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Abstract 

A series of three new seminaphthorhodamine analogs were synthesized via the 
condensation of 7-amino-2-naphthol and amino substituted hydroxy-benzophenones. 
Absorption, excitation, and emission spectra were taken in a variety of solvents and pH 
values. At biological pH, the molecules showed increasing Stokes shifts (from 40 to 95 
nm) and longer wavelength emission in phosphate buffer with increased alkylation of 
the rhodamine nitrogen moiety. The fluorescent properties of the compounds were pH 
insensitive and variable in organic solvents. Two of the compounds exhibited significant 
emission at long wavelengths on the edge of the near infrared region of the 
electromagnetic spectrum. 
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Introduction 

 Fluorescent compounds (heretofore referred to as fluorophores) are a diverse 

class of molecules that absorb and emit light at different frequencies. This change in 

wavelength (the Stokes shift) is due to excited state relaxation processes such as 

vibratory energy loss to solvent molecules. Fluorophores have found countless 

applications in the fields of medicine and industry and are a primary topic of research for 

organic chemists. Special attention has recently been paid to fluorophores that emit in 

the near infrared (NIR) region of the electromagnetic spectrum. NIR radiation is better 

able to penetrate live tissue and experiences decreased interference from fluorescing 

proteins.1 They are therefore better suited to certain biological imaging applications than 

fluorophores that emit in the visible region. Although considerable work has been done 

in developing such NIR dyes, the library of available fluorophores that show NIR 

emission is small compared to those that fluoresce at shorter wavelengths.1 

 Benzoxanthenes are one class of 

fluorophores which consist of a 

substituted xanthene skeleton with a 

linear (b) or branched (a, c) 

benzannulation (Figure 1).2 They are 

desirable synthetic targets due to their 

low cost, sensitivity, and ease of 

functionalization.3  

 Benzoxanthene design strategy makes use of not only the pattern of 

benzannulation, but also of the regiochemistry of functional groups (usually hydroxyl or 

Figure 1: The benzoxanthene framework. 

Clockwork from top left: the xanthene skeleton, a 

benzo[c]xanthene, benzo[b]xanthene, and 

benzo[a]xanthene. 
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amino) to tune the desired 

spectroscopic properties.4 

Figure 2 shows some 

alternate substitution 

patterns for benzoxanthene 

dyes that have been explored in recent work.3 The benzoxanthenes have found varied 

applications in live cell imaging, light emitting diodes (LEDs), and as ratiometric pH 

probes.2,5,6 Although most benzoxanthene dyes emit in the visible region, recently 

developed seminaphtharhodofluorones (SNAFR, which are substituted with oxygen at 

position 10) and seminaphtharhodofluors (SNARF, which are nitrogen substituted at the 

10 position) have been shown to exhibit large Stokes shifts (~200 nm) and NIR 

emissions.7,3
 

 

 With the goal of expanding the library of available fluorophores, herein is 

presented the synthesis of three new type a benzoxanthene dyes of the 

seminaphthorhodamine class, as seen in Figure 3. The free amine (1), dimethyl (2), and 

Figure 3: Three new SNARF compounds based on a benzo[a]xanthene skeleton. They vary at the 10 

position, with compound 1 (left) containing a free amine, compound 2 (center) containing two methyl 

groups, and compound 3 (right) based on julolidine. 

Figure 2: Alternate benzoxanthene substitution patterns than 

those shown in Figure 1. 
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julolidine (3) moieties at the 10 position have all been investigated and shown promising 

chemical properties.1, 6 The general synthetic strategy was the condensation of an 

appropriately substituted benzophenone with a disubstituted naphthol under acidic 

conditions, with subsequent ring opening and esterification, as previously reported.6 

Based on the characterization of recently synthesized benzannulated xanthene dyes, it 

was hypothesized that the target compounds would display long wavelength 

fluorescence and possibly find use in biological applications.3,7 To test the hypothesis, 

the ultraviolet-visible (UV-vis) absorption, excitation, and emission (EEM) spectra of the 

target compounds were measured in a range of organic and aqueous media.  

 

Results and Discussion 

 The spectral properties of the 

compounds were found to be pH 

insensitive. Overlaid absorption spectra in 

pH 7.4 phosphate buffer can be seen in 

Figure 4. Organic solvents tended to shift 

the absorbance maxima to longer 

wavelengths with increasing polarity (Table 

1). The emission maxima were also greater 

or equal in organic solvents than those in phosphate buffer. All three compounds 

showed two local absorption maxima in certain solvents and one predominant one in 

others. With increased alkylation of the nitrogen at position 10, the appearance of the 

two maxima is apparent in phosphate buffer. The converse is true in organic solvents, 

Figure 4: Overlaid UV-vis absorption spectra 

for compounds 1, 2, and 3 in pH 7.4 phosphate 

buffer (10% DMSO). 
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with DMSO and MeOH showing two absorption maxima with the free amine, and only 

one pronounced peak with the julolidine type.  

 Absorbance λmax (nm) Extinction coefficient (M-1 cm-1) Emission λmax (nm) Stokes Shift (nm) 

Compound 1 pH 7.4 530 2.21 × 104 570 40 

Compound 1 DMSO 582 2.05 × 104 620 38 

Compound 1 MeOH 567 1.80 × 104 610 43 

Compound 2 pH 7.4 568 2.86 × 104 640 72  

Compound 2 DMSO 606 2.67 × 104 650 54 

Compound 2 MeOH 584 2.61 × 104 640 56 

Compound 3 pH 7.4 545 2.03 × 104 650 95 

Compound 3 DMSO 606 2.02 × 104 660 54 

Compound 3 MeOH 592 2.17 × 104 670 78 

 

The Stokes shift of each compound in 

phosphate buffer with 10% DMSO can be seen in 

Figure 5. In aqueous solution, the Stokes shift is more 

pronounced with increased alkylation of the nitrogen 

at position 10, likely due to the electron donating 

abilities of the N-alkyl groups.8 The extinction 

coefficients, absorption maxima, and Stokes shift of 

each compound can be seen in Table 1 in the various 

solvents probed. Stokes shifts grew larger with 

increasing alkylation of the position 10 nitrogen in 

aqueous solvents. Stokes shifts were lower in organic 

solvents than in buffered solutions for all the 

Table 1: Absorbance maxima and emission maxima, extinction coefficients, and Stokes shifts for 

compounds 1-3 in pH 7.4 phosphate buffer (10% DMSO), MeOH (10% DMSO), and DMSO. All 

measurements were taken at 15 μM concentration. 

 

Figure 5: Stokes shift of compounds 1 

(top), 2 (center), and 3 (bottom) in pH 

7.4 phosphate buffer (10% DMSO). 
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compounds studied. Extinction coefficients were largest with compound 2 and similar in 

compounds 1 and 3. 

 The UV-vis absorption, emission, and excitation spectra with EEM wavelengths 

chosen near commonly available laser lines for compound 1 in phosphate buffer, 

DMSO, and MeOH are shown in Figure 6. Emission intensity was greatest in phosphate 

buffer at all excitation wavelengths. This compound emits most strongly in the yellow to 

red region of the spectrum. The emission intensity at top right in Figures 6-8 have been 

divided by the absorbance at the excitation wavelength so that the intensity is 

proportional to the brightness of the compound’s fluorescent emission. Compound 1 

had the brightest emission in aqueous solvent, then 3 (60% of 1), then 2 (30% of 1). 

Figure 6: UV-vis absorption (left), excitation (center), and emission (right) spectra for compound 1 (15 μM) in 

pH 7.4 phosphate buffer (10% DMSO), MeOH (10% DMSO) and DMSO. The legend is seen at top left. The 

fluorescence axis in the emission spectrum at right has been normalized to the absorbance at the excitation 

wavelength so that the intensity is proportional to the brightness of emission. 

Figure 7: UV-vis absorption (left), excitation (center), and emission (right) spectra for compound 2 (15 μM) in 

pH 7.4 phosphate buffer (10% DMSO), MeOH (10% DMSO) and DMSO. The legend is seen at left. The 

fluorescence axis in the emission spectrum at right has been normalized to the absorbance at the excitation 

wavelength so that the intensity is proportional to the brightness of emission. 
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The UV-vis and EEM spectra for compound 2 are seen in Figure 7 above. This 

compound showed less spectral sensitivity to solvent conditions than compounds 2 and 

3, with solvation in DMSO and MeOH yielding stronger emission than the aqueous 

phase fluorophore. Emission was weaker than that of compound 1 but roughly equal to 

compound 2. Emission was primarily in the red and the start of the NIR region.  

  Compound 3’s UV-vis and EEM spectra appear in Figure 8. Emission 

intensity was roughly four times stronger in organic solvents than in phosphate buffer. In 

aqueous solution, emission intensity was about double that of compound 2 and two-

thirds that of compound 1. Like compound 2, compound 3 showed two local absorption 

maxima in all the solvent systems probed (most pronounced in phosphate buffer), and 

exhibited emissions into the red region of the spectrum and into the beginning of the 

NIR region.  

 The same trend of increased alkylation of the position 10 nitrogen leading to 

higher Stokes shifts in aqueous solution can be seen affecting the emission 

wavelengths of the target compounds, with the dimethyl and julolidine substituted 

compounds seeing increased emission in the red and NIR regions. This is most likely 

Figure 8: UV-vis absorption (left), excitation (center), and emission (right) spectra for compound 3 (15 μM) in 

pH 7.4 phosphate buffer (10% DMSO), MeOH (10% DMSO) and DMSO. The legend is seen at top left. The 

fluorescence axis in the emission spectrum at right has been normalized to the absorbance at the excitation 

wavelength so that the intensity is proportional to the brightness of emission. 
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due to the electron donating effects of the alkyl groups to the conjugated π-system, 

which are strengthened in the excited state.8 The decreased rotational freedom and 

rigidity of the julolidine rings also extend the orbital overlap with the π system.8 

 Overall, the three compounds show promising spectral properties, but more work 

needs to be done to truly characterize their potential applications. Time dependent 

density functional theory calculations could better predict the excited state electronic 

structures of the target compounds and help explain their behavior in various media.9 

 

Experimental 

 Instrumentation 

Unless otherwise indicated, all commercially available starting materials were 

used directly without further purification. Silica gel Sorbent Technologies 32-63 

m was used for flash column chromatography. 1H-NMR was obtained on an 

ARX-400 Advance Bruker spectrometer. Chemical shifts () are given in ppm 

relative to d6-DMSO (2.50 ppm, 1H, 39.52 13C). MS (HRMS, ESI) spectra were 

obtained at the PSU Bioanalytical Mass Spectrometry Facility on a 

ThermoElectron LTQ-Orbitrap high resolution mass spectrometer with a 

dedicated Accela HPLC system.  

Absorbance spectra were collected on a Cary 50 UV−vis spectrophotometer. 

Fluorescent excitation and emission spectra were collected on a Cary Eclipse 

fluorescence spectrophotometer (Agilent Technologies). Absorbance spectra 

were baseline corrected. Fluorescence spectra were corrected for the 
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wavelength dependent response of the R928 photomultiplier tube using a 

manufacturer generated correction file. 

 

 SNARF Synthesis 

 

The three SNARF-4 compounds that form the basis of this paper were 

synthesized in two steps. The appropriately substituted hydroxybenzophenone 

was condensed with 7-amino-2-naphthol in a mixture of CH3SO3H:TFA 1:1 at 

80 °C for 16-24 h to produce the corresponding spiro lactone (labelled spiro 1-3 

in the supporting information section to correspond to compounds 1-3). 

Subsequent ring opening and Fisher esterification is carried out in MeOH with 

catalytic acetyl chloride to produce the methyl ester. The required starting 

materials; 2-(2,4-dihydroxybenzoyl)benzoic acid, 2-(4-amino-2-

hydroxybenzoyl)benzoic acid, 2-(8-hydroxy-1,2,3,5,6,7-hexahydropyrido[3,2,1-

ij]quinoline-9-carbonyl)benzoic acid and 7-amino-2-naphthol are synthesized 

according to described or modified literature protocols. In general, overall good 

yields are obtained for the fluorophores included in this series. All compounds 

were isolated by flash column chromatography, if necessary, and characterized 

by NMR and HR ESI MS. The reaction scheme for the synthesis of compounds 

Figure 9: General synthetic scheme for compounds 1-3. The appropriately substituted benzophenone 

is condensed with 7-amino-2-naphthol in acidic conditions. The resulting spiro compound is then 

opened and esterified with acetyl chloride and MeOH. 
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1-3 can be seen in Scheme 1. Unlike compounds 2 and 3, compound 1’s 

precursor benzophenone was prepared from hydrolysis of rhodamine-110 due to 

unsuccessful attempts to synthesize it from condensation of phthalic anhydride 

and m-aminophenol. This condensation was successful in the case of the 

dimethyl and julolidine compounds (2 and 3, respectively). The expanded 

synthetic procedures can be seen in the supporting information section. 

 

Conclusion 

 Presented herein are the synthesis, spectral properties, and structural 

characterization of three new benzo[a]xanthene seminaphthorhodamine compounds. 

The compounds showed fluorescent properties, with increased alkylation of the position 

10 nitrogen producing longer wavelength emission and bigger Stokes shifts in aqueous 

media. This was most likely due to increased rigidity, coplanarity, orbital overlap with the 

π system, as well as increased electron donation from the N-alkyl groups. Further 

research is needed to fully probe the potential applications of these new fluorophores.  
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Synthesis of 7-amino-2-naphthol. 2,7-dihydroxy naphthalene, formamide and sodium 

sulfite were suspended in 50 mL of DI water. The mixture was refluxed 12 h. The solid 

formed was collected by filtration and washed with water (100 mL). The solid was 

dissolved in 100 mL of diethyl ether, then transferred to a 500 mL separatory funnel. 

The organic phase was washed with 100 mL of 6 N HCl. The aqueous layer was 

basified to pH 13 with 50% NaOH. The aqueous layer was washed with 100 mL of 

diethyl ether. The aqueous layer was neutralized to pH 7 with HCl. The aqueous layer 

was extracted with ethyl acetate (3 x 100 mL). The organic extracts were combined, 

dried over Na2SO4 and the solvent evaporated under vacuum. Yield 76%.1 1H NMR 

(400 MHz, DMSO-d6) δ 9.30 (s, 1H), 7.44 (d, J = 8.8 Hz, 1H), 7.41 (d, J = 8.8 Hz, 1H), 

6.72 (d, J = 2.4 Hz, 1H), 6.67 (dd, J = 8.9, 2.1 Hz 1H), 6.65 (dd, J = 8.9, 2.4 H, 1H), 6.59 

(d, J = 2.1 Hz, 1H), 5.20 (s, 2H). 13C NMR (101 MHz, DMSO) δ 155.35, 146.75, 136.51, 

128.89, 128.27, 121.17, 115.16, 113.34, 106.30, 104.53. 

 

 

Synthesis of 2-(4-amino-2-hydroxybenzoyl)benzoic acid. Rhodamine 110 

hydrochloride (0.2 g, 0.545 μmol) was mixed with NaOH (0.375g, 9.27 mmol) and 200 

μL of water. The mixture was stirred and heated at 160 oC for two hours, 0.5 mL of 50% 

NaOH were added in one portion and the mixture heated and stirred at 160 oC for an 

additional one hour. The mixture was allowed to cool down to room temperature and 

diluted with 10 mL of water. The mixture was acidified to pH 1 with concentrated HCl. 

The resulting mixture was extracted with ethyl ether (2 × 50 mL), the organic extracts 

combined, dried over Na2SO4, filtered and the solvent evaporated under vacuum to 

leave a pale yellow solid.  Yield: 130 mg, 93%. 1H NMR (400 MHz, DMSO-d6) δ 13.01 
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(s, 1H), 12.60 (s, 1H), 7.95 (dd, J = 7.2, 1.2 Hz, 1H), 7.67 (td, J = 7.5, 1.4 Hz, 1H), 7.60 

(td, J = 7.5, 1.4 Hz, 1H), 7.37 (dd, J = 7.6, 1.2 Hz, 1H), 6.71 (d, J = 8.5 Hz, 1H), 6.44 (s, 

2H), 6.02 (dd, J = 8.3, 2.1 Hz 1H), 6.00 (d, J = 2.2, 1H). 13C NMR (101 MHz, DMSO) δ 

198.29, 166.89, 164.95, 156.79, 140.04, 134.45, 131.92, 129.81, 129.67, 129.28, 

127.65, 109.76, 106.45, 106.15, 98.13, 48.56. 

 

 

Synthesis of compound 2-(4-(dimethylamino)-2-hydroxybenzoyl)benzoic acid: 3-

dimethyl amino phenol (5 g, 36.44 mmol) and phthalic anhydride (5.39 g, 36.44 mmol) 

were dissolved in 30 mL of toluene and refluxed 18 h. The solvent was evaporated 

under vacuum to leave a purple residue. The residue was dissolved in ethyl acetate and 

the mixture passed through a plug of silica gel using EtOAc:Hexanes 1:1, 

EtOAc:Hexanes 3:1, and EtOAc for elution. Yield 4.32 g, 42%. 1H NMR (400 MHz, 

DMSO-d6) δ 13.07 (s, 1H), 12.54 (s, 1H), 7.97 (dd, J = 7.8, 1.0 Hz, 1H), 7.69 (td, J = 

7.5, 1.4 Hz, 1H), 7.61 (td, J = 7.6, 1.4 Hz, 1H), 7.38 (dd,  J =  7.7, 1.2 Hz, 1H), 6.81 (d, J 

= 9.1 Hz, 1H), 6.21 (dd, J = 9.2, 2.5 Hz, 1H), 6.10 (d, J = 2.5 Hz, 1H), 3.00 (s, 6H). 13C 

NMR (101 MHz, DMSO) δ 198.74, 166.88, 164.29, 155.71, 140.03, 133.88, 132.05, 

129.87, 129.70, 129.45, 127.64, 109.67, 104.33, 97.03, 40.15 

 

 

 

Synthesis of compound 2-(8-hydroxy-1,2,3,5,6,7-hexahydropyrido[3,2,1-

ij]quinoline-9-carbonyl)benzoic acid: Phthalic anhydride (0.392 g 2.64 mmol) and 8-



19 
 

hydroxyjulolidine (0.5 g, 2.64 mmol) were dissolved in 12 mL of toluene. The mixture 

was refluxed 24 h, then the solvent evaporated under vacuum to leave a deep red 

residue. The target compound was isolated as a pale yellow solid by flash column 

chromatography on silica gel using CH2Cl2:MeOH 95:5 for elution. Yield: 622 mg, 70%. 

1H NMR (400 MHz, DMSO-d6) δ 12.94 (s, 2H), 7.94 (dd, J = 7.8, 1.3 Hz, 1H), 7.66 (td, J 

= 7.5, 1.4 Hz, 1H), 7.58 (td, J = 7.6, 1.4 Hz, 1H), 7.33 (dd, J = 7.5, 1.3 Hz, 1H), 6.39 (s, 

1H), 3.24 (td, J = 7.2, 5.2 Hz, 4H), 2.59 (t, J = 6.4 Hz, 2H), 2.40 (t, J = 6.2 Hz, 2H), 1.90 

– 1.80 (m, 2H), 1.80 – 1.70 (m, 2H). 13C NMR (101 MHz, DMSO) δ 197.93, 167.03, 

159.73, 148.75, 140.12, 131.72, 129.94, 129.82, 129.63, 129.15, 127.66, 112.39, 

108.34, 104.58, 49.36, 48.91, 48.56, 39.15, 26.63, 21.06, 20.07, 19.54. 

 

 

Synthesis of spiro 1: 2-(4-amino-2-hydroxybenzoyl)benzoic acid (0.389 mmol) and 7-

amino-2-naphthol (0.389 mmol) were dissolved in 750 μL of methanesulfonic acid 

(MSA), then 1.5 μL of trifluoroacetic acid (TFA) was added. The mixture was heated and 

stirred at 80 oC for 16-24 h.  The reaction mixture was allowed to warm to room 

temperature, then poured into 50 mL of DI water. The mixture was neutralized to pH 6-7 

by portion wise addition of solid NaHCO3. The resulting precipitate was filtered, washed 

with DI water and air dried.  The target compound isolated by flash column 

chromatography on silica gel. Yield: 60 mg, 42%. 1H NMR (400 MHz, DMSO-d6) δ 8.06 

(ddd, J = 8.7, 2.87, 0.6 Hz, 1H), 7.78 (d, J = 8.7 Hz, 1H), 7.70 – 7.63 (m, 2H), 7.56 (d, J 

= 8.6 Hz, 1H), 7.13 – 7.08 (m, 1H), 7.06 (d, J = 8.8 Hz, 1H), 6.71 (dd, J = 8.6, 2.0 Hz, 

1H), 6.39 (d, J = 2.2 Hz, 1H), 6.32 (dd, J = 8.7, 2.2 Hz, 1H), 6.23 (d, J = 8.7 Hz, 1H), 

5.84 (d, J = 2.0 Hz, 1H), 5.58 (s, 2H), 5.20 (s, 2H). 13C NMR (101 MHz, DMSO) δ 

169.37, 154.69, 150.87, 150.56, 149.85, 147.67, 135.42, 133.09, 132.34, 130.28, 

129.42, 127.62, 126.50, 125.26, 123.36, 123.01, 115.67, 112.33, 111.45, 106.67, 

105.37, 103.20, 98.38, 84.06. 
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Synthesis of spiro 2: 2-(4-(dimethylamino)-2-hydroxybenzoyl)benzoic acid (0.351 

mmol) and 7-amino-2-naphthol (0.351 mmol) were dissolved in 750 μL of 

methanesulfonic acid (MSA), then 750 μL of trifluoroacetic acid (TFA) was added. The 

mixture was heated and stirred at 80 oC for 16-24 h. The reaction mixture was allowed 

to warm to room temperature, then poured into 50 mL of DI water. The mixture was 

neutralized to pH 6-7 by portion wise addition of solid NaHCO3. The resulting precipitate 

was filtered, washed with DI water and air dried.  The target compound isolated by flash 

column chromatography on silica gel. Yield: 70 mg, 49%. 1H NMR (400 MHz, DMSO-d6) δ 

8.16 – 8.08 (m, 1H), 7.95 (d, J = 8.9 Hz, 1H), 7.75 – 7.65 (m, 3H), 7.24 (d, J = 8.9 Hz, 1H), 7.19 

– 7.12 (m, 1H), 6.88 (dd, J = 8.6, 2.0 Hz, 1H), 6.62 (d, J = 9.0 Hz, 1H), 6.59 (s, 1H), 6.46 (s, 

1H), 6.11 (d, J = 1.9 Hz, 1H), 2.98 (s, 6H). 13C NMR (101 MHz, DMSO) δ 168.90, 158.33, 

157.98, 135.37, 132.60, 130.81, 129.70, 127.80, 124.68, 123.66, 117.19, 116.73, 114.28, 97.13, 

39.14. 

 

 

Synthesis of spiro 3: 2-(8-hydroxy-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline-9-

carbonyl)benzoic acid (0.351 mmol) and 7-amino-2-naphthol (0.351 mmol) were 

dissolved in 750 μL of methanesulfonic acid (MSA), then 750 μL of trifluoroacetic acid 

(TFA) was added. The mixture was heated and stirred at 80 oC for 16-24 h. The 

reaction mixture was allowed to warm to room temperature, then poured into 50 mL of 

DI water. The mixture was neutralized to pH 6-7 by portion wise addition of solid 
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NaHCO3. The resulting precipitate was filtered, washed with DI water and air dried.  The 

target compound isolated by flash column chromatography on silica gel. Yield: 30 mg, 

18%. 1H NMR (400 MHz, DMSO-d6) δ 8.08 – 8.02 (m, 1H), 7.79 – 7.73 (m, 1H), 7.70 – 

7.61 (m, 2H), 7.55 (d, J = 8.7 Hz, 1H), 7.13 – 7.05 (m, 2H), 6.70 (dd, J = 8.6, 2.1 Hz, 

1H), 5.89 (s, 1H), 5.82 (d, J = 2.0 Hz, 1H), 5.18 (s, 2H), 3.15 (t, J = 5.6 Hz, 2H), 3.10 

(ddd, J = 7.1, 4.7, 2.9 Hz, 2H), 2.87 (t, J = 6.5 Hz, 2H), 2.49 – 2.33 (m, 2H), 1.99 – 1.88 

(m, 2H), 1.77 (d, J = 6.5 Hz, 2H). 13C NMR (101 MHz, DMSO) δ 169.40, 154.62, 150.82, 

147.63, 145.15, 143.55, 135.39, 133.03, 132.20, 130.26, 129.41, 126.50, 125.24, 

123.31, 123.28, 123.05, 117.64, 115.57, 112.47, 106.02, 105.75, 105.18, 103.22, 84.46, 

48.98, 48.54, 26.90, 21.23, 20.58, 20.47. 

 

 

 

Synthesis of compound 1: Spiro precursor 1 (140 μmol) was dissolved in 20 mL of 

MeOH and chilled in an ice bath. Acetyl chloride (750 μL) was added dropwise. The 

mixture was stirred and kept at 50 oC for 48h. Additional acetyl chloride (300 μL) was 

added dropwise and the mixture kept at 50 oC for an additional 24h to complete 

conversion. The mixture was allowed to cool down to room temperature and the solvent 

evaporated under vacuum. Yield: 29 mg, 54%. 1H NMR (400 MHz, DMSO-d6) δ 9.00 (s, 

1H), 8.81 (s, 1H), 8.38 – 8.34 (m, 1H), 8.34 – 8.29 (m, 1H), 7.91 (pd, J = 7.5, 1.6 Hz, 

2H), 7.81 (d, J = 8.7 Hz, 1H), 7.54 (d, J = 8.7 Hz, 1H), 7.43 – 7.37 (m, 1H), 7.08 (dd, J = 

9.4, 2.0 Hz, 1H), 7.03 (d, J = 2.0 Hz, 1H), 6.97 (d, J = 9.4 Hz, 1H), 6.94 (dd, J = 8.7, 2.1 

Hz, 1H), 5.96 (d, J = 2.0 Hz, 1H), 5.84 (s, 2H), 3.57 (s, 3H). 13C NMR (101 MHz, DMSO) 

δ 165.20, 160.89, 160.82, 157.26, 157.18, 150.76, 141.40, 137.13, 134.42, 132.44, 

132.33, 131.56, 131.32, 130.66, 128.51, 128.33, 123.17, 120.22, 116.85, 116.83, 

114.27, 110.60, 106.80, 95.87, 52.41. 
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Synthesis of compound 2: Spiro precursor 2 (160 μmol) was dissolved in 20 mL of 

MeOH and chilled in an ice bath. Acetyl chloride (750 μL) was added dropwise. The 

mixture was stirred and kept at 50 oC for 48h. Additional acetyl chloride (300 μL) was 

added dropwise and the mixture kept at 50 oC for an additional 24h to complete 

conversion. The mixture was allowed to cool down to room temperature and the solvent 

evaporated under vacuum. Yield: 47mg, 70%. 1H NMR (400 MHz, DMSO-d6) δ 8.42 – 

8.36 (m, 1H), 8.35 (d, J = 6.4 Hz, 1H), 7.99 – 7.87 (m, 2H), 7.83 (d, J = 8.7 Hz, 1H), 

7.52 (d, J = 8.8 Hz, 1H), 7.46 – 7.39 (m, 1H), 7.32 (dd, J = 9.7, 2.5 Hz, 1H), 7.20 (d, J = 

2.5 Hz, 1H), 6.99 – 6.92 (m, 2H), 6.02 (d, J = 2.0 Hz, 1H), 5.89 (s, 2H), 3.58 (s, 3H), 

3.35 (s, 6H). 13C NMR (101 MHz, DMSO) δ 165.21, 160.91, 157.62, 157.47, 156.55, 

150.95, 141.76, 137.12, 134.48, 132.50, 132.46, 131.58, 130.73, 130.12, 128.46, 

128.35, 123.15, 117.82, 116.88, 116.55, 114.62, 110.43, 106.92, 95.40, 52.45, 48.55, 

40.86, 40.03, 39.40, 39.17. 

 

 

Synthesis of compound 3: Spiro precursor 3 (160 μmol) was dissolved in 20 mL of 

MeOH and chilled in an ice bath. Acetyl chloride (750 μL) was added dropwise. The 

mixture was stirred and kept at 50 oC for 48h. Additional acetyl chloride (300 μL) was 

added dropwise and the mixture kept at 50 oC for an additional 24h to complete 

conversion. The mixture was allowed to cool down to room temperature and the solvent 



23 
 

evaporated under vacuum. Yield: 28 mg, 37%. 1H NMR (400 MHz, DMSO-d6) δ 8.34 

(dd, J = 7.4, 1.5 Hz, 1H), 8.29 (d, J = 8.7 Hz, 1H), 7.97 – 7.86 (m, 2H), 7.83 (d, J = 8.6 

Hz, 1H), 7.61 (d, J = 8.6 Hz, 1H), 7.43 – 7.33 (m, 1H), 6.99 (dd, J = 8.6, 1.9 Hz, 1H), 

6.58 (s, 1H), 5.98 (s, 1H), 3.65 (d, J = 5.8 Hz, 2H), 3.59 (d, J = 5.8 Hz, 2H), 3.05 (d, J = 

7.7 Hz, 2H), 2.68 (s, 2H), 2.04 (d, J = 8.3 Hz, 2H), 1.87 (s, 2H). 13C NMR (101 MHz, 

DMSO) δ 165.15, 157.43, 156.16, 152.70, 151.29, 139.74, 137.24, 134.36, 132.01, 

131.93, 131.59, 130.61, 128.94, 128.40, 127.92, 125.12, 117.28, 117.04, 114.04, 

103.98, 52.36, 50.93, 50.51, 27.01, 19.74, 18.92, 18.72. 
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Figure S1: 1H NMR spectrum for 7-amino-2-naphthol. 
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Figure S2: 1H 2D correlation (COSY) NMR spectra for 7-amino-2-naphthol. 
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Figure S3: 13C NMR spectrum for 7-amino-2-naphthol. 
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Figure S4: 1H NMR spectrum for 2-(4-amino-2-hydroxybenzoyl)benzoic acid. 
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Figure S5: 1H 2D correlation (COSY) NMR spectra for 2-(4-amino-2-hydroxybenzoyl)benzoic acid. 
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Figure S6: 13C NMR spectrum for 2-(4-amino-2-hydroxybenzoyl)benzoic acid. 



31 
 

 

 

Figure S7: 1H NMR spectrum for 2-(4-(dimethylamino)-2-hydroxybenzoyl)benzoic acid. 
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Figure S8: 1H 2D correlation (COSY) NMR spectra for 2-(4-(dimethylamino)-2-

hydroxybenzoyl)benzoic acid. 
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Figure S9: 13C NMR spectrum for 2-(4-(dimethylamino)-2-hydroxybenzoyl)benzoic acid. 
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Figure S10: 1H NMR spectrum for 2-(8-hydroxy-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline-9-

carbonyl)benzoic acid. 
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Figure S11: 1H 2D correlation (COSY) NMR spectra for 2-(8-hydroxy-1,2,3,5,6,7-

hexahydropyrido[3,2,1-ij]quinoline-9-carbonyl)benzoic acid. 
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Figure S12: 13C NMR spectrum for 2-(8-hydroxy-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline-9-

carbonyl)benzoic acid. 
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Figure S13: 1H NMR spectrum for spiro 1. 
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Figure S14: 1H 2D correlation (COSY) NMR spectra for spiro 1. 
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Figure S15: 13C NMR spectrum for spiro 1. 
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Figure S16: 1H NMR spectrum for spiro 2. 
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Figure S17: 1H 2D correlation (COSY) NMR spectra for spiro 2. 
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Figure S18: 13C NMR spectrum for spiro 2. 
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Figure S19: 1H NMR spectrum for spiro 3. 
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Figure S20: 1H 2D correlation (COSY) NMR spectra for spiro 3. 
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Figure S21: 13C NMR spectrum for spiro 3. 
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Figure S22: 1H NMR spectrum for Compound 1.  
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Figure S23: 1H 2D correlation (COSY) NMR spectra for Compound 1. 



48 
 

 

 

Figure S24: 13C NMR spectrum for Compound 1. 
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Figure S25: 1H NMR spectrum for Compound 2. 
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Figure S26: 1H 2D correlation (COSY) NMR spectra for Compound 2. 
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Figure S27: 13C NMR spectrum for Compound 2. 
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Figure S28: 1H NMR spectrum for Compound 3. 
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Figure S29: 1H 2D correlation (COSY) NMR spectra for Compound 3. 



54 
 

 

 

 

 

 

 

 

 

Figure S30: 13C NMR spectrum for Compound 3. 
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Figure S31: Calculated mass spectrum (M+H)+ for 7-amino-2-naphthol. 

Figure S32: Measured mass spectrum (M+H)+ for 7-amino-2-naphthol. 
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Figure S33: Calculated mass spectrum (M+H)+ for 2-(4-amino-2-hydroxybenzoyl)benzoic acid. 

Figure S34: Measured mass spectrum (M+H)+ for 2-(4-amino-2-hydroxybenzoyl)benzoic acid. 
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Figure S35: Calculated mass spectrum (M+H)- for 2-(4-(dimethylamino)-2-hydroxybenzoyl)benzoic acid. 

Figure S36: Measured mass spectrum (M+H)-for 2-(4-(dimethylamino)-2-hydroxybenzoyl)benzoic acid. 
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C20H19NO4 +H: C20 H20 N1 O4 p(gss, s/p:40) Chrg 1R...
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Figure S37: Calculated mass spectrum (M+H)+for 2-(8-hydroxy-1,2,3,5,6,7-hexahydropyrido[3,2,1-

ij]quinoline-9-carbonyl)benzoic acid 

Figure S38: Calculated mass spectrum (M+Na)+for 2-(8-hydroxy-1,2,3,5,6,7-hexahydropyrido[3,2,1-

ij]quinoline-9-carbonyl)benzoic acid 
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LW-08-42 #14-45 RT: 0.18-0.51 AV: 32 NL: 8.30E7
T: FTMS + p ESI Full ms [50.00-2000.00]
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Figure S39: Measured mass spectrum (M+H)+, (M+Na)+ for 2-(8-hydroxy-1,2,3,5,6,7-

hexahydropyrido[3,2,1-ij]quinoline-9-carbonyl)benzoic acid 
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Figure S40: Calculated mass spectrum (M+H)+ for spiro 1 

Figure S41: Calculated mass spectrum (M+Na)+ for spiro 1 
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CS01-004_160511230431 #12-36 RT: 0.21-0.58 AV: 25 NL: 2.91E6
T: FTMS + p ESI Full ms [50.00-2000.00]
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Figure S42: Measured mass spectrum (M+Na)+ for spiro 1 
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Figure S43: Calculated mass spectrum (M+H)+ for spiro 2 

Figure S44: Calculated mass spectrum (M+Na)+ for spiro 2 
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Figure S45: Measured mass spectrum (M+H)+ for spiro 2 
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Figure S46: Calculated mass spectrum (M+H)+ for spiro 3 

Figure S47: Calculated mass spectrum (M+Na)+ for spiro 3 
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T: FTMS + p ESI Full ms [50.00-2000.00]
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Figure S48: Measured mass spectrum (M+H)+ for spiro 3 
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Figure S49: Calculated mass spectrum (M peak) for Compound 1. 

Figure S50: Measured mass spectrum (M peak) for Compound 1. 
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Figure S51: Calculated mass spectrum (M peak) for Compound 2. 

Figure S52: Measured mass spectrum (M peak) for Compound 2. 
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Figure S53: Calculated mass spectrum (M peak) for Compound 3. 

Figure S54: Measured mass spectrum (M peak) for Compound 3. 



70 
 

Fluorescence EEM Contour Plots 
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Figure S55: EEM contour plots for compound 1 (15 μM). The top row shows DMSO (left), MeOH 

(center, in 10% DMSO), and pH 1.9 (right) aqueous solution. The bottom row shows pH 6 (left), 7.4 

(center), and 9 (right) phosphate buffer in 10% DMSO. 
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Figure S56: EEM contour plots for compound 2 (15 μM). The top row shows DMSO (left), MeOH 

(center, in 10% DMSO), and pH 1.9 (right) aqueous solution. The bottom row shows pH 6 (left), 7.4 

(center), and 9 (right) phosphate buffer in 10% DMSO. 
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Figure S57: EEM contour plots for compound 3 (15 μM). The top row shows DMSO (left), MeOH 

(center, in 10% DMSO), and pH 1.9 (right) aqueous solution. The bottom row shows pH 6 (left), 7.4 

(center), and 9 (right) phosphate buffer in 10% DMSO. 
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