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Abstract
We introduce two new lowest order methods, a mixed method, and a hybrid discontinu-
ous Galerkin method, for the approximation of incompressible flows. Both methods use
divergence-conforming linear Brezzi–Douglas–Marini space for approximating the velocity
and the lowest order Raviart–Thomas space for approximating the vorticity. Our methods
are based on the physically correct viscous stress tensor of the fluid, involving the symmetric
gradient of velocity (rather than the gradient), provide exactly divergence-free discrete veloc-
ity solutions, and optimal error estimates that are also pressure robust. We explain how the
methods are constructed using the minimal number of coupling degrees of freedom per facet.
The stability analysis of both methods are based on a Korn-like inequality for vector finite
elements with continuous normal component. Numerical examples illustrate the theoretical
findings and offer comparisons of condition numbers between the two new methods.
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1 Introduction

In this workwe introduce two newmethods for the discretization of the steady incompressible
Stokes equations in three space dimensions. Let Ω ⊂ R

3 be an open bounded domain with
Lipschitz boundary ∂Ω that is split into the Dirichlet boundary ΓD and outflow boundary
ΓN . The Stokes system for the fluid velocity u and the pressure p is given by

− div(νε(u)) + ∇ p = f in Ω, (1a)

div u = 0 in Ω, (1b)

u = 0 on ΓD, (1c)

(−νε(u) + pI )n = 0 on ΓN , (1d)

where ε(u) := (∇u + ∇uT)/2 is the symmetric gradient, f : Ω → R
3 is an external body

force, ν is twice the kinematic viscosity, n is the outward unit normal vector and I ∈ R
3×3

is the identity matrix. We assume that both ΓD and ΓN have positive boundary measure, and
any rigid displacement vanishing on ΓD vanishes everywhere in Ω . (As usual, when ΓN is
empty the pressure space must be adapted to obtain a unique pressure [18], but we omit this
case for simplicity.) Next, define the viscous stress tensor [23] by σ = νε(u) and the vorticity
by ω = curl u. Using them, we can rewrite the above system as

ν−1dev σ − ∇u + κ(ω) = 0 in Ω, (2a)

− div σ + ∇ p = f in Ω, (2b)

σ − σT = 0 in Ω, (2c)

div u = 0 in Ω, (2d)

u = 0 on ΓD, (2e)

(σ − pI )n = 0 on ΓN . (2f)

Here we used the deviatoric part of the tensor τ given by dev τ := τ − 1
3 tr(τ )I , the matrix

trace tr(τ ) := ∑3
i=1 τi i , and the operator κ : R3 → {τ ∈ R

3×3 : τ + τT = 0} defined by

κ(v) = 1

2

⎛

⎝
0 −v3 v2
v3 0 −v1

−v2 v1 0

⎞

⎠ .

Note the obvious identities

∇v = ε(v) + κ(curl v), 2κ(v)w = v × w, (3)

for vector fields v and w (the first of which was already used in (2a)). We will refer to
system (1) as the primal formulation and system (2) as the mixed formulation.

The literature on discretizations of (1) and (2) is too vast to list here. The relatively recent
quest for exactly divergence-free velocity solutions and pressure-independent a priori error
estimates for velocity, often referred to as pressure robust estimates [27, 30], has rejuvenated
the field. A recurring theme in this vast literature, from the early non-conforming method of
[10] to the more recent [29], is the desire to improve computational efficiency by minimizing
inter-element coupling. However, less studied are its side effects on stability when the actual
physical flux replaces the often-used simplified diffusive flux, i.e., when

− div(νε(u)) replaces − div(ν∇u), (4)
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even though an early work [11] cautions how the lowest order method of [10] can become
unstable when doing so. Such instabilities arise because the larger null space of ε necessitates
increased inter-element coupling (as explained in more detail below) and are manifested in
certain lowest order cases with insufficient inter-element coupling. In this work, focusing on
the lowest order case, we identify new stable finite element methods, with the minimal neces-
sary inter-element coupling, that yield exactly divergence-free and pressure robust velocities.
New methods based on both the primal and the mixed formulations are designed.

Yet another reason for focusing on the lowest order case is its utility in preconditioning.
Roughly speaking, a common strategy for preconditioning high order Stokes discretizations
involves combining local (high order) error dampers via, say block Jacobi or other smoothers,
with a global (low order) error corrector such as multigrid (or even a direct solver) applied
to the smaller lowest order discretization. From this point of view, it is desirable to have
stable low order versions (that remain stable under (4)) of high order methods for design of
preconditioners, an interesting topic which we shall not touch upon further in this paper.

To delve deeper into the mechanics of the above-mentioned instability, consider the kernel
of ε, consisting of rigid displacements of the form x → a + b × x with a, b ∈ R

3. Rea-
sonable methods approximating the operator − div(νε(u)) produce element matrices whose
nullspaces contain these rigid displacements. Ideally,when these element-wise rigid displace-
ments are subjected to the inter-element continuity conditions of the discrete velocity space,
they should equal element-wise restrictions of a global rigid displacement on Ω (which can
then be eliminated by boundary conditions). However, if the inter-element coupling in the
discrete velocity space is so weak to allow for the existence of a u in it that does not equal
a global rigid displacement on Ω even though u|T is a rigid displacement on every mesh
element T , then instabilities can arise [11].

The discrete velocity space we have in mind is the lowest order (piecewise linear) H(div)-
conforming Brezzi-Douglas-Marini (BDM1) space [3]. (A basic premise of this paper is the
unquestionable utility of H(div)-conforming velocity spaces to obtain exactly divergence-
free discrete Stokes velocity fields,well established in priorworks [8, 9, 20, 21, 29]).Hence, to
understand how to avoid the above-mentioned instability while setting velocity in theBDM1

space, we ask the following question: how many coupling degrees of freedom (dofs) are
needed to guarantee that two rigid displacements u±,given respectively on two adjacent
elements T±, coincide on the common interface F = ∂T+ ∩ ∂T−?

The pictorial representations of the deformations created by u± in Fig. 1lead to the answer.
Three of the pictured deformations are just translations (generated by thea-vector ina+b×x).
For a unit vector b, letting Rb

θ denote the unitary operator that performs a counterclockwise
rotation by angle θ around b, it is easy to see that Rb

θ x = x + θ(b × x) + O(θ2) as θ → 0.
Therefore the deformation created by the rigid displacement b × x can be viewed as an
infinitesimal rotation about b. These deformations are portrayed in Fig. 1 as rotations about
three linearly independent b-vectors. The first row in Fig. 1 illustrates deformations generated
by piecewise rigid displacements which are given by two b-vectors coplanar with F and
an a-vector normal to F . These rigid displacements are forbidden in the BDM1 space.
Indeed, recall [3] that the BDM1 dofs on the facet F are given by the linear functionals
u �→ ∫

F u · n q ds for all linear polynomials q on F , where n is a normal vector on F . These
represent three dofs illustrated in left diagram of Fig. 2. If these three dofs coincide for
two rigid displacements u±, then the corresponding normal component must be continuous
on F . This continuity forbids the above-mentioned deformations to be generated by elements
of the BDM1 space. We summarize this by saying that the rigid displacements portrayed in
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Fig. 1 Configurations of adjacent elements after deformation by piecewise rigid displacements of two adjacent
elements T±

Fig. 2 Classification of facet dofs in our new methods into three types: (1) normal velocity components in
the form of BDM1 facet dofs, (2) tangential facet velocities, (3) normal vorticity as RT 0 facet dof

the first row of Fig. 1 are “controlled” by the three BDM1 dofs of the facet F which are
illustrated in the left diagram of Fig. 2.

It remains to control the rigid displacements of the second row of Fig. 1 using three
additional dofs per facet. To this end, our new methods have two additional spaces: (i)
one that approximates the in-plane components of the velocity on facets, illustrated in the
middle diagram of Fig. 2, used to control the first two rigid displacements in the second row
of Fig. 1; and (ii) a second space, schematically indicated in the last diagram of Fig. 2, that
controls the third deformation in the second row of Fig. 1. The latter deformation arises from
piecewise rigid displacements of the form u± = b± × x with b± collinear to n, a unit normal
of F . Since curl(b± × x) = 2b±, we can make the two rigid displacements coincide on F
by requiring continuity of nldot curl u±. While continuity of n · curl u certainly holds if u
is the exact Stokes velocity, it does not generally hold for u in BDM1. Hence, keeping in
view that ω = curl u represents vorticity, we incorporate this constraint in our new methods
by approximating vorticity ωin the lowest order Raviart-Thomas space. This is our second
additional space. Its single dof per facet is shown schematically in the last diagram of Fig. 2.

In the first part of the paper we will employ these additional spaces to construct a novel
HDG method to approximate (1) and present a detailed stability and error analysis. HDG
methods have become popular ever since its introduction in [7] which showed how interface
variables, or facet variables, can be effectively used to construct DG schemes amenable to
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static condensation. In the method presented here, the interface variable approximates the
tangential components of the velocity. The key technical ingredient in the analysis that reflects
the insight garnered from the above pictorial discussion is a discrete Korn-like inequality for
the BDM1 space (see Lemma 1 below, and the version with interface variables in Lemma 2).

The second part of this work discusses the derivation of a novel mixed method for the
approximation of (2) and is motivated by our previous two papers [20, 21] and the many
other works on discretizing (2) such as [12–15]. In [20] we derived the “Mass-Conserving
Stress-yielding” (MCS) formulation where the symmetry of σ was incorporated in a weak
sense by means of a Lagrange multiplier that approximates ω = curl u. While the ω there
was approximated using element-wise linear (or higher degree) functions without any inter-
element continuity requirements, the new mixed method we propose here will approximate
ω in the lowest order Raviart-Thomas space instead. The lowest order case that was proved
to be stable in [20] had nine coupling dofs per facet. We are able to reduce this number to
the minimal six (the dimension of rigid displacements) in this paper. This minimal coupling
was achieved earlier in [35] using a bubble-augmented velocity space which is a subspace
of a degree-four vector polynomial space. Since higher degrees necessitate more expensive
integration rules, we offer our simpler elements as an alternative.

Other methods that approximate the operator div(ν∇u), such as [10, 21, 29], are able
to reduce the number of coupling dofs per facet even further. Since our focus here is on
methods that approximate div(νε(u)), we restrict ourselves to a brief remark on this. Since
the kernel of∇ (applied to vector fields) is three dimensional, we expect the minimal number
of coupling dofs per facet to be three when approximating div(ν∇u). A method with this
minimal coupling was achieved early by [10]. To also obtain pressure robust and exactly
divergence-free solutions, prior works [21, 29] settled for a slightly higher five coupling
dofs per facet in the lowest order case. It is now known that this can be improved by
employing the technique of “relaxed H(div,Ω)-conformity,” see [25, 26], which results
in a method with the minimal three coupling dofs per facet and yet, thanks to a simple
post-processing, provides optimal convergence orders and pressure robustness. While on the
subject of coupling dofs, an explanation of our focus on three-dimensional (3D) domains
is in order. On two-dimensional (2D) domains, the space of rigid displacements only has
three dimensions. In the lowest order 2D case, BDM1 space provides two coupling dofs
per facet edge, and the space of tangential facet velocities adds one more coupling degree
of freedom. Thus the minimal facet coupling (of three dofs) needed to eliminate the rigid
displacements are more immediate in 2D case when compared to the 3D case, which is why
restrict to the 3D case henceforth.

The new HDG method and the new mixed method proposed in this paper both have the
same coupling dofs, the same velocity convergence orders and the same structure preser-
vation properties like pressure robustness and mass conservation. On closer comparison,
two advantages of the mixed method are notable. One is its direct approximation of viscous
stresses. Another is the absence of any stabilization parameters in it. In fact, in our numerical
studies, the conditioning of a matrix block arising from the parameter-free mixed method
was found to be better than the analogous HDG block for all ranges of the HDG stabilization
parameter we considered.

Outline. We set up general notation in Sect. 2 and continue with a description of the
variational framework used throughout the paper. Finite element spaces, a discrete Korn-like
inequality, and resulting norm equivalences are introduced in Sect. 3. A list of interpolation
operators into these spaces and their properties with references to literature can also be found
there. In Sect. 4 we introduce and analyze the HDG method for the primal set of Eq. (1) and
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in Sect. 5 we do the same for the MCS method for the mixed set of eq. (2). Finally, in Sect. 6
we perform numerical experiments to illustrate and complement our theoretical findings.

2 Notation andWeak Forms

By M we denote the vector space of real 3 × 3 matrices and by K we denote the vector
space of 3 × 3 skew symmetric matrices, i.e., K = skw(M), where skw τ = 1

2 (τ − τ T ) for
τ ∈ M. Further, let D = dev (M). To indicate vector and matrix-valued functions on Ω , we
include the range in the notation, thus while L2(Ω) = L2(Ω,R) denotes the space of square
integrable and weakly differentiable R-valued functions on Ω , the corresponding vector and
matrix-valued function spaces are defined by L2(Ω,R3) := {

u : Ω → R
3
∣
∣ ui ∈ L2(Ω)

}

and L2(Ω,M) := {
τ : Ω → M

∣
∣ τi j ∈ L2(Ω)

}
, respectively. For any Ω̃ ⊆ Ω , we denote

by (·, ·)Ω̃ the inner product on L2(Ω̃) (or its vector- or matrix-valued versions). Similarly,
we extend this notation and write ‖ · ‖Ω̃ for the corresponding L2-norm of a (scalar, vector,
or matrix-valued) function on the domain Ω̃ . In the case Ω̃ = Ω we will omit the subscript
in the inner product, i.e. we have (·, ·)Ω̃ = (·, ·) and we will use the notation ‖ · ‖0 = ‖ · ‖Ω .

In addition to the differential operators we have already used, ∇, ε, curl, we understand
divΦ as either

∑3
i=1 ∂iΦi for a vector-valued function Φ, or the row-wise divergence

∑3
j=1 ∂ jτi j for amatrix-valued function τ . In addition to the standard Sobolev spaces Hm(Ω)

for any m ∈ R, we shall also use the well-known spaces H(div,Ω) = {v ∈ L2(Ω,R3) :
div v ∈ L2(Ω)} and H(curl,Ω) = {v ∈ L2(Ω,R3) : curl v ∈ L2(Ω,R3)}. We use
H1
0,B(Ω), H0,B(div,Ω) and H0,B(curl,Ω), to denote the spaces of functions whose trace,

normal trace and tangential trace respectively vanish on ΓB , for B ∈ {D, N }. The only
somewhat nonstandard Sobolev space that we shall use is

H(curl div,Ω) := {τ ∈ L2(Ω,D) : div τ ∈ H0,D(div,Ω)∗}, (5)

where H0,D(div,Ω)∗ is the dual space of H0,D(div,Ω). In the case ΓD = ∂Ω , as
proved in [21], the dual of H0,D(div,Ω) equals H−1(curl,Ω), so the condition that
div τ ∈ H0,D(div,Ω)∗ in (5) is the same as requiring that curl div τ ∈ H−1(Ω). This
explains the presence of the operator “curl div” in the name of the space in (5).

We denote by T a quasiuniform and shape regular triangulation of the domain Ω into
tetrahedra. Let h denote the maximum of the diameters of all elements in T . Throughout
this work we write A ∼ B when there exist two constants c,C > 0 independent of the mesh
size has well as the viscosity ν such that cA ≤ B ≤ CA. Similarly, we use the notation
A � B if there exists a similar constant C (independent of h and ν) such that A ≤ CB.
Henceforth we assume that ν is a constant. Due to quasiuniformity we have h ∼ diam(T ) for
any T ∈ T . The set of element interfaces and boundaries is denoted by F . This set is further
split into facets on the Dirichlet boundary,FD = {F ∈ F : F ⊂ ΓD}, facets on the Neumann
boundary FN = {F ∈ F : F ⊂ ΓN } and facets in the interior F0 = F\(FN ∪FD). Also let
F0,D = F0 ∪ FD .

For piecewise smooth functions v on the mesh, �v� and {v} are functions on F whose
values on each interior facet equal the jump (defined up to a sign) of v and the mean of
the values of v from adjacent elements. On boundary facets, they are both defined to be the
trace of v. On each element boundary, and similarly on each facet on the global boundary
we denote by n the outward unit normal vector. Then the normal and tangential trace of a
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smooth enough vector field v is given by

vn = v · n and vt = v − vnn.

Accordingly, the normal trace is a scalar function and the tangential trace is a vector function.
In a similar manner we introduce the normal-normal (nn) trace and the normal-tangential
(nt) trace of a matrix valued function τ by

τnn := τ : n ⊗ n = nTτn and τnt = (τn)t .

For any Ω̃ ⊆ Ω , we denote by Pk(Ω̃) = Pk(Ω̃,R) the set of polynomials of degree at
most k, restricted to Ω̃ . Let Pk(Ω̃,R3) and Pk(Ω̃,M) denote the analogous vector- and
matrix-valued versions whose components are in Pk(Ω̃). With respect to these spaces we
then define Πk

Ω̃
, the L2(Ω̃)-projection into the space Pk(Ω̃) or its vector- or matrix-valued

versions. We omit subscript from Πk
Ω̃

if it is clear from context. For the space of functions

the restrictions of which are in Pk(T ) for all T ∈ T we write simply Pk(T ). The analogous
convention holds for Hk(T ), L2(F), etc.

The standard [18] variational formulation of (1) is to find (u, p) ∈ H1
0,D(Ω,R3)×L2(Ω)

such that

ν(ε(u), ε(v)) − (div v, p) = ( f , v) for all v ∈ H1
0,D(Ω,R3), (6a)

−(div u, q) = 0 for all q ∈ L2(Ω). (6b)

However our novel methods use H(div)-conforming spaces for the approximation of the
velocity u. Another weak formwhere velocity is set in H(div)was given in [20, 21, 24] using
Σ sym := {τ ∈ H(curl div,Ω) : τ = τT}. It finds (σ, u, p) ∈ Σ sym×H0,D(div,Ω)×L2(Ω)

such that

(ν−1σ, τ) + 〈div τ, u〉div = 0 for all τ ∈ Σ sym, (7a)

−〈div σ, v〉div − (div v, p) = ( f , v) for all v ∈ H0,D(div,Ω), (7b)

−(div u, q) = 0 for all q ∈ L2(Ω), (7c)

where Σ sym := {τ ∈ H(curl div,Ω) : τ = τT}. Here 〈·, ·〉div denotes the duality pairing
on H0,D(div,Ω)∗ × H0,D(div,Ω). Note that since σ ∈ L2(Ω,D) we have tr(σ ) = 0 which
is motivated by (2a). In [24], a detailed well-posedness analysis of (7) was provided, but in
this paper, (7) will serve merely to motivate the new mixed method of Sect. 5.

3 The Finite Elements Used and Their Properties

In this preparatory section, we define the standard finite element spaces used to construct our
methods, their natural interpolators, and a number of discrete norm equivalences revealing
equivalent norms involving piecewise ε(·). Lemma 2 below will be used in the analysis of
the HDG scheme while the analysis of the MCS scheme will additionally need Lemmas 3–4.
We begin with the finite element spaces used in this paper:

Vh := {vh ∈ H0,D(div,Ω) : vh |T ∈ P1(T ,R3)}, (8a)

V̂h := {̂vh ∈ L2(F,R3) : v̂h = 0 on ΓD, and for all F ∈ F,

v̂h |F ∈ P0(F,R3) and (̂vh)n |F = 0}, (8b)

Wh := {ηh ∈ H0,D(div,Ω) : ηh |T ∈ P0(T ,R3) + x P0(T ,R) for all T ∈ T }, (8c)
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Σh := {τh ∈ L2(Ω,D) : τh |T ∈ P1(T ,D), (τh)nt |F ∈ P0(F, n⊥
F )}, (8d)

Qh := P0(T ). (8e)

Note that for any τh ∈ Σh , on a facet F , (τh)nt is a constant function on F taking values in n⊥
F ,

where n⊥
F denotes the orthogonal complement of nF , a unit normal of F . This is indicated by

the notation (τh)nt ∈ P0(F, n⊥
F ) in (8d). Also any v̂h ∈ V̂h is tangential and takes values in

n⊥
F on each facet F . Note also that Vh , which equals H0,D(div,Ω) ∩BDM1 in the notation

of §1, is the lowest order Brezzi-Douglas-Marini space whileWh is the lowest order Raviart-
Thomas space [3]. The space Σh is a discontinuous version of the “nt-continuous” space
introduced in [21], for which simple shape functions were exhibited there. All of these finite
element spaces are obtained by mappings from a single reference finite element. (All these
maps extend to curvilinear elements, although we restrict to affine equivalent elements in our
analysis here.) The maps are compatible with the degrees of freedom of the spaces. (For Σh ,
the appropriate map is given in [21] and compatibility with degrees of freedom is proved in
[21, Lemma 5.7], while for the other spaces, the mappings are standard.) In the case of Vh
and Wh , the maps are Piola maps which also preserve divergence-free subspaces.

3.1 A Discrete Korn-Type Inequality

Korn inequalities for piecewise functionswere given in [5, Theorem3.1].A further refinement
was given in [31, Theorem 3.1]. To describe it, let Π R denote the facet-wise L2 projection
onto RF := {t+α n× x : t ∈ n⊥, α ∈ R}, the space of tangential components (on a facet F)
of the rigid displacements (or simply the space of two-dimensional rigid displacements on
F). Let H1

n,D(T ,R3) := {u : u ∈ H1(T ,R3) for all elements T ∈ T and �u�n = 0 on all
facets F ∈ F0,D}. A minor modification of the proof of [31, Theorem 3.1] shows that

‖∇u‖2T � ‖ε(u)‖2T + h−1
∥
∥Π R�u�t

∥
∥2
F0,D

for all u ∈ H1
n,D(T ,R3). (9)

Here and throughout, we use ‖·‖2T to abbreviate
∑

T∈T ‖·‖2T with the understanding that any
derivative operators in the argument of these norms are evaluated summand by summand,
e.g., the gradient and ε are evaluated element by element in (9). This notation is similarly
extended to facets, so ‖·‖2F0,D

= ∑
F∈F0,D

‖·‖2F . Note hownormal components are controlled

in (9) through the space H1
n,D(T ,R3), while tangential components are controlled through

the jumps �u�t . The next result shows that a part of the right hand side of (9) can be traded
for a norm of the jump of n · curl u when u is in Vh .

Lemma 1 For all uh ∈ Vh,

‖ε(uh)‖2T + h−1
∥
∥Π R�uh�t

∥
∥2
F0,D

∼ ‖ε(uh)‖2T + h−1
∥
∥Π0�uh�t

∥
∥2
F0,D

+ h
∥
∥�curl uh�n

∥
∥2
F0,D

.
(10)

Proof By Pythagoras theorem,
∥
∥Π R�uh�t

∥
∥2
F = ∥

∥Π0�uh�t
∥
∥2
F + ∥

∥(Π R − Π0)�uh�t
∥
∥2
F .

Hence (10) would follow once we prove that for all F ∈ F and all uh ∈ Vh ,

h
∥
∥�curl uh�n

∥
∥2
F +

∑

T∈TF

∥
∥ε(uh)

∥
∥2
T ∼ h−1

∥
∥(Π R − Π0)�uh�t

∥
∥2
F +

∑

T∈TF

∥
∥ε(uh)

∥
∥2
T ,

(11)
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where TF = {T ∈ T : F ⊂ ∂T }.
To prove (11), first note that, restricted to every facet F ,Π R−Π0 is the L2(F)-orthogonal

projection onto the one dimensional span of rF = nF × (x − xF ) where xF = 1
|F |

∫
F x dx

is the barycenter of F . Computing this one-dimensional projection, (Π R − Π0)�uh�t
∣
∣
F =

(rF , �uh�)F rF/‖rF‖2F . Therefore,
∥
∥(Π R − Π0)�uh�t

∥
∥
F = |(rF , �uh�)F |

‖rF‖F . (12)

To simplify the numerator of the last term, let w equal uh |T for some T ∈ TF . We claim
that

(rF , w)F = (rF , ε(w)(x − xF ))F + 1

2
(|x − xF |2, nF · curlw)F . (13)

To see why, recalling that w is linear in T (and hence in F ⊂ ∂T ), for any x ∈ F ,

w(x) = w(xF ) + ∇w (x − xF )

= w(xF ) + ε(w)(x − xF ) + 1

2
curlw × (x − xF ),

where we have used (3). Since rF is orthogonal to constants on F ,

(rF , w) = (rF , ε(w)(x − xF ))F + 1

2
(nF × (x − xF ), curlw × (x − xF ))F .

Now, since (x − xF) ⊥ n for any x ∈ F , using the identity (a × b) · (c × b) = |b|2(a · c) −
(a · b)(c · b) to simplify the last term, we obtain (13).

The equivalence of (11) is a consequence of the identity

∥
∥(Π R − Π0)�uh�t

∥
∥
F = (rF , �ε(uh)�(x − xF ))F

‖rF‖F + (|x − xF |2, �curl uh�n)F
2‖rF‖F , (14)

immediately obtained by combining (12) and (13). Indeed, by applying Cauchy–Schwarz
inequality to the terms on the right hand side of (14), simple local scaling arguments give
h−1

∥
∥(Π R − Π0)�uh�t

∥
∥2
F �

∑
T∈TF

‖ε(uh)‖2T + h
∥
∥�curl uh�n

∥
∥2
F , thus proving one side of

equivalence in (11). To prove the other side, we begin by noting that curl(uh) is constant on
each element, so

h1/2
∥
∥�curl uh�n

∥
∥
F � h−1/2 (|x − xF |2, �curl uh�n)F

2‖rF‖F
= h−1/2

(
∥
∥(Π R − Π0)�uh�t

∥
∥
F − (rF , �ε(uh)�(x − xF ))F

‖rF‖F
)

� h−1/2
∥
∥
∥(Π R − Π0)�uh�t

∥
∥
∥
F

+
∑

T∈TF

‖ε(uh)‖T ,

where we have used (14) and local scaling arguments again. Squaring both sides and applying
Young’s inequality, (11) is proved. ��

3.2 Norm Equivalences

The product space for the kinematic variables is given by Uh := Vh × V̂h × Wh . For the
analysis we define the norms

‖uh, ûh‖2∇ := ‖∇uh‖2T + h−1‖Π0(uh − ûh)t‖2∂T ,
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‖uh, ûh, ωh‖2 := ‖ε(uh)‖2T + h−1‖Π0(uh − ûh)t‖2∂T + h‖(curl uh − ωh)n‖2∂T ,

‖uh, ûh, ωh‖2ε := ‖ε(uh)‖2T + h−1‖Π0(uh − ûh)t‖2∂T + ‖ curl uh − ωh‖2T ,

‖uh, ûh, ωh‖2Uh
:= ‖ dev∇uh − Π0κ(ωh)‖2T + h−1‖Π0(uh − ûh)t‖2∂T ,

wherewe have used ‖·‖2∂T to abbreviate
∑

T∈T ‖·‖2∂T .Wewill shortly establish relationships
between these norms (Lemma 4). That these are all norms on Uh may not be immediately
obvious, but follows from Lemma 2 below (where we critically use that ûh is single valued on
facets). As we shall see later, ~·~ε is the natural norm to analyze the new HDGmethod in §4,
while ‖ · ‖ε features in the analysis of the MCS method in §5. All the above norms involve
the interface variable ûh , so they may be referred to as “HDG-type” norms. In contrast,
“DG-type” norms were used in Subsection 3.1, where Lemma 1 and (9) imply

‖∇uh‖T � ‖ε(uh)‖2T + h−1
∥
∥Π0�uh�t

∥
∥2
F0,D

+ h
∥
∥�curl uh�n

∥
∥2
F0,D

. (15)

A similar discrete Korn-type inequality also holds for HDG-type norms, as seen in the next
lemma.

Lemma 2 For all (uh, ûh, ωh) ∈ Uh, we have the Korn-like inequality

‖uh, ûh‖∇ � ~uh, ûh, ωh~ε. (16)

The reverse inequality holds in the sense that for any (uh, ûh) ∈ Vh × V̂h there exists a
ωh ∈ Wh such that

~uh, ûh, ωh~ε � ‖uh, ûh‖∇ . (17)

Proof To prove (16), first note that on an interior facet F = ∂T+ ∩ ∂T− ∈ F0 shared
by two elements T± ∈ T , letting u±

h = uh |T± , since ûh is single valued on F , we have
u+
h − u−

h = (u+
h − û) − (u−

h − û). Moreover, on a facet F ∈ FD , uh |F = (uh − ûh)|F . Thus
by triangle inequality,

∥
∥Π0�uh�t

∥
∥2
F0,D

≤ 2‖Π0(uh − ûh)t‖2∂T , (18)

where we have increased the right hand side to include facets on Γ N also. Similarly, since the
normal component of the given ωh ∈ Wh is continuous across F ∈ F0 and zero on F ∈ FD ,

∥
∥�curl uh�n

∥
∥2
F ≤ 2 ‖(curl uh − ωh)n‖2∂T . (19)

Using (18) and (19) in (15), we obtain the estimate (16).
To prove (17), consider a function ωh ∈ Wh satisfying

n · ωh = n · {curl uh} on ∂T \ Γ D,

n · ωh = 0 on ∂T ∩ Γ D,

on the boundary of every element T ∈ T . Since curl uh is piecewise constant, by the well
known degrees of freedom of the Raviart-Thomas space Wh , these conditions uniquely fix
an ωh ∈ Wh . Then, ‖(curl uh − ωh)n‖F equals zero for F ∈ FN , equals 1

2

∥
∥�curl uh�n

∥
∥
F for

F ∈ F0, and equals ‖(curl uh)n‖F for F ∈ FD , so

‖(curl uh − ωh)n‖2∂T �
∥
∥�curl uh�n

∥
∥2
F0,D

.

Therefore, for this choice of ωh , we have

~uh, ûh, ωh~2
ε � ‖ε(uh)‖2T + h

∥
∥�curl uh�n

∥
∥2
F0,D

+ h−1‖Π0(uh − ûh)t‖2∂T .
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By a local scaling argument h
∥
∥�curl uh�n

∥
∥2
F � ‖ curl uh‖2T . Using this in the above inequal-

ity and recalling that ‖∇uh‖2T = ‖ε(uh)‖2T + ‖κ(curl uh)‖2T , we complete the proof
of (17). ��
Lemma 3 For any uh ∈ Vh, ωh ∈ Wh, and T ∈ T ,

‖ curl uh − ωh‖2T ∼ h‖(curl uh − ωh)n‖2∂T , (20a)

‖ curl κ(ωh)‖T ∼ |κ(ωh)|2H1(T )
∼ ‖ divωh‖T , (20b)

‖ε(uh)‖2T + ‖ curl uh − ωh‖2T ∼ ‖ dev∇uh − Π0κ(ωh)‖2T
+ h2‖ divωh‖2T + ‖ div uh‖2T .

(20c)

Proof The first equivalence follows by standard scaling arguments (by equivalence of norms
in the lowest order Raviart-Thomas space). Equivalence (20b) also follows by local scaling
arguments and [20, eq. (4.14)]. We continue on to prove (20c). Applying the Pythagoras
theorem twice,

‖ε(uh)‖2T + 1

2
‖ curl uh − ωh‖2T = ‖∇uh − κ(ωh)‖2T

= ‖ dev∇uh − κ(ωh)‖2T + 1

3
‖ div uh‖2T . (21)

We also have, due to (20b),

h2‖ divωh‖2T ∼ h2‖ curl(κ(ωh))‖2T = h2
∥
∥ curl

(
κ(ωh − curl uh)

)∥
∥2
T

� ‖ωh − curl uh‖2T .
(22)

Here we have used an inverse inequality and the observation that derivatives of curl uh ∈
P0(T ) vanish. Combining (21), (22) and the continuity of the L2 projection, we conclude
that the right side of (20c) can be bounded by the left side.

For the reverse inequality,

‖ dev∇uh − κ(ωh)‖2T = ‖Π0(dev∇uh − κ(ωh))‖2T + ‖(I−Π0)κ(ωh)‖2T
� ‖ dev∇uh − Π0κ(ωh)‖2T + h2|κ(ωh)|2H1(T )

∼ ‖ dev∇uh − Π0κ(ωh)‖2T + h2‖ divωh‖2T . (23)

Here, we used that dev∇uh ∈ P0(T ), a standard approximation estimate for the L2

projection, followed by (20b). The proof is then concluded using (21). ��
Lemma 4 For all (uh, ûh, ωh) ∈ Uh,

~uh, ûh, ωh~2
ε ∼ ‖uh, ûh, ωh‖2ε ∼ ‖uh, ûh, ωh‖2Uh

+ ‖ div uh‖20 + h2‖ divωh‖20.
Proof This is a direct consequence of Lemma 3. ��

3.3 Interpolation Operators

In subsequent sections we will require the interpolation operators into the spaces in (8a)-(8e),
denoted by

IV : H1
n,D(T ) → Vh, IW : H1

n,D(T ) → Wh, IV̂ : L2(F,R3) → V̂h, IΣ : Σ → Σh,
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where Σ = {τ ∈ H1(T ,D) : �τ �nt = 0}. Of course, the natural interpolation for Qh ,
denoted by IQ : L2(Ω) → Qh , is simply the L2-orthogonal projection. The definitions and
properties of the remaining interpolants are summarized in this subsection.

An H(div)-interpolation into Vh , denoted by IV : H1
n,D(T ) → Vh , is defined using the

standard degrees of freedom (see e.g., [3, Proposition 2.3.2]):

∫

F
(u − IV u)n q ds = 0 for all q ∈ P1(F) and F ∈ F . (24)

A well-known consequence of (24) is that

div(IV u) = IQ div u, (25)

for all u in the domain of IV . The interpolant IW : H1
n,D(T ) → Wh , defined by ((ω −

IWω)n, q)F = 0 for all q ∈ P0(F) and all F ∈ F , is also standard. The interpolation
operator for the stress space IΣ : Σ → Σh , borrowed from [21], is defined by

∫

F
(IΣσ − σ)nt · q ds = 0, for all q ∈ P0(F,R3) with qn = 0, for all F ∈ F, (26)

∫

T
(IΣσ − σ) : q dx = 0, for all q ∈ P0(T ,D), for all T ∈ T . (27)

Finally, the tangential L2-projection on facets, IV̂ : L2(F,R3) → V̂h is defined as usual by
((̂u − IV̂ û)t , q)F = 0 for all q ∈ P0(F,R3) with qn = 0 on all F ∈ F .

To note the salient approximation properties of these interpolants, first observe that for a
u ∈ H1(Ω,R3) ∩ H2(T ), we have curl(u) ∈ H1

n,D(T ). Hence (IV u, IV̂ ut , IW curl(u)) is
in Uh and using standard scaling arguments and the Bramble-Hilbert lemma, we get

~u − IV u, ut − IV̂ ut , curl u − IW curl u~2
ε + ‖u − IV u, ut − IV̂ ut‖2∇
+ h‖ε(IV u − u)nt‖2∂T � h2‖u‖2H2(T )

. (28)

Also recall that [21, Theorem 5.8] implies that for all σ ∈ Σ ,

‖σ − IΣσ‖20 + h ‖(σ − IΣσ)nt‖2∂T � h2‖σ‖2H1(T )
. (29)

4 An H(div)-Conforming Velocity–Vorticity HDG Scheme

4.1 Derivation of the HDGMethod

To derive our new HDG scheme for (6), let u, p be a sufficiently smooth exact solution of
(1). (A sufficient smoothness condition is quantified in Lemma 5 below.) Let vh ∈ Vh . Then,
multiplying (1a) by vh and integrating by parts on each element,

( f , vh) = (− div(νε(u)) + ∇ p, vh) = −(p, div vh) +
∑

T∈T

∫

T
νε(u) : ε(vh) dx

+
∑

T∈T

∫

∂T \ΓN

(p − νε(u))n · vh ds,
(30a)
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where we used the symmetry of ε(u) and the boundary condition (1d). Since p is smooth,
�vh�n = 0 on F0,D ,

0 = −
∑

T∈T

∫

∂T \ΓN

pn · vh ds . (30b)

Let v̂h ∈ V̂h . Since v̂h is single-valued on all facets, v̂h = 0 on ΓD (see (8b)), and ε(u) is
continuous across interior facets,

0 =
∑

T∈T

∫

∂T \ΓN

νε(u)n · v̂h ds . (30c)

Adding (30a)–(30c),

( f , vh) = −(p, div vh) +
∑

T∈T

∫

T
νε(u) : ε(vh) dx +

∫

∂T \ΓN

νε(u)n · (̂vh − vh) ds,

Since (̂vh)t = v̂h , �vh�n = 0 on F0,D and ε(u) is smooth, we may replace (̂vh − vh) by
its tangential component (̂vh − vh)t in the last term above. Furthermore, on ΓN , we have
ε(u)n · (̂vh − vh)t = ε(u)nt · (̂vh − vh)t = 0 since the tangential part of (1d) shows that
ε(u)nt = 0 on ΓN . Hence we may also replace ∂T \ΓN by ∂T in the last term. Thus,

( f , vh) = −(p, div vh) +
∑

T∈T

∫

T
νε(u) : ε(vh) dx +

∫

∂T
νε(u)n · (̂vh − vh)t ds .

(31a)
Next, let ω = curl(u) and û = ut on each element boundary ∂T . Then, obviously,

0 =
∑

T∈T

∫

∂T
νε(vh)n · (̂u − u)t ds +

∑

T∈T

να

h

∫

∂T
Π0 (̂u − u)t · Π0 (̂vh − vh)t ds, (31b)

0 =
∑

T∈T
h

∫

∂T
ν(curl u − ω)n(curl vh − ηh)n dx, (31c)

for any test function ηh ∈ Wh and constant α > 0, i.e., if u, û and ω are replaced by uh, ûh
and ωh , respectively, then the terms on the right are consistent terms.

Adding the equations (31a)–(31c), we obtain

νahdg(u, û, ω; vh, v̂h, ηh) − (div vh, p) = ( f , vh), (32a)

where

ahdg(z, ẑ, θ; vh, v̂h, ηh) := (ε(z), ε(vh))T
+ (ε(z)n, (̂vh − vh)t )∂T + ((̂z − z)t , ε(vh)n)∂T

+ α

h

(
Π0 (̂z − z)t ,Π

0 (̂vh − vh)t
)
∂T + h ((curl z − θ)n, (curl vh − ηh)n)∂T .

Here and throughout, (·, ·)T = ∑
T∈T (·, ·)T and (·, ·)∂T = ∑

T∈T (·, ·)∂T , extending our
prior analogous norm notation to inner products. Of course, from (1b), we also have

(div u, qh) = 0, (32b)

for all qh ∈ Qh . Equations (32a)–(32b), after replacing (u, û, ω) by (uh, ûh, ωh), yield the
following discrete formulation: find (uh, ûh, ωh) ∈ Uh and ph ∈ Qh such that

ν ahdg(uh, ûh, ωh; vh, v̂h, ηh) − (ph, div vh) = ( f , vh), (33a)

123



   91 Page 14 of 25 Journal of Scientific Computing            (2023) 95:91 

−(div uh, qh) = 0, (33b)

for all (vh, v̂h, ηh) ∈ Uh and qh ∈ Qh . Note that this method enforces Π0(uh)t = 0 on ΓD

as a consequence of how the last term of (31b) manifest in the method. Due to the Dirichlet
conditions built into Wh (see (8c)) the method also penalizes ‖Π0 curl(uh)n‖ΓD through the
manifestation of the consistent term (31c) in the method. System (33) may be thought of as
a nonconforming HDG discretization of the standard weak form (6).

Note that ahdg(u, û, ω; vh, v̂h, ηh) is well defined for any (vh, v̂h, ηh) ∈ Uh and any
(u, û, ω) ∈ Ureg, where

Ureg := (H1
0,D(Ω) ∩ H2(T )) × L2(F) × H1

n,D(T ), (34a)

Qreg := Q ∩ H1(T ). (34b)

Lemma 5 (Consistency of the HDG method) Suppose the exact solution (u, p) of (6) is
regular enough so that u, together with û = ut on facets and ω = curl u, satisfies (u, û, ω) ∈
Ureg and suppose p ∈ Qreg. Then any ((uh, ûh, ωh), ph) ∈ Uh × Qh solving (33) satisfies

νahdg(u − uh, ut − ûh, ω − ωh; vh, v̂h, ηh) − (div vh, p − ph) = 0,

for all (vh, v̂h, ηh) ∈ Uh.

Proof This follows by subtracting (33) from (32). ��

4.2 Pressure Robust Error Analysis of the HDG Scheme

Wefollow theusualmixedmethod approach andproceed to combine continuity and coercivity
of ahdg with a discrete Stokes inf-sup condition, or the LBB [3] estimate. The latter implies
the stability of (33), which also implies its unique solvability. We begin by noting that by
local scaling arguments, there is a mesh-independent c1 such that

h‖ε(vh)‖2∂T ≤ c1‖ε(vh)‖2T , vh ∈ Vh, T ∈ T , (35)

since ε(vh) is constant on T . For the same reason, Π0 may be introduced into the second
and third terms in the definition of ahdg(uh, ûh, ωh; vh, v̂h, ωh), e.g.,

(ε(uh)n, (̂vh − v)t )∂T = (
ε(uh)n,Π0 (̂vh − v)t

)
∂T . (36)

Let ~u, û, ω~2
ε,+ = ~u, û, ω~2

ε + h‖ε(u)nt‖2∂T + h−1‖(I−Π0)(u − û)‖2∂T .

Lemma 6 (Continuity of ofahdg)Forany (u, û, ω) ∈ Ureg, (uh, ûh, ωh) ∈ Uh, (vh, v̂h, ωh) ∈
Uh and qh ∈ Qh,

νahdg(u, û, ω; vh, v̂h, ωh) � ν~u, û, ω~ε,+~vh, v̂h, ηh~ε,+, (37)

νahdg(uh, ûh, ωh; vh, v̂h, ωh) � ν~uh, ûh, ωh~ε~vh, v̂h, ηh~ε, (38)

(div uh, qh) � ~uh, ûh, ωh~ε‖qh‖0. (39)

Proof Inequality (37) follows from Cauchy–Schwarz inequality, while (38) follows by addi-
tionally employing (35) and (36). The estimate (39) is a consequence of 1

3‖ div uh‖2T =
‖ε(uh)‖2T − ‖ dev ε(uh)‖2T ≤ ‖ε(uh)‖2T . ��
Lemma 7 (Coercivity of ahdg) There is a mesh-independent α0 > 0 such that for all α > α0

and all (uh, ûh, ωh) ∈ Uh,

νahdg(uh, ûh, ωh; uh, ûh, ωh) � ν~uh, ûh, ωh~2
ε . (40)
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Proof By (36) and Young’s inequality with any β > 0,

ahdg(uh, ûh, ωh; uh, ûh, ωh) ≥ ‖ε(uh)‖2T −
(
βh‖ε(uh)n‖2∂T + 1

βh
‖Π0(uh − ûh)t‖2∂T

)

+ αh−1‖Π0(uh − ûh)t‖2∂T + h‖(curl uh − ωh)n‖2∂T .

Hence using (35), and choosing, say β = 1/(2c1) and α = 2/β, (40) follows. ��
Lemma 8 (LBB condition for the HDG method) For any ph ∈ Qh there exists a
(vh, v̂h, ηh) ∈ Uh with ~vh, v̂h, ηh~ε � ‖ph‖0 and div vh = ph. Consequently,

sup
(vh ,̂vh ,ηh)∈Uh

(div vh, ph)

~vh, v̂h, ηh~ε

� ‖ph‖0. (41)

Proof By classical results [18], there exists a u ∈ H1(Ω) such that

div v = ph, ‖v‖H1(Ω) � ‖ph‖0. (42)

Put vh = IV v and v̂h = IV̂ v on each facet. Then, (42) and (25) imply div vh = div(IV v) =
IQ div v = ph . Moreover, (as alluded to in [29]) it is easy to show that

‖vh, v̂h‖∇ � ‖v‖H1(Ω). (43)

Choose ηh ∈ Wh as in (17) of Lemma 2. Then, by (42)–(43),

~vh, v̂h, ηh~ε � ‖vh, v̂h‖∇ � ‖v‖H1(Ω) � ‖ph‖0,
concluding the proof. ��
Theorem 1 (Error estimates for the HDG method) Let u, û, ω, p denote the exact solution
that satisfies the regularity assumption of Lemma 5 and let ((uh, ûh, ωh), ph) ∈ Uh × Qh be
the discrete solution of (33). Then the errors in uh, ûh, ωh can be bounded independently of
the pressure error by

~u − uh, ut − ûh, ω − ωh~ε � h‖u‖H2(T ). (44)

Furthermore, the pressure error satisfies

ν−1‖p − ph‖0 � h(‖u‖H2(T ) + ν−1‖p‖H1(T )). (45)

Proof Let E = (u − uh, û − ûh, ω −ωh) and Eh = (IV u − uh, IV̂ û − ûh, IWω −ωh). Then
E = E − Eh represents the interpolation errors. Since Eh ∈ Uh ,

ν~Eh~2
ε � νahdg(Eh; Eh) = νahdg(E − E; Eh) by Lemma 7

= (div(IV u − uh), p − ph) − νahdg(E; Eh) by Lemma 5.

By (25), div(IV u) = IQ div u = 0. Moreover, by (33b), div uh = 0. Hence

ν~Eh~2
ε = −νahdg(E; Eh) � ν~E~ε,+~Eh~ε,+, (46)

by Lemma 6. Now we claim that

~Eh~ε,+ � ~Eh~ε. (47)

To see this, first note that local scaling arguments give

h−1‖(I − Π0)vh‖2∂T � ‖∇vh‖2T , (48)
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for any vh ∈ Vh . Then, letting Eu
h = IV u − uh , Eû

h = IV̂ u − ûh , note that on each facet,
(I − Π0)

(
Eu
h − Eû

h

) = (I − Π0)Eu
h . Hence the extra terms in ~Eh~2

ε,+ that are not in
~Eh~2

ε can be bounded by applying (48) and (35) with vh = Eu
h to get

~Eh~2
ε,+ � ~Eh~2

ε + ‖Eu
h , Eû

h‖2∇ � ~Eh~2
ε,

by Lemma 2. This proves (47). Using (47) in (46), we conclude that ~Eh~ε � ~E~ε,+.
Combining with triangle inequality,

~E~ε ≤ ~E~ε + ~Eh~ε � ~E~ε,+ � h‖u‖H2(T ), (49)

where we have applied (28) in the last step. This proves (44).
For the pressure estimate, we begin with triangle inequality and Lemma 8:

ν−1‖p − ph‖0 ≤ ν−1‖p − IQ p‖0 + ν−1‖IQ p − ph‖0
� ν−1‖p − IQ p‖0 + sup

(vh ,̂vh ,ηh)∈Uh

ν−1(div vh, IQ p − ph)

~vh, v̂h, ηh~ε

.

To bound the numerator of the supremum, we use Lemma 5:

ν−1(div vh, IQ p − ph) = ν−1(div vh, p − ph) = ahdg(E; vh, v̂h, ηh)

� ~E~ε~vh, v̂h, ηh~ε.

Hence the already proved estimate (49), together with the standard L2 projection error
estimates finish the proof of (45). ��

5 AnMCS Formulation with H(div)-Conforming Vorticity

In this section we derive a new mixed method for the approximation of (2), motivated by the
weak formulation (7). Let σh ∈ Σh and (vh, v̂h, ηh) ∈ Uh . Defining

〈div σh; vh, v̂h, ηh〉Uh := (div σh, vh)T − ((σh)nn, (vh)n)∂T
− ((σh)nt , (̂vh)t )∂T + (σh, κ(ηh))T ,

(50)

consider the terms on the right. When (σh)nt is continuous across element interfaces, the first
two terms together realizes the duality pairing introduced in Sect. 2, namely 〈div σ, vh〉div, per
[20, Theorem3.1]. The third term is used to impose the nt-continuity of the viscous stress (and
prior works [20, 21, 24] provided enough rationale to employ nt-continuous finite elements
for viscous stresses). Note, that a similar nt-continuous approximation of the gradient (but not
the physical viscous stresses ε(u)) was also already considered in [17]. Due to the Dirichlet
conditions built into V̂h on ΓD (see (8b)), this term is comprised only of integrals over facets
in the interior and on ΓN , with the latter enforcing σnt = 0 in ΓN as demanded by (2f).
Finally, the last term above is used to weakly incorporate the symmetry constraint (2c). This
technique of imposing symmetry weakly is widely used in finite elements for linear elasticity
[1, 2, 4, 6, 15, 19, 34].

Viewing (7) in terms of 〈div ·, ·〉Uh , we are led to the following mixed method: find
(uh, ûh, ωh) ∈ Uh and (σh, ph) ∈ (Σh × Qh) satisfying

ν−1(σh, τh) + 〈div τh; uh, ûh, ωh〉Uh = 0, (51a)

−〈div σh; vh, v̂h, ηh〉Uh − (div vh, ph) + c(ωh, ηh) = ( f , vh), (51b)

−(div uh, qh) = 0, (51c)
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for all τh ∈ Σh , (vh, v̂h, ηh) ∈ Uh , and qh ∈ Qh , with the stabilizing bilinear form
c(ωh, ηh) := νh2(divωh, div ηh)Ω . Note that since ωh approximates the vorticity ω =
curl(u), we have divω = 0, so c(·, ·) is a consistent addition. Although the formulation
(51) is very similar to the formulations from [20, 21], note the following differences. First,
while the nt-continuity of viscous stresses was built into the spaces in [20, 21], now it is
incorporated as an equation of the method by the well-known hybridization technique. Sec-
ond, although we use the same local stress finite element space as in [21], we use the weak
symmetric setting from [20]. In the latter, the Lagrange multiplier for the weak symmetry
constraint was given by an element-wise discontinuous approximation, whereas here it is in
the div-conforming Wh .

5.1 Stability of theMCSMethod

From the terms in (51), we anticipate that the norms ‖ · ‖Uh and ‖ · ‖ε are more natural for
the analysis of the MCS method (in contrast to the HDG method). The latter appears in the
next lemma.

Lemma 9 (Continuity of MCS formulation) The bilinear forms in (51) are continuous in the
sense that for all σh, τh ∈ Σh, ph ∈ Qh, ηh ∈ Wh and (uh, ûh, ωh) ∈ Uh, in addition to the
obvious estimates

ν−1(σh, τh) � ν−1/2‖σh‖0 ν−1/2‖τh‖0, and c(ωh, ηh) � νh2‖ divωh‖0 ‖ div ηh‖0,
the following estimates hold:

(div uh, ph) � ‖uh, ûh, ωh‖ε ‖ph‖0, (52a)

〈div σh; uh, ûh, ωh〉Uh � ‖σh‖0 ‖uh, ûh, ωh‖ε. (52b)

Proof Inequality (52a) is proved just like (39). To prove (52b), let us first note an equivalent
and more compact form of 〈div σh; vh, v̂h, ηh〉Uh obtained by integrating (50) by parts (see
e.g, [20, eq. (3.11)]), namely

〈div σh; vh, v̂h, ηh〉Uh = −(σh,∇vh − κ(ηh))T + ((σh)nt , (vh − v̂h)t )∂T . (53)

Using (53), the fact that σh is trace-free, the Cauchy–Schwarz inequality, and the following
estimate (which follows by a local scaling argument using a specific mapping mentioned in
the beginning of §3),

h1/2‖(σh)nt‖∂T � ‖σh‖T , (54)

we get

〈div σh; uh, ûh, ωh〉Uh � ‖σh‖0
(‖ dev∇uh − κ(ωh)‖2T + h−1‖Π0(uh − ûh‖2∂T

)1/2

� ‖σh‖0
(‖uh, ûh, ωh‖2Uh

+ h2‖ divωh‖2T
)1/2

,

where the last inequality is due to the same argument as in (23). Thus (52b) follows from
Lemma 4. ��
Lemma 10 For any (uh, ûh, ωh) ∈ Uh there exists a (τh, qh) ∈ Σh × Qh satisfying

‖τh‖0 + ‖qh‖0 � ‖uh, ûh, ωh‖Uh + ‖ div uh‖0, (55)

〈div τh; uh, ûh, ωh〉Uh − (div uh, qh) � (‖uh, ûh, ωh‖Uh + ‖ div uh‖0)2. (56)
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Proof For each element T ∈ T and each facet F ⊂ ∂T , there are matrix fields SF0 , SF1 ,
supported on T , with the following properties: on T , both SF0 , SF1 are constant matrices inD,
their boundary trace (SFi )nt |F , for i ∈ {0, 1}, are constant unit-length vector fields on F that
form a basis for the tangent space n⊥

F , and (SFi )nt |F ′ vanishes on all other facets F ′ �= F in
Fh . Such matrix fields are exhibited in [21, Lemma 5.1]. Given any (uh, ûh, ωh) ∈ Uh , set

τ 0h :=
∑

T∈T

∑

F⊂∂T

∑

i∈{0,1}
−(SFi : Π0 dev(∇uh − κ(ωh))) λF SFi ,

τ 1h :=
∑

T∈T

∑

F⊂∂T

∑

i∈{0,1}

1√
h

Π0 (̂uh − uh)t S
F
i ,

where λF is the linear barycentric coordinate function associated to the vertex opposite to
the facet F . Since λF SFi has a vanishing nt-trace and Π0 dev(∇uh − κ(ωh)) ∈ D, we see
that τh = γ0τ

0
h + γ1τ

1
h , for any γ0, γ1 ∈ R, is an element of Σh . Also set qh = − div uh ,

so that −(div uh, qh) = ‖ div uh‖20. For these choices, (55) obviously holds as long as γi is
chosen independent of h and ν. Indeed, such γi can be chosen to also ensure that

〈div τh; uh, ûh, ωh〉Uh � ‖uh, ûh, ωh‖2Uh
,

so that (56) also holds. This follows from an argument which (we omit and) is similar to
that detailed in [20, Lemma 6.5], proceeding simply by appropriately combining Young and
Cauchy–Schwarz inequalities. ��

The combined bilinear form of the MCS method (51) is given by

B(σh, uh, ûh, ωh, ph; τh, vh, v̂h, ηh, qh) :=ν−1(σh, τh) + 〈div τh; uh, ûh, ωh〉Uh

− 〈div σh; vh, v̂h, ηh〉Uh

− (div uh, qh) − (ph, div vh) + c(ωh, ηh).

Define a norm on the product space Sh = Σh × Vh × V̂h × Wh × Qh by

‖σh, uh, ûh, ωh, ph‖Sh := ν−1/2(‖σh‖0 + ‖ph‖0) + ν1/2‖uh, ûh, ωh‖ε.

Lemma 11 (Inf-sup condition for MCS method) For any r = (σh, uh, ûh, ωh, ph) ∈ Sh, be
arbitrary, there exists an s ∈ Sh such that

B(r; s) � ‖r‖2Sh , and (57)

‖s‖Sh � ‖r‖Sh . (58)

Proof We will find the required s as a sum of three terms, each in Sh , and each depending on
the given r . The first term is set using s∗ = (σh, uh, ûh, ωh,−ph), for which we obviously
have

B(r , s∗) = ν−1‖σh‖20 + νh2‖ divωh‖20, (59a)

‖s∗‖Sh � ‖r‖Sh . (59b)

The second term is s̃ = (ντh, 0, 0, 0, νqh) ∈ Sh , where τh ∈ Σh and qh ∈ Qh are as in
Lemma 10 obtained using the given components uh, ûh, ωh of r . The lemma gives some
C̃ > 0 such that

B(r; s̃) = ν−1(σh, ντh) + ν〈div τh; uh, ûh, ωh〉Uh − ν(div uh, qh)

� (σh, τh) + ν
(
‖uh, ûh, ωh‖2Uh

+ ‖ div uh‖20
)
, (60a)
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‖s̃‖2Sh = ν−1(‖ντh‖20 + ‖νqh‖20) ≤ C̃ν
(
‖uh, ûh, ωh‖2Uh

+ ‖ div uh‖20
)
. (60b)

The third term is sΔ = (0,−ν−1vh,−ν−1v̂h,−ν−1ηh, 0) ∈ Sh where (vh, v̂h, ηh) ∈ Uh

is as in Lemma 8 obtained using the given component ph of r . The lemma implies that
div vh = ph and

B(r; sΔ) = ν−1‖ph‖20 − ν−1〈div σh; vh, v̂h, ηh〉Uh + ν−1c(ωh, ηh), (61a)

‖sΔ‖2Sh = ν‖ν−1vh, ν
−1v̂h, ν

−1ηh‖2ε � ν−1‖ph‖20. (61b)

Note that to obtain the last inequality, we have also used Lemma 4.
Now letting β > 0, a constant yet to be chosen, put s = βs∗ + s̃ + sΔ. Then,

combining (59a), (60a) and (61a),

B(r; s) � β

ν
‖σh‖20 + βνh2‖ divωh‖20 + ν‖uh, ûh, ωh‖2Uh

+ ν‖ div uh‖20 + 1

ν
‖ph‖20 − (ρ1 + ρ2 + ρ3),

(62)

where ρ1 = (σh, τh), ρ2 = −ν−1〈div σh; vh, v̂h, ηh〉Uh , ρ3 = ν−1c(ωh, ηh). By (60b) and
Young’s inequality,

ρ1 ≤ C̃

2ν
‖σh‖20 + ν

2

(
‖uh, ûh, ωh‖2Uh

+ ‖ div uh‖20
)
.

To bound ρ2, note that by Lemma 9, ρ2 � ν−1‖σh‖0‖vh, v̂h, ηh‖ε , so by (61b), there is a

CΔ > 0 such that ρ2 ≤ ν−1/2‖σh‖0
( 1
2C

Δν−1‖ph‖20
)1/2

. Thus

ρ2 ≤ CΔ

2ν
‖σh‖20 + 1

4ν
‖ph‖20.

To bound ρ3, we recall from Lemma 4 that h‖ div ηh‖0 � ‖vh, v̂h, ηh‖ε. Hence by (61b),

there is a C ′ > 0 such that ρ3 ≤ (ν1/2h‖ divωh‖0)
( 1
2C

′ν−1‖ph‖20
)1/2

, so

ρ3 ≤ C ′ν
2

h2‖ divωh‖20 + 1

4ν
‖ph‖20.

Using these estimates for ρi in (62),

B(r; s) � 2β − (C̃ + CΔ)

2ν
‖σh‖20 + 2β − C ′

2
νh2‖ divωh‖20

+ ν

2
‖uh, ûh, ωh‖2Uh

+ ν

2
‖ div uh‖20 + 1

2ν
‖ph‖20.

Since C̃,CΔ and C ′ are mesh-independent constants, choosing β > max(C̃ + CΔ,C ′)/2
and recalling the norm equivalence of Lemma 4, we prove (57). Of course, inequality (58)
follows from (59b), (60b), and (61b). ��

5.2 Pressure Robust Error Analysis of MCS Scheme

In addition to the spaces Ureg and Qreg, the a priori error analysis will now also use a stress
space with improved regularity, Σreg := Σ sym ∩ H1(T ,D). Note that the integrals in the
terms defining B(σ, u, û, ω, p; ·) are well-defined for σ ∈ Σreg, (u, ut , ω) ∈ Ureg, and
p ∈ Qreg, so B(·, ·) can be extended to such non-discrete arguments.
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Lemma 12 (Consistency of the MCS method) Assume that the exact solution (σ, u, p) of (7)
fulfills the regularity assumption (u, ut , ω) ∈ Ureg and (σ, p) ∈ Σreg × Qreg, where ω =
curl(u). Let (σh, uh, ûh, ωh, ph) ∈ Sh be the solution of (51) and let (τh, vh, v̂h, ηh, qh) ∈ Sh
be an arbitrary test function. Then

B(σ − σh, u − uh, ut − ûh, ω − ωh, p − ph; τh, vh, v̂h, ηh, qh) = 0. (63)

Proof Since σ is symmetric we have that σ : κ(ηh) = 0. Next, using the regularity
assumptions, starting from (53), we get

−〈div σ ; vh, v̂h, ηh〉Uh − (div vh, ph) = (σ − pI : ∇vh)T − (σnt , ·(vh − v̂h)t )∂T

= −(div(σ − pI ), vh)T − (σnt , (vh − v̂h)t )∂T + ((σ − pI )n, vh)∂T

= −(div(σ − pI ), vh)T + (σnt , v̂h)∂T − ((σ − pI )nn, (vh)n)∂T

= −(div(σ − pI ), vh)T +
∑

F∈F
(�σ �nt , v̂h)F − (�(σ − pI )�nn, (vh)n)F

= −(div(σ − pI ), vh)T +
∫

ΓN

(σ − pI )nn(vh)n − σnt v̂h ds

= −(div(σ − pI ), vh) = ( f , vh),

where the boundary integral vanished using (2f) given on ΓN . Next, since ν−1σ = ε(u) =
∇u − κ(ω) we have

ν−1(σ, τh) + 〈div τh; u, û, ω〉Uh

= ν−1(σ, τh) − (τh,∇u − κ(ω))T + (τnt , (u − ut )t )∂T = 0.

The final remaining term in the bilinear form is also zero since (div u, qh) = 0 as the exact
solution is divergence free. ��
Theorem 2 (Error estimate for the MCS method) Assume that the exact solution (σ, u, p)
of (7) fulfills the regularity assumption (u, ut , ω) ∈ Ureg and (σ, p) ∈ Σreg × Qreg, where
ω = curl(u). Let (uh, ûh, ωh) ∈ Uh and (σh, ph) ∈ Σh × Qh be the solution of (51). Then
we have the pressure robust error estimate

ν−1‖σ − σh‖0 + ‖u − uh, ut − ûh, ω − ωh‖ε � h‖u‖H2(T ). (64)

Furthermore, the pressure error can be bounded by

ν−1‖p − ph‖0 � h
(‖u‖H2(T ) + ν−1‖p‖H1(T )

)
. (65)

Proof As in the proof of Theorem 1, let E = (σ − σh, u − uh, ut − ûh, ω − ωh, p − ph),
Eh = (IΣσ − σh, IV u − uh, IV̂ ut − ûh, IWω − ωh, IQ p − ph), and let the interpolation
error be E = E − Eh . Now, using Lemma 11, choose s = (τh, vh, v̂h, ηh, qh) such that

‖Eh‖Sh � B(Eh; s)
‖s‖Sh

.

By the consistency of the MCS formulation (63) we have

B(Eh; s) = B(E − E; s) = B(E; s).
Hence, if we prove that

B(E; s) � ν1/2h‖u‖H2(T )‖s‖Sh , (66)
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then ‖Eh‖Sh � ν1/2h‖u‖H2(T ), which is enough to yield the stated pressure-independent
estimate (64): indeed, letting Ē := (σ − σh, u − uh, ut − ûh, ω − ωh, 0), Ēh := (IΣσ −
σh, IV u − uh, IV̂ ut − ûh, IWω − ωh, 0), and Ē = Ē − Ēh , we would then have

‖Ē‖Sh ≤ ‖Ē‖Sh + ‖Ēh‖Sh ≤ ‖Ē‖Sh + ‖Eh‖Sh ≤ ν1/2h‖u‖H2(T ), (67)

using the interpolation estimates (28)–(29) to bound ‖Ē‖Sh . Inequality (67) obviously
implies (64). Therefore we focus on proving (66) and proceed to separately inspect each
term forming its left hand side.

Let E j with j ∈ {σ, u, û, ω, p} denote the corresponding components of the interpolation
error. Then (53) implies

〈div τh; Eu, E û, Eω〉 = (τh, κ(Eω) − ∇Eu)T + ((τh)nt , (Eu − E û)t )∂T .

As (τh)nt is constant on each facet, we can insert Π0 in the last term, so several applications
of the Cauchy–Schwarz inequality with h1/2 and h−1/2 weights for the boundary terms yields

〈div τh; Eu, E û, Eω〉 �
(‖τh‖0 + h1/2‖(τh)nt‖∂T

)
(‖Eu, E û‖∇ + ‖κ(Eω)‖0)

� ‖τh‖0h‖u‖H2(T ), (68)

where we used (54) again and the interpolation estimate (28) in the last step.
Next consider the symmetrically opposite term in B. Since ∇vh ∈ P0(T ) and Eσ is

orthogonal to facet-wise and element-wise constant functions [see (26)–(27)], we have

−〈div Eσ ; vh, v̂h, ηh〉Uh = (Eσ ,∇vh − κ(ηh))T − (Eσ
nt , (vh − v̂h)t )∂T

= −(Eσ , (I − Π0)κ(ηh))T − (Eσ
nt , (I − Π0)(vh − v̂h)t )∂T

� ‖Eσ ‖0 ‖vh, v̂h, ηh‖ε + h1/2‖Eσ
nt‖∂T ‖vh, v̂h‖∇ .

where on the right hand side of the last inequality, the first term is obtained using (20b) and
Lemma 4, while the second term is obtained using (48). Thus, the interpolation estimate (29)
and Lemma 2 imply

〈div Eσ ; vh, v̂h, ηh〉Uh � νh‖u‖H2(T )‖vh, v̂h, ηh‖ε. (69)

The remaining terms are easy: by Cauchy–Schwarz inequality,

ν−1(Eσ , τh) � h‖u‖H2(T )‖τh‖0, (70)

and by the definition of IW , IQ and (25),

(div Eω, div ηh) = 0, (div Eu, qh) = 0, and (E p, div vh) = 0, (71)

where the last equation is due to div vh ∈ P0(T ). Summing up (68), (69), (70), and (71), we
prove (66), and hence (64).

The pressure error estimate (65) follows along the same lines as in the proof of Theorem 1.
��

6 Numerical Examples

In this last sectionwe present a simple numerical example to provide a practical illustration of
the theoretical asymptotic convergence rates as well as to compare the two new methods we
presented.Bothmethodswere implementedwithin thefinite element libraryNGSolve/Netgen
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Table 1 Errors and estimated order of convergence (eoc) for the HDG method

|T | ‖ε(u − uh)‖0 eoc ‖u − uh‖0 eoc ‖ω − ωh‖0 eoc ‖p − ph‖0 eoc

63 2.2. 10−3 ( – ) 1.9. 10−4 ( – ) 3.2. 10−3 ( – ) 2.1. 10−1 ( – )

504 1.7. 10−3 ( 0.4 ) 8.4. 10−5 ( 1.2 ) 2.3. 10−3 ( 0.5 ) 1.2. 10−1 ( 0.9 )

4032 9.3. 10−4 ( 0.9 ) 2.4. 10−5 ( 1.8 ) 1.2. 10−3 ( 0.9 ) 6.1. 10−2 ( 0.9 )

32256 5.38. 10−4 ( 0.8 ) 8.0. 10−6 ( 1.6 ) 6.6. 10−4 ( 0.9 ) 3.1. 10−2 ( 1.0 )

258048 2.8. 10−4 ( 0.9 ) 2.3. 10−6 ( 1.8 ) 3.5. 10−4 ( 0.9 ) 1.6. 10−2 ( 1.0 )

2064384 1.4. 10−4 ( 1.0 ) 6.3. 10−7 ( 1.9 ) 1.8. 10−4 ( 1.0 ) 7.8. 10−3 ( 1.0 )

Table 2 Errors and estimated order of convergence (eoc) for the MCS method

|T | ‖ε(u − uh)‖0 eoc ‖u − uh‖0 eoc ‖σ − σh‖0 eoc ‖ω − ωh‖0 eoc ‖p − ph‖0 eoc

63 2.6. 10−3 ( – ) 2.1. 10−4 ( – ) 4.0. 10−7 ( – ) 3.2. 10−3 ( – ) 2.1. 10−1 ( – )

504 1.9 10−3 ( 0.4 ) 1.0. 10−4 ( 1.0 ) 2.9. 10−7 ( 0.5 ) 2.2. 10−3 ( 0.5 ) 1.2. 10−1 ( 0.9 )

4032 1.0 10−4 ( 0.9 ) 2.5. 10−5 ( 2.0 ) 1.5. 10−7 ( 1.0 ) 1.1. 10−3 ( 1.0 ) 6.1. 10−2 ( 0.9 )

32256 6.0 10−4 ( 0.7 ) 7.8. 10−6 ( 1.7 ) 7.9. 10−8 ( 0.9 ) 6.1. 10−4 ( 0.9 ) 3.1. 10−2 ( 1.0 )

258048 3.1 10−4 ( 1.0 ) 2.0. 10−6 ( 1.9 ) 4.0. 10−8 ( 1.0 ) 3.1. 10−4 ( 1.0 ) 1.6. 10−2 ( 1.0 )

2064384 1.5 10−4 ( 1.0 ) 5.2. 10−7 ( 2.0 ) 2.0. 10−8 ( 1.0 ) 1.5. 10−4 ( 1.0 ) 7.8. 10−3 ( 1.0 )

(see [32, 33] and www.ngsolve.org). Testfiles and our computational results are available at
[28].

The computational domain is given by Ω = (0, 1)3 and the velocity field is driven by the
volume force determined by f = − div σ + ∇ p with the exact solution given by

σ = νε(curl(ψ,ψ,ψ)), and p := x5 + y5 + z5 − 1

2
.

Here ψ := x2(x − 1)2y2(y − 1)2z2(z − 1)2 defines a given potential and we choose the
viscosity ν = 10−4. While this would lend itself to homogenous Dirichlet conditions being
prescribed on the whole boundary, as we assume |ΓN | > 0 throughout the paper, we instead
opt to impose non-homogenous Neumann conditions on ΓN := {0} × (0, 1) × (0, 1) and
homogenous Dirichlet conditions only on ΓD := ∂Ω \ ΓN . Note that this requires the
additional source terms

∫
ΓN

(σnn − p)(vh)n ds and
∫
ΓN

σnt v̂h ds to be provided as data for
the methods.

Convergence An initial, relatively coarse mesh was generated and then refined multiple
times. With the larger problem size on finer meshes in mind, we used a GMRes Krylov space
solver preconditionedby an auxiliary spacemethodusing a lowest order conforming H1 space
(see e.g., [16], and for details specific to the MCS case, see [22]) with relative tolerance of
10−14. Errors measured in different norms and their estimated order of convergence (eoc) are
listed in Table 1for the HDG method and Table 2for the MCS method. For the HDG method
we chose the stabilization parameter α = 6. As predicted by the analysis from Theorem 1
and Lemma 2, the velocity error measured in the seminorm ‖ε(u − uh)‖0, the L2-norm of
the vorticity, and the pressure errors converge at optimal linear order. Furthermore, for the
MCS method, we also observe optimal convergence for the stress error. In addition, we also
plotted the L2-norm error of the velocity. From an Aubin-Nitsche argument one may expect
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Fig. 3 Approximate condition numbers of the corresponding A blocks of the HDG (solid lines) and the MCS
(dotted lines in the same color)method on differentmeshes. Different values of α on the x axis and approximate
condition number (cond) on the y axis

a higher order of convergence whenever the dual problem shows enough regularity [3, 21].
Not surprisingly therefore, we observe quadratic convergence for the L2-norm of the velocity
error for both methods.

Condition numbers For both HDG andMCSmethod, after static condensation within the
(uh, ûh, ωh)- or (σh, uh, ûh, ωh)-block of the finite element matrix respectively, we obtain
a symmetric and positive definite diagonal block, which we simply refer to here as the “A”-
blocks of the respective methods. (Of course, due to the incompressibility constraint, the
entire system is still of saddle point structure.) Both the A blocks have the same non-zero
structure and are expected to have condition number O(h−2), but they discretize slightly
different operators, namely ε for the HDG method, and dev(ε) for the MCS method. As
ε(u) = dev(ε(u))+ 1

3 div(u) I and the true solution is divergence-free, adding the (consistent)
term 1

3 div uh div vh to theMCS bilinear form yields an A block that is directly comparable to
the one of the HDGmethod. In Fig. 3we show approximate condition numbers (cond) of said
A blocks for some of the meshes used in the previous computations and different values of α

in ahdg. We see that in addition to the MCS method not being dependent on any stabilization
parameter in the first place, there appears to be no possible choice of α that would make the
HDG method’s A block better conditioned than that of the MCS method.
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