
Portland State University Portland State University

PDXScholar PDXScholar

Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

6-26-2016

Exploring Proficiency Testing of Programming Skills Exploring Proficiency Testing of Programming Skills

in Lower-division Computer Science and Electrical in Lower-division Computer Science and Electrical

Engineering Courses Engineering Courses

Karla Steinbrugge Fant
Portland State University, karlaf@pdx.edu

Branimir Pejcinovic
Portland State University, pejcinb@pdx.edu

Phillip Wong
Portland State University, pkwong@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Karla Fant, Branimir Pejcinovic, and Phillip Wong. Exploring profi- ciency testing of programming skills in
lower-division computer science and electrical engineering courses. In 2016 ASEE Annual Conference and
Exposition. American Society for Engineering Education, 2016.

This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Electrical and
Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar.
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/377
mailto:pdxscholar@pdx.edu

Exploring Proficiency Testing of Programming Skills in Lower-
division Computer Science and Electrical Engineering Courses

Motivation

It is generally accepted that all engineering students should be able to perform some
programming tasks. For example, ABET calls for electrical engineering (EE) curricula to include
“engineering topics (including computing science) necessary to analyze and design complex
electrical and electronic devices, software, and systems containing hardware and software
components.”1 In most disciplines, programming plays a supporting role as one of the tools that
future engineers will need to tackle problem solving and design projects. Because it is considered
such a basic tool, programming is typically taught in freshman or sophomore courses. Many
engineering students get their first exposure to programming in a class where a programming
language is used to assist problem solving. In electrical engineering (EE), this may be followed
by another course covering more advanced programming concepts. For example, in our EE
program at Portland State University (PSU), we teach MATLAB as part of a first-year
“introduction to engineering” and problem solving course. This is then followed by an
intermediate level C programming course. Obviously, in computer science (CS) programs there
is much greater emphasis on immediate application of programming and development of
necessary theoretical concepts. Most engineering programs do not have time in their curriculum
to prepare students in their lower-division coursework to a similar level of depth.

Because of the exact and unforgiving nature of programming, many students struggle when
asked to perform what appear to be simple programming tasks2. This problem has persisted to
the present day. At the same time, many students also have difficulty formulating general
problem solving strategies, which makes it even harder to use programming as a tool. These and
other factors contribute to high attrition rates in freshman engineering courses. It was our
observation of students’ struggles that led us to consider the question of what the best practices
in programming in CS may be and to try to transfer them to our courses.

Brief Introduction to Terminology

In order to provide proper context for our work, we need to provide a brief historical note and
explain our terminology. The proficiency or competency based approach to testing of
programming skills is not a new concept, and it was discussed and implemented3 in the 1980s
and even earlier. It was also mixed in with the concept of demonstrating “mastery” of a given
topic, i.e., programming. For example, Carnegie Mellon University instituted a final exam in
which students were supposed to demonstrate that they can accomplish certain tasks in a
controlled environment4,5. This was meant to provide several benefits, one being that “it was
hoped that the Mastery Exam would address a general problem of students successfully passing
programming courses at CMU without also learning the rudiments of programming
methodology”4. Another benefit would be reducing actual or potential cheating on exams. More
recent attempts to test student programming skills and its associated problems have been
published6,7. Various studies utilize different assessment approaches and define their own set of
learning outcomes, competencies or skills that are being assessed. Defining what appropriate
programming skills are is in itself a difficult problem8.

More recently, competency-based education has become popular in many different fields9, and
the driving force seems to be “Transitioning away from seat time, in favor of a structure that
creates flexibility, allows students to progress as they demonstrate mastery of academic content,
regardless of time, place, or pace of learning”10. However, despite its long history, the
competency-based education area is still very much in flux, and there are many different
definitions and labels used. In our case we need to make a distinction between competency and
proficiency. In our present view, demonstrating competency is a binary concept – students can
either complete a given task or not. Proficiency is a more nuanced assessment, and it may also
include assessment of behaviors that students exhibit. In either case, some standard level of
performance needs to be defined. In computer science, students are expected to build on the
programming foundation throughout their four years of study, so it seems appropriate that a more
nuanced approach be taken. In our electrical engineering courses, however, we are more
interested in basic understanding and application of programming to problem solving, for which
a simpler assessment seems sufficient.

In the sections below we will discuss implementation of proficiency-based testing (PT) across
many courses in the computer science program and follow that up with a discussion of
competency-based testing (CT) in one freshman electrical engineering course.

Proficiency-based Testing in CS: Background

The core programming competencies expected of Computer Science (CS) undergraduate
students are cumulative. The first two years of PSU’s CS program builds foundational level
material needed by most courses in the curriculum. In regards to programming, students need to
meet the programming requirements outlined by a prerequisite course in order to be successful in
follow-on courses. For example, one must be proficient using variables in order to progress to
loops and functions. And, one must be proficient using pointers and/or references in order to be
proficient at programming linked data structures. Ensuring proficiency at each level solidifies the
program and enables student success. There is an additional benefit in that students are less
frequently taken by surprise in the programming pre-requisites and are less likely to drop.

Understanding computer science concepts in some theoretical sense is not sufficient if students
cannot apply what they have learned. Allowing students to progress when they do not have
sufficient programming experience creates situations where prerequisite classes have to be taken
multiple times or the course difficulty level is reduced so much that the overall curriculum
quality suffers. The proficiency-based testing model addresses this issue early on, which
minimizes the cost and time impact. A critical part of proficiency testing is determining essential
competencies and the standards by which they are evaluated. Once these are determined they
communicate a clear and powerful message to students in terms of expectations. We have found
that traditional, paper-and-pencil, in-class exams are insufficient on their own. Many students
can collect sufficient partial credit or show memorization of facts but still be lacking in actual
programming and problem solving skills. Students may think that they have mastered the
material but have trouble integrating the concepts together into a finished program. In contrast to
a traditional exam, PT is performed in small groups and in a controlled environment. PT exams
are observed so that faculty can determine how students approach problem solving and

debugging that cannot be observed otherwise. Similarly, once they are in place, PT examinations
can be used to ensure that transfer students have the same abilities as native students.

Based on these arguments we would expect the following benefits to come from using PT:

1. Improved quality of student work
2. Improved courses and curriculum based on direct observational feedback
3. Ensured level of proficiency among native and transfer students
4. Improved formative assessment – students receive immediate and direct feedback
5. Clear communication of expectations to students
6. Triangulation of student performance
7. Established baseline, ensuring that students are prepared for future courses

In addition, we have found out that this approach is scalable to a relatively large number of
students, and we have handled up to 450 students per quarter. However, there are organizational
issues to be resolved and adequate resources should be provided. A discussion of these benefits
and supporting evidence is presented below.

Proficiency-based Testing in CS: History

The Computer Science department at our university officially started administering proficiency-
based testing in winter 2012. Students enrolled in the core programming courses at the freshman
and sophomore level participate in proficiency examinations twice a term. These require students
to demonstrate programming core competencies at the level expected for the given course.
Students currently experience proficiency examinations in CS161 Introduction to Programming,
CS162 Introduction to Computer Science, CS163 Data Structures, and CS202 Advanced Data
structures and OOP. Beginning in summer 2014, transfer students applying to our Computer
Science department for entry into the upper division curriculum also began demonstrating
competencies with proficiency-based testing. Such proficiency examinations ensure that students
from all backgrounds are able to meet the expected core competencies of a computer scientist
prior to entry into the upper division.

Determining and Evaluating Student Competencies in CS

Through ABET accreditation, each of the required courses has specific core competencies that
students are evaluated upon. Note that during PT, students are scored on the process of problem
solving, program design, and coding. PT results are used to assess student programming skills
but are not designed to cover all other learning outcomes. Table 1 summarizes the type of
scoring used for four of the core competencies. Proficiency levels are scored as:

• E – Exceeds our expectations. The solution came quickly, and it was obvious from the
student’s approach that they understood the programming platform, editors, debuggers (if
applicable), language, syntax, and data structure (if applicable). There is an obvious
fluency in how they approach the design and programming problem assigned. The code
compiled without syntax errors or warnings.

• P – Proficient meeting our expectations. The process of solving the problem
demonstrated the level of proficiency expected for the course. The student understood
how to design and implement a problem and was capable using the platform, editors,
debuggers (if applicable), language, syntax and data structure (if applicable). They may

have redesigned the solution and re-compiled multiple times. It is clear from our
observations that the student does understand how to solve the problem even if they had
to make multiple passes. Each pass through the problem solving process improved.

• IP – In Progress and does not meet our expectations. The student struggled with the
concepts, either with the platform, syntax and/or data structure (if applicable). They were
unable to complete the problem although they may have demonstrated portions of the
solution that were correct. Overall their syntax should have been close. When asked to
evaluate their design, they were unable to do so in a logical manner. Each pass did not
necessarily improve.

• U – Unsatisfactory and does not meet our expectations. The student showed major issues
with using the platform, editors, language and/or data structure (if applicable). Typically
such students struggle with syntax issues and are performing operations that would not
make sense for the problem at hand. Each pass through the problem does not improve and
we end the proficiency demonstration when it is clear to us that the solution is not
achievable.

Table 1. Scoring rubric for core CS competencies.

Competency Exceeds
expectations

Proficient In progress
(non-passing)

Unsatisfactory

Design Process Design is well
thought out with
minimal revision
necessary

A solid design was
achieved; each pass
improved

The design was close
but flawed; each pass
did not improve

The design was far
from satisfactory;
student was unable
to design

Use of Recursion Clear and
concise

Correct use of
recursion but could
be simplified

Attempted recursion
but with major flaws

Unable to solve a
problem using
recursion

Correct Syntax Perfect syntax Good syntax. Was
able to correct
errors with
minimal assistance

Major syntactic
issues. Most could be
resolved but not all
without assistance

Major syntactic
issues which were
not recoverable

Application of
Data Structure
Algorithms

Perfect use
and/or
implementation
of data structure
algorithms

Fluent with data
structures but may
have required
multiple passes

Not fluent with the
data structures;
multiple passes did
not improve

Major issues with
the data structure
algorithms. Far
from functional

The process of evaluating student competencies has students independently solving randomly
assigned problems while being observed by faculty and staff. Students’ progress is closely
monitored and assistants take notes during the process to evaluate overall performance in
problem solving and syntax. Students have no access to course materials or the internet.

Only students that pass the PT may progress to the next course. Applicants transferring in at the
upper division level must also pass in order to be admitted into the upper division program.
Students that fail to pass are advised to take (or re-take) courses to gain the necessary
competencies.

Preparing Students for Proficiency Testing

Students are prepared for the proficiency examinations by attending weekly labs where they have
hands-on experience with the course concepts in a small group setting with approximately eight
students per technical assistant. By midterm time, students experience the PT as a trial run,
acquainting students with the process. Students that do not demonstrate the necessary
programming competencies can re-demonstrate their competencies after one week of practice.
Such a trial run gives students the confidence to program under observation, which may be a new
process for them. Based on the findings at these trials, we can advise students on how best to be
successful.

Results of Proficiency Tests

For each final proficiency examination processed, we tabulate the number of students that scored
in each of the four categories, and for each of those how many missed the most important core
competencies for the particular course being taken. These numbers are then averaged and
reported to the department. This process is performed only for students that pass the course; our
results do not include data from students that drop or fail the class for other reasons.

Our current results include the performance of over 2,700 students. Our findings show that the
success of our students increased significantly from the first tests. At the start of our proficiency
testing only 22% of students were judged to exceed expectations. Once the tests were fully
established, we have seen this grow to 40-45% even for the most difficult courses. This is in
stark contrast to the transfer students in summer 2015, of which only 5% demonstrated the same
level of proficiency.

Our early test data showed that 2.48% of the students received an unsatisfactory grade even
though they were passing all of the rest of the material, and 5-6% of students who were
categorized as in-progress. In later years student performance significantly improved, so that in
2015 there are only 0.25% in unsatisfactory and 1% in in-progress categories, as shown in Table
2. We interpret this drop as significant improvement in student performance. Anecdotally,
professors teaching upper-division courses have also noticed improved quality of student work in
their courses. We expect these improvements to continue in 2016.

Table 2. Summary of the average student performance on CS proficiency tests since adopting the
procedure.

Introductory Results Exceed Proficient In Progress Unsatisfactory (*)
 Non-passing

Early Averages: 22% 70% 5% 2.48%
2013 Averages: 45% 46% 6% 2.39%
2014 Averages: 39% 58% 3% 0.59%
2015 Averages: 40% 58% 1% 0.25%

(*) Received an Unsatisfactory Score on the Proficiency Demonstration but received
passing scores on all other work. Failing grade in the class was due solely to the
proficiency demonstration score.

Somewhat alarmingly, 48% of transfer students failed the proficiency examination during the
summer 2015 tests. These students theoretically had all of the required prerequisites to
immediately start courses at the upper division level, but could not demonstrate programming
proficiency at our required level. Five percent of those who failed were advised to retake the
freshman level CS162 course, setting them back one to one and a half years. We observed that
they were deficient in the ability to use pointers and dynamic memory. Another 19% of students
who failed were recommended to retake CS163 Data Structures because they did not fully
understand lists and trees. In previous years these students would have been admitted
automatically into the program and would suffer academically due to lack of preparation. Further
comparison between native PSU and transfer students is given in Table 3.

Table 3. Deficiencies observed among CS transfer students relative to native students.

Problems
with:

Basic
programming

Recursion Function calls Data structure
algorithms

Native (our U.) 0% 4% 2% 6%
Transfer 38% 29% 19% 29%

Additional Benefits

Proficiency-based examinations also have a positive impact on the overall curriculum. By
evaluating the results of the students performing the demonstration, we have been able to fine
tune our curriculum. For example, since 8% of our students were not properly using function
returned values, we have modified our lab materials with weekly exercises requiring the use of
returned values.

Overall, we believe that these results demonstrate the effectiveness of our approach to testing
programming skills, and all of the expected benefits can be verified by data.

Competence-based Testing in EE

In our electrical engineering program, we have designed an introductory sequence of three
quarter-long courses11. The second (ECE 102) and the third (ECE 103) deal with MATLAB and
C programming, respectively. In addition, ECE 102 addresses engineering problem solving and
utilizes MATLAB to drive a data-acquisition device as part of a major course project12. Two out
of six course outcomes in ECE 102 deal with MATLAB programming. Course outcomes are
assessed in homeworks, exams, labs and projects. In the rest of the curriculum, students are
primarily using their existing programming skills, for example using C to program DSP chips. It
is, therefore, critical that students get a solid foundation and practice in basic programming
skills. Many students find programming very hard and end up with a piecemeal understanding of
it13,14. They also “optimize” their efforts by devoting less time and effort to certain areas and
compensating for it in others, with programming often being sidelined in such cases.

Our exploration of competency-based testing (CT) was motivated by these objectives:
• Ensuring that students develop a solid programming foundation
• Providing explicit and detailed guidance on what is expected
• Providing useful, timely, and frequent feedback to students
• Using CT results to improve the effectiveness of our teaching

Given that proficiency testing proved successful in attaining these and other goals, we believe
that a somewhat simplified version of it, which we call competency-based testing, will
accomplish the same in our classes. We have been experimenting with the content and format of
our CT exams, and our initial findings are presented below.

Determining and Evaluating Student Competencies in EE

The programming competencies that we would like our students to exhibit are:

1. Variable usage 3. I/O functions 5. Loops
2. Vector manipulation 4. Branching 6. Function definition & calling

The first three are simple enough that they can be learned during the first two weeks of the
course. Students must be comfortable using them before moving on to other topics. There are
still some difficult concepts that students need to master even for this introductory material, e.g.,
assignment vs. equality and indexing within vectors. While we cannot lose sight of the need for
students to understand these concepts, the ultimate goal is repeated practice and feedback to
build and reinforce programming skills. At this stage, it may be difficult to distinguish various
levels of performance, i.e., proficiency. The second half of the competency list presents a much
higher level of conceptual difficulties, which is compounded by the need to integrate them into
one programming and problem-solving whole. Testing for these competencies is particularly
important before students take a follow-on course in C language programming, since these
concepts are exploited more thoroughly there.

Testing for the first three competencies consists of simple programming tasks that take several
lines of code to accomplish and are largely independent of each other. Students have to produce
correct intermediate steps and final results. For the second half of the competencies list, we need
to embed them in a larger problem which is still doable within 20-30 lines of code. Designing
these problems is obviously more challenging, and we are learning how to scale our expectations
to only the essential parts. In addition, we have to provide some variety to prevent students from
memorizing a discrete set of problems that may come up on tests. We are in the process of
developing a set of template problems to accommodate current and future CT needs. Finally,
student competency is determined by direct observation of their programming performance
during an in-class test.

Preparing Students for Competency Testing

Our approach to teaching programming is one based on active learning and giving students
frequent and timely feedback. To accomplish this, we use a non-traditional e-book15 that has
many interactive problems which we assign as reading and monitor for student compliance. In-
class activities include interaction systems16 for collecting student answers and work. Most

recently, we added Cody Coursework exercises to supplement traditional MATLAB homework
assignments. However, most of these activities deal with a small segment of the required skills or
competencies, so in order to provide students with a chance to put it all together, we have now
included a set of programming exercises that are done in a lab environment. Note that students
also have to produce a much larger program which is part of their final project and is evaluated
separately.

Results of Competency Tests

First ECE CT trial (Winter 2015)
In the winter quarter of 2015, the first implementation of the ECE CT was attempted on two
sections of ECE 102 students. Given that this was our first attempt, we decided to make it
voluntary and count only as extra credit with no make-up test offered. In total, 38 students
volunteered to take the CT. While we cannot guarantee that this sample was representative, we
observed that there was a cross-section of students in terms of their programming abilities
making the analysis somewhat generalizable.

A set of basic test problems was developed by the instructors that could be solved in around
twenty lines of code. The competency test was presented at the end of the academic quarter.
Multiple testing sessions were offered, with each session being attended by both instructors and a
teaching assistant (TA). Students were expected to bring their own laptop computer with
MATLAB installed. Students were assigned a randomly selected test problem and given up to 25
minutes to solve it and demonstrate their work to the instructor. Access to the MATLAB help
system was allowed just once. After completing the test, or when the time limit was reached, the
instructors evaluated the student’s results.

Second ECE CT trial (Spring 2015)
Another section of ECE 102 was taught in spring quarter, and this time all students were required
to take the CT. Students were given two chances to pass the exam. To better prepare them,
optional lab sessions were offered in which students practiced programming under TA and
instructor supervision. Typically, only one quarter to one third of the class participated in the lab,
which was deemed too low. The CT process was very similar to the previous one except the
testing time was extended to one hour.

ECE CT Results for 2015
For the first CT trial, the combined passing percentage was a disappointing 55%. When a
weighted composite grade based only on each student’s MATLAB-specific class work was
constructed, around 69% of the participants’ CT results matched what would be predicted from
their composite results. This means that there were significant number of students who passed
CT but were not passing other MATLAB related coursework and vice-versa. We will need to
collect more data and in a more systematic fashion before we can draw any conclusions from this
observation. For now, it seems to indicate that CT can be useful in triangulating student success
so that we do not rely on traditional assessments alone. The first-time results, however, were
unsatisfactory and indicated that changes needed to be made in the course structure to improve
student outcomes.

From this first attempt, a few observations were made:

• Several students were unable to complete the test within the initial 25-minute limit, so
more time would need to be allocated for future trials.

• It is vital to explain clearly the instructor’s expectations and the P/NP process at the start
of the course.

• Direct observation of students working through the problems gave us indications where
they struggled the most and what needed to be clarified or emphasized.

• Students were still not fully independent when programming and were particularly ill
prepared for debugging.

For the second CT trial, 43 students took the CT, of which 30% failed initially and needed to
take the make-up test. After their second try only 2% of students failed the CT. Recall that the
first CT trial was treated as an optional extra credit assignment. In contrast, the second CT trial
was required, so students could fail the class if they did not pass the CT. This makes the
comparison between the final passing rates given in Table 4 difficult. However, we believe that
improvements were at least in part due to increasing the test time and offering the optional labs.
Based on this observation, our future classes will require programming labs and CT.

Table 4. ECE 102 Competency test results for 2015.

Quarter Total Students Passed (initial) Passed (final)
Winter 2015 38 - 55%
Spring 2015 43 70% 98%

From the second round of CT trials, these lessons were learned:

• Having more assistants would make the process smoother and less time consuming.
• Programming labs with “live” help can help prepare students better, but we need to make

the labs required.
• Two competency tests are needed so that students can get used to the format and ensure

they know basic concepts such as variables and arrays before attempting more advanced
topics like branching and loops.

Third ECE CT trial (Winter 2016)
After analyzing the results from the 2015 CT trials, the 2016 schedule was revised to offer two
CT exams, one (CT-1) at the end of the third week and the other (CT-2) in the sixth week, with a
make-up test offered after each CT. The first test covered variables, math operators, vector
manipulation, basic plots, and calling functions. The second test assesses knowledge of
comparison and logical operators, branching and loop statements, and writing of custom
functions. From the experience with poor attendance in voluntary labs, a weekly lab class
became mandatory. The instructors, teaching assistants (TAs), and undergraduate helpers
attended each lab session to provide assistance during the programming exercises.

The two course sections were again taught by the same instructors. A total of 73 students took
the CT-1 exam. Seven testing blocks of 45 minutes each were offered. This time, students were

tested on department Linux computers running MATLAB. Both course instructors and a TA
performed assessment. Helpers assisted with the check-in and check-out duties. When the
student was done, the instructor or TA looked over the code and output to decide if the student
had passed the test. The TA was only allowed to give a passing score. If the TA believed the
student failed, then an instructor reviewed the student’s work to make the final decision.

At the time of this writing, only CT-1 data are available. Approximately 85% of the class passed
the CT on the first try. After the make-up test results were factored in, 95% of the students were
successful. Hence, the overall CT passing rate was much improved compared to the trial in 2015,
though it needs to be mentioned that simpler material was tested.

Lessons Learned from the CT and Future Plans

After initial experimentation and refinements, we are now starting to approach steady-state in our
efforts to establish competency testing as a viable assessment and teaching tool. Even though we
had an example from CS to follow, we still have to make our own way through many of the
obstacles. At this time, we only have our own observations to draw on, but our conclusion is that
CT was a worthwhile investment that we will continue to refine. CT results do not mean much in
isolation, so they need to be a part of a larger effort to develop student programming skills in an
effective and efficient way. Because of this overall effort, we believe that students have reaped
the benefits and will be much better prepared. Data to back up this claim will be collected over
the coming years. One of our future projects will be a publication of a comprehensive manual
that will cover various components, i.e., labs, Cody exercises and readings, and the CT itself.

Overall Conclusions

Based on our experiences and results of proficiency testing in computer science and competency
testing in electrical engineering, we have reached the following conclusions:

• Proficiency testing has demonstrated improved student programming outcomes in our
computer science program.

• Given the four-year record of implementation and success, proficiency testing is a good
example to follow in electrical engineering in order to improve student programming
skills.

• A simplified version of proficiency testing, labeled competency testing, may be sufficient
for now in EE but may be expanded to full proficiency testing later on.

• Improvements in electrical engineering student learning have yet to be fully
demonstrated, but initial results are encouraging.

• Proficiency and competency testing make expectations clear to students but have to be
supplemented with other improvements in teaching.

• Proficiency and competency testing benefit students by making sure that they actually
mastered the basics and can perform programming tasks before moving on to more
complex concepts and courses.

• Other benefits, such as assessment of transfer students, may be obtained once the system
is in place.

• Implementation does require additional resources in terms of trained TAs and helpers but
has been shown to scale well to large numbers of students.

Proficiency testing has worked well, and we continue to develop it in collaboration with other
universities and local high schools where proficiency testing is used for college credit. We hope
that the descriptions and data presented here will encourage other programs to start
experimenting with these testing techniques.

Bibliography

[1] ABET “Criteria for Accrediting Engineering Programs,” http://www.abet.org/wp-

content/uploads/2015/04/E001-14-15-EAC-Criteria.pdf , accessed Jan. 30, 2016

[2] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-D. Kolikant, C. Laxer, L. Thomas, I.
Utting, and T. Wilusz, “A multi-national, multi-institutional study of assessment of programming skills of
first-year CS students,” ACM SIGCSE Bulletin, vol. 33, no. 4, pp. 125–180, 2001.

[3] R. S. Lemos, “Measuring Programming Language Proficiency,” AEDS Journal, vol. 13, no. 4, pp. 261–273,
Jun. 1980.

[4] M. J. Stehlik and P.L. Miller, “Implementing a mastery examination in computer science,” 1985, downloaded
from http://repository.cmu.edu/cgi/viewcontent.cgi?article=2555&context=compsci , accessed Jan 30, 2016.

[5] J. Carrasquel, “Competency Testing in Introductory Computer Science: The Mastery Examination at
Carnegie-Mellon University,” in Proceedings of the Sixteenth SIGCSE Technical Symposium on Computer
Science Education, New York, NY, USA, 1985, p. 240–.

[6] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer, M. Lindholm, R. McCartney, J. E. Moström, K.
Sanders, O. Seppälä, B. Simon, and L. Thomas, “A Multi-national Study of Reading and Tracing Skills in
Novice Programmers,” in Working Group Reports from ITiCSE on Innovation and Technology in Computer
Science Education, New York, NY, USA, 2004, pp. 119–150.

[7] M. E. Califf and M. Goodwin, “Testing Skills and Knowledge: Introducing a Laboratory Exam in CS1,” in
Proc. 33rd SIGCSE Technical Symposium on Computer Science Education, New York, NY, USA, 2002, pp.
217–221.

[8] J. Mead, S. Gray, J. Hamer, R. James, J. Sorva, C. S. Clair, and L. Thomas, “A Cognitive Approach to
Identifying Measurable Milestones for Programming Skill Acquisition,” in Working Group Reports on
ITiCSE on Innovation and Technology in Computer Science Education, New York, NY, USA, 2006, pp.
182–194.

[9] R. Klein-Collins, “Sharpening our focus on learning: The rise of competency-based approaches to degree
completion,” National Institute for Learning Outcomes Assessment, Occasional Paper, vol. 20, 2013.

[10] Education Department web site: http://www.ed.gov/oii-news/competency-based-learning-or-personalized-
learning , accessed January 29, 2016.

[11] P. Wong, M. Holtzman, B. Pejcinovic, and M. Chrzanowska-Jeske, “Redesign of Freshman Electrical
Engineering Courses for Improved Motivation and Early Introduction of Design,” ASEE Annual Conference
and Exhibition, Vancouver, Canada, 2011, pp. 22.1224.1 – 22.1224.13.

[12] P. Wong and B. Pejcinovic, “Teaching MATLAB and C Programming in First Year Electrical Engineering
Courses Using a Data Acquisition Device,” ASEE Annual Conference and Exhibition, Seattle, WA, 2015, pp.
26.1480.1 – 26.1480.11.

http://repository.cmu.edu/cgi/viewcontent.cgi?article=2555&context=compsci
http://www.ed.gov/oii-news/competency-based-learning-or-personalized-learning
http://www.ed.gov/oii-news/competency-based-learning-or-personalized-learning

[13] T. Jenkins, “On the difficulty of learning to program,” in Proc. of the 3rd Annual Conference of the LTSN
Centre for Information and Computer Sciences, 2002, vol. 4, pp. 53–58.

[14] M. J. Scott and G. Ghinea, “Educating programmers: A reflection on barriers to deliberate practice,” in Proc.
2nd HEA Conf. on Learning and Teaching in STEM Disciplines, 2013, p. 028P.

[15] zyBooks “Programming in MATLAB”, https://zybooks.zyante.com/#/catalog , accessed Jan. 30, 2016.

[16] Learning Catalytics from Pearson, https://learningcatalytics.com/ , accessed Jan. 30, 2016.

https://zybooks.zyante.com/#/catalog
https://learningcatalytics.com/

	Exploring Proficiency Testing of Programming Skills in Lower-division Computer Science and Electrical Engineering Courses
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1549921718.pdf.EPw5s

