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1  |  INTRODUC TION

Ecologists are facing challenges to decipher a rich amount of bio-
logical and environmental information embedded in an ecological 
community. The classification of a set of taxonomic units into func-
tional groups based on morphology and species traits has been 
widely used in ecological research (Litchman & Klausmeier, 2008; 
Usseglio- Polatera et al., 2000). If species are pooled into the same 
group based on similar morphological or physiological character-
istics and developing ecological groups, that can help ecologists 

to better understand the interactions between biological commu-
nities and their environment. For example, stream macroinverte-
brates have been categorized into functional feeding groups, such 
as scrapers, shredders, collector- gatherers, collector- filterers, and 
predators. Logez et al. (2013) suggested that similar fish assem-
blage functional structures will be found in similar environmental 
conditions.

Phytoplankton is one of the primary producers in aquatic eco-
systems, their community structure can be a rapid and sensitive 
response to varying environmental conditions in aquatic systems 
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Abstract
Phytoplankton functional traits can represent particular environmental conditions 
in complex aquatic ecosystems. Categorizing phytoplankton species into functional 
groups is challenging and time- consuming, and requires high- level expertise in species 
autecology. In this study, we introduced an affinity analysis to aid the identification 
of candidate associations of phytoplankton from two data sets comprised of phyto-
plankton and environmental information. In the Huaihe River Basin with a drainage 
area	of	270,000 km2 in China, samples were collected from 217 selected sites during 
the	 low-	water	period	 in	May	2013;	monthly	 samples	were	collected	during	2006–	
2011 in a man- made pond, Dishui Lake. Our results indicated that the affinity analysis 
can be used to define some meaningful functional groups. The identified phytoplank-
ton associations reflect the ecological preferences of phytoplankton in terms of light 
and	nutrient	acquisition.	Advantages	and	disadvantages	of	applying	the	affinity	analy-
sis to identify phytoplankton associations are discussed with perspectives on their 
utility in ecological assessment.
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and are therefore commonly used as excellent bio- indicators 
(Reynolds, 2006). However, phytoplankton has a wide variety 
which brings some challenges for accurate identification to the 
beginner. Categorizing phytoplankton by their traits and func-
tions was attempted a few decades ago. Reynolds et al. (2002) 
set a precedent in the classification of phytoplankton functional 
groups. Salmaso and Padisák (2007)	 developed	 the	 Morpho-	
Functional Groups based on the phytoplankton's morphological 
and functional characteristics, such as body size, mobility, nutri-
ent requirements, and other features. Kruk et al. (2010) applied 
morphology-	based	functional	groups	 (MBFG)	approach	to	clus-
ter phytoplankton organisms, and seven groups were defined ac-
cording to the main morphological traits of phytoplankton such 
as cell volume, presence of flagella, and the ratio of surface area 
and volume. However, there are still some challenges for phyto-
plankton ecologists to apply functional concepts in phytoplank-
ton research. For example, phytoplankton communities can be 
extremely rich (Reynolds, 2006) but may differ from region to 
region due to ecological factors. Classifying species into differ-
ent functional groups requires an extensive amount of knowl-
edge of the autecology of each species, and such information 
may not be readily available in the literature. Physiological data 
are not available for all phytoplankton species (Weithoff, 2003), 
which limits our abilities for developing a priori functional clas-
sification. On the other hand, environmental assessment of 
lakes using phytoplankton is urgently needed by water quality 
managers, especially in some rapidly developing regions such as 
China	because	of	 serious	water	 pollution.	A	 great	 deal	 of	 phy-
toplankton ecological studies have been conducted in Europe 
(EC Parliament and Council, 2000),	North	America	 (Arhonditsis	
et al., 2004), and China (Deng et al., 2014). The implementation 
of water programs has generated an enormous amount of phy-
toplankton data with large spatial scales using standardized field 
protocols. How to effectively use these “data sets” to enhance 
our current understanding of phytoplankton assemblages in re-
lation to their environments and water resource management 
still remains challenging.

In order to provide a better understanding of the ecological in-
formation of phytoplankton associations, we introduce an affinity 
analysis called association rule for identifying phytoplankton as-
sociations.	Association	 rule	 is	a	machine-	learning	method	 for	dis-
covering co- occurrence relationships among activities performed 
by specific individuals or groups in a large database using simple 
statistical performance measures. There have been many suc-
cessful business applications for applying the method in finance, 
telecommunication, marketing, retailing, and web analysis (Chen 
et al., 2005). In ecological studies, we assume that each sampling 
site or sampling date is a “transaction” in a business setting and 
each	species	is	an	item	and	then	develop	the	associations.	Many	re-
searches focus on phytoplankton spatial and temporal variations in 
lakes and rivers, and therefore this study identified phytoplankton 
associations from spatially and temporally data sets, respectively. 
The main objective of this study was to use affinity analysis to aid 

identification of the candidate associations of phytoplankton and 
then assess the relationships between the candidate phytoplank-
ton associations and environmental factors using the redundancy 
analysis	(RDA).

2  |  METHODS

2.1  |  Data preparation

2.1.1  |  River	phytoplankton:	A	spatial	data	set

River phytoplankton data were collected as a part of the 
Water Pollution Control Program in the Huaihe River Basin 
(30°55′–	36°36′N,	 111°55′–	121°25′E)	 (HRB).	 The	 basin,	 with	 a	
drainage	 area	 of	 270,000 km2, is located between the Yangtze 
River	and	the	Yellow	River	in	China	(Wang	&	Xia,	2010). It forms 
a geographical separation between northern and southern China. 
Phytoplankton samples were collected from 217 randomly se-
lected	sites	during	the	low-	water	period	from	May	1	to	May	31	in	
2013 (Figure 1). Detailed field and lab methods can be found in Zhu 
et al. (2015).	At	each	site,	three	cross-	section	transects	were	es-
tablished. We measured in situ environmental variables including 
water temperature (WT), pH, conductivity (Cond), turbidity, and 
total	 suspended	 solids	 (TSS)	 using	 a	 portable	HACHCDC40105.	
We also measured Secchi depth (SD), water depth, stream width, 
water velocity, and elevation. Spectrophotometer (DR5000) was 
used to measure total phosphorus (TP), total nitrogen (TN), and 
chemical oxygen demand (CODMn) according to standard methods 
(NEPAC,	2002).

For phytoplankton, a 1 L sample from the 0.5 m depth below 
surface was collected from three cross- section transects, respec-
tively.	 After	 complete	mixing,	 a	 1	 L	 sample	was	 preserved	with	
1% Lugol's iodine solution immediately in the field and concen-
trated	to	50 ml	after	sedimentation	for	48 h.	After	complete	mix-
ing, 0.1 ml of the concentrated sample was counted directly in a 
0.1 ml counting chamber under a microscope at 400× magnifi-
cation. Phytoplankton was identified according to the reference 
book by Hu and Wei (2006).	At	least	400	algal	units	were	counted	
in each sample. Phytoplankton biomass was expressed as wet bio-
mass and was estimated for individual species by assigning a geo-
metric shape similar to the shape of each phytoplankton species 
(Hillebrand, 1999).

2.1.2  |  Lake	phytoplankton:	A	temporal	data	set

Monthly	phytoplankton	samples	were	collected	during	2006–	2011	
to assess the temporal variability of phytoplankton assemblages in 
a	 man-	made	 pond.	 Dishui	 Lake	 (30°53′N,	 121°55′E)	 is	 located	 in	
Pudong	New	Area	District,	southeastern	Shanghai,	China	(Figure 2a). 
Detailed field and lab methods can be found in Zhu et al. (2013). Eight 
sampling stations were selected in the lake (Figure 2b). We measured 
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in situ environmental variables including water temperature (WT), 
pH, conductivity (Cond), turbidity, total suspended solids (TSS), and 
Secchi depth (SD). Total phosphorus (TP), total nitrogen (TN), and 
chemical oxygen demand (CODMn) were measured according to 
standard methods.

2.2  |  Data analysis

We selected 38 species in HRB and 23 species in Dishui Lake, re-
spectively, after excluding “rare” taxa from analyses. The rare taxa 
were defined as those with average relative biomass (RB) <0.5% and 
occurred at <10 sites/samples (Zhu et al., 2015).

2.3  |  Data format

The	data	set	was	formatted	as	an	M × N	matrix,	where	the	row	rep-
resents different sampling sites S1, S2, S3…, Sn and the column rep-
resents phytoplankton species G1, G2, G3…Gn. Each element [i,j] 
represents the occurrence of the species j in the sample i (Table 1).

2.4  |  Association rule

The matrix usually contains large amounts of data; therefore, data 
mining techniques are used to extract useful knowledge. We fol-
lowed	the	association	rule	proposed	by	Agrawal	et	al.	(1993).

F I G U R E  1 The	map	of	China	showing	the	location	of	HRB	and	the	HRB	showing	all	sampling	stations	of	phytoplankton

F I G U R E  2 The	map	of	Shanghai	(a)	
and Dishui Lake (b) showing all sampling 
stations of phytoplankton
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Association	rule	is	intended	to	capture	a	certain	type	of	dependence	
among species represented in the database. The rule is defined as an im-
plication of the form G1- >G2, for example, an association rule between 
species in the form of G1- >G 2 which means species 1 is also very likely 
to be observed with species 2 to form an association {G1, G2}.

The significance of the association rule is measured via support 
and confidence. The support of rule G1- >G2 is the percentage of G1 
and G2 occurring together. Confidence of rule G1- >G2 is merely an 
estimate of the conditional probability of G2 given G1. If the confi-
dence of rule G1- >G2 is 1 that means G1 occurs in a particular site 
then G2 should occur in that site, too.

First, the binary phytoplankton data for identifying phytoplankton 
associations were constructed (Table 1), “S” represents the sampling 
site or time series, and “G” represents algae species. Secondly, the 

support of phytoplankton association was calculated. For instance, 
the association {G1, G3} has 18% support because the species G1 and 
G3 occur together in 2 of the 11 sites (Table 2). Finally, we calculated 
the confidence of each phytoplankton association (Table 3). For ex-
ample, the confidence of the association {G1, G3} is 0.5 because spe-
cies 3 occurs at half of times that also contains species 1.

We identified the phytoplankton associations based on both 
support >=50% and confidence >= 0.8 (Wang et al., 2022).

All	 analyses	 were	 performed	 using	 R	 software	 (R	 Development	
Core Team, 2013). Specifically, we used the R package “arules” for the 
affinity	analysis,	“vegan”	for	detrended	correspondence	analysis	(DCA),	
and	 redundancy	 analysis	 (RDA)	 and	 “packfor”	 for	 forward	 selection	
analysis (Dray et al., 2013; Hahsler et al., 2014; Oksanen et al., 2013).

The environmental factors except pH value are transformed to 
the form of log(x + 1),	 and	 the	 data	 of	 phytoplankton	 species	 are	
transformed by the Hellinger method. The environmental factors 
are	selected	by	forward	selection	in	RDA,	in	which	the	p value is less 
than	.05	by	the	Monte	Carlo	permutation	test.

3  |  RESULTS

Almost	 one-	third	 of	 taxa	 (28.95%)	 occurred	 at	 50%	 of	 all	 sites	
or more in the HRB (Table 4). Five species (Cryptomonas erosa, 
Chroomonas acuta, Cyclotella meneghiniana, Scenedesmus quadri-
cauda, Navicula cryptocephala) occurred at more than 70% of the 
sites. Two Euglenophytes, two Chrysophytes and Pandorina morum 
occurred at less than 10% sites. Eighteen of 23 taxa were present in 
Dishui Lake during more than half of the sample dates (Table 4). Only 
five taxa had less than 50% occurrence (e.g., Carteria sp., Amiphiprora 
sp., Cryptomonas ovata, Cyclotella sp., Melosira varians).

3.1  |  The phytoplankton associations in HRB and 
Dishui Lake

Twelve phytoplankton associations in HRB were identified by com-
binations of two to three taxa (Table 5) based on support >= 50%, 
and confidence values of >=0.8.	All	associations	can	be	divided	into	
three types: (1) The flagellate algae association (R01- 1, R01- 2, R01- 9): 
pollution- tolerant species (e.g., Cryptomonas ovata and Cryptomonas 
erosa) co- existed; mixotrophic chrysophytes (e.g., Chrumulina sp.) 

TA B L E  1 The	data	format	for	identifying	phytoplankton	
associations

Sites/species G1 G2 G3 G4 G5 G6 ……

S1 1 0 1 1 0 0

S2 0 1 0 0 1 0

S3 1 1 1 0 0 0

S4 0 0 1 0 1 1

S5 0 0 0 1 0 1

S6 0 1 1 0 1 0

S7 1 0 0 1 1 1

S8 1 0 0 1 0 1

S9 0 1 0 0 1 1

S10 0 1 1 0 1 0

S11 0 0 1 0 0 1

TA B L E  2 Calculate	the	frequency	of	associations

Phytoplankton 
associations Site

Number of 
sites

Support 
(%)

{G1,G3} S1,S3 2 18

{G1,G2} S3 1 9

{G3,G5} S4,S6,S10 3 27

{G1,G2,G3} S3 1 9

{G2,G3,G5} S6,S10 2 18

{G1,G4,G5,G6} S7 1 9

Phytoplankton associations 
(X and Y)

Number of sites 
(X)

Number of sites 
(both X and Y)

Confidence 
(both X and Y/X)

{G1} and {G3} 4 2 0.5

{G1} and {G2} 4 1 0.25

{G3} and {G5} 6 3 0.5

{G1,G2} and {G3} 1 1 1

{G2} and {G3,G5} 5 2 0.4

{G1,G4} and {G5,G6} 3 1 0.33

TA B L E  3 Calculate	the	confidence	of	
associations
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was observed to occur with Cryptomonas erosa, Chroomonas acuta, 
Chlamydomonas globosa from different taxon groups. (2) The dia-
toms with the flagellate algae association (R03- 2, R05- 2, R06- 2, R07- 
2, R08- 2, R10- 2, R11- 2, and R12- 2): benthic diatoms with motility 
(e.g., Nitzschia palea, Navicula cryptocephala) frequently co- occurred 
with the cryptophytes. It should be noted that a small centric plank-
tonic diatom (Cyclotella meneghiniana) also occurred with the flagel-
late algae. (3) The diatoms association (R04- 3: Nitzschia palea and 
Cyclotella meneghiniana).

Fifteen phytoplankton associations in Dishui Lake were iden-
tified by combinations of two to three taxa (Table 5). These asso-
ciations can be divided into three types: (1) The flagellate algae 
association (L11- 1): mixotrophic chrysophyte Chrumulina pygmaea 
was observed to occur with Chlamydomonas globosa. (2) The mixed 
association- diatoms or colonial green algae with the flagellate algae 
association: this association can be further divided into three smaller 
associations including mixotrophic chrysophyte Chrumulina pyg-
maea with diatoms or green algae (L03- 2, L07- 2, L09- 2, and L12- 2), 
Chlamydomonas globosa with diatoms or green algae (L01- 2, L02- 2, 
L04- 2, L05- 2, L08- 2, L10- 2, and L13- 2), and Chromulina pygmaea and 
Chlamydomonas globosa with diatoms or green algae (L14- 2 and L15- 
2). (3) The diatoms with colonial green algae association (L06- 3).

3.2  |  Relationships between phytoplankton 
associations and environmental variables

We analyzed the phytoplankton assemblages characterized 
by 12 phytoplankton associations in HRB using detrended 

TA B L E  4 The	summary	of	phytoplankton	taxa	frequency	in	HRB	
and Dishui Lake

Taxa Frequency (%)

Huaihe River Basin (n = 217)

Cryptomonas erosa (C.erosa) 88

Cyclotella meneghiniana (C. meneghiniana) 82

Scenedesmus quadricauda (S. quadricauda) 78

Chroomonas acuta (C. acuta) 74

Navicula cryptocephala (N. cryptocephala) 71

Oscillatoria agardhii (O. agardhii) 63

Nitzschia palea (N. palea) 59

Chromulina sp. 58

Chlamydomonas globosa (C. globosa) 57

Synedra sp. 53

Cryptomonas ovata (C.ovata) 52

Gomphonema sp. 45

Nitzschia amphibia (N.amphibia) 45

Cocconeis placentula (C. placetula) 39

Oocystis lacustris (O. lacustris) 38

Navicula sp. 35

Pseudanabaena sp. 34

Euglena oxyuris (E. oxyuris) 34

Achnanthes sp. 32

Carteria sp. 32

Synedra ulna (S. ulna) 32

Synedra sp. 31

Nitzschia sp. 30

Cymbella tropica (C. tropica) 28

Aulacoseira granulata (A. granulata) 28

Phormidium sp. 27

Synedra acus (S. acus) 26

Melosira varians (M. varians) 26

Fragilaria sp. 25

Nitzschia reversa (N. reversa) 22

Ceratium hirundinella (C. hirundinella) 20

Closterium sp. 17

Euglena sp. 15

Mallomonas sp. 9

Euglena clavata (E. clavata) 9

Pandorina morum (P. morum) 9

Euglena sp. 7

Dinobryon sp. 6

Dishui Lake (n = 70)

Chlamydomonas globosa (C. globosa) 99

Chromulina pygmaea (C. pygmaea) 93

Scenedesmus quadricauda (S. quadricauda) 91

Navicula sp. 91

(Continues)

Taxa Frequency (%)

Ankistrodesmus angustus (A. angustus) 84

Chaetoceros muelleri (C. muelleri) 83

Synedra acus (S. acus) 83

Oocystis lacustris (O. lacustris) 81

Chroomonas acuta (C. acuta) 80

Cocconeis placentula (C. palcentula) 76

Euglena sp. 69

Oscillatoria agardhii (O. agardhii) 67

Gymnodinium sp. 66

Cryptomonas erosa (C. erosa) 63

Ochromonas sp. 59

Cyclotella meneghiniana (C. meneghiniana) 59

Aulacoseira granulata (A. granulata) 56

Nitzschia sp. 54

Carteria sp. 41

Amphiprora sp. 39

Cryptomonas ovata (C.ovata) 33

Cyclotella sp. 29

Melosira varians (M. varians) 29

TA B L E  4 (Continued)
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correspondence	analysis	(DCA).	DCA	results	showed	that	the	max-
imum gradient length of the four axes was 2.63. Subsequently, we 
selected	a	 redundancy	analysis	 (RDA)	 to	detect	 the	 relationship	
between phytoplankton associations and environmental factors 
(Figure 2).	Approximately,	12%	of	the	variance	 in	phytoplankton	
associations can be explained by environmental factors (axis 1: 
8%,	axis	2:	3%).	Forward	selection	in	RDA	identified	six	significant	
environmental factors (Figure 2). Turbidity was positively cor-
related with axis 1, TN/TP ratio was negatively correlated with 
axis 1; Conductivity and TN positively correlated with axis 2, and 
stream	order	negatively	correlated	with	axis	2.	Most	of	the	mixed	
associations had a positive relationship with TN and turbidity 
except that association 3 displayed a positive relationship with 

conductivity and a negative correlation with turbidity (Figure 2).
The flagellate algae association had a positive relationship with 
turbidity, DO and stream size while the diatom association was 
positively associated with TN (Figure 2).

We used the 15 phytoplankton associations in Dishui Lake for 
detrended	correspondence	analysis	(DCA)	with	the	maximum	gradi-
ent	length	of	the	four	axes	as	1.55.	RDA	showed	that	32%	variance	
in phytoplankton associations can be explained by environmental 
factors:	axis	1:	27%,	axis	2:	4.8%.	Forward	selection	 in	RDA	 iden-
tified three significant environmental factors (Figure 3). Salinity 
and transparency were negatively correlated with axis 1; pH was 
negatively correlated with axis 2. The mixed associations including 
Chromulina had a positive relationship with pH and transparency 

TA B L E  5 The	phytoplankton	associations	composition	in	HRB	and	Dishui	Lake	(R:River;L:Lake)

Number + group Taxa 1 Taxa 2 Taxa 3 Habitat template

R01- 1 C. ovata C. erosa Pollution, poor light, lentic

R02- 1 Chromulina sp. C. erosa Oligotrophic-	mesotrophic + pollution

R03- 2 Chromulina sp. C. meneghiniana Oligotrophic-	mesotrophic + silica-	rich,	low	P

R04- 3 N. palea C. meneghiniana Shallow	turbid + silica-	rich,	low	P

R05- 2 N. palea C. erosa Shallow	turbid + pollution

R06- 2 N. cryptocephala C. acuta C. erosa Shallow	turbid + pollution

R07- 2 C. meneghiniana N. cryptocephala C. erosa Silica-	rich + shallow	turbid + pollution

R08- 2 C. acuta C. globosa C.meneghiniana Meso-	eutrophic + organic	and	inorganic	
nutrients

R09- 1 C.acuta C. globosa C. erosa Meso-	eutrophic + pollution

R10- 2 C. meneghiniana C. acuta C. erosa Silica- rich, low P+ meso- eutrophic

R11- 2 C. meneghiniana C. globosa C. erosa Silica- rich, low P+ meso- eutrophic

R12- 2 C. meneghiniana O. agardhii C. erosa Silica- rich, low P+ meso- eutrophic

L01- 2 O. lacustris C. globosa p-	limit + meso-	eutrophic

L02- 2 S. acus C. globosa Shallow	turbid + meso-	eutrophic

L03- 2 A. angustus C. pygmaea Clear,	mixed + shallow	oligotrophic	brackish

L04- 2 A. angustus C. globosa Clear,	mixed + meso-	eutrophic

L05- 2 C. muelleri C. globosa Brackish, high NP+ meso- eutrophic

L06- 3 S. quadricauda Navicula sp. Shallow,	mixed + turbid	shallow

L07- 2 S. quadricauda C. pygmaea Shallow	mixed + shallow	oligotrophic	
brackish

L08- 2 S. quadricauda C. globosa Shallow	mixed + meso-	eutrophic

L09- 2 Navicula sp. C. pygmaea Turbid	shallow + shallow	oligotrophic	
brackish

L10- 2 Navicula sp. C. globosa Turbid	shallow + meso-	eutrophic

L11- 1 C. pygmaea C. globosa Shallow oligotrophic 
brackish + meso-	eutrophic

L12- 2 Navicula sp. S. quadricauda C. pygmaea Turbid + shallow	mixed + shallow	
oligotrophic brackish

L13- 2 Navicula sp. S. quadricauda C. globosa Turbid	shallow + shallow	
mixed + meso-	eutrophic

L14- 2 S. quadricauda C. pygmaea C. globosa Shallow + oligotrophic	
brackish + meso-	eutrophic

L15- 2 Navicula sp. C. pygmaea C. globosa Turbid + shallow + oligotrophic	
brackish + meso-	eutrophic
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while the mixed associations including Chlamydomonas had a nega-
tive relationship with pH (Figure 3). The flagellate associations posi-
tively correlated with salinity (Figure 3).

4  |  DISCUSSION

Compared to the traditional phytoplankton functional group de-
velopment (Reynolds et al., 2002), affinity analysis encompasses a 
broad set of analytics techniques aimed at uncovering the connec-
tions	of	phytoplankton	associations.	Affinity	analysis	 is	a	method	
for rapidly finding phytoplankton associations from a large data 
set. It has the advantage of time- saving and easy use, especially for 
new algae researchers in a region with limited ecological studies on 
local phytoplankton assemblages. So affinity analysis can be used 
as a first step to identify candidate phytoplankton associations.

The identified phytoplankton associations reflect the eco-
logical preferences of phytoplankton including the resource ac-
quisition (e.g., light and nutrients) and competitive abilities (e.g., 
r/K selection or C- S- R model) (Salmaso et al., 2015). Cryptomonas 
erosa and Cryptomonas ovata or Chroomonas acuta from the same 
family were often concurrent in HRB (Table 2). These species can 
benefit from both mixotrophy and phagotrophy, and also can tol-
erate high dissolved nutrients and limiting light conditions (Graham 
& Wilcox, 2000; Kruk & Segura, 2012), and can avoid grazing by 
zooplankton. Some taxa from different divisions can form the as-
sociations such as diatom- cryptophytes. Diatom- cryptophytes asso-
ciations are consistent with what Sommer et al. (1986) suggested 
that Cryptophyceae and small centric diatoms developed together 
when nutrients were available and light increased in spring because 
of their small volume and high growth rate. Some of the identified 
phytoplankton associations can reflect the grazing pressure. The 
observed associations are consistent with the notion that both 

Scenedesmus and Selenastrum are more resistant to grazing than 
either Chlamydomonas or Ankistrodesmus, while the latter two taxa 
are better competitors in the absence of grazing (Drake et al., 1993). 
Motile	benthic	diatoms	such	as	Nitzschia palea are concurrent with 
some planktonic algae. Benthic diatom motility offers not only a 
selective advantage on silty substrata but also it is correlated with 
some ecological traits (Passy, 2007). Kawamura et al. (2004) demon-
strated that the grazing pressure of gastropods had an influence on 
the Nitzschia species.

We	 performed	 an	 RDA	 for	 assessing	 the	 applicability	 of	 the	
identified phytoplankton associations in environmental assessment. 
In HRB, light and TN were the best predictors of phytoplankton as-
sociations (Figure 3).	Our	results	are	consistent	with	(Mackay	et	al.,	
2012) that the diatom- association was strong with the TN nutrient. 
In Dishui Lake, the light and salinity were the best predictors for 
phytoplankton associations (Figure 4). Chrysophytes are restricted 
to cold, oligotrophic conditions. Small Chromulina groups showed a 
different response to pH and water clarity, compared to the me-
dium size Chlamydomonas groups (Figure 4). The importance of pH 
as a primary factor affecting chrysophytes has been reported in 
studies from widely separated geographic regions. Chromulina and 
Chlamydomonas are both r- selected taxa, their small- medium body 
size and motility conferred by flagella are advantages and allow 
them to reduce sinking rate (Kruk et al., 2010). Compared to the 
Chlamydomonas, the Chromulina prefer the oligotrophic environ-
ments with an abundance of macrophytes. Compared to the river, 
more variance (33%) in phytoplankton associations can be explained 
by different combinations of environmental factors in the man- 
made	shallow	lake.	A	lake	is	perceived	to	be	relatively	stable,	that	of	
a river, and is characteristically graded from the origin to the river- 
mouth (Reynolds et al., 1994). Therefore, candidate phytoplankton 
associations are reasonable proxies for explaining environmental 
variables.

F I G U R E  3 The	RDA	plot	of	12	
phytoplankton associations and 
environmental variables in HRB (DO: 
Dissolved oxygen; TN: Total nitrogen; 
NP:TN/TP ratio; Cond: Conductivity; 
phytoplankton association codes are in 
Table 5)
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Binary data were used to construct the phytoplankton associ-
ations in this work, which ignores the abundance of phytoplank-
ton	 species.	 Although	 binary	 data	 are	 commonly	 observed	 and	
analyzed in many application fields (Yamamoto & Hayashi, 2015), 
some species which were not abundant potentially contributed 
much more to the analysis than those common taxa but we min-
imized the effects. The phytoplankton associations identified by 
affinity analysis should be viewed as candidate associations and 
each association should be carefully evaluated using ecological 
theories and concepts.

In essence, affinity analysis can be a useful method for find-
ing the phytoplankton associations from the complex and infor-
mative data set. It can explain some fraction of the variance from 
both spatial and temporal algal assemblages distribution patterns, 
although their effectiveness varies differently in rivers and lakes, 
depending on the gradients of environmental factors. Our results 
do not mean that the proposed method should replace the conven-
tional ecological classifications of phytoplankton. The proposed 
method provides an alternative, especially for the regions where 
researches	on	phytoplankton	assemblages	are	still	limited.	Affinity	
analysis remains to be tested in future research on whether it is 
predicted better for phytoplankton associations than other classi-
fication systems.
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