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True Contraction Decomposition and Almost ETH-Tight
Bipartization for Unit-Disk Graphs

SAYAN BANDYAPADHYAY, Portland State University, Portland, Oregon, USA
WILLIAM LOCHET, LIRMM, Université de Montpellier, CNRS, Montpellier, France
DANIEL LOKSHTANOV, University of California, Santa Barbara, Santa Barbara, California, USA
SAKET SAURABH, Institute of Mathematical Sciences, Chennai, India
JIE XUE, New York University Shanghai, Shanghai, China

We prove a structural theorem for unit-disk graphs, which (roughly) states that given a set D of = unit disks
inducing a unit-disk graph �D and a number ? ∈ [=], one can partition D into ? subsets D1, . . . ,D? such
that for every 8 ∈ [?] and every D′ ⊆ D8 , the graph obtained from �D by contracting all edges between
the vertices in D8\D′ admits a tree decomposition in which each bag consists of $ (? + |D′ |) cliques. Our
theorem can be viewed as an analog for unit-disk graphs of the structural theorems for planar graphs and
almost-embeddable graphs proved recently by Marx et al. [SODA ’22] and Bandyapadhyay et al. [SODA ’22].
By applying our structural theorem, we give several new combinatorial and algorithmic results for unit-disk
graphs. On the combinatorial side, we obtain the first Contraction Decomposition Theorem for unit-disk
graphs, resolving an open question in the work by Panolan et al. [SODA ’19]. On the algorithmic side, we
obtain a new algorithm for bipartization (also known as odd cycle transversal) on unit-disk graphs, which
runs in 2$ (

√
: log: ) · =$ (1) time, where : denotes the solution size. Our algorithm significantly improves

the previous slightly subexponential-time algorithm given by Lokshtanov et al. [SODA ’22] which runs in
2$ (:

27/28 ) · =$ (1) time. We also show that the problem cannot be solved in 2> (
√
: ) · =$ (1) time assuming the

Exponential Time Hypothesis, which implies that our algorithm is almost optimal.

CCS Concepts: • Theory of computation → Computational geometry; Design and analysis of
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1 Introduction
For a setD of unit disks in the plane, the unit-disk graph�D induced byD has the unit disks inD
as its vertices, where two vertices are connected by an edge whenever the two corresponding unit
disks intersect. As one of the simplest but most important classes of geometric intersection graphs,
unit-disk graphs have been extensively studied in various areas (e.g., computational geometry,
graph theory, and algorithms) and find applications such as modeling the topology of ad hoc
communication networks [30, 53]. The research on unit-disk graphs focused on both combinatorial
aspects and algorithmic aspects.

In this article, we establish a structural theorem for unit-disk graphs, which leads to interesting
new results in both combinatorial and algorithmic aspects. Our theorem can be viewed as a unit-
disk-graph analog of the very recent theorems proved for planar graphs [42] and more generally
for the so-called “almost-embeddable” graphs [6]. Thus, before introducing our theorem, let us first
briefly review their results. Specifically, it was shown in [6, 42] that for a planar graph � = (+ , �)
and a number ? ∈ [=] where = = |+ |, one can partition+ into+1, . . . ,+? such that for every 8 ∈ [?]
and + ′ ⊆ +8 , the graph obtained from � by contracting all edges between the vertices in +8\+ ′
has treewidth $ (? + |+ ′ |). Unfortunately, one can easily see that such a statement cannot hold for
unit-disk graphs.1 However, if we use the number of cliques (instead of vertices) in the bags of the
tree decomposition to define its width, this statement is actually true for unit-disk graphs!
Let D be a set of = unit disks and ? ∈ [=] be any number. Our theorem (roughly) states that

one can partition D into ? subsets D1, . . . ,D? such that for every 8 ∈ [?] and every D′ ⊆ D8 ,
the graph obtained from the unit-disk graph �D by contracting all edges between the vertices in
D8\D′ admits a tree decomposition in which each bag consists of$ (? + |D′ |) cliques. Furthermore,
this partition can be computed in polynomial time. The formal statement of our theorem is more
technical and will be presented in Theorem 3.1 after we introduce some preliminaries in Section
2. Note that the notion of tree decomposition with bags consisting of cliques is not new. In fact,
this kind of tree decomposition has been widely applied on unit-disk graphs and other geometric
intersection graphs to design efficient algorithms; see for example [13, 22, 47]. In what follows, we
discuss the new combinatorial and algorithmic results derived from our main theorem.

Combinatorial Application: The First Contraction Decomposition Theorem (CDT) on Unit-Disk
Graphs. In graph theory, a CDT is a statement of the following form: given a graph � = (+ , �)
from some graph class, for any ? ∈ N, one can partition � into �1, . . . , �? such that contracting the
edges in each �8 in � yields a graph of treewidth at most 5 (?), for some function 5 : N→ N. CDT
is classical tool useful in designing efficient approximation and parameterized algorithms in certain
classes of graphs. Graph classes for which CDTs are known include planar graphs [34, 35], graphs
of bounded genus [16], and � -minor-free graphs [15]. However, little was known about CDTs on
geometric intersection graphs. Recently, Panolan et al. [48] made the first progress toward proving
a CDT for unit-disk graphs. Specifically, they gave a weak version of CDT (which they call a relaxed
CDT), in which the edge sets �1, . . . , �? need not to be disjoint; instead, it is required that each
edge 4 ∈ � is contained in$ (1) sets in �1, . . . , �? . It remained open whether unit-disk graphs admit
a “true” CDT (where �1, . . . , �? is a partition of �). In this article, by applying our main theorem,
we give the first CDT for unit-disk graphs and hence resolve an open question of [48] (and also
Hajiaghayi [29]). The function 5 in our CDT is quadratic, i.e., 5 (?) = $ (?2), matching the bound in
the weak CDT of [48].

1Indeed, the clique  = is a unit-disk graph, and if we partition the vertices of  = into ? parts for ? ≥ 2, after contracting
the smallest part, we get a clique of size at least =/2 which has treewidth Ω (=) .
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True Contraction Decomposition and Almost ETH-Tight Bipartization 20:3

Algorithmic Application: Almost Exponential Time Hypothesis (ETH)-Tight Bipartization on Unit-
Disk Graphs. Designing efficient algorithms on unit-disk graphs is a central topic in the study
of unit-disk graphs. Many classical algorithmic problems have been studied on unit-disk graphs.
Polynomial-time solvable problems include shortest paths [8, 9, 51], diameter computing [10, 25],
maximum clique [11], and so forth. Compared to these problems, NP-hard problems received
more attention on unit-disk graphs. In particular, studying parametrized algorithms [12] for these
hard problems on unit-disk graphs (or other geometric intersection graphs) is one of the most
active themes in recent years [2, 3, 21–24, 47] (also see the survey [48]). A well-known fact about
parametrized complexity on planar graphs (or more generally, bounded-genus graphs and � -
minor-free graphs) is the so-called “square root phenomenon:” many problems on planar graphs
admit algorithms with running time 2$̃ (

√
: )=$ (1) or =$̃ (

√
: ) , where : is the parameter (usually the

solution size), and also admit (almost) matching lower bounds [7, 14, 17, 19, 20, 36, 37, 43, 45, 50].
Recently, it was shown that such a “square root phenomenon” also appears in many problems on
unit-disk graphs. Specifically, algorithms with running time 2$̃ (

√
: )=$ (1) or =$̃ (

√
: ) were obtained

on unit-disk graphs for Vertex Cover [13], Independent Set [3, 44], Feedback Vertex Set
[4, 21], :-Path/Cycle [21, 23], and so forth and (almost) matching lower bounds were also known
[13]. In this article, we apply our main theorem to add another classical problem to this family,
namely, Bipartization.
In the Bipartization problem, one aims to make a graph bipartite by deleting as few vertices

as possible. Formally, the input of Bipartization is a graph � = (+ , �) and a number : , and the
goal is to determine whether there exists - ⊆ + of size at most : such that � − - is bipartite. In
the literature, Bipartization is also called Odd Cycle Transversal (OCT), as making a graph
bipartite is equivalent to removing a set of vertices that hit all its odd cycles. As one of the
most fundamental NP-complete problems in graph theory [52], Bipartization has been studied
extensively over years [1, 18, 26, 31–33, 38, 49]. The best existing algorithm for Bipartization
on general graphs runs in 2.3146:=$ (1) time [39]. On planar graphs, a randomized algorithm
with running time 2$ (

√
: log: )=$ (1) was known [41, 42], and the same running time was achieved

also for bounded-genus graphs and � -minor-free graphs very recently [6]. However, little was
known about Bipartization on geometric intersection graphs. In fact, even achieving slightly
subexponential-time parameterized algorithm for Bipartization on unit-disk graphs was a long-
standing open problem, prior to the very recent work by Lokshtanov et al. [40]. The authors of [40]
gave a randomized algorithm running in 2$ (:

27
28 log: )=$ (1) time for Bipartization on disk graphs

(and thus unit-disk graphs), achieving the first 2> (: ) bound for the problem. This result, however, is
still far away from showing the “square root phenomenon” for Bipartization on unit-disk graphs.

By applying our main theorem, we solve Bipartization on unit-disk graphs with a randomized
algorithm running in 2$ (

√
: log: )=$ (1) time, significantly improving the 2$ (:

27
28 log: )=$ (1) bound

given by [40]. On the other hand, we establish an almost matching lower bound, showing that
the problem cannot be solved in 2> (

√
: )=$ (1) time, assuming the ETH. Our results thus add

Bipartization to the “square root” family of problems on unit-disk graphs. In terms of tech-
niques, our algorithm solves the problem by first constructing the partition {D1, . . . ,D? } of the
unit-disk set D in our main theorem for ? =

√
: and then applying the well-known Baker’s tech-

nique on D1, . . . ,D? together with a Dynamic Programming (DP) procedure similar to the one
in [6] on tree decomposition. Such a scheme based on our theorem can possibly also be applied
to solve other problems on unit-disk graphs. To give an example, we extend our algorithm to the
problem of Group Feedback Vertex Set (GFVS) with non-identity labels, with the same running
time.

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 20. Publication date: June 2024.
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Organization. The rest of the article is organized as follows. In Section 2, we introduce the basic
notions and preliminaries used throughout the article. Our main theorem and its proof is given in
Section 3, followed by its applications in Section 4. Finally, in Section 5, we conclude the article and
raise some open questions for future study.

2 Preliminaries
The Canonical Grid. Consider the grid formed by vertical lines {G = 8 : 8 ∈ N} and horizontal

lines {~ = 8 : 8 ∈ N}. We shall use it as the canonical grid throughout this article (in the rest of the
article, we shall refer it as “the grid”). Each cell in the grid is a unit square, and we usually use the
notation � to denote a cell. For a unit disk � , we denote by �� the grid cell that contains the center
of � . (For convenience, throughout the article, we always assume that the centers of the unit disks
do not lie on the grid lines, and thus each center lies in exactly one cell of the grid. If this is not
the case for the input unit disks, we can easily shift the grid or the unit disks to make the centers
not lie on the grid lines.) For a set D of unit disks and a cell �, we denote by D å � the subset of
unit disks in D whose centers lie in �. We say a subset D′ ⊆ D is grid-respecting if for any cell �
such that D′ å � ≠ ∅, we have D′ å � = D å �. A partition {D1, . . . ,D? } of D is grid-respecting
if D1, . . . ,D? are all grid-respecting subsets of D.

Basic Graph Notions. Let � = (+ , �) be a graph. For a subset + ′ ⊆ + , the subgraph of � induced
by+ ′ is the graph consisting of the vertices in+ ′ and the edges in � with both endpoints in+ ′. An
induced subgraph of � is a subgraph of � induced by a subset of + . A vertex E ∈ + is neighboring
to a subset + ′ ⊆ + in � if there exists E ′ ∈ + ′ such that (E, E ′) ∈ �. A subset + ′ ⊆ + is neighboring
to another subset + ′′ ⊆ + if there exist E ′ ∈ + ′ and E ′′ ∈ + ′′ such that (E ′, E ′′) ∈ �.

Unit Disks and Unit-Disk Graphs. Let D be a set of unit disks in the plane, which are in general
position in the sense that no two unit disks contact each other (i.e., intersect at a single point). For
� ∈ D, we denote by ctr(�) the center of the unit disk� . The union* =

⋃
�∈D � is a closed region

in the plane, whose boundary consists of a set of disjoint closed curves. The outer boundary of * is
defined as the part of the boundary of* that is incident to the unbounded connected component
of R2\* ; see Figure 1 for an illustration. The exposed unit disks in D refers to the unit disks in D
that intersect the outer boundary of * . In Figure 1, all unit disks in D are exposed. We denote by
Exp(D) the set of exposed unit disks in D. The unit-disk graph induced by D, denoted by �D , has
the unit disks in D as its vertices, where two vertices are connected by an edge whenever the two
corresponding unit disks intersect.2 We use �D to denote the edge set of �D . Note that for a cell
�, the unit disks in D å � pairwise intersect and hence form a clique in �D , which we call a cell
clique. We denote by �∗D ⊆ �D the set of edges in all cell cliques in �D . For a subset D′ ⊆ D, the
unit-disk graph �D′ is canonically isomorphic to the subgraph of �D induced by D′. Thus, for
convenience, we shall not distinguish between them: we shall also use �D′ to denote the induced
subgraph of �D and use �D′ to denote the set of edges in �D between the vertices in D′.

Tree Decomposition and Treewidth. With a bit abuse of notation, for a tree ) , we also use ) to
denote the set of its nodes. A tree decomposition of a graph � = (+ , �) is a pair (), V) where ) is
a tree and V : ) → 2+ maps the nodes of ) to subsets of + such that (1)

⋃
C ∈) V (C) = + , (2) for

2Without loss of generality, we can always assume that the unit disks defining a unit-disk graph are in general position.
Indeed, one can convert a given set D0 of unit disks to another set D of unit disks in general position such that�D = �D0 .
This is done as follows. First, we enlarge every unit disk in D0 to a disk of radius 1 + Y , where Y is sufficiently small so
that two disjoint unit disks in D0 are still disjoint after the enlargement. After this, we obtain a set D1 of congruent disks
representing the same intersection graph as D0. Note that no two disks in D1 contact each other. Then by scaling we can
further convert D1 to the desired set D of unit disks in general position.

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 20. Publication date: June 2024.
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Fig. 1. The boundary and outer boundary of* (the heavier curve is the outer boundary).

each edge (D, E) ∈ �, there exists C ∈ ) with D, E ∈ V (C), and (3) for each vertex E ∈ + , the nodes
C ∈ ) with E ∈ V (C) form a connected subset in ) . Conventionally, we call V (C) the bag of the node
C ∈ ) . The width of the tree decomposition (), V) is maxC ∈) |V (C) | − 1. The treewidth of a graph
� , denoted by tw(�) is the minimum width of a tree decomposition of � . It is sometimes more
convenient to consider rooted trees. Thus, throughout this article, we always view the tree in a tree
decomposition as a rooted tree. A tree decomposition (), V) is binary if ) is binary.

Lemma 2.1 (Chapter 7 in [12]). Given an =-vertex graph � with tw(�) = F , a binary tree
decomposition of � of width $ (F) can be computed in 2$ (F )=$ (1) time.

Edge Contraction. From a graph � = (+ , �), one can obtain a new graph via a so-called edge
contraction operation. Specifically, by contracting an edge 4 = (D, E) ∈ �, we merge D and E into
one vertex with edges connecting to both the neighbors of D and the neighbors of E in + \{D, E}.
More generally, we can contract a subset �0 ⊆ � of edges simply by contracting these edges
“one-by-one.” Formally, the resulting graph by contracting �0 in � , which we denote by �/�0, is
defined as follows.The vertices of�/�0 one-to-one corresponds to the connected components of the
graph�0 = (+ , �0), and two vertices have an edge connecting them whenever the corresponding
two connected components of �0 are neighboring in � (i.e., there exists an edge in � whose two
endpoints lie in the two components respectively). Let +0 denote the vertex set of�/�0. Associated
to this edge contraction, there is a natural map c : + → +0 which maps each vertex E ∈ + to
the vertex of �/�0 corresponding to the connected component of �0 that contains E . We call
c the quotient map of the edge contraction. Following is a well-known relation between tree
decompositions of the graph after edge contraction and the original graph.

Fact 2.2. Let� = (+ , �) be a graph obtained from another graph� ′ = (+ ′, �′) via edge contraction
with quotient map c : + ′ → + . The following statements are true.

(i) If (), V) is a tree decomposition of � , then (), V ′) is a tree decomposition of � ′ where V ′ (C) =
c−1 (V (C)) for all nodes C ∈ ) .

(ii) If () ′, V ′) is a tree decomposition of � ′, then () ′, V) is a tree decomposition of � where V (C) =
c (V ′ (C)) for all nodes C ∈ ) ′.

Proof. To see (i), suppose (), V) is a tree decomposition of � . As
⋃
C ∈) V (C) = + , we have⋃

C ∈) V
′ (C) = ⋃

C ∈) c
−1 (V (C)) = + ′. Consider an edge (D′, E ′) ∈ �′. If c (D′) = c (E ′) = E , then

any node C ∈ ) such that E ∈ V (C) satisfies D′, E ′ ∈ V ′ (C); such a node exists as (), V) is a tree
decomposition of � . If c (D′) ≠ c (E ′), then (c (D′), c (E ′)) ∈ �. In this case, there exists C ∈ ) such
that c (D′), c (E ′) ∈ V (C), which implies D′, E ′ ∈ V ′ (C). Finally, consider a vertex E ′ ∈ + ′. The nodes

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 20. Publication date: June 2024.



20:6 S. Bandyapadhyay et al.

Algorithm 1 Layering(D) ⊲ Output a layering ℓ : D → N

1: @ ← 0
2: while D ≠ ∅ do
3: @ ← @ + 1
4: X ← Exp(D)
5: X+ = ⋃

- ∈X (D å �- )
6: Tag- ← @ for all - ∈ X+
7: D ← D\X+
8: return ℓ : � ↦→ dTag�/100e

C ∈ ) satisfying c (E ′) ∈ V (C) are connected in ) . These are exactly the nodes C ∈ ) satisfying
E ′ ∈ V ′ (C), and therefore they are connected in ) . So (), V ′) is a tree decomposition of � ′.

To see (ii), suppose () ′, V ′) is a tree decomposition of� ′. As c is surjective and
⋃
C ∈) ′ V

′ (C) = + ′,
we have

⋃
C ∈) ′ V (C) =

⋃
C ∈) ′ c (V ′ (C)) = + . For an edge (D, E) ∈ �, there exist D′ ∈ c−1 ({D})

and E ′ ∈ c−1 ({E}) such that (D′, E ′) ∈ �′. Thus, D′, E ′ ∈ V ′ (C) for some node C ∈ ) ′. It follows
that D, E ∈ V (C). Finally, consider a vertex E ∈ + . For any node C ∈ ) ′, E ∈ V (C) if and only if
c−1 ({E}) ∩ V ′ (C) ≠ ∅. Note that � ′ [c−1 ({E})] is a connected subgraph of � ′. It is well-known
that in a tree decomposition of a graph, the nodes whose bags intersect a connected subgraph
are connected in the tree. This implies that the nodes C ∈ ) ′ such that c−1 ({E}) ∩ V ′ (C) ≠ ∅ are
connected in ) ′. Therefore, the nodes C ∈ ) ′ satisfying E ∈ V (C) are connected in ) ′. So () ′, V) is a
tree decomposition of � . �

3 The Main Theorem
In this section, we present the main theorem of this article, which establishes a structural property
of unit-disk graphs. Formally, the theorem is the following.

Theorem 3.1 (main theorem). Given a set D of = unit disks and an integer ? ∈ [=], one can
compute in polynomial time a grid-respecting partition {D1, . . . ,D? } ofD such that for every 8 ∈ [?]
and every D′ ⊆ D8 , tw(�D/(�∗D ∪ �D8\D′ )) = $ (? + |D′ |).

Recall that in Section 1, we gave an informal version of the above theorem, which states that
�D/�D8\D′ admits a tree decomposition in which each bag contains $ (? + |D′ |) cliques. One
may ask how Theorem 3.1 implies this statement. To see this, observe that �D/(�∗D ∪ �D8\D′ )
can be viewed as a graph obtained from �D/�D8\D′ via edge contraction. Thus, if we start from
a tree decomposition of �D/(�∗D ∪ �D8\D′ ) of width $ (? + |D′ |) and apply Fact 2.2 to obtain a
tree decomposition of �D/�D8\D′ , one can check that each bag of the latter tree decomposition
consists of$ (? + |D′ |) cliques. We omit the details of this argument as it is not important. The rest
of this section is dedicated to proving Theorem 3.1.

3.1 A Layering for the Unit Disks
The first step of proving Theorem 3.1 is to compute a layering for the unit disks in D, that is, a
decomposition of D into layers. We shall use a function ℓ : D → N to represent the layering: the
unit disks which are mapped to 8 by ℓ form the 8th layer of D. This layering ℓrespects the grid
partition of D in the sense that ℓ−1 ({8}) is a grid-respecting subset of D for all 8 ∈ N. Besides, ℓ
possesses some nice properties which will be used later to prove Theorem 3.1. Algorithm 1 presents
the procedure for computing ℓ . In words, it iteratively finds the exposed unit disks in D (line 4)
and removes fromD the unit disks whose centers lie in the same cells as the centers of the exposed

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 20. Publication date: June 2024.



True Contraction Decomposition and Almost ETH-Tight Bipartization 20:7

ones (lines 5 and 7), and finally combines the unit disks removed in every 100 iterations into one
layer (line 8). Here the number 100 is arbitrarily chosen (any sufficiently large constant works).
It is clear that the layering ℓ returned by Algorithm 1 respects the cell partition of D, because

in line 6 we always assign the same tag to all unit disks with centers in the cells �� . We write
L8 = ℓ−1 ({8}) and call it the 8th layer of D. Suppose there are in total < layers. We define
L>8 =

⋃<
9=8+1 L 9 , L≥8 =

⋃<
9=8 L 9 , L<8 =

⋃8−1
9=1 L 9 , L≤8 =

⋃8
9=1 L 9 , and L[8,8′ ] =

⋃8′
9=8 L 9 . Next, we

establish some nice properties of the layering ℓ .

Lemma 3.2. The layering ℓ and the layers L1, . . . ,L< satisfy the following three properties.

(i) For any �, � ′ ∈ D such that � ∩ � ′ ≠ ∅, we have |ℓ (�) − ℓ (� ′) | ≤ 1.
(ii) For a connected component of �L>8

with vertex set C ⊆ L>8 , the unit disks in L8 neighboring
to C lie in the same connected component of �L8

.

(iii) For any 8, 8′ ∈ [<] with 8 ≤ 8′, tw
(
�L [8,8′ ]

/
�∗L [8,8′ ]

)
= $ (8′ − 8 + 1).

We remark that the construction of our layering ℓ on unit-disk graphs is analogous to (and also
inspired by) the outerplanarity layering on planar graphs (which is obtained by iteratively removing
the vertices on the boundary of the outer face of the planar graph). While for the outerplanarity
layering the three properties in Lemma 3.2 follow easily, it requires considerably more work to
show them for our layering on unit-disk graphs.
In the rest of this section, we prove Lemma 3.2. We begin with introducing some notations

for ease of exposition. Since D changes during Algorithm 1, we denote by D (@) the set D at the
beginning of the @th iteration of the while-loop (lines 2–7). Define X (@) = Exp(D (@) ) and* (@) as
the union of the unit disks in D (@) .

Verifying Property (i). Let �, � ′ ∈ D such that � ∩� ′ ≠ ∅. To show |ℓ (�) − ℓ (� ′) | ≤ 1, it suffices
to show |Tag� − Tag� ′ | ≤ 100. Let @ = Tag� and @′ = Tag� ′ . If @ = @′, we are done. If @ ≠ @′, we
may assume @ < @′ without loss of generality. Since Tag� = @, � ∈ D å �- for some - ∈ X (@) . By
the definition of X (@) , - intersects the outer boundary of * (@) and thus there exists a point G ∈ -
that is on the outer boundary of * (@) . Let f be the segment connecting G and 3 ′ = ctr(� ′). We say
a cell � is relevant if there exists a unit disk in D å � that intersects f . The following observation
shows that the number of relevant cells is at least @′ − @ + 1.

Observation 3.3. For each 8 ∈ {@, . . . , @′}, there exists a unit disk �8 ∈ D with Tag�8
= 8 that

intersects f . Thus, the number of relevant cells is at least @′ − @ + 1.

Proof. Let 8 ∈ {@, . . . , @′}. Note that 3 ′ ∈ * (8 ) as � ′ ∈ D (8 ) . On the other hand, G is either on
or outside the outer boundary of * (8 ) (i.e., in the unbounded connected component of R2\* (8 ) ),
because G is on the outer boundary of* (@) and* (8 ) ⊆ * (@) . As such, the segment f should intersect
the outer boundary of* (8 ) . Consider the point 0 in the intersection of f and the outer boundary of
* (8 ) . Since 0 is on the outer boundary of * (8 ) , there exists a unit disk �8 ∈ X (8 ) that contains 0 on
its boundary. We have Tag�8

= 8 . Also, �8 intersects f as 0 ∈ �8 . To bound the number of relevant
cells, we notice that the cells ��@

, . . . ,��@′ are distinct, because the tags of �@, . . . , �@′ are distinct.
Furthermore, ��@

, . . . ,��@′ are all relevant cells, since �@, . . . , �@′ intersect f . So there are at least
@′ − @ + 1 relevant cells. �

Note that the length of f is at most 3 because � ∩ � ′ ≠ ∅ and � ∩ - ≠ ∅. As such, there can be
no more than 100 relevant cells (actually much fewer), because each relevant cell must contain a
point with distance at most 1 from f . Thus, @′ − @ + 1 ≤ 100 and |ℓ (�) − ℓ (� ′) | ≤ 1. Property (i) in
Lemma 3.2 holds.
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Verifying Property (ii). Consider a connected component of�L>8
with vertex set C ⊆ L>8 . Define

& = {@ : d@/100e = 8}. For a fixed @ ∈ & , the outer boundary of D (@) consists of some closed
curves in the plane, each of which encloses a region that is topologically homeomorphic to a disk.
These regions are clearly disjoint; we call the union of these regions the domain of D (@) . We claim
that one of these regions should contain all unit disks in C. First, observe that the domain of D (@)
contains all unit disks inD (@) , and hence contains all disks in C since C ⊆ L>8 = D (1008+1) ⊆ D (@) .
Furthermore, because the regions are disjoint but �C is connected, all unit disks in C must lie in
the same region. We denote by '@ the region that contains the unit disks in C. We do this for all
@ ∈ & , and thus obtain a set {'@}@∈& of regions. We observe that these regions are nested.

Observation 3.4. '@ ⊇ '@′ for all @, @′ ∈ & with @ ≤ @′.

Proof. Since @ ≤ @′, the domain ofD (@) contains the domain ofD (@′ ) and in particular contains
'@′ . Because '@′ is connected, it is either contained in '@ or disjoint from '@ . As the unit disks in C
are contained in both '@ and '@′ , we have '@ ∩ '′@ ≠ ∅ and thus '@ ⊇ '@′ . �

To prove property (ii), consider two unit disks�, � ′ ∈ L8 that are neighboring to C. Let @ = Tag�
(resp., @′ = Tag� ′ ), then the tag of any unit disk in D å �� (resp., D å �� ′ ) is @ (resp., @′). As
�, � ′ ∈ L8 , we have @, @′ ∈ & and we assume @ ≥ @′ without loss of generality. Since � is
neighboring to C and Tag� = @, � must be contained in '@ and thus all unit disks in D å �� are
contained in '@ . Furthermore, there exists a unit disk - ∈ D å �� which is exposed in D (@) , i.e.,
- ∈ X (@) . Note that - must intersect the boundary of '@ , because - intersects the outer boundary
of * (@) and is contained in '@ . Similarly, there exists a unit disk - ′ ∈ D å �� ′ exposed in D (@′ )
which intersects the boundary of '@′ .

Observation 3.5. � ′ ∪ - ′ intersects the boundary of '@ .

Proof. As - ′ intersects the boundary of '@′ , there exists a point G ′ ∈ - ′ on the boundary of
'@′ . Then either G ′ ∉ '@ or G ′ is on the boundary of '@ , because '@ ⊆ '@′ by Observation 3.4. In
the latter case, we are done, as - ′ intersects the boundary of '@ . So assume G ′ ∉ '@ . Since � ′ is
neighboring to C and the unit disks in C are all contained in '@ , we have � ′ ∩'@ ≠ ∅. Now � ′ ∪- ′
intersects '@ and contains a point G ′ that is outside '@ . Note that � ′ ∪ - ′ is connected, because
- ′ ∈ D å �� ′ . Therefore, � ′ ∪ - ′ intersects the boundary of '@ . �

Now both � ∪ - and � ′ ∪ - ′ are connected and intersect the boundary of '@ . Note that the
unit disks in D (@) that intersect the boundary of '@ form a connected unit-disk graph. Thus, the
unit-disk graph induced by these unit disks together with �,-, � ′, - ′ is also connected. All these
unit disks belong to L8 , and are hence in the same connected component of �L8

. In particular, �
and � ′ are in the same connected component of �L8

. Property (ii) in Lemma 3.2 holds.

Verifying Property (iii). We notice that, to verify property (iii), it suffices to show that tw(�L≤ 9 /
�∗L≤ 9 ) = $ ( 9) for all 9 ∈ [<], because L[8,8′ ] is nothing but the first 9 = 8′ − 8 + 1 layers of the
unit-disk set L≥8 . To this end, we first construct a drawing of the graph �L≤ 9 /�∗L≤ 9 on the plane
(possibly with edge crossings). The vertices of �L≤ 9 /�∗L≤ 9 one-to-one correspond to the cells �
for which L≤ 9 å � ≠ ∅, and we denote by E (�) the vertex corresponding to the cell �. We draw
each vertex E (�) at an arbitrary point inside the cell � that lies in the intersection of all unit disks
in D å � (such a point always exists, e.g., the center of �). For simplicity, we also use E (�) to
denote the point in the plane where we draw the vertex E (�). For each edge 4 = (E (�), E (�′)) of
�L≤ 9 /�∗L≤ 9 , we draw it as a polyline (or polygonal chain) in the plane connecting E (�) and E (�′)
as follows. Since E (�) and E (�′) are connected by an edge in �L≤ 9 /�∗L≤ 9 , there exist unit disks
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Fig. 2. Illustrating the drawing [. The left part is the construction of one edge curve W4 and the right part is
an example of how the drawing [ finally looks like.

� ∈ L≤ 9 å � and � ′ ∈ L≤ 9 å �′ such that � ∩ � ′ ≠ ∅. We choose an arbitrary point G ∈ � ∩ � ′
and let f be the segment connecting G and E (�), and f ′ be the segment connecting G and E (�′). We
then draw the edge 4 as the two-piece polyline consisting of the segments f and f ′, and denote this
polyline by W4 . See the left part of Figure 2 for an illustration. Note that W4 is contained in � ∪ � ′.
In this way, we obtain a plane drawing of �L≤ 9 /�∗L≤ 9 (possibly with edge crossings), and denote
this drawing by [. For convenience, we call the polylines W4 edge curves. By carefully choosing
the middle points of the edge curves, we can guarantee that all segments of the edge curves have
different slopes (and thus two edge curves can only intersect at finitely many points) and no three
edge curves intersect at a common point. It is easy to see that each edge curve only intersects
a constant number of other edge curves, and thus [ embeds �L≤ 9 /�∗L≤ 9 in the plane with $ (1)
crossings per edge. Grigoriev and Bodlaender [27] showed that the treewidth of such a graph is
linear in its diameter. Unfortunately, we cannot directly apply this result to bound the treewidth of
�L≤ 9 /�∗L≤ 9 , because the diameter of �L≤ 9 /�∗L≤ 9 might be unbounded. However, the ideas in the
proof of [27] turn out to be useful in our setting as well. We shall use an argument similar to that
in [27]: constructing a planar graph % from the drawing W by adding vertices to the edge-crossing
points and then bounding tw(�L≤ 9 /�∗L≤ 9 ) by considering tw(%). To do this, we first observe some
basic properties of the drawing [.

Let � be the image of [ in the plane, which is equal to the union of all edge curves and all E (�);
see the right part of Figure 2. By our construction, � is contained in the union of all unit disks in
D. Next, we establish some properties of � , which will be used later for bounding tw(�L≤ 9 /�∗L≤ 9 ).
For two points 0,1 ∈ R2, a path from 0 to 1 is a continuous map 5 : [0, 1] → R2 with 5 (0) = 0 and
5 (1) = 1. We write Δ(5 , � ) = |{G ∈ [0, 1] : 5 (G) ∈ � }|; if {G ∈ [0, 1] : 5 (G) ∈ � } is not finite, we
simply set Δ(5 , � ) = ∞.

Observation 3.6. For any two points 0,1 ∈ R2 with distance 3 , there exists a path 5 : [0, 1] → R2

from 0 to 1 such that Δ(5 , � ) = $ (3).
Proof. Pick an arbitrary point 2 which has distance at most 3 to both 0 and 1 and satisfies that

the slopes of the segments 02 and 21 are different from the slopes of all segments in the edge curves.
Define 5 : [0, 1] → R2 as the path from 0 to 1 which first goes from 0 to 2 along with the segment
02 and then goes from 2 to 1 along with the segment 21. Since the slope of 02 (resp., 21) is different
from the slopes of the segments in the edge curves, each edge curve can intersect 02 (resp., 21) at
(at most) two points. Therefore, Δ(5 , � ) is finite. To show Δ(5 , � ) = $ (3), it suffices to show that

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 20. Publication date: June 2024.

v(□') 
TJ 

D' 

v(□) 
l . 



20:10 S. Bandyapadhyay et al.

the segment 02 (resp., 21) only intersects $ (3) edge curves. Without loss of generality, we only
consider the segment 02 . Let 4 = (E (�), E (�′)) be an edge whose edge curve W4 intersects 02 . We
claim that the distance from any point in � (resp., �′) to 02 is$ (1). Indeed, by our construction, the
edge curve W4 consists of two segments of length at most 2, and the two endpoints of W4 lie in � and
�′, respectively. Thus, the distance between a point in � (resp., �′) and an intersection point of W4
and 02 cannot be larger than 4 +

√
2, where

√
2 is the maximum distance between two points in �

(resp., �′). It follows that the distance from any point in � (resp., �′) to 02 is at most 4 +
√
2. Based

on this observation, we see that the edges of �L≤ 9 /�∗L≤ 9 whose edge curves intersect 02 must be
between the cells with constant distance from 02 . Since the length of 02 is at most 3 , there can be
only $ (3) cells with constant distance from 02 . Thus, 02 intersects $ (3) edge curves. �

Observation 3.7. For any point 0 ∈ R2, there exists a point 1 in the unbounded connected
component of R2\� and a path 5 : [0, 1] → R2 from 0 to 1 such that Δ(5 , � ) = $ ( 9).

Proof. We first consider a special case where 0 = E (�) for some vertex E (�) of �L≤ 9 /�∗L≤ 9 .
We show that if the unit disks in D å � have tag @, then there exists a point 1 in the unbounded
connected component of R2\� and a path 5 : [0, 1] → R2 from E (�) to 1 such that Δ(5 , � ) = $ (@).
We use induction on @. The base case is @ = 1. If the tag of the unit disks in D å � is 1, then there
exists a unit disk inD å� that is exposed inD. This implies that � is “close” to the outer boundary
of* =

⋃
�∈D � ; more precisely, one can find a point 1 in the unbounded connected component of

R2\* such that the distance between E (�) and 1 is $ (1). Recall that � ⊆ * , and so 1 lies in the
unbounded connected component of R2\� . By Observation 3.6, there exists a path 5 from E (�) to
1 such that Δ(5 , � ) = $ (1). Now assume the statement holds for all @ ∈ {1, . . . , : − 1}. Consider
the case @ = : , i.e. the tag of the unit disks in D å � is : . There exists a unit disk in D å � which
is exposed in D (: ) , which implies the existence of a point on the outer boundary of * (: ) with
distance $ (1) from E (�). As such, there also exists a point 11 with distance $ (1) from E (�) that is
outside the outer boundary of * (: ) , i.e., in the unbounded connected component of R2\* (: ) . We
distinguish two cases: 11 ∈ * and 11 ∉ * .

If 11 ∈ * , then 11 ∈ * \* (: ) . Thus, there must exist a unit disk � ∈ D\D (: ) that contains 11. Let
�′ = �� . The distance between E (�) and E (�′) is$ (1), because 11 is with distance$ (1) from E (�)
and 11 lies in � ∈ D å �′. By Observation 3.6, there exists a path 51 from E (�) to E (�′) such that
Δ(51, � ) = $ (1). On the other hand, the tag of the unit disks inD å �′ is @ = Tag� ∈ {1, . . . , : − 1}.
So by our induction hypothesis, there exists a path 52 from E (�′) to a point 1 in the unbounded
connected component of R2\� such that Δ(52, � ) = $ (@). By concatenating 51 and 52, we obtain a
path 5 : [0, 1] → R2 from E (�) to 1 such that Δ(5 , � ) = Δ(51, � ) + Δ(52, � ) = $ (:).
Now consider the other case where 11 ∉ * . If 11 is in the unbounded connected component

of R2\* , then 11 is in the unbounded connected component of R2\� . In this case, we can simply
set 1 = 11 and by Observation 3.6 there exists a path 5 : [0, 1] → R2 from E (�) to 1 such that
Δ(5 , � ) = $ (1). So it suffices to consider the case where 11 ∈ � for some bounded connected
component � of R2\* . We have * (: ) ⊆ * and thus � ⊆ R2\* (: ) . Also, because 11 lies in the
unbounded connected component of R2\* (: ) , � is also contained in the unbounded connected
component of R2\* (: ) . It follows that the boundary of the closure of � is contained in * but not
contained in * (: ) . In particular, we can find a point 12 on the boundary of the closure of � such
that 12 ∈ * \* (: ) . Then there exists a unit disk � ∈ D\D (: ) that contains 12. Let �′ = �� . Note
that the distance between E (�) and 11 is $ (1), and the distance between 12 and E (�′) is also $ (1).
Thus, by Observation 3.6, there exist a path 61 from E (�) to 11 and a path 62 from 12 to E (�′) such
that Δ(61, � ) = $ (1) and Δ(62, � ) = $ (1). Furthermore, there exists a path 6 : [0, 1] → R2 from 11
to 12 such that 6(G) ∈ � for all 0 ≤ G < 1, because 11 ∈ � , 12 is on the boundary of the closure of
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� , and � is connected. Since � is contained in * , we have � ∩� = ∅, which implies Δ(6, � ) ≤ 1.
By concatenating 61, 6, 62, we obtain a path 51 from E (�) to E (�′) such that Δ(51, � ) = $ (1). On
the other hand, the tag of �′ is @ = Tag� ∈ {1, . . . , : − 1}. By our induction hypothesis, there
exists a path 52 from E (�′) to a point 1 in the unbounded connected component of R2\� such that
Δ(52, � ) = $ (@). Finally, by concatenating 51 and 52, we obtain a path 5 : [0, 1] → R2 from E (�)
to 1 such that Δ(5 , � ) = Δ(51, � ) + Δ(52, � ) = $ (:). This completes our induction argument and
shows that for a vertex E (�) of �L≤ 9 /�∗L≤ 9 , there exists a point 1 in the unbounded connected
component of R2\� and a path 5 from E (�) to 1 such that Δ(5 , � ) = $ (@), where @ is the tag of
the unit disks in D å �.
Note that for any vertex E (�) of �L≤ 9 /�∗L≤ 9 , the tag of the unit disks in D å � is at most 100 9 ,

and is hence $ ( 9). Thus, so far we have proved the statement in the observation for the special
case where 0 = E (�) for some vertex E (�) of �L≤ 9 /�∗L≤ 9 . To prove for the general case where 0 is
an arbitrary point in R2, we observe that there always exists a path 6 from 0 to some vertex E (�)
of �L≤ 9 /�∗L≤ 9 such that Δ(6, � ) = $ (1). If 0 ∈ � , then 0 is on some edge curve W4 . In this case, 0 is
within distance $ (1) from an endpoint E (�) of 4 and thus by Observation 3.6, there exists a path 6
from 0 to E (�) such that Δ(6, � ) = $ (1). If 0 ∉ � , then 0 lies in some connected component � of
R2\� . Pick a point 0′ on the boundary of the closure of � . Then 0′ is on some edge curve W4 and
thus there exists a path 62 from 0′ to some vertex E (�) of �L≤ 9 /�∗L≤ 9 such that Δ(62, � ) = $ (1).
Also, because of the choice of 0′, there exists a path 61 from 0 to 0′ such that 61 (G) ∈ � for all
0 ≤ G < 1 and thus Δ(61, � ) = 1. By concatenating 61 and 62, we obtain a path 6 from 0 to E (�)
such that Δ(6, � ) = $ (1). This directly completes the proof. Indeed, for any 0 ∈ R2, there exists a
path 6 from 0 to some vertex E (�) of �L≤ 9 /�∗L≤ 9 such that Δ(6, � ) = $ (1), and as argued before
there exists a path 6′ from E (�) to some point 1 in the unbounded connected component of R2\�
such that Δ(6′, � ) = $ ( 9). By concatenating 6 and 6′, we obtain a path 5 from 0 to 1 such that
Δ(5 , � ) = $ ( 9). �

The plane drawing [ of �L≤ 9 /�∗L≤ 9 naturally induces a planar graph % as follows. The vertex set
of % consists of the vertices of �L≤ 9 /�∗L≤ 9 and the edge-crossing points in the drawing [ (called
crossings for short). Two vertices of % are connected by an edge if they are “adjacent” on some
edge curve W4 . Formally, consider an edge 4 = (E (�), E (�′)) of �L≤ 9 /�∗L≤ 9 . Suppose the crossings
on W4 are 21, . . . , 2A , ordered from the E (�) end to the E (�′) end. Then we include in % the edges
(E (�), 21), (21, 22), . . . , (2A−1, 2A ), (2A , E (�′)). After considering all edges of�L≤ 9 /�∗L≤ 9 , we complete
the construction of % . Note that [ naturally induces a planar drawing of % (thus % is planar), which
we denote by [0. Clearly, the image of [0 is equal to the image of [, which is � . See Figure 3 for
an illustration of the construction of % . The following observation gives a relation between the
treewidths of �L≤ 9 /�∗L≤ 9 and % .

Observation 3.8. tw(�L≤ 9 /�∗L≤ 9 ) ≤ $ (tw(%)).

Proof. For each vertex E of % , we define its witness set wit(E) as a set of vertices of �L≤ 9 /�∗L≤ 9
as follows. If E itself is a vertex of�L≤ 9 /�∗L≤ 9 , we simply define wit(E) = {E}. If E is a crossing of the
drawing [, then it is contributed by two edges of �L≤ 9 /�∗L≤ 9 , and we let wit(E) consist of the four
vertices of �L≤ 9 /�∗L≤ 9 incident to these two edges. Now consider a tree decomposition (), V) of % .
Define V∗ (C) = ⋃

E∈V (C ) wit(E) for all nodes C ∈ ) . We claim that (), V∗) is a tree decomposition of
�L≤ 9 /�∗L≤ 9 of width $ (tw(%)). Note that |V

∗ (C) | ≤ 4|V (C) | for all C ∈ ) as the witness set of every
vertex of % is of size at most 4. Thus, the width of (), V∗) is $ (tw(%)) and it suffices to show that
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Fig. 3. Illustrating the planar graph % obtained by adding vertices to the crossings of [.

(), V∗) is a tree decomposition of �L≤ 9 /�∗L≤ 9 . First, each vertex E of �L≤ 9 /�∗L≤ 9 is also a vertex of
% , so there exists a node C ∈ ) with E ∈ V (C), which implies E ∈ V∗ (C). Second, we show that for
each edge (D, E) of �L≤ 9 /�∗L≤ 9 , there exists C ∈ ) such that D, E ∈ V∗ (C). If there is no crossing on
the image of (D, E) under [, then (D, E) is also an edge in % . Since (), V) is a tree decomposition
of % , there exists C ∈ ) such that D, E ∈ V (C) and hence D, E ∈ V∗ (C). If there is a crossing G on the
image of (D, E), then D, E ∈ wit(G). In this case, we have D, E ∈ V∗ (C) for any node C ∈ ) such that
G ∈ V (C). Finally, it suffices to verify that for each vertex E of �L≤ 9 /�∗L≤ 9 the nodes C ∈ ) with
E ∈ V∗ (C) are connected in ) . Let �E be the set of edges of �L≤ 9 /�∗L≤ 9 incident to E , and -E be
the set of vertices of % whose witness sets contain E . Observe that -E consists of E itself and all
crossings on the images of the edges in �E under [. Also, -E is connected in % . It is well-known
that in a tree decomposition of a graph, the nodes whose bags intersect a connected subgraph are
connected in the tree. Therefore, the nodes C ∈ ) satisfying -E ∩ V (C) ≠ ∅ are connected in ) . Note
that E ∈ V∗ (C) if and only if -E ∩ V (C) ≠ ∅ for all C ∈ ) . So the nodes C ∈ ) satisfying E ∈ V∗ (C) are
connected in ) . It follows that (), V∗) is a tree decomposition of �L≤ 9 /�∗L≤ 9 of width $ (tw(%)),
and thus tw(�L≤ 9 /�∗L≤ 9 ) ≤ $ (tw(%)). �

Based on the above observation, it now suffices to show that tw(%) = $ ( 9). To this end, we need
to introduce a notion called vertex-face incidence graph. We consider the plane-embedded graph
(%, [0). The vertex-face incidence graph %+ of (%, [0) is a bipartite graph defined as follows. One
part of %+ consists of the vertices of (%, [0), while the other part consists of the faces of (%, [0). A
vertex E of (%, [0) and a face � of (%, [0) are connected by an edge in %+ if E is incident to � . Let
> be the outer face of (%, [0), which is a vertex of %+. The depth of a vertex E in (%, [0) is defined
as the shortest-path distance between > and E in %+. It is well-known that tw(%) is linear in the
maximum depth of a vertex in (%, [0); see for example [6] (Lemma 11 in the arxiv version). So we
only need to show the depth of each vertex in (%, [0) is $ ( 9).
Consider a vertex E of (%, [0). By Observation 3.7, there exists a point 1 in the unbounded

connected component of R2\� and a path 5 : [0, 1] → R2 from E to 1 such that Δ(5 , � ) = $ ( 9).
Suppose {G ∈ [0, 1] : 5 (G) ∈ � } = {G1, . . . , G: } where : = $ ( 9) and G1 < · · · < G: . We have G1 = 0
because 5 (0) = E ∈ � . Let �8 = {G : G8 < G < G8+1} for 8 ∈ [: − 1] and �: = {G : G: < G ≤ 1}. Since 5
is continuous, the image of each �8 under 5 is connected and disjoint from � , and hence lies in one
face of (%, [0), which we denote by �8 . We say two faces of (%, [0) are adjacent if they are incident to
a common vertex of (%, [0). Clearly, the shortest-path distance between two adjacent faces of (%, [0)
in %+ is 2. Note that for each 8 ∈ [: − 1], �8 and �8+1 are adjacent, as they are both incident to the
point 5 (G8+1) ∈ � , which is either a vertex of (%, [0) or on an edge 4 of (%, [0); in the latter case, �8
and �8+1 are both incident to the two endpoints of 4 . Therefore, the shortest-path distance between
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�1 and �: in %+ is at most 2: − 2, which is $ ( 9). Now �1 is incident to 5 (G1) = 5 (0) = E and �: is
the outer face > of (%, [0) since 1 ∈ �: . It follows that the shortest-path distance between E and > is
$ ( 9), and thus the depth of E is$ ( 9). This implies tw(%) = $ ( 9) and hence tw(�L≤ 9 /�∗L≤ 9 ) = $ ( 9)
by Observation 3.8. Property (iii) in Lemma 3.2 holds.

3.2 Constructing the Partition {D1, . . . ,D? }
Given the layering ℓ of D presented in the previous section, we are able to construct the partition
{D1, . . . ,D? } of D in Theorem 3.1. The basic idea is similar to that used in Baker’s technique:
combining the congruent layers modulo ? . Recall that L1, . . . ,L< are the layers of D. We de-
fine D8 =

⋃b (<−8 )/? c
9=0 L 9?+8 , i.e., D8 consists of all layers whose index is congruent to 8 modulo

? . Clearly, D1, . . . ,D? can be computed in polynomial time. As {L1, . . . ,L<} is a partition of
D, {D1, . . . ,D? } is also a partition of D. Also, since each L8 is a grid-respecting subset of D,
the partition {D1, . . . ,D? } of D is grid-respecting. To prove Theorem 3.1, it suffices to show
tw(�D/(�∗D ∪ �D8\D′ )) = $ (? + |D′ |) for any 8 ∈ [?] and D′ ⊆ D8 .

3.3 Bounding the Treewidth When D′ = ∅
In this section, we prove a special case of the treewidth bound in Theorem 3.1 where D′ = ∅. In
other words, we show tw(�D/(�∗D ∪ �D8

)) = $ (?) for any 8 ∈ [?]. If ? = 1, we are done, as in
this caseD1 = D and�D/(�∗D ∪ �D1 ) is a graph without edges, which has treewidth 0. So assume
? ≥ 2. Our proof for all 8 ∈ [?] is identical, so we only consider the case where 8 = ? , i.e., we
show tw(�D/(�∗D ∪ �D?

)) = $ (?). For convenience, we set L8 = ∅ for all 8 ≤ 0 and 8 > <. Define
A = b</?c + 1 and 8 9 = ( 9 − 1) · ? for 9 ∈ N. So we have D? =

⋃A
9=1 L8 9 .

To bound the treewidth of�D/(�∗D∪�D?
), we first define a support tree)supp as follows. Roughly

speaking,)supp is a tree that interprets the containment relation between the connected components
of �L>81

, . . . ,�L>8A
. The depth of )supp is A . The root (i.e., the node at the 0th level) of )supp is a

dummy node. For all 9 ∈ [A ], the nodes at the 9th level of )supp are one-to-one corresponding
to the connected components of �L>8 9

. The parent of the nodes at the first level is just the root.
The parents of the nodes at the lower levels are defined as follows. Consider a node C ∈ )supp at
the 9th level for 9 ≥ 2. Since �L>8 9

is a subgraph of �L>8 9−1
, the connected component of �L>8 9

corresponding to C is contained in a unique connected component of �L>8 9−1
, which corresponds

to a node C ′ at the ( 9 − 1)-th level of )supp. We then define the parent of C as C ′. For each node
C ∈ )supp, we associate to C a set AC ⊆ D defined as follows. If C is the root, AC = ∅. Suppose C is at
the 9th level for 9 ∈ [A ] and let CC ⊆ L>8 9 be the vertex set of the connected component of �L>8 9

corresponding to C . Then we define AC = {� ∈ CC : 8 9 < ℓ (�) ≤ 8 9+1}, i.e., AC consists of all unit
disks in CC which lie in the layers L8 9+1, . . . ,L8 9+1 .

Observation 3.9. {AC }C ∈)supp is a grid-respecting partition of D. Furthermore, the vertices of each
connected component of �D?

are contained in the same AC .

Proof. We first observe that every � ∈ D belongs toAC for some C ∈ )supp. Indeed, there exists
some 9 ∈ [A ] such that 8 9 < ℓ (�) ≤ 8 9+1. Then � ∈ L>8 9 and thus � is contained in some connected
component of �L>8 9

, which corresponds to a node C ∈ )supp at the 9th level of )supp. By definition,
we have � ∈ AC . Next, we observe that AC ∩ AC ′ = ∅ for different nodes C, C ′ ∈ )supp. Suppose C
(resp., C ′) is at the 9th (resp., 9 ′th) level. If 9 < 9 ′, then AC ∩ AC ′ = ∅, as ℓ (�) ≤ 8 9+1 ≤ 8 9 ′ < ℓ (� ′)
for all � ∈ AC and � ′ ∈ AC ′ . Similarly, we have AC ∩ AC ′ = ∅ if 9 > 9 ′. So it suffices to consider
the case 9 = 9 ′. In this case, since C ≠ C ′, C and C ′ correspond to different connected components
of �L>8 9

which contain the vertices in AC and AC ′ respectively. Hence, AC ∩ AC ′ = ∅. This shows
that {AC }C ∈)supp is a partition ofD. To see that this partition is grid-respecting, consider a unit disk
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� ∈ D. Suppose � ∈ AC for a node C ∈ )supp at the 9th level. Then all unit disks in D å �� are
contained in AC because they are in the same layer and belong to the same connected component
of �L>8 9

.
To show the second statement, recall that D? =

⋃A
9=1 L8 9 . As we assumed ? ≥ 2, by property

(i) of Lemma 3.2, the layers L81 , . . . ,L8A are pairwise non-adjacent. Therefore, the vertices of a
connected component of �D?

must lie in the same layer L8 9 for some 9 ∈ [A ]. These vertices are
thus contained in the same connected component of �L>8 9−1

(as their corresponding unit disks
form a connected unit-disk graph), and hence contained in the same AC for some C ∈ )supp at the
( 9 − 1)-th level. �

Observation 3.10. Let � ∈ AC and � ′ ∈ AC ′ for different nodes C, C ′ ∈ )supp. If � ∩ � ′ ≠ ∅, then
either C is the parent of C ′ or C ′ is the parent of C .

Proof. Suppose C (resp., C ′) is at the 9th (resp., 9 ′th) level. By property (i) of Lemma 3.2, we
have |ℓ (�) − ℓ (� ′) | ≤ 1, which implies | 9 − 9 ′ | ≤ 1. If 9 = 9 ′, then AC and AC ′ belong to different
connected components of�L>8 9

, which contradicts the fact � ∩� ′ ≠ ∅. So we have either 9 = 9 ′ + 1
or 9 ′ = 9 + 1. Without loss of generality, assume 9 = 9 ′ + 1. Let C∗ ∈ )supp be the parent of C , and
we claim that C∗ = C ′. Indeed, both C∗ and C ′ are at the 9 ′th level of )supp. If C∗ ≠ C ′, then C∗ and C ′
correspond to two different connected components of �L>8 9 ′

, which contain � and � ′ respectively.
This contradicts the fact � ∩ � ′ ≠ ∅. Thus C∗ = C ′. �

For each C ∈ )supp, we define a graph �C = �AC
/(�∗AC

∪ �AC∩D?
). Using Observation 3.9, one can

easily verify that the edges in �∗D ∪ �D?
that are incident to AC (i.e., have at least one endpoint

in AC ) are all exactly those in �∗AC
∪ �AC∩D?

. It follows that each �C is an induced subgraph of
�D/(�∗D ∪ �D?

), and these induced subgraphs are disjoint and cover all vertices of �D/(�∗D ∪
�D?
). Therefore, in what follows, we do not distinguish between the vertices of each �C and their

corresponding vertices in �D/(�∗D ∪ �D?
). Our next plan is to construct a tree decomposition for

�D/(�∗D ∪ �D?
) of width $ (?) by properly gluing tree decompositions of the induced subgraphs

�C . To this end, we first observe that tw(�C ) = $ (?) for all C ∈ )supp. Consider a node C ∈ )supp at
the 9th level. Since AC ⊆ L[8 9+1,8 9+1 ] , �AC

/�∗AC
is a subgraph of �L [8 9 +1,8 9+1 ]/�

∗
L [8 9 +1,8 9+1 ]

. By property
(iii) of Lemma 3.2, we have the inequality

tw(�C ) ≤ tw(�AC
/�∗AC

) ≤ tw
(
�L [8 9 +1,8 9+1 ]

/
�∗L [8 9 +1,8 9+1 ]

)
= $ (?).

Therefore, for each C ∈ )supp, there exists a tree decomposition () ∗C , V∗C ) for �C of width $ (?).3 By
Observation 3.10, �AC

and �AC ′ are adjacent in �D (i.e., there exists an edge of �D with one
endpoint in �AC

and the other endpoint in �AC ′ ) only if C and C ′ are adjacent nodes in )supp. It
follows that two induced subgraphs �C and �C ′ of �D/(�∗D ∪ �D?

) are adjacent only if C and C ′ are
adjacent nodes in )supp. Furthermore, we notice the following fact.

Observation 3.11. For two nodes C, B ∈ )supp where C is the parent of B , there exists at most one
vertex in �C that is neighboring to �B in �D/(�∗D ∪ �D?

).
Proof. Suppose B is at the 9 th level of)supp, and thus C is at the ( 9 − 1)-th level. By construction,

all unit disks inAB lie in the same connected component of�L>8 9
. Thus, by property (ii) of Lemma

3.2, the unit disks in L8 9 that are neighboring to�AB
lie in the same connected component of�L8 9

,
and hence the same connected component of�D?

. Note that all vertices of�AC
that are neighboring

to �AB
must lie in L8 9 , by property (i) of Lemma 3.2. Therefore, the vertices in �AC

neighboring
3If C is the root of)supp, then �C is an empty graph. In this case, we simply let) ∗C be the tree with a single node G and set
V∗C (G ) = ∅.
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to �AB
(if any) are contained in the same connected component of �D?

. By Observation 3.9, the
vertices of this connected component are all contained in AC , and thus are contracted into one
vertex in �C , which is the only vertex in �C that can be neighboring to �B in �D/(�∗D ∪ �D?

). �

Based on the above observation, we glue the tree decompositions () ∗C , V∗C ) along the edges of)supp
to obtain a tree decomposition () ∗, V∗) for �D/(�∗D ∪ �D?

) as follows. Consider a non-root node
B ∈ )supp with parent C . By Observation 3.11, there is at most one vertex E of �C that is neighboring
to �B in�D/(�∗D ∪ �D?

). We pick a node C∗ ∈ ) ∗C whose bag V∗C (C∗) contains E , and call C∗ the portal
of B . (If no vertex of �C is neighboring to �B , we simply pick an arbitrary node C∗ ∈ ) ∗C as the portal
of B .) We then add an edge to connect the root of ) ∗B and the portal C∗. We do this for all non-root
nodes of )supp. After that, we glue all trees in {) ∗C }C ∈)supp together and obtain the new tree ) ∗. Next,
we associate to each node B∗ ∈ ) ∗ a bag V∗ (B∗) as follows. Consider a node B∗ ∈ ) ∗ and suppose
B∗ originally belongs to ) ∗B for B ∈ )supp. If B is the root, we simply define V∗ (B∗) = V∗B (B∗) = ∅. If
B is not the root, let C be the parent of B in )supp and C∗ ∈ ) ∗C be the portal of B . We then define
V∗ (B∗) = V∗B (B∗) ∪ V∗C (C∗).

Observation 3.12. () ∗, V∗) is a tree decomposition of �D/(�∗D ∪ �D?
) of width $ (?).

Proof. Since the widths of the tree decompositions () ∗C , V∗C ) are all $ (?), the size of each bag
of () ∗, V∗) is bounded by $ (?) by our construction. So it suffices to show that () ∗, V∗) is a tree
decomposition of �D/(�∗D ∪ �D?

). First, every vertex E of �D/(�∗D ∪ �D?
) is contained in some

bag of () ∗C , V∗C ), for some C ∈ )supp. Indeed, E belongs to �C for some C ∈ )supp and hence there exists a
node C∗ ∈ ) ∗C such that E ∈ V∗C (C∗), because () ∗C , V∗C ) is a tree decomposition of �C . By our construction,
C∗ is also a node of ) ∗, and we have E ∈ V∗ (C∗). Second, we show that for every edge (D, E) of
�D/(�∗D ∪ �D?

), there exists some node of) ∗ whose bag contains both D and E . If (D, E) is an edge
in some �C , then there exists C∗ ∈ ) ∗C such that D, E ∈ V∗C (C∗), as () ∗C , V∗C ) is a tree decomposition of
�C . In this case, we have D, E ∈ V∗ (C∗). The other case is that (D, E) is an edge between two induced
subgraphs �B and �C of �D/(�∗D ∪ �D?

). As we noticed before Observation 3.11, in this case, B and
C are adjacent nodes in )supp. Without loss of generality, assume C is the parent of B in )supp and D
(resp., E) lies in �B (resp., �C ). By Observation 3.11, E is the only vertex in �C that is neighboring to
�B . Let C∗ ∈ ) ∗C be the portal of B . According to our choice of the portals, we have E ∈ V∗C (C∗). Now
pick any node B∗ ∈ ) ∗B such that D ∈ V∗B (B∗). By construction, we have V∗ (B∗) = V∗B (B∗) ∩ V∗C (C∗) and
hence D, E ∈ V∗ (B∗). Finally, we show that for any vertex E of �D/(�∗D ∪ �D?

), the nodes of ) ∗
whose bag contains E are connected in ) ∗. Suppose E is in �C for some C ∈ )supp. Observe that E is
contained in the bags of two types of nodes in ) ∗. The first type are the nodes which originally
belong to ) ∗C and whose bags in T ∗C contain E ; this type of nodes are connected in ) ∗ as they are
connected in ) ∗C . The second type are all nodes which originally belong to ) ∗B for some child B of C
such that the bag of the portal of B contains E . Note that ) ∗B is connected in ) ∗ and the portal of B is
a node of the first type as its bag contains E . Therefore, the nodes of the second type form some
connected parts in ) ∗ each of which is adjacent to a node of the first type. It follows that the nodes
of ) ∗ whose bags contain E are connected in ) ∗. As a result, () ∗, V∗) is a tree decomposition of
�D/(�∗D ∪ �D?

). �

3.4 Handling the General Case
In the previous section, we have proved that the partition {D1, . . . ,D? } satisfies the condition in
Theorem 3.1 for the special case where D′ = ∅. In this section, we shall consider the general case
and complete the proof for Theorem 3.1. Let 8 ∈ [?]. Our goal is to show tw(�D/(�∗D ∪�D8\D′ )) =
$ (? + |D′ |) for every D′ ⊆ D8 , knowing tw(�D/(�∗D ∪ �D8

)) = $ (?).
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Fig. 4. The three components of �R\{� } hit by � are merged into one connected component in �R , while
the others remain the same.

For convenience, we denote by + the vertex set of �D/(�∗D ∪ �D8
) and + ′ the vertex set of

�D/(�∗D ∪ �D8\D′ ). Since �D/(�∗D ∪ �D8
) is obtained from �D via edge contraction, there is

a corresponding quotient map c : D → + . Similarly, there is a quotient map c ′ : D → + ′

corresponding to the edge contraction for obtaining�D/(�∗D ∪ �D8\D′ ). Note that �∗D ∪ �D8\D′ ⊆
�∗D ∪ �D8

. So there exists a unique map d : + ′ → + such that c = d ◦ c ′, and�D/(�∗D ∪ �D8
) can

be viewed as a graph obtained from �D/(�∗D ∪ �D8\D′ ) via edge contraction with quotient map d .
As tw(�D/(�∗D ∪ �D8

)) = $ (?), there exists a tree decomposition (), V) of �D/(�∗D ∪ �D8
) of

width $ (?). We define a map V ′ : ) → 2+
′ as V ′ (C) = d−1 (V (C)) for all nodes C ∈ ) . By Fact 2.2,

(), V ′) is a tree decomposition of�D/(�∗D ∪�D8\D′ ). Now it suffices to show that the width of this
tree decomposition is $ (? + |D′ |). To this end, we establish a basic property of unit-disk graphs.
For a graph � , we use the notation ‖� ‖ to denote the number of connected components of � . We
have the following lemma.

Lemma 3.13. For a set R of unit disks and R′ ⊆ R, ‖�R\R′ ‖ − ‖�R ‖ = $ ( |R′ |).

Proof. We show that ‖�R\{� } ‖ − ‖�R ‖ = $ (1) for any unit disk � ∈ R. Then the lemma can
be proved via a simple induction argument. We say � hits a connected component of �R\{� } if
� intersects some unit disk in this connected component. Note that all connected components of
�R\{� } hit by � are merged into one connected component in �R , and all the other connected
components of �R\{� } remain the same in �R . See Figure 4 for an example. Thus, the quantity
‖�R\{� } ‖ − ‖�R ‖ is equal to the number of connected components of �R\{� } hit by � minus 1.
So it suffices to show that � only hits $ (1) connected components of �R\{� } . Suppose � hits :
connected components of �R\{� } . Pick a unit disk from each such connected component, and let
�1, . . . , �: be these unit disks. Note that �1, . . . , �: are disjoint as they are from different connected
components of�R\{� } . Thus, �, �1, . . . , �: form an induced biclique  1,: in�R . It was known that
unit-disk graphs exclude  1,6 as an induced subgraph [5]. So we have : ≤ 5 = $ (1). �

Using the above lemma, we show that |d−1 (* ) | = $ ( |* | + |D′ |) for any * ⊆ + . Since D8 is a
grid-respecting subset of D, for each E ∈ + , c−1 ({E}) is either (the vertex set of) a cell clique of
�D that is disjoint from D8 or (the vertex set of) a connected component of �D8

; we say E is a
type-1 vertex in the former case and a type-2 vertex in the latter case. Let*1 (resp.,*2) be the type-1
(resp., type-2) vertices in * . For each D ∈ *1, we have |d−1 ({D}) | = |c ′ (c−1 ({D})) | = 1, as every
cell clique of �D is contracted into one vertex in �D/(�∗D ∪ �D8\D′ ). Thus, |d−1 (*1) | = |*1 |. To
bound |d−1 (*2) |, we consider c−1 (*2) ⊆ D. By definition, c−1 ({D}) is a connected component of
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�D8
for each D ∈ *2, and thus ‖�c−1 (*2 ) ‖ = |*2 |. Set I = c−1 (*2) ∩ D′. By Lemma 3.13, we have

‖�c−1 (*2 )\D′ ‖ − ‖�c−1 (*2 ) ‖ = ‖�c−1 (*2 )\I ‖ − ‖�c−1 (*2 ) ‖ = $ ( |I|),

which implies ‖�c−1 (*2 )\D′ ‖ = $ ( |*2 | + |D′ |) because |I | ≤ |D′ |. Since c−1 (*2)\D′ ⊆ D8\D′, c ′
maps the vertices in each connected component of �c−1 (*2 )\D′ to the same vertex in + ′. Therefore,
|c ′ (c−1 (*2)\D′) | ≤ ‖�c−1 (*2 )\D′ ‖ = $ ( |*2 | + |D′ |). Now we have the inequality

|c ′ (c−1 (*2)) | ≤ |c ′ (c−1 (*2)\D′) | + |c ′ (D′) | = $ ( |*2 | + |D′ |).

It follows that |d−1 (*2) | = $ ( |*2 | + |D′ |), and thus |d−1 (* ) | = $ ( |* | + |D′ |). As a result, for all
C ∈ ) , |V ′ (C) | = |d−1 (V (C)) | = $ ( |V (C) | + |D′ |) = $ (? + |� ′ |). So (), V ′) is a tree decomposition of
�D/(�∗D ∪ �D8\D′ ) of width $ (? + |� ′ |), completing the proof of Theorem 3.1.

4 Applications
4.1 Contraction Decomposition for Unit-Disk Graphs
In this section, we use Theorem 3.1 to prove the first CDT for unit-disk graphs, which is shown
below.

Theorem 4.1 (CDT). Given a set D of = unit disks and an integer ? ∈ [=], one can compute in
polynomial time a partition {�1, . . . , �? } of �D such that for every 8 ∈ [?], tw(�D/�8 ) = $ (?2).

Observe that to prove the above theorem, it suffices to compute in polynomial time ? disjoint
subsets �1, . . . , �? of edges of �D such that tw(�D/�8 ) = $ (?2) for every 8 ∈ [?] (that is, we do
not require {�1, . . . , �? } to be a partition of the edge set �D ). Indeed, we can arbitrarily assign the
remaining edges �D\

⋃?

8=1 �8 to the ? subsets to obtain a partition {�′1, . . . , �′? } such that �8 ⊆ �′8
for all 8 ∈ [?], and then tw(�D/�′8 ) ≤ tw(�D/�8 ) = $ (?2).
We start by applying the algorithm of Theorem 3.1 on D to obtain in polynomial time a grid-

respecting partition {D1, . . . ,D? } ofD. Consider any 8 ∈ [?]. Setting D′ = ∅ in Theorem 3.1 gives
us tw(�D/(�∗D ∪ �D8

)) = $ (?). We are going to use this fact later in our analysis. Next, we state a
lemma which will be used in our construction of the edge sets �1, . . . , �? .

Lemma 4.2. The edge set of a clique  of size larger than 4? can be partitioned in polynomial time
into ? parts such that each part contains a spanning tree of  .

Proof. It is well-known [46] that there exists a polynomial-time algorithm to compute a Hamil-
tonian path in a graph � where the degree of each vertex is at least half of the total number of
vertices. We shall use this algorithm to prove the lemma and call it Palmer’s algorithm for ease of
reference.
Let @ > 4? be the size of  . We first compute ? edge-disjoint Hamiltonian paths in  over ?

iterations. Set  1 =  . In iteration 8 ∈ [?], we compute a Hamiltonian path �8 in  8 by applying
Palmer’s algorithm on  8 . We then remove the edges of �8 from  8 to obtain the graph  8+1. To
see that the condition for applying Palmer’s algorithm on  8 is always satisfied for every 8 ∈ [?],
note that through the first 8 − 1 iterations, the degree of a vertex decreases by at most 2(8 − 1).
Indeed, in each iteration we remove a Hamiltonian path from the current graph and thus the
degree of a vertex decreases by at most 2. Thus, in iteration 8 , the degree of any vertex is at least
(@ − 1) − 2(8 − 1) = @ + 1 − 28 ≥ @ + 1 − 2? > @/2. The last inequality follows as @ > 4? . Finally, we
add all the edges of  ?+1 to �? so that {�1, . . . , �? } form a partition of the edges of  and each
�8 contains a spanning tree of  as it contains a Hamiltonian path in  . Our algorithm runs in
polynomial time as Palmer’s algorithm does. �
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We construct the edge sets �1, . . . , �? in the following way. Consider any edge 4 = (D, E) ∈ �D .
If D ∈ D8 and E ∈ D9 for 8 ≠ 9 , then we totally ignore 4 (i.e., do not add it to any of �1, . . . , �? ).
Otherwise, let D, E ∈ D8 for some 8 ∈ [?]. If 4 is not a part of any cell clique, we add 4 to the part
�8 . If 4 is a part of a cell clique of size at most 4? , we also add 4 to the part �8 . The only remaining
edges are those in the cell cliques of size larger than 4? . Consider any such cell clique  . Using
the algorithm in Lemma 4.2, we partition the edge set of  into exactly ? parts �1, . . . , �? each of
which contains a spanning tree of  , and then add the edges in �8 to �8 for 8 ∈ [?]. This completes
the construction of �1, . . . , �? ⊆ �D . It is clear that �1, . . . , �? are disjoint. Now it suffices to bound
tw(�D/�8 ) for every 8 ∈ [?].

Lemma 4.3. For all 8 ∈ [?], tw(�D/�8 ) = $ (?2).

Proof. Let + ∗ be the vertex set of �D/(�∗D ∪ �D8
) and + be the vertex set of �D/�8 . By our

construction, we have �8 ⊆ �∗D ∪ �D8
. Thus,�D/(�∗D ∪ �D8

) can be obtained from�D/�8 via edge
contraction, and let d : + → + ∗ be the corresponding quotient map. Recall that tw(�D/(�∗D ∪
�D8
)) = $ (?). So there exists a tree decomposition () ∗, V∗) of�D/(�∗D∪�D8

) ofwidth$ (?). By Fact
2.2, () ∗, V) is a tree decomposition of �D/�8 where V : ) ∗ → 2+ is defined as V (C∗) = d−1 (V∗ (C∗))
for C∗ ∈ ) ∗. We show that |d−1 ({E∗}) | = $ (?) for every E∗ ∈ + ∗, which implies

|V (C∗) | = |d−1 (V∗ (C∗)) | = $ (? · |V∗ (C∗) |) = $ (?2),
and hence completes the proof.

Let c1 : D → + ∗ (resp., c2 : D → + ) be the quotient map corresponding to the edge contraction
for obtaining�D/(�∗D ∪�D8

) (resp.,�D/�8 ). We have c1 = d ◦c2. Consider a vertex E∗ ∈ + ∗. Since
D8 is grid-respecting, for each vertex E∗ ∈ + ∗, c−11 ({E∗}) is either (the vertex set of) a cell clique in
�D that is disjoint from D8 or (the vertex set) a connected component of �D8

. In the former case,
if |c−11 ({E∗}) | ≤ 4? , then |d−1 ({E∗}) | = |c2 (c−11 ({E∗})) | ≤ |c−11 ({E∗}) | ≤ 4? . If |c−11 ({E∗}) | > 4? ,
then we have |d−1 ({E∗}) | = |c2 (c−11 ({E∗})) | = 1, since �8 contains a spanning tree of any cell clique
in �D of size larger than 4? . In the latter case, c−11 ({E∗}) is a connected component of �D8

, and
we claim |d−1 ({E∗}) | = 1. Indeed, �8 contains all edges in a connected component of �D8

except
some edges in cell cliques of size larger than 4? . But for each of these large cell cliques, �8 contains
at least one of its spanning trees (which connects all vertices in the clique). Therefore, a connected
component of �D8

is contracted into a single vertex in �D/�8 , which implies |d−1 ({E∗}) | = 1. It
follows that |d−1 ({E∗}) | = $ (?) for every E∗ ∈ + ∗. �

4.2 Near-Optimal Bipartization for Unit-Disk Graphs
In the Bipartization problem, we are given a graph � = (+ , �) as well as a parameter : , and the
goal is to decide whether there exists a subset - ⊆ + of size at most : such that � − - is bipartite.
We will sometime use the term left part or right part to denote the two parts of the bipartite graph
� − - . This problem is sometimes referred to as OCT, and - is called an OCT of � as bipartite
graphs are exactly graphs without odd cycles. Equivalently, we can also formulate Bipartization
in the following way. Consider a map _ : + → {0, 1, 2}. We say _ is bipartite if for every edge
(D, E) ∈ �, neither _(D) = _(E) = 1 nor _(D) = _(E) = 2. The cost of _, denoted by cost(_) is, the
number of vertices in + that are mapped to 0, i.e., cost(_) = |_−1 ({0}) |. Then the Bipartization
problem is equivalent to finding a bipartite map _ : + → {0, 1, 2} of cost at most : . Indeed, the
OCT - ⊆ + is nothing but _−1 ({0}), while _−1 ({1}) and _−1 ({2}) are the left and right parts of
the graph � − - , respectively.

The map _ defined above can be directly generalized to any subset of+ . Formally, a configuration
on a subset+ ′ ⊆ + is a map _ : + ′ → {0, 1, 2}. A configuration is bipartite if for every (D, E) ∈ � with
D, E ∈ + ′, neither _(D) = _(E) = 1 nor _(D) = _(E) = 2. Two configurations _1 : +1 → {0, 1, 2} and

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 20. Publication date: June 2024.



True Contraction Decomposition and Almost ETH-Tight Bipartization 20:19

_2 : +2 → {0, 1, 2} are compatible if _1 (E) = _2 (E) for all E ∈ +1 ∩+2. If _1, . . . , _< are configurations
on +1, . . . ,+< ⊆ + that are pairwise compatible, one can “glue” them to obtain a configuration
_ :

⋃<
8=1+8 → {0, 1, 2} satisfying _ |+8 = _8 for all 8 ∈ [:]. With these notions defined, let us

consider the problem in hand. Let D be a set of = unit disks, and we want to solve Bipartization
on �D .

An easy but crucial remark is that, for every clique  in �D , the OCT contains all vertices of  
except at most two. The algorithm starts by checking if there is some cell clique with size at least
: +3, in which case it trivially answers NO. From now on, we may assume all cell cliques have size at
most : + 2. The first step of our algorithm is to apply the following randomized algorithm to obtain
a small candidate set Cand ⊆ D for OCT. This can be done via the technique of representative sets,
see Lemma 5 in [6] for more details.

Lemma 4.4. Given a graph � = (+ , �) and a number : , one can compute Cand ⊆ + of size :$ (1)

such that � has an OCT of size : if and only if � has an OCT of size : that is a subset of Cand, using
a polynomial-time randomized algorithm with success probability 1 − 1/2 |+ | .
By the above lemma, |Cand| = :$ (1) and it suffices to find an OCT of �D in Cand of size at

most : . Suppose there exists an (unknown) OCT X ⊆ Cand of size at most : . Next, we apply the
algorithm of Theorem 3.1 with ? = b

√
:c to obtain the grid-respecting partition {D1, . . . ,D? } ofD

in polynomial time. As the OCT X we are looking for is of size at most : and {D1, . . . ,D? } is a
partition of D, there exists an index 8 ∈ [?] such that |D8 ∩ X| ≤ :/? . By trying all indices in [?],
we can assume that the algorithm knows the index 8 . Moreover, we know thatD8 ∩X ⊆ D8 ∩Cand
as X ⊆ Cand. Thus, by trying all the subsets of D8 ∩ Cand of size at most :/? , we can assume
that the algorithm knows S = D8 ∩ X; note that the number of such subsets is bounded by
|Cand|$ (:/? ) = 2$ (

√
: log: ) .

Now it suffices to find an OCT of size at most : which intersects D8 at S, i.e., contains S but
is disjoint from D8\S. We now use the language of configuration to formulate this task. We say
a configuration _ : D′ → {0, 1, 2} on D′ ⊆ D is valid if it is bipartite and _(�) = 0 (resp.,
_(�) ≠ 0) for all � ∈ D′ ∩ S (resp., � ∈ D′ ∩ (D8\S)). Then our goal is nothing but finding a
valid configuration on D of cost at most : . Alternatively, our algorithm finds a minimum-cost valid
configuration _∗ : D → {0, 1, 2}.

The idea for efficiently finding _∗ is to use the fact tw(�D/(�∗D ∪�D8\S)) = $ (? + |S|) = $ (
√
:),

which follows fromTheorem 3.1, together with a widely used technique—DP on tree decomposition.
To apply this idea, however, there is one difficulty to be overcome: we need to do DP on a tree
decomposition of �D , but the graph of $ (

√
:) treewidth is �D/(�∗D ∪ �D8\S) instead of �D .

Let + ∗ be the vertex set of �D/(�∗D ∪ �D8\S) and c : D → + ∗ be the quotient map of the edge
contraction for obtaining �D/(�∗D ∪ �D8\S). Since tw(�D/(�∗D ∪ �D8\S)) = $ (

√
:), by Lemma

2.1, we can compute in 2$ (
√
: )=$ (1) time a binary tree decomposition (), V∗) of�D/(�∗D ∪ �D8\S)

of width $ (
√
:). By Fact 2.2, (), V) is a binary tree decomposition of�D , where V (C) = c−1 (V∗ (C))

for C ∈ ) . We shall do DP on (), V). Note that the bags V (C) of (), V) can be large. The key trick here
is to argue that the number of valid configurations on each bag V (C) is small, specifically bounded
by 2$ (

√
: log: ) , by using the $ (

√
:) width of (), V∗). We first observe the following simple fact.

Observation 4.5. For each vertex E∗ ∈ + ∗, c−1 ({E∗}) is either a cell clique of �D or a connected
component of �D8\S together with some elements in S.

Proof. Let E∗ ∈ + ∗ and � ∈ D such that c (�) = E∗. If (D8\S) å�� = ∅, then the only edges in
�∗D ∪ �D8\S incident to the vertices in the cell clique of �� are those in the cell clique. In this case,
c−1 ({E∗}) is the cell clique of �� . The remaining case is that (D8\S) å �� contains at least one

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 20. Publication date: June 2024.



20:20 S. Bandyapadhyay et al.

unit disk � ′. Consider the connected component of �D8\S containing � ′ and let C ⊆ D8\S be the
vertex set of this connected component. Define C+ = ⋃

�∈C (D å �� ). We claim that c−1 (E∗) = C+.
First, it is clear that C+ ⊆ c−1 (E∗), because the unit disks in C+ are connected by the edges in
�∗D ∪ �C ⊆ �

∗
D ∪ �D8\S . On the other hand, since C forms a connected component of �D8\S , all

edges in �∗D ∪ �D8\S incident to C+ are actually in �C+ . Thus, c−1 (E∗) = C+. Finally, note that
C+\C ⊆ S, because D8 is grid-respecting (hence C+ ⊆ D8 ) and a unit disk in C+\C cannot be
in D8\S (as C forms a connected component of �D8\S). Therefore, in this case, c−1 ({E∗}) is a
connected component of �D8\S together with some elements in S. �

Lemma 4.6. For every C ∈ ) , the number of valid configurations on V (C) is 2$ (
√
: log: ) . Furthermore,

these valid configurations can be constructed in 2$ (
√
: log: )=$ (1) time.

Proof. Observe that if _ : V (C) → {0, 1, 2} is a valid configuration on V (C), then for any subset
A ⊆ V (C), _ |A is a valid configuration on A. Therefore, if we use b (A) to denote the number
of valid configurations on a subset A ⊆ V (C), then we have b (V (C)) ≤ ∏

E∗∈V∗ (C ) b (c−1 ({E∗})),
because {c−1 ({E∗}) : E∗ ∈ V∗ (C)} is a partition of V (C) = c−1 (V∗ (C)). By Observation 4.5, for every
E∗ ∈ V∗ (C), c−1 ({E∗}) is either a cell clique of�D or a connected component of�D8\S together with
some elements in S. In the former case, recall our assumption that all cell cliques have size at most
: + 2. Also, a valid configuration on a cell clique must map all but at most two vertices to 0. Thus,
b (c−1 ({E∗})) = $ (:2) in this case. In the latter case, observe that a valid configuration must map
all vertices in the connected component of �D8\S to {1, 2} and map all vertices in c−1 ({E∗}) ∩ S
to 0. Furthermore, there are only two ways a valid configuration can map the vertices in the
connected component to {1, 2}, under the bipartite restriction, i.e., two adjacent vertices cannot
be both mapped to 1 or 2 (once we fix the label of one vertex in the connected component, the
labels of the other vertices are uniquely determined). Thus, b (c−1 ({E∗})) = 2 in this case. Finally, as
|V∗ (C) | = $ (

√
:), we have b (V (C)) ≤ ∏

E∗∈V∗ (C ) b (c−1 ({E∗})) = :$ (
√
: ) = 2$ (

√
: log: ) . To construct

the valid configurations on V (C), we can construct the valid configurations on each c−1 ({E∗}) and
then glue them, which can be done in 2$ (

√
: log: )=$ (1) time. �

With Lemma 4.6 in hand, the remaining part of our algorithm just follows the standard DP on
(), V). For each C ∈ ) , let W (C) be the union of the bags of all nodes in the subtree )C of ) rooted
at C . We compute a DP table at C , in which each entry corresponds to a valid configuration _C :
V (C) → {0, 1, 2} on V (C). The entry corresponding to _C stores a minimum-cost valid configuration
on W (C) that is compatible with _C . By Lemma 4.6, the size of the DP table is 2$ (

√
: log: ) and the valid

configurations on V (C) corresponding to the table entries can be computed in 2$ (
√
: log: )=$ (1) time.

As usual, we fill out the DP tables at the nodes in ) in a bottom-up fashion. The tables at the leaves
of ) can be filled out in a trivial way, since W (C) = V (C) for a leaf C ∈ ) . Consider a non-leaf node
C ∈ ) with left child ; and right child A . Suppose we already have the DP tables at ; and A , and we
are going to fill out the DP table at C . Specifically, for each valid configuration _C : V (C) → {0, 1, 2},
we want to find a minimum-cost valid configuration _′C : W (C) → {0, 1, 2} compatible with _C .

Observation 4.7. Let � = V (C) ∪ V (;) ∪ V (A ) and _ : � → {0, 1, 2} be a valid configuration on �.
If _′

;
: W (;) → {0, 1, 2} and _′A : W (A ) → {0, 1, 2} are valid configurations both compatible with _, then

_′
;
and _′A are compatible, and furthermore the configuration _′C : W (C) → {0, 1, 2} obtained by gluing

_, _′
;
, _′A is valid and satisfies

cost(_′C ) = cost(_′
;
) + cost(_′A ) + Δ_,

where Δ_ = cost(_ |V (C ) ) − cost(_ |V (C )∩V (; ) ) − cost(_ |V (C )∩V (A ) ). In particular, if _′
;
: W (;) → {0, 1, 2}

(resp., _′A : W (A ) → {0, 1, 2}) is a minimum-cost valid configuration of W (;) (resp., W (A )) that is
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compatible with _, then the configuration _′C : W (C) → {0, 1, 2} obtained by gluing _, _′
;
, _′A is a

minimum-cost valid configuration of W (C) that is compatible with _.

Proof. To see _′
;
and _′A are compatible, we notice that W (;) ∩ W (A ) ⊆ V (C). Indeed, if a unit disk

� ∈ D is contained in both W (;) and W (A ), then we must have � ∈ V (C) as the nodes in ) whose
bag contains � are connected. As such, W (;) ∩ W (A ) ⊆ �. Since _′

;
and _′A are both compatible with

_, for any � ∈ W (;) ∩ W (A ), we have _′
;
(�) = _(�) = _′A (�). Thus, _′

;
and _′A are compatible. Let

_′C : W (C) → {0, 1, 2} be obtained by gluing _, _′
;
, _′A . Clearly, _′C (�) = 0 for any � ∈ W (C) ∩ S and

_′C (�) ≠ 0 for any � ∈ W (C) ∩ (D8\S), because all of _, _′; , _
′
A are valid. So it suffices to show that _′C

is bipartite. Consider an edge (�, � ′) ∈ �D with �, � ′ ∈ W (C). If �, � ′ ∈ V (C), then we cannot have
_′C (�) = _′C (� ′) ∈ {1, 2} as _ is bipartite. Otherwise, assume � ∉ V (C) without loss of generality.
Then either � ∈ W (;) or � ∈ W (A ); assume � ∈ W (;) without loss of generality. As the nodes in )
whose bags containing � are connected, we know that � is only contained in the bags of the nodes
in the subtree ); rooted at ; . Since (�, � ′) ∈ �D , there exists a node B ∈ ) such that �, � ′ ∈ V (B).
We must have B ∈ ); for � ∈ V (B). This implies �, � ′ ∈ W (;). Because _′

;
is bipartite, we cannot have

_′C (�) = _′C (� ′) ∈ {1, 2}. Therefore, _′C is bipartite. The formula for cost(_′C ) follows easily from
inclusion–exclusion principle.
Now suppose that _′

;
: W (;) → {0, 1, 2} (resp., _′A : W (A ) → {0, 1, 2}) is a minimum-cost

valid configuration of W (;) (resp., W (A )) that is compatible with _. Let _′C : W (C) → {0, 1, 2} ob-
tained by gluing _, _′

;
, _′A be the configuration obtained by gluing _, _′

;
, _′A . As argued above, _′C

is valid and compatible with _. Consider another valid configuration _′′C : W (C) → {0, 1, 2} that
is compatible with _. Let _′′

;
= _′′C |W (; ) and _

′′
;
= _′′C |W (A ) . Clearly, _

′′
;
and _′′A are valid configura-

tions of W (;) and W (A ), and both of them are compatible with _. Thus, cost(_′′
;
) ≥ cost(_′

;
) and

cost(_′′A ) ≥ cost(_′A ). �

By the above observation, to find a minimum-cost valid configuration _′C : W (C) → {0, 1, 2}
compatible with a given valid configuration _ : � → {0, 1, 2} on � = V (C) ∪ V (;) ∪ V (A ), it suffices
to find a minimum-cost valid configuration _′

;
: W (;) → {0, 1, 2} (resp., _′A : W (A ) → {0, 1, 2}) on

W (;) (resp., W (A )) that is compatible with _ and then glue _, _′
;
, _′A . Note that W (;) ∩ � = V (;) and

W (A ) ∩ � = V (A ), since the nodes in ) whose bags contain a unit disk in D must be connected.
Therefore, a minimum-cost valid configuration on W (;) (resp., W (A )) compatible with _ is nothing
but a minimum-cost valid configuration on W (;) (resp., W (A )) compatible with _ |V (; ) (resp., _ |V (A ) ),
which is stored in the DP table at ; (resp., A ). As such, a minimum-cost valid configuration on W (C)
compatible with _ can be directly computed.

Recall that to fill out the DP table at C , what wewant is a minimum-cost valid configuration onW (C)
compatible with a valid configuration on V (C) instead of �. However, we have V (C) ⊆ � ⊆ W (C). So a
valid configuration _′C : W (C) → {0, 1, 2} is compatible with a valid configuration _C : V (C) → {0, 1, 2}
if and only if there exists a valid configuration _ : � → {0, 1, 2} compatible with both _C and _′C .
Thus, given _C , we can construct all valid configurations _ : � → {0, 1, 2} compatible with _C , and
for each _ compute a minimum-cost valid configuration on W (C) compatible with _. By taking the
minimum-cost one among the configurations on W (C) we compute, we obtain the desired minimum-
cost valid configuration on W (C) compatible with _C . Note that the number of valid configurations
on � is 2$ (

√
: log: ) , as the numbers of valid configurations on V (C), V (;), V (A ) are all 2$ (

√
: log: ) by

Lemma 4.6. Therefore, each entry of the DP table at C can be computed in 2$ (
√
: log: ) time. Then

the entire DP table can be filled out in 2$ (
√
: log: ) time, as the size of the DP table is 2$ (

√
: log: ) .

In 2$ (
√
: log: )=$ (1) time, we can finally complete the DP procedure. To find a minimum-cost valid

configuration _∗ : D → {0, 1, 2}, we check the DP table at the root rt ∈ ) . Note that W (rt) = D.
Therefore, the minimum-cost one among the configurations stored in all entries of the DP table at
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rt is just the desired _∗. This completes the discussion of our algorithm. The overall running time is
2$ (
√
: log: )=$ (1) , and the success probability is at least 1 − 1/2 |D | . So we conclude the following.

Theorem 4.8. There exists a randomized algorithm that solves Bipartization on unit-disk graphs
in 2$ (

√
: log: )=$ (1) time, where = is the number of vertices and : is the solution size.

We show that the algorithm in the above theorem is near optimal. Specifically, we cannot hope
for a 2> (

√
: )=$ (1) running time, assuming ETH.

Theorem 4.9. Assuming the ETH,Bipartization on unit-disk graphs cannot be solved in 2> (
√
: )=$ (1)

time, where = is the number of vertices and : is the solution size.

Proof. To show the desired lower bound, we give a reduction from Vertex Cover on unit-disk
graphs to our problem. From the lower bound framework of de Berg et al. [13], it follows that
Vertex Cover on unit-disk graphs cannot be solved in 2> (

√
: )=$ (1) time, unless ETH is false.

Hence, it is sufficient to give a polynomial time parameter preserving reduction. Let I be any given
instance of Vertex Cover on unit-disk graphs consisting of a set of = disks D in the plane, the
corresponding unit-disk graph� = (+ , �), and a parameter : . First, we make a copy of all the disks
in D. Let us call this set D′. Let � ′ be the unit-disk graph induced by the 2= disks in D ∪D′. As
the disks in D are given to us, � ′ = (+ ′, �′) can be constructed in polynomial time. We will prove
that � has a vertex cover of size at most : if and only if � ′ has a solution to Bipartization of size
at most 2: .

First, suppose � has a vertex cover ( of size :1 ≤ : . Note that � = + \ ( is an independent set of
size = − :1 in � . Thus, � corresponds to a subset D1 ⊆ D of disjoint disks in the plane. Let D′1 be
the set of copies of the disks in D1. Thus, the unit-disk graph induced by D1 ∪ D′1 is a matching of
size = − :1, and hence is an induced bipartite subgraph of � ′ having 2(= − :1) vertices. Hence,� ′
has a solution to Bipartization of size 2:1 ≤ 2: .

Now, suppose� ′ has a solution ( ′ to Bipartization of size : ′ ≤ 2: . Thus, the induced subgraph
� ′′ of � ′ with + ′ \ ( ′ as the set of vertices, is bipartite. Note that |+ ′ \ ( ′ | = 2= − : ′. Hence, � ′′
contains an independent set � ′′ of size at least (2= − : ′)/2 ≥ (2= − 2:)/2 ≥ = − : . However, � ′′ can
be corresponding to a set D′′ of disks from both D and D′. But the disks in D′′ are disjoint, and
thus one can find another set of disjoint disksD′′1 ⊆ D of size exactly |� ′′ | by replacing the disks of
D′ in D′′ by the corresponding original copies in D. As the disks in D′′1 are disjoint, � contains
an independent set of size |� ′′ | ≥ = − : , and hence a vertex cover of size at most : . �

4.2.1 Generalization to GFVS with Non-Identity Labels. In fact, the previous algorithm can be
generalized to the GFVS problem with non-identity labels on unit-disk graphs. For a (undirected)
graph � , we define a set %� that consists of all (ordered) pairs (D, E) ∈ + (�) × + (�) where D, E
are connected by an edge of � . For a finite group Σ, a Σ-labeled graph is a pair (�,Λ) where �
is graph and Λ : %� → Σ is a function satisfying that Λ(D, E) × Λ(E,D) is equal to the identity of
Σ for all (D, E) ∈ %� . A non-null cycle in (�,Λ) is a cycle (E0, E1, . . . , E< = E0) in � satisfying that∏<
8=1 Λ(E8−1, E8 ) is a non-identity element of Σ. In the GFVS problem, the input is a Σ-labeled graph
(�,Λ) for a finite group Σ and an integer : , and the goal is to determine whether there exists- ⊆ +
of size at most : such that (� − -,Λ |%�−- ) contains no non-null cycles. We say a GFVS instance
is with non-identity labels if Λ is required to satisfy Λ(D, E) ≠ 1 for all D ≠ E . A consistent labeling
of a Σ-labeled graph (�,Λ) is a map ` : + → Σ such that ` (E) = ` (D) · Λ(D, E) or equivalently
` (D) = ` (E) · Λ(E,D) for every edge (D, E) ∈ � (�). It was known that containing no non-null cycle
is equivalent to having a consistent labeling.

Lemma 4.10 ([28]). A Σ-labeled graph has a consistent labeling if and only if it does not contain any
non-null cycle.
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Note that the bipartization problem is a special case of the GFVS problem with non-identity
labels when Σ = Z2 and Λ(D, E) is the non-identity element in Z2 for all (D, E) ∈ %� . In this case, the
consistent labeling simply corresponds to the assignment to the left or right part of the bipartition.
Now we show how to generalize our bipartization algorithm to the GFVS problem with non-
identity labels. Suppose |Σ| = 6. We can naturally associate every element of Σ to an index of [6]
by some bijection f : [6] → Σ. In this way, we can interpret, very similarly to what we did for
bipartization, a solution to a GFVS instance (� = (+ , �),Λ) as a map _ : + → {0, 1, . . . , 6}, where
_−1 (0) is the set - ⊆ + of vertices to be removed and _−1 (8) for 8 ∈ [6] corresponds to the set of
vertices mapped to f (8) in a consistent labeling of � − - . Thus, we cam generalize the notion of
configurations defined in the previous section. For a subset + ′ ⊆ + , a configuration of + ′ is a map
_ : + ′ → {0, 1, . . . , 6}. The configuration is Λ-good if for every (D, E) ∈ � with D, E ∈ + ′\_−1 (0), we
have _(E) = _(D) · Λ(D, E) or equivalently _(D) = _(E) · Λ(E,D). We say that two configurations
_1 : +1 → {0, 1, . . . , 6} and _2 : +2 → {0, 1, . . . , 6} are compatible if they agree on +1 ∩+2.

Let (�D,Λ) be the input Σ-labeled unit-disk graph where�D is defined by a setD of = unit disks.
By Lemma 4.10, our goal is to compute a subset X ⊆ D of size at most : such that�D −X admits a
consistent labeling. To adapt the algorithm, we need several things. First, like bipartization, GFVS
also admits a small candidate set: it is possible to find in polynomial time a set Cand ⊆ D of size
:$ (6) such that the potential solution X can be searched in Cand (see Lemma 5 of [6]). Second, we
have to remark that a Σ-labeled graph with non-identity labels cannot admit a consistent labeling if
it contains a clique of size 6 + 1. Indeed it would mean that two adjacent vertices would be assigned
to the same element of Σ which is only possible if the edge between these vertices is label with the
identity.

With the two previous remarks, we can straightforwardly adapt the algorithm to this setting. The
algorithm starts by applying Theorem 3.1 with ? = b

√
:c to obtain {D1, . . . ,D? } a grid-respecting

partition in polynomial time. Then it produces a set Cand ⊆ D of size :$ (6) which contains the
potential solutionX. Once again, it is possible to guess an index 8 satifying |D8∩X| ≤ :/? as well as
the setS = D8∩X in at most :$ (

√
: ) tries. Once this is done, we use a tree decomposition T of width

$ (
√
:) of�D/(�∗D ∪�D8\S) guaranteed byTheorem 3.1 to solve the problem in (: +6)$ (6·

√
: )=$ (1)

time as follows.
Let + ∗ be the vertex set of �D/(�∗D ∪ �D8\S) and c : D → + ∗ be the quotient map of the edge

contraction for obtaining �D/(�∗D ∪ �D8\S). The DP will store for every node C ∈ T and every
Λ-good configuration UC of c−1 (V (C)) the value of the minimum-cost Λ-good configuration of W (C)
compatible with UC . Again, every element G of V (C) corresponds to either cell clique in �D or a
connected component of D8\S. In the first case, there are only $ (6 + :)$ (6)Λ-good configurations
for c−1 (G), since at most 6 vertices in c−1 (G) can have non-zero values in a Λ-good configuration
of c−1 (G). In the second case, there are only 6Λ-good configurations for c−1 (G) as it suffices to fix
the value of one element to fix the rest by connectivity. Overall, since the size of V (C) is $ (

√
:),

there is at most (: + 6)$ (6·
√
: ) possible Λ-good configurations and thus we have the following

result.

Theorem 4.11. There exists a randomized algorithm that solves the GFVS problem with non-identity
labels on unit-disk graphs in (: + 6)$ (6·

√
: )=$ (1) time, where = is the number of vertices, : is the

solution size, and 6 is the size of the group.

5 Conclusion and Future Work
We prove a structural theorem for unit-disk graphs, which states that one can partition the vertices
of a unit-disk graph �D into ? subsets D1, . . . ,D? such that for any 8 ∈ [?] and any D′ ⊆ D8 ,
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the graph �D/(D8\D′) admits a tree decomposition in which each bag consists of $ (? + |D′ |)
cliques. This result can be viewed as an analog for unit-disk graphs of the “robust contraction
decomposition” theorems for planar graphs and almost-embeddable graphs proved very recently
by Marx et al. [42] and Bandyapadhyay et al. [6]. Our theorem finds both combinatorial and
algorithmic applications. On the combinatorial side, we obtain the first CDT for unit-disk graphs,
resolving an open question in the work by [48]. On the algorithmic side, our theorem yields a new
parameterized algorithm for bipartization on unit-disk graphs, which runs in 2$ (

√
: log: ) · =$ (1)

time, where : denotes the solution size. Our algorithm significantly improves the previous slightly
subexponential-time parameterized algorithm given by [40] which runs in 2$ (:

27/28 ) · =$ (1) time.
We also give a 2Ω (

√
: ) · =$ (1) -time lower bound for the problem based on the ETH, which implies

that our algorithm is almost optimal.
Next, we raise some open questions for future study. The first question is whether we can extend

our structural theorem to more general graph classes. An interesting case is the class of (general)
disk graphs, which generalizes both planar graphs and unit-disk graphs. As this type of structural
theorem holds for both planar graphs and unit-disk graphs, it is natural to ask whether one can
obtain similar results for disk graphs. The second question is to improve our CDT for unit-disk
graphs. In Theorem 4.1, the treewidth bound we have is $ (?2), while a bound of $ (?) was known
for planar graphs. Therefore, it is interesting to ask whether one can prove a CDT for unit-disk
graphs with a subquadratic (or even linear) treewidth bound, or prove a quadratic lower bound for
the treewidth. Finally, we want to ask whether the general GFVS problem (possibly with identity
labels) also admits a subexponential parameterized algorithm.
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