpretation is consistent with golf course irrigation; most grasses 

require large quantities of nitrogen (De Loach, 1921). 

Chitwood (1999) sampled Metolius Spring for NO3 eight times between May 

1996 and May 1997. NO3 concentrations ranged from 0.44 to 3.36 mg/L and 6 of the 8 

samples contained NO3 concentrations below 1 mg/L (Table 15). The highest NO3 

concentration was measured on 05/02/1997 and was approximately 4 times greater 

than the concentration measured less than two months earlier (0.80 mg/L on 

03/13/1997). The NO3 concentration measured on 05/02/1997 is comparable to 

concentrations in Camp Polk Springhouse, but is approximately 50% less than the 

NO3 concentration measured in Metolius Spring during the current study. Chitwood 

(1999) did not postulate a source for elevated NO3 concentrations in Metolius Spring, 

but he did conclude that NO3 and PO4 from septic systems in the Camp Sherman area, 
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located 3 km downstream (north) from Metolius Spring are carried by groundwater to 

the Metolius River. Large variations in NO3 concentrations reported by Chitwood 

(1999) indicate that the source is not constant, but varies temporally. Although the 

source of NO3 is uncertain, elevated concentrations indicate that a portion of discharge 

from the spring is provided by shallow groundwater flow. 

Stable Isotopes 

Oxygen and hydrogen isotopes are commonly used to determine groundwater 

recharge areas and regional groundwater flow patterns. Their usefulness stems from 

the fact that they fractionate in a predictable manner as water moves through the 

hydrologic cycle depending on the physical and chemical processes that operate 

(Criss, 1999). Fractionation occurs because two isotopes of the same element have 

different masses, and hence possess slightly different physiochemical properties. As a 

result, isotopes are partitioned unequally during chemical reactions. The stable 

isotopes of light elements (e.g., hydrogen and oxygen) have large relative mass 

differences, so their fractionation effects are more pronounced and more easily 

detected than those of the heavy elements. 

There are two stable isotopes of hydrogen: 1H and 2H (deuterium), and three of 

oxygen: 16O, 17O, and 18O, of which 16O and 18O are more abundant. Because the 

vapor pressure of water molecules is inversely proportional to their masses, water 

vapor is depleted in the heavier isotopes 2H and 18O relative to coexisting liquid water 

(Faure, 1986). During phase changes in general, the heavy isotopes are preferentially 



 

partitioned into the more condensed phase. For example, for the various phases of 

water, at equilibrium, δ18Osolid > δ18Oliquid > δ18Ogas (Kendall and McDonnell, 1998). 

This fact indicates that the relative abundance of the heavy to light isotopes changes in 

a predictable manner as water moves through the hydrologic cycle and has important 

implications for determining the source of springs. 

Craig (1961) established that there is a linear relationship between δ18O and 

δ2H in precipitation on a global scale. The relationship is known as the Global 

Meteoric Water Line and is described by: 

108 182 += OH δδ         (10) 

The slope of this line, 8, reflects the difference in fractionation behavior between 18O 

and 2H and is related to the amount of energy required to break chemical bonds, 

known as zero point energy (ZPE) between isotopes of the same element. Molecules 

containing heavy isotopes are more stable than molecules with lighter isotopes 

(Kendall and McDonnell, 1998). Because the relative mass difference between 2H and 

1H is greater than the mass difference between 18O and 16O, the magnitude of 

fractionation between isotopes of H is 8 times greater than between isotopes of O. 

The two major factors that control the isotopic concentration of precipitation at 

any location are temperature and the proportion of the original water vapor that 

remains in the air that is undergoing precipitation; these two factors can produce 

geographic and temporal variations in precipitation (Kendall and McDonnell, 1998). 

The result of these factors is that isotopic concentrations in precipitation will vary with 
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distance from the source of the water vapor (continental and latitude effects), 

elevation, season, and amount (Kendall and McDonnell, 1998). 

The continental effect is an observation that meteoric water is more depleted 

farther from source of the water vapor. As an air mass moves inland, the heavier 

isotopes are preferentially partitioned in the liquid phase leaving the residual vapor 

more depleted. Subsequent precipitation events are further depleted, although still 

enriched relative to the residual vapor (Clark and Fritz, 1997; Kendall and McDonnell, 

1998). 

Elevation and latitude effects are somewhat related to the continental effect in 

that progressive rainout of the parent vapor is responsible for some of the depletion of 

heavy isotopes at higher elevations and latitudes (Kendall and McDonnell, 1998). 

However, temperature also plays a significant role due to increased fractionation at 

lower temperatures found at higher elevations and latitudes. 

Temperature is also the controlling factor for seasonal variations in the isotopic 

composition of precipitation (Kendall and McDonnell, 1998). Regions that experience 

large seasonal fluctuations in surface temperature exhibit large variations in the 

isotopic composition of precipitation (Ingraham et al., 1991; Jacob and Sonntag, 

1991). In general winter precipitation is more depleted than summer precipitation due 

to low temperatures experience during winter months. 

The isotopic composition of precipitation is also influenced by the amount that 

occurs. Water collected during smaller rainfall events can be isotopically enriched 

relative to water collected during larger events. This phenomenon is caused by 
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evaporation at the surface of individual raindrops during descent and is related to the 

relative humidity in the atmosphere. During longer rainstorms the air below cloud base 

may become more saturated which reduces the amount of evaporative loss of the 

raindrops (Kendall and McDonnell, 1998). The amount effect is especially 

pronounced in arid environments and can result in a local meteoric water line with a 

slope that is less than the GMWL (Friedman et al., 1992). However, the amount effect 

is not as severe at higher latitudes where more precipitation is in the form of snow, 

which is not subjected to isotopic fractionation by evaporation during descent (Kendall 

and McDonnell, 1998). 

Precipitation that occurs in central Oregon typically originates in air masses in 

the Pacific Ocean and forms by condensation within clouds. As a result, precipitation 

is enriched in 2H and 18O relative to residual vapor, although the values are not as high 

as those for seawater (Craig and Gordon, 1965). Air masses moving east from the 

coast of Oregon must ascend and release moisture as they move across the Cascades. 

As these air masses move east, subsequent precipitation events are further depleted in 

2H and 18O, although still enriched relative to the residual vapor (Clark and Fritz, 

1997). 

James (1999) argued that elevation is the most important factor affecting the 

isotopic composition of precipitation in the central Oregon Cascades. Her argument 

was based on the analysis of 76 snow core samples and 56 water samples from cold 

springs to the east of the Cascade crest. Seasonal effects were discounted because the 

majority of precipitation to the east of the crest falls as snow during the winter. 
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Latitude effects were considered unimportant due to similarities in δ18O in 

precipitation samples from locations in the southern (Willamette Pass), central (Mt. 

Bachelor), and northern (Santiam Pass) parts of her study area (see Figure 4.7 in 

James, 1999). She did find a correlation between distance from the coast and δ18O, but 

attributed it to the general decrease in elevation from west to east from the Cascade 

crest. 

James (1999) found a linear relationship between elevation and δ18O in 

precipitation samples for the central Oregon Cascades that is given by the equation: 

9.10)(0018.018 −−= minelevationOδ      (11) 

Equation 11 indicates there is a decrease of 0.18‰ per 100 m rise in elevation. 

Considerable scatter in hydrogen isotope data (R2 = 0.0066) prevented determination 

of the relationship between δ2H and elevation. Some scatter also exists in the 

relationship between elevation and δ18O (Figure 44), but it is consistent with the 

elevation relationship determined for other regions (Table 19). 

Table 19. Gradients of δ18O with elevation (After Clark and Fritz, 1997). 

Site Region

Gradient

(δ18O ‰
per 100 m) Reference

Jura Mountains Switzerland -0.2 Siegenthaler et al., 1980
Black Forest Switzerland -0.19 Dubois and Flück, 1984
Mont Blanc France -0.5 Moser and Stichler, 1970
Coast Mountains British Columbia -0.25 Clark et al., 1982
Piedmont Western Italy -0.31 Bortolami et al., 1978
Dhofar Monsoon Southern Oman -0.10 Clark, 1987
Saiq Plateau Northern Oman -0.12 Stanger, 1986
Mount Camaroon West Africa -0.155 Fontes and Olivry, 1977
Hat Creek Basin Northern CA -0.23 Rose et al., 1996
Urumqu River Basin Xinjiang, China -0.4 Weizu and Longinelli, 1993
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The local regression relationship between elevation and the oxygen isotopic 

composition of precipitation in the central Oregon Cascades determined by James 

(1999) was used to approximate recharge elevations of springs in the current study 

area. The recharge elevation was calculated by rearranging equation 11 to solve for 

elevation (equation 12). The inferred recharge elevation is viewed graphically by 

projecting the isotopic composition of the spring water to the elevation at which 

precipitation has a comparable composition to infer a representative or mean recharge 

elevation. 

0018.0

)9.10(
)(

18 +−= O
mElevation

δ
      (12) 

Recharge elevation estimates for springs sampled during the current study and 

the Lower Opal Springs sample from Caldwell (1998) are presented in Table 20 and 

Figure 45. Due to uncertainties related to scatter in the precipitation data (Figure 44), 

calculated recharge elevations are rounded to the nearest 50 meters. Estimated 

recharge elevations are lowest for Camp Polk Springhouse, Anderson Springs, and 

Paulina Spring, and are highest for Lower Opal Springs, Alder Springs, and Metolius 

Spring. Estimated recharge elevations for the McKinney Butte Springs are 

considerably higher than elevations for the Camp Polk Springs and Paulina Spring, but 

are not quite as high as recharge elevations for Metolius, Alder, and Lower Opal 

Springs. 
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Table 20. Spring recharge elevations estimated from the relationship between δ18O in 
precipitation and elevation on the east flank of the central Oregon Cascades. 

Spring
Discharge

Elevation (m)
Recharge

Elevation (m)

Frank Springs 929 1800-1900
Chester Springs 930 1900
Anderson Springs 945 1300
Camp Polk Springhouse 942 950-1200
Paulina Spring 1024 1250
Alder Springs 695 2300
Metolius Spring 914 2150
Lower Opal Springs (Caldwell, 1998) 597 2450  
 

In several cases, inferred recharge elevations for springs coincide with local 

topographic highs. For example, the inferred recharge elevation for Paulina Spring 

(1250 m) suggests that recharge occurs on nearby topographic highs Fivemile Butte, 

Graham Butte, or Sixmile Butte, that have maximum elevations of 1231, 1280, and 

1391 m, respectively. In fact, Paulina Spring discharges from the toe of a Quaternary 

basaltic andesite flow that originated on Fivemile Butte (Basalt of Fivemile Butte; 

from Sherrod et al., 2004). Possible recharge locations for Anderson Springs and 

Camp Polk Springhouse (inferred recharge elevations of 1250 m and 950-1200 m) 

include the same locations as for Paulina Spring, the flanks of Black Butte, or lower 

elevations on the east flank of Trout Creek Butte. As was the case with Paulina Spring, 

possible recharge locations for Anderson Springs and Camp Polk Springhouse are 

found near the springs, within a distance of approximately 10 km or less. The 

proximity of the recharge and discharge areas for these springs suggests they 

discharge local-scale groundwater flow.
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Metolius Spring, which is found at an elevation of 914 m, has an inferred 

recharge elevation of 2150 m. Possible recharge locations include Mt. Washington and 

Belknap Crater, approximately 25-30 km from the spring. Alder Springs is also 

recharged at high elevations near the Cascades crest, over 40 km from the discharge 

point. James (1999) found the recharge elevation for Lower Opal Springs, a spring that 

is found at an elevation of 597 m in the regional discharge area, ranged from 2450-

2600 m. Potential recharge locations include the Three Sisters or other high elevation 

peaks along the Cascade crest, nearly 50 km from the spring. These observations 

suggest that Metolius Spring, Alder Springs, and Lower Opal Springs (referred to as 

the Regional Springs when the discussion applies to all) are all part of the regional 

groundwater flow system. 

Similar to the Regional Springs, inferred recharge elevations for the McKinney 

Butte Springs (1800-1900 m for Frank Springs and 1900 m for Chester Springs) are 

also much higher than their discharge elevations (Table 20). However, the McKinney 

Butte Springs recharge elevations are slightly lower than those for the Regional 

Springs, suggesting the locus of their recharge occurs on the flanks of the Cascades, 

but not at the crest. 

A second interpretation is that discharge from the McKinney Butte Springs is a 

mixture of recharge from high elevations near the crest of the Cascades (recharge 

elevations similar to those for the Regional Springs) and from more local, lower 

elevation areas (recharge elevations similar to those for Paulina Spring and the Camp 

Polk Springs). A simple mixing model was employed to calculate the fractions of 



 

regional- and local-scale groundwater flow that would be discharged from the 

McKinney Butte Springs in this scenario (equation 13). 

 140

)( ) ( LOSLOSPSPSMBS OfOfO 181818 δδδ +=      (13) 

Where δ18OMBS, δ
18OPS, and δ18OLOS are the δ18O values (‰) in the McKinney Butte 

Springs, Paulina Spring, and Lower Opal Springs and fPS and fLOS are the fraction of 

flow in the McKinney Butte Springs that is provided by local- (fPS) and regional- (fLOS) 

scale groundwater flow. 

The mixing model assumes that δ18O values in Paulina Spring and Lower Opal 

Springs represent endmembers for local and regional recharge areas, respectively. 

δ18O values used in the model were -14.2 ‰ for the McKinney Butte Springs, -13.1 ‰ 

for Paulina Spring and -15.28 ‰ for Lower Opal Springs. Solving equation 13 gives 

values of 0.5 for fPS and 0.5 for fLOS. Thus, according to the model, 50% of the 

discharge from the McKinney Butte Springs is provided by regional-scale 

groundwater flow and 50% is supplied by local-scale groundwater. 

Local-scale groundwater flow is typically more susceptible to short-term 

variations in recharge, which suggests discharge from springs whose source is locally 

recharged groundwater should display seasonal variations. This is true for the Camp 

Polk Springs which had visibly higher discharges during winter 2008 than during June 

and September 2007. If local-scale groundwater flow is supplying a significant 

fraction of the discharge in the McKinney Butte Springs, seasonal variations in the 

isotopic composition of the springs might be expected. For example, if fPS in equation 

13 is reduced to 0.30, the δ18O value in the McKinney Butte Springs would be reduced 
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to -14.6 ‰. However, δ18O concentrations measured in the McKinney Butte Springs 

six times during a 16-month period varied by only 0.1 ‰ (Table 12). This lack of 

seasonal variation suggests either the contribution of local-scale discharge is 

insignificant or, less likely, that seasonal variations in the magnitude of local-scale 

groundwater flow are minimal. 

The shallow aquifer on the west side of McKinney Butte is comprised of 

highly permeable glacial outwash sediments and High Cascade lavas that have filled a 

depositional basin created by down-to-the-west displacement along a normal fault 

bounding the west side of the butte (Figure 5). Groundwater in the high permeability 

outwash and High Cascade lavas is juxtaposed against lower permeability upper 

Miocene to Pliocene Deschutes Formation strata that form and underlie McKinney 

Butte. Evidence of this is the flattening of the hydraulic gradient that occurs in the 

Sisters area (Figure 26). The water table elevation in the glacial outwash and High 

Cascade lavas, 940-945 m, is very similar to the elevations of Anderson Springs (945 

m) and Camp Polk Springhouse (942 m). General chemistry and isotopic composition 

of these springs indicate they are supplied by local-scale groundwater flow. Seasonal 

variations in the height of the water table will impact discharge from the springs by 

altering the hydraulic gradient. During times when the water table is low, the gradient 

between the water table and the Camp Polk Springs will be lower, and discharge, 

which is proportional to the gradient, will be diminished. Because the elevations of the 

Camp Polk Springs are within a few meters of the water table, seasonal fluctuations in 

water table elevation will substantially affect discharge from the springs. 
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In contrast, the elevations of the McKinney Butte Springs (Chester Springs = 

930 m and Frank Springs = 929 m) are 10-15 m lower than the local water table. If 

shallow groundwater is supplying some of the discharge from these springs, the 

seasonal variation should be less than in the Camp Polk Springs due to the greater 

elevation difference between the water table and the springs. Less seasonal variation in 

discharge would also result in less seasonal variation in δ18O values in the McKinney 

Butte Springs. 

Temperature 

Circulating groundwater transports heat. If groundwater flow velocities are 

sufficiently large, most of the subsurface heat will be transported by advection (Manga 

and Kirchner, 2004). Such is the case in the central Oregon Cascades, where highly 

permeable near-surface rocks permit high recharge rates and thus high groundwater 

flow rates. The result is that most background geothermal heat is transported 

advectively by groundwater and discharged at springs (Manga and Kirchner, 2004). 

Therefore, the temperature of spring water can be used to infer the geothermal heat 

flux. However, not all springs have been warmed geothermally, as deeply circulating 

groundwater acquires more geothermal heat than groundwater that circulates to 

shallow depths (James et al., 2000). Thus, temperature measurements at springs are 

another means of assessing the relative scale of groundwater flow. 

Several investigators have used water temperatures in springs to examine the 

geothermal heat flux from the central Oregon Cascades (i.e., Ingebritsen et al., 1989, 



 

1992, 1994; Blackwell and Priest, 1996; James, 1999; James et al., 2000; Manga, 

1998; Manga and Kirchner, 2004). Many of these studies have attributed the 

temperature increase (ΔT) in groundwater from the recharge area to the discharge area 

entirely to geothermal warming (Ingebritsen et al., 1989, 1992, 1994; Blackwell and 

Priest, 1996; James, 1999; James et al., 2000; Manga, 1998) However, recent work by 

Manga and Kirchner (2004) has demonstrated that temperature increase due to the 

conversion of gravitational potential energy (GPE) to heat is important in settings 

where the difference in elevation between the recharge and discharge areas is 

sufficiently large (~1 km), and conductive heat transfer with the Earth’s surface 

contributes to ΔT when the water table depth is less than a few meters. Manga and 

Kirchner (2004) calculated a GPE lapse rate of 2.3 ºC/km using equation 14: 

wC

g

z

T =
Δ
Δ

         (14) 

where g is gravitational acceleration (9.8 m/s2), and Cw is the specific heat of water 

(4186 J/kg ºC). The assumptions associated with determining ΔT are: 1) groundwater 

recharge enters the subsurface at temperatures near the mean annual surface 

temperature of the recharge area, and 2) the temperature of the aquifer is uniform 

across its thickness. Additionally, heat conduction to and from the Earth’s surface can 

generally be ignored in the central Oregon Cascades because aquifer depths are 

typically greater than many tens of meters (e.g. Gannett, et al., 2003; cited in Manga 

and Kirchner, 2004). 
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Temperature corrections for GPE dissipation in study area springs are provided 

in Table 21. Figure 46a shows water temperature of a spring as a function of the 

discharge elevation, and Figure 46b shows the relationship between spring 

temperatures corrected for GPE dissipation and recharge elevation obtained from 

oxygen isotope analysis. The plus signs show the mean annual surface temperature as 

a function of elevation at seven climate stations in or near the current study area for 

the period from 1961-1990 (Oregon Climate Service, 2008) (Table 22). The dashed 

lines in Figure 46 bracket the range of expected surface temperatures as a function of 

elevation. The scatter of climate station temperatures probably reflects local climate 

variations that are influenced by various mountain chains in the region (Manga and 

Kirchner, 2004). The temperature change (ΔT) attributed to geothermal warming is 

shown in Figure 46b. 

Table 21. Temperatures of study area springs corrected for gravitational potential energy 
dissipation (GPE). 

Name
Elevation

(m)
Temperature

(°C)

Recharge
Elevation

(m)

Temperature
Corrected for GPE

(°C)

Frank Spring 929 8.9 1849 6.8
Anderson Springs 945 7.9 1278 7.1
Camp Polk Springhouse 942 9.3 1053 9.0
Paulina Spring 1024 4.3 1248 3.8
Metolius Spring 914 8.9 2132 6.1
Alder Springs 695 10.5 2271 6.9
Lower Opal Springs (Caldwell, 1998) 597 12.0 2433 7.8  
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Table 22. Mean annual surface temperatures at climate stations in the region for the period from 
1961-1990. 

Station Name Elevation (m)
Mean Annual 

Temperature (°C)

Santiam Pass 1448 4.28
Sisters 969 7.67
Bend 1116 7.89
Wickiup 1329 6.56
Chemult 1451 5.67
Crater Lake NP 1972 3.11
Metolius 762 8.67  

The water temperature of most springs is similar to the mean annual surface 

temperature at the discharge elevation (Figure 46a). Frank Springs, Metolius Spring, 

Alder Springs, and Lower Opal Springs discharge water that is several degrees warmer 

than the mean recharge temperature (Figure 46b). The amount of geothermal warming 

in each spring is 2.0, 2.6, 4.05, and 5.7 °C for Frank Springs, Metolius Spring, Alder 

Springs, and Lower Opal Springs, respectively. Geothermal warming in these springs 

suggests they discharge deep groundwater flow. 
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A linear relationship exists between recharge elevation and spring temperature 

for the Regional Springs, where spring temperature increases 0.56 ºC for every 100 m 

gain in recharge elevation (Figure 46b). Frank Springs, however, does not follow the 

trend of the Regional Springs (Figure 46b). The reason for the linear trend could be 

related to relative flow path depths of groundwater discharged at each of the springs. 

Locally, for waters that circulate to the deep part of the aquifer system, recharge 

elevation is related to groundwater flow paths, where the groundwater circulation 

depth increases with increasing recharge elevation. This is due to the fact that the 

majority of recharge occurs at high elevations, which is the major driving force for 



 

groundwater flow in the study area. Water that circulates deeper, and as a result closer, 

to geothermal heat sources could have slightly elevated temperatures relative to 

groundwater that has followed shallower flow paths. The reason Frank Springs, 

despite showing some geothermal warming, does not follow the linear trend is 

uncertain, but could be explained by a shallow groundwater component of spring 

discharge. 

In contrast to the previously mentioned springs that discharge water with 

several degrees of geothermal warming, Paulina Spring and Anderson Springs 

discharge water that shows no evidence of geothermal warming (Figure 46b). Camp 

Polk Springhouse discharges water that is 0.5 °C warmer than the mean annual surface 

temperature at the inferred recharge elevation, but this could be attributed to local 

climate variations. High concentrations of anthropogenically influenced ions and low 

estimated recharge elevation suggest Camp Polk Springhouse discharges shallow 

groundwater flow and supports the argument that it does not discharge water that has 

been geothermally warmed. 

As discussed in the Stable Isotopes section of this chapter, Frank Springs may 

discharge a mixture of local- and regional-scale groundwater. The potential impact on 

water temperature in Frank Springs where 50% of the water is locally recharged and 

50% is regional-scale groundwater was examined using equation 15: 

FSRSGWRSGWCPSHCPSH TTfTf =+ )()(       (15) 

where fCPSH and TCPSH are the fraction of flow from and temperature in Camp Polk 

Springhouse, and represent local-scale groundwater, fRSGW and TRSGW are the fraction 
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of flow and temperature from regional-scale groundwater, and TFS is the water 

temperature in Frank Springs. The mean temperatures measured in Frank Springs and 

Camp Polk Springhouse were used for TCPSH (9.3 ºC) and TFS (8.9 ºC), respectively. A 

temperature of 8.5 ºC was calculated when equation 15 was solved for TRSGW. Using 

an assumed recharge elevation of 2400 m, ∆T due to GPE dissipation is 3.38 ºC, 

leaving a GPE corrected temperature of 5.12 ºC. The upper bound of mean annual 

surface temperature at 2400 m elevation is 2.22 ºC, and ∆T due to geothermal 

warming is 2.9 ºC. This temperature is significant because it indicates that discharge 

from the McKinney Butte Springs is carrying geothermal heat. 

Temperature in Anderson Springs is comparable to the mean annual surface 

temperature at the inferred recharge elevation, suggesting it does not discharge water 

that has been geothermally warmed. Temperature in Camp Polk Springhouse is 

slightly higher than expected at the inferred recharge elevation, but can be explained 

by climatic variations that occur in the region (Manga and Kirchner, 2004). 

Temperature data from the Camp Polk Springs aligns with previously presented 

general chemistry and stable isotope data and indicates that they discharge shallow 

groundwater that is recharged locally and at low elevations. 
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Figure 46. Relationship between elevation and water temperature in study area springs. The plus 
signs show the mean annual surface temperature at climate stations in the region and the dashed 
lines show the upper and lower bounds of the relationship between elevation and surface 
temperature (data from Oregon Climate Service). (a) Spring temperature as a function of 
discharge elevation. (b) Spring temperature as a function of the mean recharge elevation inferred 
from oxygen isotope content of the spring water. Spring temperatures in (b) are corrected for the 
expected 2.3 ºC/km increase in water temperature as the water flows to lower elevations. The 
temperature difference ∆T indicates the amount of geothermal warming of the water. The 
Regional Springs (Lower Opal Springs, Alder Springs, and Metolius Spring) show a linear 
relationship between temperature and inferred recharge elevation. 
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The McKinney Butte Springs discharge water that contains geothermal heat, a 

sign of deeper groundwater circulation. This is in agreement with previously presented 

major ion and stable isotope data that also suggest regional-scale groundwater is a 

major component of discharge from the McKinney Butte Springs. However, as was 

the case with the stable isotope data, the temperature data does not eliminate the 

potential contribution from shallow, local-scale groundwater flow. 

Conceptual Model of Groundwater Flow 

In general, the factors controlling groundwater flow through the study area are 

the same as those operating throughout the upper Deschutes Basin. These include the 

distribution of recharge and the physical characteristics of geologic units through 

which the water is moving. Geologic structures, principally faults and fault zones, 

influence groundwater flow by affecting patterns of sediment deposition, by 

juxtaposing rocks of contrasting permeability and by providing preferential flow paths 

for the upward migration of deeply circulating groundwater. 

The area of greatest recharge is along the slopes of the Cascade Range to the 

west of the study area with lesser amounts of recharge occurring on volcanic centers 

bordering the study area to the north and south. The high recharge along the slopes of 

the Cascades results from a combination of heavy precipitation and high infiltration 

through young Quaternary volcanic deposits. Groundwater then moves towards 

discharge areas east of the study area under a topographic gradient. 
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Horizontal Groundwater Flow 

In the upper Deschutes Basin, groundwater follows many flowpaths from high-

elevation recharge areas along the slopes the Cascades toward low-elevation discharge 

areas near the confluences of the Deschutes, Crooked, and Metolius Rivers (Gannett, 

et al., 2001). Groundwater flow through the study area largely follows the same paths 

although some groundwater surfaces as springs on the east side of McKinney Butte. 

Water level contour maps indicate that horizontal gradients in shallow and deep parts 

of the flow system are high in the recharge areas to the west of the study area, 

decrease in the vicinity of McKinney Butte and the city of Sisters, and then increase 

again east of the butte (Figures 26 and 27). 

The water table elevation immediately west of McKinney Butte is relatively 

high given its position in the basin (Gannett et al., 2001) and the horizontal head 

gradient is low. These factors are controlled by the juxtaposition of highly permeable 

glacial outwash and intercalated High Cascade lavas against lower permeability 

Deschutes Formation material, which produces a "leaky dam" effect as groundwater is 

impounded on the west side. The high permeability of the outwash coupled with the 

fact that the shallow aquifer is unconfined also contributes to the low horizontal head 

gradient that is present on the west side of the butte. 

East of McKinney Butte, the horizontal gradients in both the shallow and deep 

parts of the groundwater flow system increase dramatically (Figures 26 and 27). Two 

probable reasons for this increase include the distribution of precipitation in the study 

area, and the influence of local geologic faults. The McKinney Butte area is located to 
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the east of a high gradient precipitation region where annual precipitation decreases 

from over 200 cm/yr in the western part of the region to less than 40 cm/yr 

approximately 4.5 km west of McKinney Butte (Figure 4). This reduction in 

precipitation, and consequently recharge, could play a part in the head gradient 

increase. The influence of faults on the head gradient increase is twofold. First, faults 

bounding McKinney Butte have juxtaposed higher permeability materials on the 

down-thrown (west) side against lower permeability materials on the up-thrown (east) 

side. The decrease in permeability east of the faults may be accommodated by an 

increase in horizontal head gradient. Second, the shallow, saturated, higher 

permeability materials that provide downward leakage to deeper parts of the flow 

system west of the faults are not present on the east side. The lack of leakage from 

shallow water-bearing zones east of McKinney Butte may also contribute to the 

gradient increase in the deep part of the groundwater flow system. 

Both the spatial distribution of precipitation and the factors related to faulting 

in the McKinney Butte area are potential explanations for the horizontal head gradient 

increase on the east side of McKinney Butte. However, the slope of the precipitation 

gradient begins flattening 4.5 km west of McKinney Butte (Figure 4; Figure 3 in 

Gannett et al., 2001) and is nearly flat from the butte to the eastern part of the basin, 

whereas, the initiation of the high horizontal head gradient zone and the faults 

bounding McKinney Butte are practically superimposed on one another (Figures 26 

and 27). While both factors may contribute to the gradient increase on the east side of 
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McKinney Butte, the available evidence suggests that the faults bounding the butte are 

the primary cause. 

Vertical Groundwater Flow 

The vertical hydraulic head gradient (60 m) between the shallow and deep 

parts of the flow system is greatest in the western part of the study area, where the 

locus of recharge occurs. The gradient decreases to approximately 15 m on the west 

side of McKinney Butte. The hydraulic head in both the shallow and deep parts of the 

system drop dramatically east of McKinney Butte. The paucity of shallow wells in the 

eastern part of the study area did not allow mapping of contours below an elevation of 

900 m (Figure 26). However, the vertical gradient between shallow and deep flow 

zones is 15-30 m immediately east of the butte. 

Groundwater Flow to Camp Polk Springs 

Discharge from Camp Polk Springs is supplied by shallow groundwater. 

Losing reaches of Indian Ford Creek on the west side of McKinney Butte contribute to 

local shallow groundwater flow. Because shallow groundwater is the source of Camp 

Polk Springs, their discharge is controlled by the permeability contrast caused by local 

faulting. In fact, the springs probably owe their existence to the fault zone for two 

reasons. First, the depositional basin created on the west side of the fault was filled 

with highly permeable material, and second, the permeability contrast between the 

upthrown and downthrown sides of the fault essentially created a bathtub on the west 

side of McKinney Butte. Additionally, the lavas that form McKinney Butte are 
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underlain by an ash-flow tuff of the Deschutes Formation (Tp in Figure 5). The lower 

permeability ash-flow tuff impedes downward leakage from the more permeable lavas 

and diverts groundwater flow laterally to the Camp Polk Springs. As a result of 

permeability contrasts between glacial outwash, the McKinney Butte lavas, and the 

Deschutes Formation ash-flow tuff, the saturated outwash and intercalated lavas west 

of McKinney Butte act as a head-dependent recharge boundary for the Camp Polk 

Springs. 

Groundwater Flow to the McKinney Butte Springs 

The McKinney Butte Springs discharge groundwater that is depleted in heavy 

isotopes of O and H and that is transporting geothermal heat. These factors suggest 

intermediate- or regional-scale groundwater supplies a substantial fraction of the flow 

to the springs. However, the McKinney Butte Springs are not as depleted in O and H 

isotopes as the Regional Springs, potentially indicating minor contribution from 

locally recharged, shallow groundwater flow that is enriched in isotopes of O and H 

relative to the Regional Springs. 

Interpretation of the flow paths followed by groundwater that discharges from 

the McKinney Butte Springs is also complicated by the fact that the water is carrying 

geothermal heat. In the upper Deschutes Basin, groundwater carrying geothermal heat 

has been interpreted to circulate deep in the flow system (James, 1999; James et al., 

2000; Gannett et al., 2003). The fact that water discharging from the springs carries 
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geothermal heat indicates that upward migration of deep groundwater, presumably 

along local geologic faults, is occurring. 

The low-permeability ash-flow tuff that impedes downward groundwater 

leakage from the shallow part of the system may also inhibit upward groundwater 

migration from the deeper part of the flow system and divert groundwater laterally to 

the McKinney Butte Springs. Evidence for this is provided on the driller’s log for the 

Lamb Well (DESC 54659). On the log, sandstone is identified at a depth of 44.5 m 

below land surface. Well drillers working in the Deschutes Basin have commonly 

misidentified tuffs as sandstone (Lite, personal communication, 2011). Consequently, 

the sandstone recorded on the log is probably the same ash-flow tuff (Tp) shown on 

Figure 5. The water-bearing zone in the well occurs below the ash-flow tuff (49-58 m 

below land surface) and the average water level is approximately 30 m below land 

surface. The water level in the well is 19 m above the water-bearing zone indicating 

confined conditions. Confining pressures in the Lamb Well may indicate that the 

upward migration of groundwater is impeded locally by the low-permeability ash-flow 

tuff. 

The McKinney Butte Springs occur along a southern extension of the structural 

trend that forms the eastern margin of the High Cascade graben and is responsible for 

the substantial amount of groundwater discharged at Metolius Spring. Previous 

research has shown that Metolius Spring contains geothermal heat, and magmatically 

derived carbon and helium-3 (James, 1999), indicating that water discharged at the 

spring has circulated deep in the groundwater flow system and migrated vertically up 
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the Green Ridge fault escarpment (Gannett et al., 2003). The hydrochemical 

characteristics of the Metolius Spring sample analyzed during the current study are 

very similar to those of the McKinney Butte Springs. Water temperatures measured in 

Frank Springs and Metolius Spring in January 2008 were identical (8.9 °C, Table 11) 

and EC measured on the same date only differed by 1 µS/cm (62 µS/cm in Frank 

Spring and 63 µS/cm in Metolius Spring). Major ion and stable isotope concentrations 

in both springs are also very similar (Table 12). Additionally, both springs discharge 

water carrying geothermal heat (Table 21). The striking hydrochemical similarities 

between Metolius Spring and the McKinney Butte Springs and the fact that both occur 

in a part of the basin where regional-scale groundwater discharge is not expected 

suggest that the geologic factors controlling groundwater discharge at the springs are 

related, and that deep, regional-scale groundwater flow migrates vertically up faults 

bounding McKinney Butte and discharges from the McKinney Butte Springs. 

The major difference between Metolius Spring and the McKinney Butte 

Springs is in the magnitude of their discharge. Discharge from Metolius Spring ranges 

from approximately 2-3 m3/s (Table 12) and is one order of magnitude greater than 

discharge from the McKinney Butte Springs (~0.20 m3/s, Table 17). Additionally, 

Metolius Spring discharges a substantial fraction of groundwater in a 400 km2 

drainage basin, whereas the majority of groundwater in the McKinney Butte Spring’s 

drainage basin discharges in the regional discharge area near the confluence of the 

Deschutes, Crooked, and Metolius Rivers and only a small fraction surfaces at the 

McKinney Butte Springs. 



 

 156

The reason for the substantial difference in discharge between springs that 

occur along the same structural trend could be explained by differences in the size of 

the faults that occurs near each spring. Metolius Spring occurs along the Green Ridge 

fault, which has experienced at least 1 km of down-to-the-west displacement (Sherrod 

et al., 2004). In contrast, vertical offset on the Tumalo fault at McKinney Butte is less 

than 100 m (Sherrod et al., 2004). The greater offset at Green Ridge may provide more 

preferential pathways for the upward movement of deeply circulating groundwater 

than at McKinney Butte. 

Conceptual Groundwater Flow Model 

The conceptual model presented here considers the interpretations from 

horizontal and vertical groundwater flow presented previously in this section as well 

as interpretations from the Source of McKinney Butte and Camp Polk Springs section 

presented earlier in this chapter. A cross section of the proposed conceptual model is 

presented in Figure 47. 

Groundwater supplying the McKinney Butte Springs is recharged high on the 

flanks of the Cascades, follows deep flow paths, and flows upward along preferential 

pathways provided by the faults bounding McKinney Butte where it discharges from 

the McKinney Butte Springs. Local and regional scale groundwater may mix near 

McKinney Butte; and if this occurs, the regional-scale portion of flow is interpreted to 

be recharged at very high elevations in the Cascades. If the proposed conceptual 

model properly describes groundwater flow through the study area, upward head 
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gradients must occur near McKinney Butte. As shown in Figures 26 and 27, upward 

head gradients were not identified in the study area. In fact, with the exception of a 

limited zone in the regional discharge area near the confluence of the Deschutes, 

Crooked, and Metolius Rivers, upward head gradients have not been encountered in 

the upper Deschutes Basin (Gannett et al., 2001). The lack of observed upward 

gradients in the study area does not preclude their existence, as they may be limited to 

a laterally narrow zone that is not penetrated by many wells. As previously discussed, 

confining pressures in the Lamb Well may indicate upward groundwater flow locally. 

However, only one water-bearing zone was encountered in the well, so vertical 

gradients could not be identified. Although upward gradients were not observed, the 

gradient decrease on the east edge of McKinney Butte indicates the convergence of 

shallow and deep groundwater flow paths.
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Chapter 7 – Summary and Conclusions 

This study has investigated the hydrologic and geochemical characteristics of 

springs and streams in the McKinney Butte area of the upper Deschutes Basin in order 

to gain an understanding of the local hydrologic system and examine the effects the 

McKinney Butte Springs have on Whychus Creek. In particular this study had the 

following objectives: 1) quantify the magnitude and seasonal variation of flow from 

the McKinney Butte Springs; 2) quantify the relative contribution of the spring flow to 

the total flow of Whychus Creek on a seasonal basis; 3) determine the thermal impact 

of spring flow on Whychus Creek; 4) identify the source(s) of spring water via the 

hydrochemistry of the McKinney Butte Springs and local surface waters; and 5) 

develop a conceptual groundwater-flow model that accounts for the spatial and 

temporal distribution of discharge, hydraulic head, chemistry, and temperature within 

the geologic framework of the area. 

Discharge from the McKinney Butte Springs was estimated via seepage runs 

on Whychus Creek, and mixing models that employed electrical conductivity (EC) 

and temperature data measured in the springs and Whychus Creek. Uncertainty 

associated with each method was quite large and ranged from 28% to 66% for seepage 

runs, 26% to 31% for electrical conductivity, and 16% for temperature. However, 

discharge calculated via each method were generally in agreement and a likely range 

for discharge from the McKinney Butte Springs is 0.10 - 0.30 m3/s. Little seasonal 

variation in the McKinney Butte Springs was discernable. Estimated discharge from 
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seepage runs varied from 0.141 m3/s on 06/25/2007 to 0.201 m3/s on 01/30/2008, a 

total variation of 0.06 m3/s, while even less variation was estimated from EC and 

temperature data. 

The contribution of discharge from the McKinney Butte Springs to Whychus 

Creek was estimated on daily and monthly bases from 01/2006 to 02/2008. Estimated 

monthly contributions ranged from 3-7% during winter months and from 24-46% 

during later summer months. Daily contributions ranged from 1% to 59%. These 

calculated contributions indicate discharge from the McKinney Butte Springs 

represents a significant fraction of flow in Whychus Creek during certain times of the 

year. 

The McKinney Butte Springs discharge groundwater that has a stable 

temperature of approximately 9 ºC and only varies by ±0.3 ºC. As a result, the springs 

act as a thermal buffer locally. The thermal effect from the springs is greatest when 

discharge in Whychus Creek is low and when the temperature in the creek is either 

much greater or much less than the temperature of the springs. These two conditions 

are usually met in late summer, when creek temperatures are high. As mentioned in 

the Introduction Chapter, Whychus Creek is a ODEQ 303(d) listed stream for 

exceeding the maximum allowable temperature for salmon rearing and spawning. 

Because the McKinney Butte Springs lower temperature water, they potentially offer 

aquatic species thermal refuge during hot summer months. However, temperature 

regulation is also important in the winter; small fry were observed in the Frank 
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Springs outflow channel in January 2008 when the spring temperature was 8.85 ºC 

and the temperature in Whychus Creek was 0.90 ºC. 

Multiple scales of groundwater flow contribute to discharge from springs on 

McKinney Butte. Groundwater discharged at the McKinney Butte Springs was 

recharged at high elevations on the flanks of the Cascades and has experienced some 

geothermal warming, indicating it has circulated deeper in the groundwater flow 

system than water discharged from the Camp Polk Springs. However, shallow 

groundwater may contribute to discharge from the McKinney Butte Springs. 

Additionally, general chemistry indicates the springs show little to no effect of 

anthropogenic sources. Conversely, water discharged from the Camp Polk Springs, 

located 2-3 km downstream, was recharged at lower elevations, shows no signs of 

geothermal warming, and has elevated concentrations of the anthropogenically 

influenced ions NO3, SO4, and Cl. 

The occurrence of springs along McKinney Butte is controlled by faulting 

related to the structural trend that forms the eastern margin of the High Cascades 

graben. The Camp Polk Springs are the result of permeability contrasts between 

Pleistocene glacial outwash deposited in the down-dropped structural basin on the 

west side of the butte, Pliocene lavas that form McKinney Butte, and the Miocene ash-

flow tuff that underlies the butte. Groundwater flow through the outwash is impeded at 

the contact with less permeable McKinney Butte lavas, resulting in shallow water 

table elevations on the west side of the butte. Vertical groundwater flow through the 

McKinney Butte lavas is impeded by the less permeable ash-flow tuff that underlies 
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the butte. As a result, groundwater flows laterally and discharges at the Camp Polk 

Springs. 

A significant fraction of groundwater discharged at the McKinney Butte 

Springs has migrated vertically up faults of the Sisters fault zone that bound 

McKinney Butte. The hydrochemistry of the McKinney Butte Springs is very similar 

to Metolius Spring suggesting the same geologic mechanisms control groundwater 

discharge at both springs. The large difference in the amount of water discharging 

from Metolius Spring (2-3 m3/s) and the McKinney Butte Springs (~0.20 m3/s) may be 

related to the size of the faults controlling their occurrence. Metolius Spring is located 

at the base of Green Ridge which has experienced at least 1 km of vertical 

displacement, while displacement on the Tumalo fault, which controls discharge from 

the McKinney Butte Springs is less than 100 m (Sherrod et al., 2004).
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Appendix A: Discharge Errors Discussion 

Random Errors 

Seepage run measurements were obtained using the velocity-area method 

(Rantz, 1982; Sauer and Meyer, 1992). The velocity-area method of measurement 

includes observations of width, depth, and velocity taken at intervals in a cross section 

of a stream. Sauer and Meyer (1992) and Pelletier (1988) quantify and provide 

detailed discussions of the errors and uncertainties associated with the determination 

of river discharge via the velocity-area method. These errors include: 1) errors in cross 

sectional area, which relate to errors in measurement of width and depth, and errors in 

the assumption that the measured depth in a vertical represents the mean depth of a 

segment; 2) errors in mean stream velocity, which relate to current meter errors, 

vertical velocity distributions, velocity pulsations, and other factors; 3) errors 

associated with the computation method; and 4) errors caused by change in stage 

during the measurement, boundary effects, ice, obstructions, wind, incorrect 

equipment, incorrect measuring technique, poor distribution of the measurement 

verticals, carelessness, and other factors. 

Theoretically, the true discharge would be an integration of the velocity and 

area throughout the cross section. In practice, however, the discharge is approximated 

by summing the products of the subsection areas of the stream cross section and their 

respective average velocities (equation A1). 
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Where, Q is total calculated discharge (m3/s), N is the number of segments in the cross 

section, bi is the width of segment i (m), di is the depth of segment i (m), and vi is the 

mean velocity in segment i (m/s). 

Velocities were measured with a current meter at discrete “verticals” (see 

below) across the width of the stream. The principal of operation of a current meter is 

based on the proportionality between the velocity of the water and the resulting 

angular velocity of the meter rotor. The velocity of water at a point in a stream is 

determined by counting the number of revolutions of the rotor during a measured 

interval of time. Price AA and Pygmy current meters were used during this study. 

These meters are used extensively by the USGS (Rantz, 1982). The Price AA meter 

has a rotor 5 inches (0.127 m) in diameter, while the Pygmy meter has a 2-inch (0.051 

m) diameter rotor. The Pygmy’s smaller diameter rotor more accurately measures 

velocity in shallow depths (< 0.46 m). The Pygmy meter was used during most 

seepage runs conducted during this study; while the AA meter was only used, 

according to USGS standards, when the stream velocity was > 0.75 m/s and the stream 

depth was greater than 0.46 m (these conditions were only met during the January 

2008 seepage run on Whychus Creek). The current meters used in this study were 

calibrated in rating tanks prior to purchase. 

A vertical is defined as the vertical line in which the depth and velocity 

measurements are made for the purpose of estimating the mean depth and mean 

velocity for a segment of the stream cross section. The segment extends, on each side, 

halfway to the adjacent vertical, if one exists, or all the way to the edge of the water. 
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In each vertical, velocity is measured at one or two points to determine the average 

velocity in the vertical. Verticals are chosen so that flow in each segment of the 

streamflow measurement is approximately 5 percent or less of the total flow. This 

usually requires 25 to 30 verticals for each measurement (Sauer and Meyer, 1992). 

Discharge measurements were performed following USGS guidelines 

presented in Rantz (1982). These guidelines, dictated by stream conditions, indicate 

the model of Price meter to be used, the amount of time necessary to determine the 

true velocity at each point in a vertical, the number of velocity measurements 

necessary to calculate the mean velocity at each vertical, and the number of verticals 

in each cross section. The Pygmy meter was used when the bulk of depths at a cross 

section were less than 0.46 m, while the AA meter was used at depths greater than 

0.46 m. The AA meter was only used in the January 2008 seepage run on Whychus 

Creek when the majority of depths of verticals were greater than 0.46 m. Rantz (1982) 

identified several common methods of determining the mean velocity at each vertical. 

Two common methods used by the USGS are the two-point and the six-tenths depth 

methods. In the two-point method, observations are made in each vertical at 0.2 and 

0.8 of the depth below the surface. The average of those two observations is taken as 

the mean velocity in the vertical. When using the AA meter, the two-point method is 

not used at depths less than 0.76 m because the meter would then be too close to the 

water surface and to the streambed to give dependable results (Rantz, 1982). In the 

six-tenths depth method, an observation of velocity made in the vertical at 0.6 of the 

depth below the surface is used as the mean velocity in the vertical. The USGS uses 
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the six-tenths depth method when a Pygmy meter is being used and the depth is 

between 0.09 m and 0.46 m, or when an AA meter is being used and the depth is 

between 0.46 m and 0.76 m (Rantz, 1982). The depths in Whychus and Indian Ford 

creeks were such that the six-tenths depths method was used for all discharge 

measurements. 

Two primary factors, width and depth, enter into the determination of the 

cross-section area. While width errors have been considered insignificant by most 

investigators (Sauer and Meyer, 1992), the uncertainty of making individual 

measurements of depth is considered significant. Errors in measuring depth are related 

to the composition of the streambed and the velocity of the stream. Uneven, rough 

streambeds (cobbles, rocks, boulders, etc.) can cause errors in measuring the true 

depth at each vertical. Depth measurements made with a rod in high velocities will 

produce “pile-up” of water on the rod at the water surface; if this is not accounted for, 

depth measurement errors will result. Sauer and Meyer (1992) present equations for 

determining standard errors for individual depth measurements made under several 

measuring conditions (Tables 1 and 2; Sauer and Meyer, 1992). Their measuring 

condition C (stable streambed with uneven gravel and cobbles) applies to the 

conditions in Whychus Creek, and condition B (soft streambed with silt, mud, and 

muck) applies to Indian Ford Creek conditions. Equations A2 and A3 are used to 

determine the approximate average standard error, in percent, attributable to individual 

depth measurement errors (Sd) for conditions C and B. Sauer and Meyer (1992) 

indicate the measurement errors are highly subjective and arbitrary, but they conform 



 

as much as possible to information noted by previous investigators. Standard errors for 

condition C increase with decreasing depth and range from 3 percent at 1.22 m to 20 

percent at 0.15 m. Similarly, errors for condition B increase from 2.36 percent at 1.22 

m to 10.36 percent at 0.15 m. 
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The primary sources of error for mean stream velocity are related to instrument 

errors, velocity pulsations, and vertical velocity distribution. These topics are covered 

by Smoot and Carter (1967), Schneider and Smoot (1976), and Carter and Anderson 

(1963). 

Price AA and Pygmy meters were used to measure velocity. Studies by Smoot 

and Carter (1967) and Schneider and Smoot (1976) evaluated the error for the Price 

AA meter and the Price Pygmy meter, respectively. Smoot and Carter (1968) found no 

significant differences between new and used AA meters provided the meters were in 

good working order. They also found no difference between meters that were 

calibrated individually and meters calibrated in groups (referred to as standard 

calibration). The meters used in this study have undergone standard calibration. Their 

results indicate that for velocities greater than 0.7 m/s instrument error is constant at 

about 0.3 percent. The standard errors for velocities from 0.076 to 0.69 m/s appear to 

be logarithmically distributed and were thus used to define an equation (equation A4). 

 176



 

V
Si

213.0=         (A4) 

Where Si is the instrument standard error, in percent, V is the mean velocity, in m/s, 

and 0.213 is the regression constant. Instrument error for the Price pygmy current 

meter was evaluated by Schneider and Smoot (1976). Unlike results for the AA meter, 

they found that for most of the velocity range there is a significant difference between 

standard rated and individually rated Pygmy meters. However, new meters show about 

the same error characteristics as used meters. Additionally, their results show that for 

standard calibration in the range of velocities tested (0.076 to 0.91 m/s), velocities 

from 0.15 to 0.91 m/s are logarithmically distributed and are represented by equation 

A5. 

3.0258.1 −= VSi        (A5) 

Error calculated from equation 5 ranges from 2.22 percent at 0.15 m/s to 1.29 percent 

at 0.91 m/s. 

Water flowing in natural rivers and streams has a tendency to pulsate at any 

given point. An instantaneous measurement of velocity could be very different from 

the mean velocity at that point. Using data from 23 different rivers, Carter and 

Anderson (1963) showed that pulsation errors vary with time of exposure and with the 

observation depth. The errors are logarithmically distributed and are represented by 

equation A6 for the six-tenths depth method. 

28.06.16 −= TSt        (A6) 
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Where, St is the standard error, in percent, for pulsation error, and T is the time of 

exposure, in seconds. Using equation A6, the standard pulsation error for 40 s of 

exposure time is 5.91 percent. 

The determination of the mean velocity in a vertical is usually based on the 

six-tenths depth method or the two-point method. Carter and Anderson (1963) used 

data from 1,800 verticals taken at more than 100 stream sites to show that the standard 

error, Srs, of the mean velocity in a vertical averaged about 11.2 percent for the six-

tenths depth method, and 4.3 percent for the two-point method. They also developed 

equation A7 to compute the standard error due to error in the vertical velocity 

distribution over an entire cross section. 

N

pNS
S rs

s

)1(1 −+
=       (A7) 

Where Ss is the standard error, in percent, for the cross section, Srs is the standard 

error, in percent, for a single vertical as previously defined, N is the number of 

verticals in the cross section, and p is the average correlation coefficient for a cross 

section. They defined the value of p as 0.04. Substituting values for Srs and p in 

equation A7 yields the following equation for estimating Ss, the vertical velocity 

distribution error for an entire cross section, for the six-tenths depth method (equation 

A8). Inserting the number of verticals measured at each cross section during this study 

yields an error 3.14 percent at N=25. 

 02.5
4.120 +=

N
Ss        (A8) 
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As previously discussed, a discharge measurement consists of measurements 

of depth and velocity at a number of verticals in a cross section, with discharge being 

computed for a segment represented by a vertical, or two adjacent verticals. For this 

study, discharge was calculated using the mid-section method. This method assumes 

the depth and velocity for a vertical applies to a sub-area (segment) extending halfway 

to the vertical on either side of the measured vertical. The assumption of linearity 

and/or uniformity of depth and velocity between verticals has been studied by a 

number of investigators including Carter and Anderson (1963) and Herschy (1971). 

Using data from these studies, Sauer and Meyer (1992) developed the following 

equation for the standard error related to horizontal distribution (equation A9). 

         (A9) 88.032 −= NSv

Where, Sv is the standard error related to horizontal distribution, in percent, and N is 

the number of verticals in a cross section. This equation indicates that Sv is directly 

related to the number of verticals used for the discharge measurement. Sv is 1.88 

percent at N = 25. 

Systematic Errors 

All of the uncertainties mentioned thus far have been random errors, meaning 

they can either be positive or negative and are randomly distributed throughout the 

discharge measurement. In addition to random errors, there is the possibility of 

systematic errors in the measurement of depth, width, and velocity. These are errors 

caused by improperly calibrated equipment, or improper use of such equipment, so 
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that a systematic error (either positive or negative) is introduced. According to Sauer 

and Meyer (1992), most investigators have stated that systematic errors are small, 

generally less than 0.5 percent each for measurement of width, depth, and velocity. 

Therefore, the standard errors, as used in this study, are, Ssb = 0.5 percent (for width), 

Ssd = 0.5 percent (for depth), and Ssv = 0.5 percent (for velocity). 

The standard error, Sq, for an individual discharge measurement can be 

estimated by determining the individual component errors discussed in the preceding 

paragraphs and combining them into a root-mean square error as shown in equation 

A10. 

222222
22 )(

svsdsbvsi
td

q SSSSSS
N

SS
S ++++++







 +
=   (A10) 

This equation assumes that each of the error terms are independent of each other. It 

also assumes that the cross section is reasonably uniform so that the average values of 

depth and velocity can be used (Sauer and Meyer, 1992). The number of verticals, N, 

is used in equation 10 to account for the averaging effect of repeated measurements on 

errors caused by depth measurements (Sd) and pulsation of velocity (St). Each of the 

last three terms Ssb, Ssd, and Ssv, are assumed to be 0.5 percent, and can therefore have 

that value substituted in the equation. The resulting equation for estimating discharge 

error reduces to equation A11. 

 75.0
)( 222

22

++++






 +
= vsi

id
q SSS

N

SS
S     (A11) 

 180



 

 181

Equation A11 was used to determine the percent error in individual measurements of 

discharge on Whychus and Indian Ford creeks. Measurement variables for each 

discharge measurement are presented in Table A1 and standard percent errors for each 

measurement are given in Table A2.
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Table A2. Standard error, in percent, for discharge measurement locations on Whychus and 
Indian Ford creeks. 

Location Date Sd St Si Ss Sv Ssb + Ssd + Ssv Sq

Whychus Cr at Sisters 4/16/2007 2.44 5.91 1.88 3.14 1.88 0.75 4.40
Whychus Cr at Willow Ln. 4/16/2007 2.44 5.91 1.61 3.14 1.88 0.75 4.28
Mouth of Reed Ditch 4/16/2007 - - - - - - -
Whychus Cr below Reed Ditch 4/16/2007 2.44 5.91 1.67 3.14 1.88 0.75 4.31
Whychus Cr above Chester springs 4/16/2007 2.44 5.91 1.68 3.14 1.88 0.75 4.31
Whychus Cr below Chester springs 4/16/2007 2.73 5.91 1.77 3.14 1.88 0.75 4.35
Whychus Cr below Frank springs 4/16/2007 2.73 5.91 1.71 3.14 1.88 0.75 4.33
Whychus Cr at Camp Polk Rd. 4/16/2007 2.73 5.91 1.74 3.14 1.88 0.75 4.34
Indian Ford Cr at Camp Polk Rd. 4/16/2007 2.21 5.91 2.22 3.14 1.88 0.75 4.55
Indian Ford Cr at Barclay Dr. 4/16/2007 - - - - - - -
Whychus Cr at Sisters 6/25/2007 2.20 5.91 2.18 3.14 1.88 0.75 4.53
Whychus Cr above Chester springs 6/25/2007 2.20 5.91 1.98 3.14 1.88 0.75 4.43
Whychus Cr below Frank springs 6/25/2007 2.44 5.91 2.01 3.14 1.88 0.75 4.45
Whychus Cr at Camp Polk Rd. 6/25/2007 2.44 5.91 1.96 3.14 1.88 0.75 4.43
Whychus Cr at DRC gage 6/25/2007 2.44 5.91 1.96 3.14 1.88 0.75 4.43
Indian Ford Cr at Camp Polk Rd. 6/25/2007 - - - - - - -
Indian Ford Cr at Barclay Dr. 6/25/2007 - - - - - - -
Whychus Cr at Sisters 9/21/2007 2.44 5.91 2.07 3.14 1.88 0.75 4.48
Whychus Cr above Chester springs 9/21/2007 2.44 5.91 1.81 3.14 1.88 0.75 4.36
Whychus Cr below Frank springs 9/21/2007 2.73 5.91 1.77 3.14 1.88 0.75 4.35
Whychus Cr at Camp Polk Rd. 9/21/2007 2.73 5.91 1.84 3.14 1.88 0.75 4.38
Whychus Cr at DRC gage 9/21/2007 2.73 5.91 1.77 3.14 1.88 0.75 4.35
Indian Ford Cr at Camp Polk Rd. 9/21/2007 - - - - - - -
Indian Ford Cr at Barclay Dr. 9/21/2007 - - - - - - -
Whychus Cr at Sisters 1/30/2008 2.73 5.91 1.39 3.14 1.88 0.75 4.22
Whychus Cr above Chester springs 1/30/2008 2.73 5.91 1.39 3.14 1.88 0.75 4.22
Whychus Cr below Frank springs 1/30/2008 3.06 5.91 1.41 3.14 1.88 0.75 4.23
Whychus Cr at Camp Polk Rd. 1/30/2008 3.06 5.91 1.43 3.14 1.88 0.75 4.24
Whychus Cr at DRC gage 1/30/2008 3.06 5.91 1.37 3.14 1.88 0.75 4.22
Indian Ford Cr at Camp Polk Rd. 1/30/2008 2.21 5.91 2.18 3.14 1.88 0.75 4.53
Indian Ford Cr at Barclay Dr. 1/30/2008 - - - - - - -  
Sd = individual depth measurement standard error, St = pulsation standard error, Si = instrument 
standard error, Ss = cross section standard error, Sv = horizontal distribution standard error, Ssb = width 
measurement standard errror, Ssd = depth measurement standard error, Ssv = velocity measurement 
standard error, and Sq = total standard error. 

Stream Discharge Variation Errors 

Another potential source of error is variation in streamflow during the seepage 

run. Discharge from the McKinney Butte springs was determined from the difference 

in discharge at locations in Whychus Creek above and below the springs. Because 

spring discharge was determined indirectly from stream discharge measurements, any 
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variation in stream discharge during the measurement period could produce erroneous 

spring discharge values. Variations in Whychus Creek discharge recorded every 15 

minutes at the OWRD gage in Sisters were examined for the 12 hours prior to the start 

of each seepage run. The minimum discharge recorded by the OWRD gage during this 

time period was subtracted from the maximum recorded value to obtain the total 

variation. That value was divided by two to obtain the uncertainty due to variation in 

stream discharge during each seepage run. Errors due to variability in stream discharge 

(Esv), in m3/s are presented in Table A3. 

Table A3. Error related to streamflow variability. 

Date

Minimum Q

(m
3
/s)

Maximum Q

(m
3
/s)

Total Variablity

(m
3
/s)

Error, E sv

(m
3
/s)

04/16/2007 0.554 0.572 0.018 0.009
06/25/2007 0.238 0.288 0.050 0.025
09/21/2007 0.359 0.412 0.053 0.027
01/30/2008 1.792 1.832 0.040 0.020  

The total error at each measurement site (Et), in m3/s, was calculated by 

multiplying the standard error at each site, Sq, by the measured discharge Q, and 

dividing by 100, then adding the error due to streamflow variability, Esv: 

sv
q

t E
QS

E +






 ×
=

100
       (A12) 

Discharge from the McKinney Butte springs was calculated using data from 

measurement sites upstream and downstream from the springs. Because spring 

discharge was calculated with data from two measurement sites, its error was 

calculated using equation A13, where Es is spring discharge error, in m3/s, eac is the 

calculated discharge error at the measurement site above Chester springs, in m3/s, and 
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ebf is the calculated discharge error at the measurement site below Frank springs, in 

m3/s. The total uncertainty for each measurement site and for calculated spring 

discharge is presented in the Results from Current Study section of Chapter 4. 

22
bfacs eeE +=

       (A13)



 

Appendix B: General Chemistry Error Discussion 

Anion and cation concentrations were measured in the Portland State 

University Trace Element Analytical Laboratory using a Dionex Model 2500 ion 

chromatograph and a Perkin Elmer AAnalyst 300 atomic absorption spectrometer, 

respectively. Quality control samples – laboratory blanks and check standards – were 

analyzed prior to analyzing samples and repeated after every 10 samples to monitor 

accuracy and precision. A summary of analytical error is presented in Table B1 for 

anion analysis and in Table B2 for cation analysis. Two errors and a minimum 

reporting limit are presented. The first (Accuracy Error) was determined by analysis of 

known standards and the second (Precision Error) represents one standard deviation 

from replicate samples. The minimum reporting limit was determined from ion 

concentrations measured in sample blanks and is reported as two standard deviations 

greater than the mean concentration in the blanks. A minimum reporting limit is not 

presented for cation analysis because concentrations in all samples were at least two 

orders of magnitude greater than concentrations in field blanks. Total error for each 

sample, calculated using equation B1 is presented in Table B3. 



































+= 100**96.1

sample

p
ACT C

E
EE     (B1) 

Where ET is the total error (%), EAC is Accuracy Error (%), Ep is Precision Error 

(mg/L), and Csample is the measured analyte concentration in the sample (mg/L). 
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Silica concentrations were measured in the Portland State University Trace 

Element Analytical Laboratory using a Beckman Coulter DU 730 ultraviolet visible 

spectrophotometer (UV-Vis). Total percent error presented in Table B3 represents two 

standard deviations from the mean concentration based on triplicate analysis. 

Table B1. Accuracy and precision errors associated with anion analysis. 

Ion
Accuracy
Error (%)

Precision
Error (mg/L)

Min. Reporting
Limit (mg/L)

Sept. and Nov. 2006 Samples

F 1.49 0.0015 0.0000
Cl 4.38 0.0053 0.0520
NO3 5.25 0.0018 0.0167

SO4 3.62 0.0007 0.0107

PO4 34.30 0.0095 0.3511
April 2007 Samples

F 4.40 0.0019 0.0000
Cl 3.32 0.0008 0.0000
NO3 8.50 0.0000 0.0000

SO4 3.72 0.0015 0.0227

PO4 34.12 0.0029 0.2239
June, Aug., and Sept. 2007 Samples

F 4.29 0.0035 0.0000
Cl 2.69 0.0010 0.0591
NO3 6.02 0.0056 0.0868

SO4 4.32 0.0031 0.0185

PO4 27.67 0.0036 0.2215
January 2008 Samples

F 5.34 0.0010 0.0000
Cl 8.00 0.0063 0.0399
NO3 9.26 0.0919 0.1389

SO4 7.98 0.0095 0.0000
PO4 33.93 0.0171 0.2685
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Table B2. Accuracy and precision errors associated with cation analysis. 

Ion
Accuracy
Error (%)

Precision
Error (mg/L)

Sept. and Nov. 2006 Samples
Ca 5.26 0.0038
K 2.40 0.0144
Mg 2.19 0.0082
Na 5.40 0.0227
April, June, Aug., and Sept., 2007 Samples
Ca 7.51 0.0180
K 2.63 0.0071
Mg 4.77 0.0291
Na 4.62 0.0093
January 2008 Samples
Ca 10.99 0.1400
K 1.43 0.0040
Mg 0.70 0.0191
Na 4.76 0.0182



 

T
ab

le
 B

3.
 T

ot
al

 p
er

ce
n

t 
er

ro
r 

re
la

te
d

 t
o 

an
io

n
, c

at
io

n
, a

n
d

 s
il

ic
a 

an
al

ys
is

. 

 

N
am

e
D

at
e

(m
o/

d
/y

r)
C

al
ci

u
m

(C
a)

M
ag

n
es

iu
m

(M
g)

S
od

u
im

(N
a)

P
ot

as
si

u
m

(K
)

C
h

lo
ri

d
e

(C
l)

S
u

lf
at

e
(S

O
4)

F
lu

or
id

e
(F

)
N

it
ra

te
(N

O
3)

S
il

ic
a

(S
iO

2)

W
h

yc
h

u
s 

C
re

ek
at

 S
is

te
rs

 G
ag

e
09

/2
2/

20
06

11
.9

8
5.

30
7.

82
6.

93
7.

94
3.

87
5.

99
0.

20
11

/1
6/

20
06

13
.9

6
5.

99
9.

01
7.

98
7.

45
4.

02
6.

67
0.

81
04

/0
7/

20
07

11
.8

9
14

.2
1

5.
47

5.
01

3.
81

4.
54

11
.2

4
06

/2
5/

20
07

12
.4

5
15

.1
4

5.
64

4.
94

3.
14

5.
71

16
.7

4
09

/2
1/

20
07

12
.8

2
13

.5
8

5.
42

4.
97

3.
27

5.
63

15
.5

4
9.

16
01

/2
4/

20
08

35
.4

4
29

.5
4

6.
13

2.
53

11
.1

6
11

.8
5

8.
31

at
 R

ee
d 

D
it

ch
09

/2
2/

20
06

11
.4

3
4.

53
7.

73
6.

51
7.

22
3.

85
3.

93
28

.1
9

0.
00

ab
ov

e 
C

he
st

er
 S

pr
in

gs
04

/0
7/

20
07

11
.9

7
13

.9
0

5.
37

5.
19

3.
82

4.
56

14
.0

8
06

/2
5/

20
07

12
.0

8
12

.2
4

5.
59

5.
38

3.
41

5.
04

16
.8

7
09

/2
1/

20
07

12
.3

8
11

.4
5

5.
40

4.
90

3.
24

5.
35

15
.0

4
01

/2
4/

20
08

33
.8

0
17

.4
7

6.
07

2.
53

10
.7

7
11

.3
9

8.
19

be
lo

w
 F

ra
nk

 S
pr

in
gs

11
/1

6/
20

06
12

.2
8

4.
38

8.
20

6.
74

6.
88

3.
95

7.
36

8.
47

1.
04

04
/0

7/
20

07
11

.0
8

10
.1

1
5.

22
4.

77
3.

71
4.

38
12

.2
4

8.
50

06
/2

5/
20

07
9.

90
6.

94
5.

07
3.

70
2.

92
4.

92
12

.1
5

11
.4

2
09

/2
1/

20
07

10
.4

9
7.

35
5.

09
4.

07
2.

95
5.

08
12

.7
7

10
.4

2
01

/2
4/

20
08

27
.7

3
7.

38
5.

78
2.

29
9.

87
10

.8
2

7.
95

14
9.

73

at
 C

am
p 

P
ol

k 
R

d.
11

/1
6/

20
06

13
.1

9
4.

96
8.

53
7.

22
7.

24
3.

99
7.

77
7.

64
0.

26
04

/0
7/

20
07

10
.8

5
9.

54
5.

21
4.

76
3.

64
4.

36
12

.1
0

06
/2

5/
20

07
9.

83
6.

88
5.

06
3.

90
2.

90
4.

96
12

.6
3

09
/2

1/
20

07
10

.6
3

7.
48

5.
08

4.
03

2.
95

5.
12

12
.5

7
01

/2
4/

20
08

25
.6

6
5.

54
5.

64
2.

21
9.

37
10

.4
1

7.
68

91
.4

5

at
 D

R
C

 G
ag

e
09

/2
2/

20
06

9.
80

3.
05

6.
91

4.
97

5.
74

3.
77

5.
03

13
.9

7
0.

00
06

/2
5/

20
07

9.
92

6.
90

5.
06

3.
94

2.
90

4.
97

12
.4

1
09

/2
1/

20
07

10
.8

9
7.

40
5.

08
4.

00
2.

93
5.

13
12

.6
7

15
.5

4
01

/2
4/

20
08

25
.3

1
5.

69
5.

63
2.

21
9.

34
10

.3
9

7.
70

81
.1

7
 

189



 

T
ab

le
 B

3 
– 

co
n

ti
n

u
te

d.
 T

ot
al

 p
er

ce
n

t 
er

ro
r 

re
la

te
d

 t
o 

an
io

n
, c

at
io

n
, a

n
d

 s
il

ic
a 

an
al

ys
is

. 

N
am

e
D

at
e

(m
o/

d/
yr

)
C

al
ci

u
m

(C
a)

M
ag

n
es

iu
m

(M
g)

S
od

ui
m

(N
a)

P
ot

as
si

u
m

(K
)

C
h

lo
ri

d
e

(C
l)

S
u

lf
at

e
(S

O
4)

F
lu

or
id

e
(F

)
N

it
ra

te
(N

O
3)

S
il

ic
a

(S
iO

2)

In
d

ia
n

 F
or

d
 C

re
ek

at
 C

am
p 

P
ol

k 
R

d.
09

/2
2/

20
06

8.
69

2.
77

6.
63

6.
31

6.
63

5.
77

4.
24

15
.0

7
0.

00
11

/1
6/

20
06

8.
69

2.
99

6.
74

3.
24

4.
89

3.
89

4.
97

12
.4

9
0.

16
04

/0
7/

20
07

9.
37

7.
19

5.
02

4.
11

3.
59

5.
70

9.
92

8.
50

01
/2

2/
20

08
19

.8
8

3.
36

7.
37

1.
91

8.
65

10
.2

0
7.

86

at
 B

ar
cl

ay
 D

r.
11

/1
6/

20
06

8.
62

2.
98

6.
71

3.
16

4.
84

3.
87

4.
67

at
 H

w
y.

 2
0

06
/2

5/
20

07
9.

37
7.

45
5.

09
5.

30
3.

69
9.

29
12

.3
4

M
cK

in
ne

y 
B

ut
te

 S
p

ri
n

gs
C

he
st

er
11

/1
6/

20
06

8.
27

2.
58

6.
17

3.
72

4.
91

3.
72

3.
70

5.
53

0.
12

04
/0

7/
20

07
9.

08
5.

80
4.

84
3.

44
3.

40
3.

96
7.

38
8.

50
06

/2
5/

20
07

9.
26

5.
84

4.
85

3.
44

2.
80

4.
84

10
.1

4
7.

10
09

/2
1/

20
07

9.
57

5.
93

4.
85

3.
40

2.
80

4.
87

10
.4

5
7.

34
01

/2
4/

20
08

20
.2

0
2.

05
5.

21
1.

84
8.

70
9.

53
6.

88
22

.7
8

Fr
an

k
11

/1
6/

20
06

8.
19

2.
61

6.
21

3.
75

4.
96

3.
72

3.
81

5.
52

0.
45

04
/0

7/
20

07
9.

09
5.

90
4.

86
3.

47
3.

40
3.

96
7.

82
8.

50
06

/2
5/

20
07

9.
20

5.
92

4.
87

3.
41

2.
81

4.
87

10
.5

2
7.

00
08

/2
9/

20
07

9.
29

5.
94

4.
87

3.
41

2.
81

4.
87

10
.3

3
6.

99
09

/2
1/

20
07

9.
56

5.
92

4.
85

3.
41

2.
81

4.
86

10
.2

5
7.

00
01

/2
4/

20
08

19
.8

8
2.

11
5.

25
1.

85
8.

77
9.

63
6.

96
24

.5
6

 

 

190



  

N
am

e
D

at
e

(m
o/

d
/y

r)
C

al
ci

u
m

(C
a)

M
ag

n
es

iu
m

(M
g)

S
od

u
im

(N
a)

P
ot

as
si

u
m

(K
)

C
am

p
 P

ol
k

 S
p

ri
n

gs
A

nd
er

so
n

09
/2

2/
20

06
7.

21
2.

62
6.

44
4.

32

A
nd

er
so

n 
at

 W
hy

ch
us

 C
re

ek
09

/2
2/

20
06

7.
16

2.
58

6.
41

3.
83

C
am

p 
P

ol
k 

S
pr

in
gh

ou
se

11
/1

6/
20

06
7.

02
2.

56
6.

71
4.

29
04

/0
7/

20
07

8.
63

5.
85

4.
89

3.
79

06
/2

5/
20

07
8.

64
5.

78
4.

90
3.

74
09

/2
1/

20
07

8.
50

5.
53

4.
87

3.
61

01
/2

4/
20

08
16

.4
2

1.
77

5.
28

1.
98

O
th

er
 S

p
ri

n
gs

Pa
ul

in
a

08
/2

9/
20

07
10

.1
2

5.
91

5.
11

4.
13

A
ld

er
09

/2
0/

20
07

9.
41

5.
88

4.
82

3.
36

M
et

ol
iu

s
01

/2
3/

20
08

20
.9

0
2.

04
5.

20
1.

86

T
ab

le
 B

3 
– 

co
n

ti
n

u
te

d.
 T

ot
al

 p
er

ce
n

t 
er

ro
r 

re
la

te
d

 t
o 

an
io

n
, c

at
io

n
, a

n
d

 s
il

ic
a 

an
al

ys
is

. 

C
h

lo
ri

d
e

(C
l)

S
u

lf
at

e
(S

O
4)

F
lu

or
id

e
(F

)
N

it
ra

te
(N

O
3)

S
il

ic
a

(S
iO

2)

5.
30

3.
77

4.
18

5.
71

0.
19

4.
91

3.
76

3.
79

6.
26

0.
24

4.
57

3.
69

3.
97

5.
36

1.
19

3.
35

3.
89

7.
58

8.
50

2.
73

4.
66

10
.1

8
6.

44
2.

72
4.

53
10

.4
2

6.
27

8.
22

8.
60

6.
92

13
.8

0

3.
51

10
.1

9
31

.3
2

13
.9

5

2.
81

4.
76

10
.8

6
6.

89

8.
75

10
.9

7
7.

12
11

.6
4

191



 

A
p

p
en

d
ix

 C
: 

S
ta

b
le

 I
so

to
p

e 
D

at
a 

T
ab

le
 C

1.
 δ

18
O

 a
n

d
 δ

2 H
 d

at
a 

fo
r 

sp
ri

n
g,

 s
tr

ea
m

, a
nd

 s
n

ow
 c

or
e 

sa
m

p
le

s 
fr

om
 J

am
es

 (
19

99
).

 
E

le
va

ti
on

 (
m

)
δ2 H

 (
‰

)
δ18

O
 (

‰
)

E
le

va
ti

on
 (

m
)
δ2 H

 (
‰

)
δ18

O
 (

‰
)

L
ar

ge
 S

pr
in

gs
S

m
al

l S
pr

in
gs

B
ro

w
ns

 C
re

ek
13

32
-1

01
-1

3.
8

C
ol

d
10

36
-9

8
-1

3.
3

B
ro

w
ns

 C
re

ek
13

32
-1

07
-1

4
C

li
ff

15
85

-1
16

-1
5.

7
B

ro
w

ns
 C

re
ek

13
32

-1
04

-1
3.

8
M

ow
ic

h
16

52
-1

13
-1

5.
8

B
ro

w
ns

 C
re

ek
13

32
-1

00
-1

3.
8

N
. D

av
is

 C
re

ek
13

23
-1

03
-1

4.
1

B
ro

w
ns

 C
re

ek
13

32
-1

01
-1

4.
1

N
. D

av
is

 C
re

ek
13

23
-1

02
-1

4.
1

C
ul

tu
s 

R
iv

er
13

56
-9

7
-1

4.
1

P
um

ic
e

16
64

-1
16

-1
5.

9
C

ul
tu

s 
R

iv
er

13
56

-9
8

-1
4

S
ta

m
s 

W
el

l
17

11
-1

18
-1

5.
1

C
ul

tu
s 

R
iv

er
13

56
-1

01
-1

4.
1

T
im

ot
hy

14
10

-1
07

-1
5.

4
Fa

ll
 R

iv
er

12
86

-1
11

-1
4.

1
un

na
m

ed
 1

13
29

-1
02

-1
3.

9
Fa

ll
 R

iv
er

12
86

-1
02

-1
4.

2
un

na
m

ed
 2

16
82

-9
8

-1
3.

8
Fa

ll
 R

iv
er

12
86

-1
04

-1
4.

8
un

na
m

ed
 3

82
9

-1
01

-1
3.

6
Fa

ll
 R

iv
er

12
86

-1
10

-1
4.

3
un

na
m

ed
 4

14
51

-1
01

-1
3.

6
H

ea
d 

of
 M

et
ol

iu
s

91
4

-1
07

-1
4.

6
C

an
no

n
16

75
-1

16
-1

6
H

ea
d 

of
 M

et
ol

iu
s

91
4

-1
09

-1
4.

8
C

or
ra

l
16

58
-1

16
-1

6
H

ea
d 

of
 M

et
ol

iu
s

91
4

-1
09

-1
4.

6
un

na
m

ed
 5

13
35

-9
8

-1
2

H
ea

d 
of

 M
et

ol
iu

s
91

4
-1

08
-1

4.
6

S
tr

ea
m

s
M

et
ol

iu
s 

(g
au

gi
ng

 s
ta

.)
60

2
-1

03
-1

3.
5

C
ul

tu
s 

C
re

ek
 (

st
re

am
)

13
85

-8
5

-1
1

Q
ui

nn
 R

iv
er

13
54

-1
01

-1
3.

8
D

ee
r 

C
re

ek
 (

st
re

am
)

13
78

-9
8

-1
2.

6
Q

ui
nn

 R
iv

er
13

54
-1

01
-1

3.
8

W
es

t o
f 

cr
es

t
Q

ui
nn

 R
iv

er
13

54
-9

9
-1

3.
6

A
ld

er
 (

w
es

t)
10

87
-8

3
-1

1.
5

Q
ui

nn
 R

iv
er

13
54

-1
03

-1
3.

6
un

na
m

ed
 8

 (
w

es
t)

26
8

-6
3

-9
.8

Q
ui

nn
 R

iv
er

13
54

-1
01

-1
3.

6
un

na
m

ed
 9

 (
w

es
t)

28
0

-6
5

-1
0.

2
S

no
w

 C
re

ek
13

78
-1

02
-1

4.
1

un
na

m
ed

 1
1 

(w
es

t)
65

8
-8

6
-1

2.
7

S
no

w
 C

re
ek

13
78

-1
03

-1
4.

1
S

pr
in

g 
C

re
ek

12
68

-1
05

-1
4.

6
L

ow
er

 O
pa

l
59

7
-1

14
-1

5.
3

 

192



 

Table C1 – Continued. δ18O and δ2H data for spring, stream, and snow core samples from James 
(1999). 

Elevation (m) δ2H (‰) δ18O (‰) Elevation (m) δ2H (‰) δ18O (‰)

Snow Cores Snow Cores
1a 2231 -115 -15.2 17 1469 -98 -12.5
1b 2231 -105 -14.6 17a 1469 -108 -12.9
1c 2231 -103 -14.1 17b 1469 -106 -13.5
2a 2060 -108 -14.4 17c 1469 -100 -12.4
2b 2060 -102 -14.3 17d 1469 -92 -10.9
2c 2060 -109 -14.4 18 1457 -104 -14
3a 1939 -115 -14.7 18a 1457 -118 -14.8
3b 1939 -99 -12.8 18b 1457 -107 -13.4
3c 1939 -107 -14.4 19 1463 -112 -14.1
4a 1829 -112 -14.3 20 1445 -117 -14.5
4b 1829 -110 -13.8 21a 1390 -112 -14.4
4c 1829 -103 -12.8 21b 1390 -97 -13
5a 2438 -106 -14.8 21c 1390 -111 -13.8
5b 2438 -108 -15.6 21d 1390 -105 -13
5c 2438 -84 -12.8 22 1366 -112 -13.9
6a 2292 -102 -14.9 23 1361 -116 -14.4
6b 2292 -129 -17.9 24 1361 -113 -14.3
6c 2292 -115 -16.1 25 1372 -114 -13.9
7a 2231 -81 -11.3 25a 1372 -113 -14.7
7b 2231 -102 -14.1 25b 1372 -104 -13.4
7c 2231 -102 -17.9 25c 1372 -107 -13.9
8a 2109 -113 -15.2 26 1410 -111 -13.8
8b 2109 -126 -16.8 26a 1410 -112 -14.8
8c 2109 -99 -13.9 26b 1410 -99 -13
9a 1859 -106 -14.1 26c 1410 -104 -13.5
9b 1859 -106 -14.2 27 1457 -92 -12.3
9c 1859 -117 -15.4 28 1457 -96 -12.7

10a 1768 -109 -14.1 29 1439 -90 -12.1
10b 1768 -101 -13.8 30 1439 -96 -12.4
10c 1768 -107 -14.5 31 1451 -100 -12.9
11 1561 -100 -12.7 32 1280 -99 -12.7
12 1561 -106 -13.4 33 1146 -92 -12.1
13 1561 -98 -12.6 35 1587 -122 -16.3
14 1554 -77 -10.7 36 1667 -113 -14.9
15 1463 -97 -12.4 37 1746 -106 -14.1
16 1469 -103 -13.5 38 1926 -107 -14

39 1585 -108 -14.1  
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Table C2. δ18O and δ2H data for spring, stream, and well samples from Ingebritsen et al. (1988). 

Elevation (m) δ2H (‰) δ18O (‰)

unnamed spring 1658 -90 -12.7
Sunrise Springs 1596 -97 -13.7
unnamed spring 512 -111 -14.2
unnamed spring 488 -104 -13.7
Mt. Hood N.F. well 1676 -85 -12.3
unnamed spring 1219 -95 -13.4
Harvey & Jensen well 546 -101 -13.5
Lichtenberger well 642 -102 -14.0
Thompson well 664 -107 -13.2
unnamed spring 620 -103 -12.9
unnamed spring 1167 -93 -13.2
Coyote Spring 832 -106 -13.7
Nena Spring 814 -107 -14.5
Nellie Spring 843 -105 -14.3
unnamed spring 433 -104 -13.3
unnamed spring 923 -99 -12.8
unnamed spring 555 -117 -14.3
unnamed spring 418 -110 -13.2
unnamed spring 823 -103 -12.8
unnamed spring 1183 -103 -14.5
Seymore Springs 882 -103 -13.6
unnamed spring 536 -118 -14.8
unnamed stream 1999 -105 -14.2
unnamed lake 2182 -100 -14.5
unnamed stream 2185 -84 -12.2
unnamed stream 1902 -94 -13.0
Parker Creek 1658 -104 -14.7
unnamed spring 1597 -100 -13.8
Milk Creek 1902 -109 -14.7
unnamed stream 1902 -103 -14.5
unnamed stream 1686 -94 -13.4
unnamed stream 1768 -96 -13.8
unnamed spring 1530 -95 -13.1
unnamed spring 1658 -104 -14.2
Peters Spring 937 -107 -13.7
unnamed spring 1878 -96 -13.2
unnamed spring 1731 -97 -13.3  
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Table C2 – Continued. δ18O and δ2H data for spring, stream, and well samples from Ingebritsen 
et al. (1988). 

Elevation (m) δ2H (‰) δ18O (‰)

Pipp Spring 689 -107 -13.6
Monner Spring 850 -99 -12.3
North Combs Spring 889 -116 -13.2
unnamed spring 1090 -106 -12.3
unnamed spring 1292 -106 -13.9
Lovegren well 1061 -90 -12.7
Blue Lake 1067 -93 -12.6
Blue Lake 1067 -91 -12.7
Blue Lake 1067 -90 -12.6
Blue Lake 1067 -94 -13.0
Blue Lake 1067 -92 -13.0
Metolius Spring 914 -108 -14.8
Clevenger well 805 -99 -13.3
Cold Spring 1036 -97 -13.2
Indian Ford L&C Co. w. 975 -93 -12.9
unnamed spring 779 -114 -14.7
well 921 -107 -13.5
well 920 -106 -13.9
unnamed spring 1154 -113 -13.7
Melvin Spring 1329 -115 -15.0
Black Pine Spring 1317 -111 -14.8
well 1000 -114 -14.9
Picket Spring 1214 -116 -15.0
unnamed spring 2410 -116 -13.6
Bull Spring 1164 -108 -14.6
unnamed spring 1710 -103 -14.0
unnamed spring 1710 -96 -14.0
unnamed spring 1710 -96 -14.1
unnamed spring 1414 -99 -14.1
Kiwa Spring 1460 -114 -15.1
Coyote Spring 1416 -112 -15.6
unnamed spring 1372 -111 -14.2
unnamed spring 1274 -112 -14.6
well 1271 -109 -15.6
Sand Spring 1506 -100 -9.1
unnamed spring 1329 -87 -11.8  
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Table C3. δ18O and δ2H data for spring and well samples from Caldwell (1998). 

Elevation (m) δ2H (‰) δ18O (‰)

Springs
Lower Opal Springs 597 -114.0 -15.28
Virgin River Springs 677 -114.0 -15.10
Alder Springs 695 -111.0 -14.81
Paulina Springs 1024 -92.1 -12.84
Source Springs 1928 -101.0 -14.20
Springs River Springs 1273 -109.0 -14.44
Wells
JEFF 221 547 -112.0 -13.42
JEFF 231 596 -113.0 -13.58
JEFF 538 901 -115.0 -14.45
JEFF 164 873 -105.0 -13.62
DESC 1800 1023 -92.6 -13.01
DESC 1510 946 -110.0 -13.89
DESC 2498 897 -95.9 -12.57
DESC 2498 897 -98.2 -12.56
DESC 3951 931 -115.0 -15.46
DESC 4320 971 -98.8 -13.11
DESC 4320 971 -98.4 -13.19
DESC 4413 973 -98.5 -13.03
DESC 4413 973 -99.7 -13.13
DESC 4844 1045 -95.0 -12.79
DESC 4844 1045 -100.0 -13.04
DESC 5045 1055 -110.0 -14.66
DESC 5180 1023 -96.2 -12.70
DESC 5180 1023 -96.8 -12.75
DESC 5750 1091 -124.0 -15.58
DESC 5752 1299 -122.0 -15.65  
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