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Abstract
Accurately predicting Drug-Drug Interactions (DDIs) is critical to
designing effective drug combination therapies. Recently, Artificial
Intelligence (AI)-powered DDI prediction approaches have emerged
as a new paradigm. However, most existing methods oversimplify
the complex hierarchical structure within molecules and overlook
the multi-source heterogeneous information external to molecules,
limiting their modeling and predictive capabilities. To address this,
we propose a Hierarchical Heterogeneous graph learning frame-
work forDDI prediction, namelyH2D. H2D employs an internal-to-
external, local-to-global hierarchical perspective, exploiting intra-
molecular multi-granularity structures and inter-molecular biomed-
ical interactions to mutually enhance across hierarchical levels. Ex-
tensive experimental results demonstrate H2D’s effectiveness on
three real-world DDI prediction tasks (binary-class, multi-class, and
multi-label). In sum, H2D achieves state-of-the-art performance
in DDI prediction by leveraging the multi-scale graph structures,
opening up new avenues in AI-powered DDI prediction.

CCS Concepts
• Applied computing→Molecular structural biology; • Comput-
ing methodologies → Neural networks.

Keywords
Drug-drug interaction, Hierarchical graph learning, Heterogeneous
graph neural network
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1 Introduction
Drug-Drug Interactions (DDIs) represent a significant concern in
clinical pharmacology and healthcare, as they profoundly influence
the safety and efficacy of medication regimens [5, 13]. As patients
are increasingly prescribed multiple medications to manage com-
plex medical conditions, the risk of drug interactions grows [10].
Therefore, identifying potential DDIs is crucial for avoiding ad-
verse drug reactions and optimizing clinical decision-making. Tra-
ditionally, DDI prediction relies on empirical studies and clinical
trials, which are time-consuming, expensive, and often limited
due to the vast combinatorial space of potential DDIs [21]. With
advancements of deep learning and Artificial Intelligence (AI) tech-
nology [6, 19, 28], AI-powered methods have emerged as promising
alternatives for DDI prediction [1, 2, 25, 29].

AI-powered DDI prediction methods can be categorized into
intra-level, inter-level, and multi-level approaches. Specifically,
intra-level methods focus on utilizing molecular characteristics
such as chemical sequences and structures [9, 12, 14, 18, 23, 27].
Inter-level methods integrate interactions between molecules as
well as relationships with other entities, such as genes, pathways,
and diseases [11, 15, 26, 30]. Multi-level methods incorporate both
internal properties and external associations related to DDIs [3, 8].

Although the above works have achieved encouraging results,
they still face the following challenges: (1) How to leverage multi-
scale molecular structures for enhancing DDI prediction?
Atoms are the basic particles of molecules, while motifs repre-
sent frequently recurring subgraph patterns that convey semantic
meanings [24]. Most DDI prediction methods often concentrate on
either fine-grained atom-level details or coarse-grained motif-level
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information, falling short in providing a comprehensive understand-
ing of drug structures. (2) How can the external heterogeneous
network benefit from the internal molecular structure? Some
methods consider both molecular graphs and biomedical networks
but overlook dependencies among hierarchical levels. They simply
concatenate the features learned independently from each level
for prediction, limiting the synergistic potential of combining local
molecular insights with global biomedical information. (3) How to
make the model more adaptable to real-world scenarios? Most
models only determine the presence of medication interactions
without delving into the specific adverse consequences resulting
from DDIs, which is crucial for clinical decision-making.

Along this line, we propose aHierarchicalHeterogeneous graph
learning framework for DDI prediction (H2D). H2D provides a
comprehensive understanding of molecules from an atom-motif-
interaction perspective for effective binary-class, multi-class, and
multi-label DDI prediction tasks. To summarize, H2D exhibits the
following highlights and advantages:

• Hierarchical perception from atom to motif to inter-
action. H2D captures multi-scale structures of molecular
graphs and multi-hop dependencies within biomedical net-
works, gaining multi-granularity molecular knowledge.

• Interaction between multi-granularity information. A
set of micro-level graphs are interconnected by edges in a
macro-level graph. H2D achieves sequential dependency and
mutual enhancement across hierarchical levels.

• Superior performance across diverse tasks. H2D ex-
hibits superior performance across three real-world tasks
and demonstrates high adaptability in predicting DDIs in-
volving multiple types of interactions in clinical applications.

2 Methodology
2.1 Problem Definition
A heterogeneous graph, denoted as 𝐺 = (𝑉 , 𝐸), is a graph with
multiple node types 𝑉 = {𝑉1,𝑉2, ...,𝑉𝑚} and multiple edge types
𝐸 = {𝐸1, 𝐸2, ..., 𝐸𝑛}. Each edge can be described as (𝑣𝑖 , 𝑒𝑘 , 𝑣 𝑗 ), where
𝑣𝑖 and 𝑣 𝑗 are nodes of type 𝑉𝑖 and 𝑉𝑗 respectively, and 𝑒𝑘 is an
edge of type 𝐸𝑘 . Given a biomedical interaction graph G𝑏𝑛 =

(V𝑏𝑛, E𝑏𝑛), where V𝑏𝑛 is the entity set, V𝑑 ⊂ V𝑏𝑛 is the drug
set, and E𝑏𝑛 is the biomedical interaction set. For a node of drug
set in the biomedical interaction graph, we define a molecule as
a motif graph G𝑚 = (V𝑚, E𝑚), where V𝑚 represents the set of
motifs within the molecule and E𝑚 is the set of inter-motif bonds.
Similarly, a node in the motif graph can be defined as an atom
graph G𝑎 = (V𝑎, E𝑎), where V𝑎 denotes the set of atoms within
the motif and E𝑎 represents the set of inter-atom bonds.

In our study, DDI prediction is defined as binary-class, multi-
class, and multi-label link prediction tasks. We aim to use the hi-
erarchical graph sets as inputs to generate the predicted results,
indicating whether (binary-class and multi-label) or what type of
interactions (multi-class) occur between drug pairs.
2.2 Framework Overview
As shown in Figure 1, H2D utilizes an atom-motif-interaction graph
learning framework, effectively integrating internal molecular fea-
tures with external relational information. Specifically, within the
atom graph, we introduce a heterogeneous graph encoder to capture

the structural arrangements of atoms within motifs. In the motif
graph, we explore the relationships between motifs connected by
diverse chemical bonds to understand inter-motif structures. For
the interaction graph, we employ a heterogeneous graph atten-
tion network to aggregate dependencies and correlations among
biomedical entities. Furthermore, we facilitate mutual enhancement
between the intra-molecular and inter-molecular levels. Finally, the
multi-level molecular embeddings are concatenated and fed into
DDI predictors to perform binary-class, multi-class, and multi-label
DDI predictions across three real-world scenarios.

2.3 Atom Graph
The internal structures of molecules are intricate, consisting of
recurring and distinct substructures known as motifs. We employ
the Simplified Molecular Input Line Entry System (SMILES) [20]
as molecular descriptors and use the Breaking Recurrent Internal
Chemical Structures (BRICS) [4] algorithm to decompose SMILES
into chemically meaningful motifs by selectively breaking bonds
according to predefined rules. To capture the characteristics of these
motifs, we first focus on the corresponding atom graphs.

In the atom graph, we initialize node features for each atom based
on its nuclear charge number and edge features for bonds based on
chemical bond types, including single, double, triple, and aromatic
bonds. By applying linear transformations, we project atom features
and bond features into a hidden vector space H. We obtain the
initial state h𝑖 for atom 𝑖 , and h(𝑖, 𝑗 ) for bond (𝑖, 𝑗). Following this,
we introduce the Heterogeneous Graph Attention Network (HGAT)
with residual connection to capture atom arrangements and encode
complex structural details. The atom embedding at the (𝑙 + 1)-th
layer can be updated as follows:

𝛼𝑖 𝑗 = 𝜎

(
AT

[
W𝜑 (𝑖 )h

(𝑙 )
𝑖




W𝜑 ( 𝑗 )h
(𝑙 )
𝑗




 W𝜓 (𝑖, 𝑗 )h(𝑖, 𝑗 )
] )

(1)

h(𝑙+1)
𝑖

= 𝜎

(
h(𝑙 )
𝑖

+
∑︁
𝑗∈N𝑖

𝛼𝑖 𝑗W𝜑 ( 𝑗 )h
(𝑙 )
𝑗

)
(2)

where 𝜑 (𝑖) and𝜓 (𝑖, 𝑗) represent the types of atom 𝑖 and bond (𝑖, 𝑗),
AT,W𝜑 (𝑖 ) , andW𝜓 (𝑖, 𝑗 ) denote the learnable matrices, ∥ denotes a
concatenation operation, N𝑖 is the neighborhood set of atom 𝑖 , and
𝜎 is an activation function.

After 𝐿1 iterations of HGAT block, we aggregate the embeddings
of all atoms within the motif using a pooling function to obtain the
motif embedding m = Pooling

(
{h(𝐿1 )

𝑖
}
)
.

2.4 Motif Graph
A set of motifs (atom graphs) are interconnected within a molecule
(motif graph) via inter-motif bonds. We utilize embeddings {m𝑖 }
derived from encoding atom graphs to initialize the node features of
the motif graph, thereby incorporating detailed atom arrangements
into motif interactions. We preserve the chemical bonds broken
by BRICS, reconstruct the inter-motif relationships to establish
motif graphs, and subsequently introduce the Graph Isomorphism
Network (GIN) to capture the relative spatial arrangements among
motifs, encoding complex structural information. At the (𝑙 + 1)-
th layer of GIN block, the motif embedding m(𝑙+1)

𝑣 is updated by
aggregating information from its neighborhood N𝑣 as follows:

m(𝑙+1)
𝑣 = MLP(𝑙 )

(
(1 + 𝜖 (𝑙 ) ) ·m(𝑙 )

𝑣 +
∑︁

𝑢∈N𝑣

m(𝑙 )
𝑢

)
(3)
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Figure 1: Overall framework of H2D. H2D is a hierarchical heterogeneous graph learning framework for DDI prediction, with
three hierarchical and interdependent levels: atom level, motif level, and interaction level.

where m(0)
𝑣 = m𝑣 , N𝑣 denotes the neighboring motif set of motif

𝑣 , 𝜖 (𝑙 ) is a learnable scalar parameter used for message passing
normalization, and MLP(𝑙 ) is a Multi-Layer Perceptron (MLP).

We apply 𝐿2 layers of GIN block, followed by a pooling function
to obtain the intra-levelmolecular embedding z = Pooling

(
{m(𝐿2 )

𝑣 }
)
.

2.5 Interaction Graph
In the biomedical network, drug molecules are not isolated entities;
they exhibit intricate associations with other molecules and entities
such as diseases and pathways. We initialize the molecular feature
z(0)
𝑖

using intra-level molecular embedding z𝑖 , thereby integrat-
ing the molecular structural features into the biomedical network.
Node embeddings for other entity types are randomly initialized.
In addition, edge embeddings are determined by the types of inter-
actions. Given the diverse significance of different interaction types
in comprehending DDI mechanisms, we employ HGAT to aggre-
gate the multi-hop dependencies of molecules, capturing potential
semantics in the biomedical network as follows:

𝛽𝑖 𝑗 = 𝜎

(
BT

[
W𝛾 (𝑖 )z

(𝑙 )
𝑖




W𝛾 ( 𝑗 )z
(𝑙 )
𝑗




 W𝛿 (𝑖, 𝑗 )z𝛿 (𝑖, 𝑗 )
] )

(4)

z(𝑙+1)
𝑖

= 𝜎

(
z(𝑙 )
𝑖

+
∑︁
𝑗∈N𝑖

𝛽𝑖 𝑗W𝛾 ( 𝑗 )z
(𝑙 )
𝑗

)
(5)

where 𝛾 (𝑖) and 𝛿 (𝑖, 𝑗) denote the types of entity 𝑖 and interaction
(𝑖, 𝑗), N𝑖 is the set of associated entities with entity 𝑖 , BT, W𝛾 (𝑖 )
and W𝛿 (𝑖, 𝑗 ) are the learnable matrices.

Following information propagation over L3 hops, we derive the
inter-level molecular embedding, denoted as g𝑖 = z(𝐿3 )

𝑖
, which

incorporates the multi-source biomedical knowledge.

2.6 DDI Prediction
2.6.1 DDI Predictor. From the H2D framework, we obtain the intra-
and inter-level embeddings of molecule 𝑖: z𝑖 and g𝑖 . We then con-
catenate the two representations to obtain the final molecular rep-
resentation f𝑖 = [z𝑖 ∥ g𝑖 ]. We adopt an MLP to compress a pair of
drug embeddings into a link value 𝑝𝑖 𝑗 , signifying the interaction

probability between drug 𝑖 and drug 𝑗 . DDI predictors generate
three prediction scores: 𝑝𝑧

𝑖 𝑗
, 𝑝𝑔

𝑖 𝑗
, and 𝑝 𝑓

𝑖 𝑗
, based on intra-level, inter-

level, and multi-level drug representations, respectively. During
testing, we use 𝑝 𝑓

𝑖 𝑗
for the final DDI prediction.

2.6.2 Loss Function. The loss consists of two components: super-
vised loss and unsupervised loss. Specifically, supervised loss fa-
cilitates accurate DDI prediction, and unsupervised loss promotes
mutual learning between intra- and inter-levels.
Supervised loss L𝑆 measures the Cross Entropy (CE) between the
predicted probability distribution and the true label.

L𝑆 =
∑︁

(𝑖, 𝑗 ) ∈Ω
CE

(
𝑝𝑧𝑖 𝑗 ∥ 𝑦𝑖 𝑗

)
+ CE

(
𝑝
𝑔

𝑖 𝑗
∥ 𝑦𝑖 𝑗

)
+ CE

(
𝑝
𝑓

𝑖 𝑗
∥ 𝑦𝑖 𝑗

)
(6)

where Ω is the set of observed drug pairs in the training set, and
𝑦𝑖 𝑗 denotes the true label of drug pair (𝑖, 𝑗).
Unsupervised loss L𝑈 quantifies the shared information between
intra-level and inter-level molecular embeddings and calculates
the Kullback-Leibler (KL) divergence between two DDI predictions
derived from intra- and inter-levels.

L𝑈 = 𝜆1
∑︁
𝑖∈V𝑑

MI
(
g𝑖 ∥ z𝑖

)
+ 𝜆2

∑︁
(𝑖, 𝑗 ) ∈Ω

KL
(
𝑝
𝑔

𝑖 𝑗
∥ 𝑝𝑧𝑖 𝑗

)
(7)

where 𝜆1 and 𝜆2 are trade-off hyper-parameters,V𝑑 is the drug set,
and MI represents the computation operator of mutual information.
Total loss L can be defined as the sum of supervised loss L𝑆 and
unsupervised loss L𝑈 , formulated as L = L𝑆 + L𝑈 .

3 Experiment
In this section, we conduct extensive experiments and try to answer
the following two research questions: RQ1: Can H2D improve DDI
prediction performance in real-world tasks? RQ2: How do the
different levels of H2D contribute to its overall performance?
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Table 1: Overall DDI prediction performance on DrugBank dataset. The best results are highlighted in bold, and the runner-up
results are highlighted in underline. (Higher values indicate better performance.)

Type Model Binary-class Multi-class

Accuracy Precision Recall F1 AUROC Accuracy Precision Recall F1 Kappa

Intra-level
DeepDDI 91.12 89.89 92.91 91.37 97.27 85.56 90.54 81.11 72.77 82.22
Molormer 97.05 96.32 97.91 97.11 99.67 96.77 94.87 92.45 93.91 96.17
MDF-SA-DDI 93.59 92.64 94.23 93.44 98.48 93.13 95.97 88.17 91.29 92.94

Inter-level GAT 87.54 87.87 87.10 87.48 94.66 77.06 58.75 76.82 61.09 72.93
KGNN 92.75 92.99 92.98 92.97 97.31 92.58 79.94 73.77 75.92 91.17

Multi-level
MUFFIN 96.69 96.34 97.08 96.71 99.47 96.96 94.53 92.38 93.08 96.54
HetDDI 98.82 98.52 99.12 98.82 99.87 98.13 96.04 96.27 96.17 97.78
H2D 98.85 98.58 99.13 98.86 99.88 98.23 96.75 96.76 96.60 97.89

Table 2: DDI prediction performance on Twosides dataset.

Model Multi-label

Accuracy Precision Recall F1 AUROC
DeepDDI 87.78 86.63 89.30 87.94 94.61
KGNN 92.09 93.30 90.71 91.99 97.55
MUFFIN 95.18 93.42 97.20 95.28 98.88
Molormer 94.81 92.40 97.60 94.93 98.74
HetDDI 96.66 96.08 97.29 96.68 99.34
H2D 97.32 96.47 98.25 97.35 99.46

3.1 Experimental Setups
3.1.1 Datasets. We evaluate H2D on two real-world datasets, Drug-
Bank1 [22] and Twosides2 [16]. We use DRKG3 [7] as the external
biomedical network, which consists of 97,238 entities with 13 node
types and 5,874,261 interactions with 107 edge types. Following pre-
processing, DrugBank contains 1706 drugs and 191,427 DDIs with
86 interaction types. Twosides contains 1,345 drugs and 1,979,575
DDIs with 200 interaction types.

3.1.2 Evaluation Metrics. We select six widely used metrics: Accu-
racy, Precision, Recall, F1-score, Area Under the Receiver Operating
Characteristic curve (AUROC), and Kappa. We report the mean re-
sults of five-fold cross-validation experiments.

3.1.3 Baselines. We compare H2D with three representative cate-
gories of baselines as follows: (1) intra-level models: DeepDDI [14],
Molormer [27], andMDF-SA-DDI [9]; (2) inter-level models: GAT [17]
and KGNN [11]; (3)multi-level models: MUFFIN [3] and HetDDI [8].

3.1.4 Experimental Settings. All experiments are conducted on the
Linux server with EPYC 7742 CPU and TESLA A100 GPU. We set
L1 = L2 = L3 = 3, the learning rate as 0.001.

3.2 Performance Analysis
Overall Performance (RQ1). Table 1 and Table 2 list the experi-
mental results of all methods across binary-class, multi-class, and
multi-label DDI prediction tasks. In general, multi-level methods
achieve better performance compared to single-level methods, illus-
trating the importance of integrating both intra-level and inter-level
1https://bitbucket.org/kaistsystemsbiology/deepddi/src/master/data/
2https://tatonettilab.org/offsides/
3https://github.com/gnn4dr/DRKG/

molecular information. Furthermore, the experimental results indi-
cate that H2D outperforms all baselines in three real-world tasks,
demonstrating the effectiveness of the hierarchical graph learning
framework and heterogeneous graph encoders in H2D. In particular,
H2D exhibits notable performance improvements in multi-class and
multi-label DDI prediction tasks, showcasing its strong adaptability
in clinical applications.
Ablation Study (RQ2).H2D is a hierarchical graph learning frame-
work that integrates atom, motif, and interaction levels. To inves-
tigate the contribution of each level to model performance, we
conduct an ablation study on hierarchical graphs in the multi-class
task. As depicted in Figure 2, incorporating hierarchical graphs
greatly enhances DDI prediction performance. The atom level and
motif level provide complementary knowledge, equipping H2D
with sensitivity to multi-granularity intra-molecular structures. Ad-
ditionally, in the multi-class task, biomedical interactions play a
more significant role than molecular structural information, high-
lighting the importance of exploring high-order dependencies and
long-range correlations in biomedical networks.

Figure 2: Ablation experimental results on different levels.

4 Conclusion
In this paper, we propose H2D, an atom-motif-interaction graph
learning framework for DDI prediction. H2D integrates multi-
granularity structures within molecules, explores multi-type in-
teractions beyond molecules, and achieves mutual enhancement
across hierarchical levels. Extensive experimental results validate
the superior performance of H2D across real-world tasks.
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