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Metrics and Methods Used to Compare Student Performance Data 
in Chemistry Education Research Articles 
Michael R. Mack,† Cory C. Hensen,‡ and Jack Barbera‡ 

†Department of Chemistry, University of Washington, Seattle, Washington, 98195-5850, United States 
‡Department of Chemistry, Portland State University, Portland, Oregon, 97207-0751, United States 5 

ABSTRACT 
 Quasi-experiments are common in studies that estimate the effect of instructional interventions on 

student performance outcomes. In this type of research, the nature of the experimental design, the 

choice in assessment, the selection of comparison groups, and the statistical methods used to analyze 

the comparison data dictate the validity of causal inferences. Therefore, gathering and reporting validity 10 

evidence in causal studies is of utmost importance, especially when conclusions have real policy 

implications for students and faculty, among other stakeholders. This review examines 24 articles that 

reported quantitative investigations of the effect of instructional interventions on performance-based 

outcomes conducted within undergraduate chemistry courses. Specifically, we examined four aspects 

of conducting such evaluations, including: (1) the type of quasi-experimental design used to study the 15 

relationship between interventions, students, outcomes, and settings, (2) the metrics used to measure 

performance outcomes, (3) the type of groups used to contrast outcomes across experimental conditions, 

and (4) the statistical methods used to analyze the comparison data. Through the examination of these 

four aspects of causal studies, together with a validity typology for quasi-experimental designs, we 

catalogued the metrics and methods used to compare student performance outcomes across varied 20 

instructional contexts. Recommendations for researchers and practitioners planning quasi-

experimental investigations and interpreting results from causal studies in chemistry education are 

provided.  

Reference Information:  
Michael M. Mack, Cory Hensen, and Jack Barbera, “Metrics and Methods Used to Compare Student 25 
Performance Data in Chemistry Education Research Articles,” Journal of Chemical Education, 2019, 96, 
3, 401-413, DOI:10.1021/acs.jchemed.8b00713. 
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GRAPHICAL ABSTRACT 

 

KEYWORDS 30 
Chemistry Education Research, Testing/Assessment, First-Year Undergraduate/General, Organic 

Chemistry 

INTRODUCTION 
 With nearly a one hundred year history, chemistry education research (CER) has come to be a theory-

driven and experimental discipline.1,2 Constructivist learning theories have guided the exploration and 35 

elucidation of how students and teachers think, feel, and act in chemistry classrooms, and the products 

of this body of knowledge have challenged the theoretical underpinnings of traditional lecture-based 

teaching strategies,3 which dominate Science, Technology, Engineering, and Mathematics (STEM) 

classrooms.4 Consequently, one branch of CER focuses on the evaluation of pedagogies (constructivist 

or otherwise), often in contrast to “traditional” lecture-based instruction. Researchers and practitioners 40 

in this branch commonly conduct quasi-experiments to frame investigations of the relationship between 

instructional strategies and student outcomes. In these studies, students are typically distributed non-

randomly across experimental conditions. For example, a study may compare the effect of an 

instructional intervention on student outcomes in a general chemistry course to student outcomes in 

the same course taught the previous year, but under a different teaching model. The shared purpose of 45 
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these studies is to compare the outcome of one group receiving an instructional intervention (or 

“treatment”) to the outcome of one or more groups receiving either the absence of that treatment or an 

alternative treatment. Contrasts across groups on the outcome variable can be used to estimate the 

effect of the instructional intervention.  

 Randomized controlled trials (RCTs) share many of the structural and logical elements of quasi-50 

experimental designs, but by contrast RCTs are uniquely characterized by the random assignment of 

participants to the treatment or comparison groups, and they are often touted as the “gold standard” in 

experimentation for many good reasons. Shadish et al.5 explained that RCTs (1) equate groups across 

specified variables before a treatment begins, (2) reduce the plausibility of alternative explanations for 

observed effects by randomly distributing validity threats across conditions, (3) decouple treatment 55 

variables and error terms in regression analyses, and (4) separate the sources of variability in outcomes. 

In CER, however, RCTs are often impractical, hence a reliance on quasi-experiments for estimating the 

effects of instructional interventions on student outcomes. Consequently, the primary goal of research 

within the quasi-experimental paradigm is to rule out plausible alternative explanations for observed 

effects and sources of bias that emerge when participants are non-randomly distributed across 60 

experimental conditions. 

Guiding Questions 
 The purpose of this review is to examine the experimental methods reported in CER articles 

published in the Journal of Chemical Education (hereinafter referred to as the Journal) that have been 

utilized when comparing student performance outcomes across different teaching conditions. We hope 65 

that our focus on the nature of experimental designs, performance metrics, comparison groups, and 

statistical analysis techniques will support researchers and practitioners in advancing the theory and 

measurement of relationships between how we teach and how students perform on assessments in 

chemistry education. To this end, the following questions were used to guide the analysis of articles 

selected for review: (1) What experimental designs have been used to study the effects of instructional 70 

interventions on student performance outcomes? (2) What metrics have been used to measure the 

outcomes? (3) What types of groups have been used to compare outcomes across experimental 

conditions? (4) What quantitative methods have been used to analyze the comparison data? With respect 
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to each question, we also examined the kind of validity evidence used to support or refute inferences 

made about treatments and the observed effects.  75 

CONCEPTUAL FRAMEWORK 
Before outlining the methodological steps for this review, we first describe a framework used to aid 

in our examination of research articles. Our conceptual framework used definitions and 

operationalizations of quasi-experiments described in the seminal works of Campbell, Stanley, Cook, 

and Shadish.5–8 These models of experimentation were refined over the second half of the twentieth 80 

century and into the twenty-first century and they are heralded as some of the most influential 

methodological resources for designing and conducting experiments in the social sciences. The 

definitions and operationalizations of quasi-experiments outlined in this section are not meant to be an 

exhaustive review of quasi-experimental designs, therefore, we direct the reader’s attention to Refs. 5-8 

for additional details. 85 

Quasi-Experimental Design 
 Quasi-experimental designs provide models of relationships between people, treatments, outcomes, 

and settings. Table 1 outlines the nine design frameworks considered for this study. For each framework, 

Table 1 includes a name and a label, a diagram illustrating the design elements and their relationships, 

and a suitable research question. The diagrams can be interpreted as follows. The one group posttest-90 

only framework, Design #1, is represented by X – O to signify that the observation of students on an 

outcome (O) follows the treatment condition (X). The one group pretest-posttest framework, Design #2, 

is represented by O1 – X – O2 to signify that students are first measured on some pretest (O1), followed 

by exposure to a treatment condition (X), and then measured again with the same test (O2). Now consider 

Design #4, the pretest-posttest alternative treatment (or no treatment) control group design. Under this 95 

framework, two groups are measured on some pretest (O1) under similar conditions and then one group 

receives treatment X while the other group receives an alternative treatment Y or the absence of that 

treatment. Both groups are followed up with a posttest (O2) which occur at roughly the same time and 

under the same conditions. For brevity, we only consider designs with two comparison groups. However, 

these designs can be extended to include three or more groups.100 
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Table 1. Matrix of Design Frameworks, Design Schematics, and Example Research Questions in the Context of 
Performance Outcomes Appropriate for Each Framework 
Design Label Design Framework Diagrama,b Example Research Questions 

1 One Group Posttest-Only 
Design 

X – O What is the status of student performance 
outcomes following X? 

2 One Group Pretest-Posttest 
Design 

O1 – X – O2 How does performance on the outcome 
change following X? 

3 Posttest-Only Alternative 
Treatment (or No Treatment) 
Control Group Design 

Group 1: X – O What is the effect of X on the outcome 
compared to Y? Group 2: Y – O 

4 Pretest-Posttest Alternative 
Treatment (or No Treatment) 
Control Group Design 

Group 1: O1 – X – O2 What is the effect of X on the outcome 
compared to Y, given O1? Group 2: O1 – Y – O2 

5 Pretest-Posttest Alternative 
Treatment (or No Treatment) 
Control Group Regression 
Discontinuity Designc 

Group 1: O1 | – X – O2 Same as 4d 

Group 2: O1 |c – Y – O2 

6 Posttest-Only Alternative 
Treatment (or No Treatment) 
Control Group Design with 
Removed Treatment 

Group 1: X – O1 – Y – O2 Same as 3, plus: What is the downstream 
effect of X on the outcome compared to Y?e Group 2: Y – O1 – Y – O2 

7 Pretest-Posttest Alternative 
Treatment (or No Treatment) 
Control Group Design with 
Removed Treatment 

Group 1: O1 – X – O2 – O3 – Y – O4 Same as 4, plus: What is the downstream 
effect of X on the outcome compared to Y?e 

Group 2: O1 – Y – O2 – O3 – Y – O4 

8 Posttest-Only Alternative 
Treatment (or No Treatment) 
Control Group Design with 
Repeated Measures 

Group 1: X – O1 – X – O2 Same as 3, plus: What is the sustained 
effect of X on the outcome compared to 
Y?e,f Group 2: Y – O1 – Y – O2 

9 Pretest-Posttest Alternative 
Treatment (or No Treatment) 
Control Group with Repeated 
Measures 

Group 1: O1 – X – O2 – O3 – X – O4 Same as 4, plus: What is the sustained 
effect of X on the outcome compared to 
Y?e,f 

Group 2: O1 – Y – O2 – O3 – Y – O4 

aFor our purposes, all diagrams assume a nonrandom distribution of participants across treatments. We do not consider 
randomized controlled trials. bWe use “X” to represent an intervention of interest and “Y” to represent an alternative treatment 
(often TAU). We also use “Y” to represent the absence of a treatment. cParticipants are distributed across experimental 
conditions based on pretest cutoff scores, C, as represented by the vertical bar and subscript C. dUnder certain conditions, 
regression discontinuity designs yield unbiased estimates by fully modeling selection processes. eIn this case, the addition of 
design elements affords supplementary comparisons across groups that can be used to support/refute inferences about the 
relationship between treatment and outcome. fIn this case, the addition of design elements serves as the basis for 
demonstrating reproducibility. 

 

 To expand on the designs presented in Table 1, consider the example of a researcher interested in 

evaluating student performance following a Peer-Led Team Learning9 (PLTL) model of instruction. They 

could assess students on the outcome variable (such as a content test or course grade) and make a 

judgement about their performance. This kind of study would fall under the Design #1 framework. To 105 

examine how performance on the outcome measure changes following PLTL, researchers could plan for 

a one group pretest-posttest design (i.e., Design #2). Under this design, students are first assessed on a 

pretest, subsequently participate in a PLTL model of instruction, and then are assessed again using the 

same instrument under the same conditions. By comparing outcomes before and after PLTL instruction, 
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the researcher can account for students’ prior knowledge about the topics on the chosen assessment.10 110 

If the goal was to estimate the relative impact of PLTL on the outcome variable compared to baseline 

instruction, hereinafter referred to as teaching-as-usual (TAU), researchers could plan for a posttest-

only alternative treatment control group design (i.e., Design #3). This design requires the researcher to 

select a similar group of students to serve as a comparison. By contrasting outcomes across PLTL and 

TAU conditions, researchers can gather evidence to estimate the effect of PLTL, controlling for students’ 115 

natural development over time (e.g., transitioning from high school to college, college experience, etc.). 

In the case of non-randomly distributed participants, selection bias is assumed without any information 

about differences in students’ prior knowledge, demographics, or other performance-relevant 

characteristics. Biases that arise when comparing non-randomly distributed participants across 

conditions can threaten the validity of inferences made about treatment effects. We explore these validity 120 

considerations further in the next section. 

 It is hard to distinguish the impact of pre-existing factors from the impact of an intervention on the 

outcome variable without knowing anything about the students.10 By adding a pre-treatment 

assessment to both conditions, researchers will arrive at Design #4, which is intended to corroborate 

the hypothesis that a treatment (e.g., PLTL) is superior to an alternative treatment (e.g., TAU) at 125 

producing gains on the outcome variable. In addition, pretest data can be used to estimate the size and 

direction of group differences on the outcome variable before the treatment is administered. The 

presence of group differences may be grounds for refuting observed treatment effects; however, any such 

conclusions are dependent on the way the data were collected and the choice of statistical methods.10 

Pretest data can also be used to estimate group differences between students who remain in the study 130 

and those who do not (i.e., attrition bias).  

 Design #5 is among the family of regression discontinuity (RD) designs that, under certain 

conditions, can provide unbiased estimates of treatment effects by fully modeling the selection of 

participants into treatment and control groups.5 In an RD design, participants are distributed across 

conditions based on a pretest cutoff score (or an alternative assignment variable). Consider, for example, 135 

an experiment where researchers are interested in the effect of a supplemental instruction (SI) program 

on grade outcomes in general chemistry. To estimate the impact of the SI program on the outcome 
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compared to no SI program, researchers could assign participants to experimental conditions based on 

a chemistry content placement exam with a predetermined cutoff score. Students scoring below the 

cutoff would be assigned to the SI program while students scoring above the cutoff would not be eligible. 140 

Later, all students would be tested on the outcome variable and the analysis would test for a regression 

discontinuity. By regression discontinuity, Shadish et al. referred to a “point-specific displacement (or 

discontinuity) of the regression line” that occurs exactly at the cutoff when plotting posttest scores 

against pretest scores (p. 212).5 For more details on the logic and mechanics underlying RD designs, we 

refer readers to Ref. 5.  145 

 Designs #6 and #7 build on Designs #3 and #4, respectively, in that they assess post-treatment 

outcomes at multiple points in time using the same test. Designs like these are useful for demonstrating 

how an outcome varies with the introduction and removal of a treatment. As an example of Design #6, 

consider the evaluation of PLTL on course grades in the target course as well as grades in subsequent 

chemistry courses under the TAU model. To estimate longer-term effects of PLTL, the researcher would 150 

compare subsequent course grades of students initially receiving PLTL (i.e., O2 for Group 1) to those 

initially receiving TAU in the same course (i.e., O2 for Group 2). Designs #8 and #9 are related to Designs 

#3 and #4, respectively, in that they reintroduce the treatment and a final measurement of the outcome. 

These designs can support or refute how treatments and outcomes covary over time, and it is one way 

to demonstrate the reproducibility of an instructional intervention on a given outcome.  155 

 Choosing a framework that is most appropriate for a study will depend on the nature of the 

intervention, target population, institutional setting, and the outcome of interest. As there will always 

be extensive threats in any non-randomized controlled trial, researchers and practitioners intending to 

estimate treatment effects and publish their findings in the Journal can best contribute to the CER 

community by carefully acknowledging the measurement threats inherent to their experimental design. 160 

Next, we discuss four types of validity evidence that can be gathered to support or refute inferences 

about treatments and their effects within causal studies.  

Validity Typology 
 All experimental work involves making inferences about constructs and their relationships from the 

samples collected within a study.2,5,11 Important to making valid inferences about causal effects is the 165 
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clear explication of subjects, settings, treatments, and outcomes. Researchers must then take care in 

conducting experiments that are aligned with relevant and useful constructs and to assess potential 

threats due to any misalignment. As Shadish et al.5 discussed, researchers conducting experiments are 

in the business of answering the following questions: How thorough is the characterization of subjects, 

treatments, settings, and their relationships to measured outcomes? Are treatments appropriately 170 

distributed across subjects to make inferences about treatments and their effects? How appropriate are 

the quantitative methods for analyzing the given data? To what extent can results be generalized across 

varied subjects, treatments, observations, and settings?  

 Following the work of Shadish et al.,5 Table 2 lists the following four types of validity evidence that 

can be gathered to support or refute inferences about treatments and their effects: internal, construct, 175 

statistical conclusion, and external validity. For each validity type, Table 2 lists specific threats with 

labels, their descriptions, and potential evidence that could be gathered to address the threat. When 

referring to each type of validity threat later in the review, we signify the threat using the labels in Table 

2, (e.g., Threat A1). What follows is a brief discussion on the four types of validity evidence relevant to 

causal studies in CER.   180 

Internal Validity Evidence 

 Internal validity evidence can be gathered to support or refute inferences about the causal 

relationship between treatment and outcome. An important consideration for any quasi-experimental 

work in CER is how to distinguish observed treatment effects from students’ natural development over 

time (i.e., maturation). Contrasting outcomes in the experimental condition to a comparison group 185 

receiving an alternative treatment or the absence of the treatment can help researchers rule out threats 

due to maturation.5 Other threats to the internal validity of inferences include: differences in participant 

characteristics (Threat A2), external events happening parallel to the study that could also explain the 

observed effects (Threat A3), loss of participants (Threat A4), or a change in the instrument used to 

measure an outcome (Threat A5). Suggested evidence that can be gathered to address each threat is 190 

also listed in Table 2; however, this is not an exhaustive list. There are multiple ways in which to gather 

evidence for each source for validity threat depending on the experimental design and the context of the 

investigation.  
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Table 2. Matrix of Validity Considerations for Quasi-Experimental Designs with Selected Threats for Each Validity 
Type and Potential Evidence To Address the Threat 
Validity Type Threatsa to 

Validity Typeb 

Label Source of Threat Potential Evidence to Address Threatc 

Internal 
Validity 

Maturation A1 Naturally occurring changes over time 
could account for observed treatment 
effects 

Comparison group(s) 

Selection A2 Population differences confound treatment 
effects 

Pretests, proxy pretests 

History A3 Event(s) occurring concurrently with 
treatment could cause the observed effect 

Sample similar groups; similar 
assessment protocols 

Attrition A4 Systematic loss of respondents can 
produce artificial treatment effects 

Qualitative or quantitative assessment 
of plausibility 

Instrumentation A5 Difference in measurement/ 
instrumentation across groups or over 
time 

Use the same/equivalent tests to 
compare across groups 

Construct 
Validity 

Inadequate 
explication of 
constructs 

B1 Limited grounding of measurement 
variables in theoretical constructs 

Multiple definitions, perspectives, 
and/or frameworks inform 
measurement and interpretation 

Construct 
confounding 

B2 The study operation is multifaceted and 
not the pure representation of the 
intended construct 

Care in initial explication of persons, 
settings, treatments, and outcomes 
within context of theory; poststudy 
reformulation of construct(s) where 
appropriate 

Confounding 
constructs with 
levels of constructs 

B3 The study operation is one of many levels 
of construct 

Use several levels or doses of the 
treatment 

Statistical 
Conclusion 
Validity 

Low statistical power C1 Low power can lead to erroneous 
statistical conclusions 

Power analysis; adequate sample sizes; 
measure and adjust for covariates 

Violated 
assumptions of 
statistical test 

C2 Violations of statistical test assumptions 
can lead to either overestimating or 
underestimating treatment effects 

Check statistical test assumptions 
within statistical software program; 
modify statistical test accordingly 

Unreliability of 
measures 

C3 Measurement error threatens the accuracy 
of covariation between variables 

Conduct psychometric testing of 
assessment instruments  

Inaccurate effect size 
estimation/no effect 
size estimation 

C4 Some statistics systematically 
overestimate or underestimate the size of 
an effect 

Report the range in which effect size 
estimates are accurate 

External 
Validity 

Interaction of the 
causal relationship 
with people 

D1 Observed effects on one population might 
not hold for other populations 

Test the instructional strategy across 
two or more settings with distinct 
student bodies 

Interaction of the 
causal relationship 
over treatment 
variations 

D2 Observed effects might not hold when 
variants of the treatment are tested, or 
when the treatment is combined with 
other treatments 

Test variants of the instructional 
strategy on outcomes, e.g., lecture, 
partially flipped, and fully flipped 
course 

Interaction of the 
causal relationship 
with outcomes 

D3 Observed effects on one outcome may not 
hold if other outcomes are measured 

Test the instructional strategy across 
two or more distinct outcomes, e.g., 
performance and self-efficacy 

Interaction of the 
causal relationship 
with settings 

D4 Observed effects in one kind of setting 
may not hold in other settings 

Test the instructional strategy across 
two or more institutional types, e.g., 
research-intensive, primarily 
undergraduate, and community college 
settings 

aThis is not a comprehensive list of validity threats. bSee ref 5. cThere could be several options for gathering evidence to 
address validity threats, depending on the experimental design and context of the study. 

 

  195 
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Construct Validity Evidence 

 Three threats to the accurate characterization of treatments and the effects on measured outcomes 

are presented in Table 2, including inadequately defining constructs, conflating more than one 

construct, or not distinguishing levels of a construct.5 For example, Chase et al.12 described the level (or 

“dosage”) of Process Oriented Guided Inquiry Learning (POGIL) in their treatment by contrasting their 200 

adaptation to the recommended implementation (Threat B2). As another example, Conway13 evaluated 

different levels of guided inquiry in an organic-biochemistry course when they compared outcomes under 

three teaching conditions: non-guided inquiry, partial guided inquiry, and full guided inquiry (Threats 

B3 and D2). Carefully explicating constructs is important for accurately characterizing study results 

and assessing threats to measurement.     205 

 The formulation of construct validity presented in this study is an extension of the original use of 

construct validity in psychological testing, which is concerned with accurately inferring what is being 

measured by a given test.11 We do not consider construct validity with respect to the psychometric data 

from assessments, and instead direct readers to Arjoon et al.2 who explored this subject in more detail 

in the context of CER. However, we note that evidence from psychometric evaluations of assessments 210 

may provide support for the use of a particular instrument in a given study, and therefore support 

inferences made from statistical analyses using instrument scores. Such evidence would constitute 

statistical conclusion validity evidence, which is discussed next. 

Statistical Conclusion Validity Evidence 

 Statistical conclusion validity evidence can be used to support or refute inferences about the 215 

covariation between treatments and outcomes. Table 2 lists four threats to inferences based on 

statistical analyses. Power, for example, is an attribute of any statistical test and can be thought of as 

the “ability of a test to detect relationships that exist in the population” (p. 45).5 While, low power is 

often attributed to inadequate sample sizes, sample size is not the only source. The power of a statistical 

test can be limited when it does not adjust for covariates that would otherwise account for the observed 220 

variation in outcomes (Threat C1). For example, Theobald and Freeman10 demonstrated how multiple 

linear regression techniques can distinguish the impact of student characteristics (such as SAT scores 

or previous course grades) on an outcome variable across groups. Other factors threatening the validity 



  

Journal of Chemical Education 1/2/21 Page 11 of 33 

of statistical inferences include, but are not limited to, violating assumptions of statistical tests (Threat 

C2), unreliably measuring latent variables (Threat C3), and inaccurately estimating effect sizes or 225 

withholding effect sizes altogether (Threat C4).14  

External Validity Evidence 

 Evaluating cause-and-effect relationships over variation in subjects, settings, treatments, and 

outcomes may provide evidence for the external validity of inferences.5 Table 2 describes four threats to 

inferences about the interaction of treatments with external sources of variation. For example, suppose 230 

an educational intervention was particularly effective at promoting performance outcomes for students 

in a general chemistry course for non-majors, but had relatively modest effects at promoting 

performance in courses for majors. Given differential effects of the treatment across settings and student 

populations, the results would not be generalizable (Threat D1). Such a result may prompt researchers 

to further explore why the intervention’s effect varied across the different settings and for the different 235 

student populations. External validity evidence is also concerned with the consistency in experimental 

findings across variants of the treatment (Threat D2), across varied outcomes (Threat D3), and varied 

settings (Threat D4).  

METHODS 
Sampling 240 

This study examined the experimental designs, performance metrics, comparison groups, 

analysis methods, and validity evidence reported in intervention studies published in the Journal. 

Initially, the scope was limited to CER articles based on the 2013 revised guidelines. The guidelines 

provided specific requirements for manuscripts submitted to the Journal, such as stating a research 

question, grounding analysis in a theoretical framework, and situating the research in the existing body 245 

of literature, among other requirements.15,16 This starting point did not yield a sufficient sample from 

which themes could be drawn, therefore, the study period was extended by two years to January 2011. 

Thus, the resulting review is based on articles published between January 2011 and April 2017. While 

examining CER articles in the Journal narrowed the scope of this investigation, it limited our ability to 

generalize themes to the CER community more broadly. We further discuss this aspect of the review in 250 

the Limitations section. 
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Based on the scope outlined above, we read the title and abstract of every article in the Journal 

between January 2011 and April 2017. If the title and abstract indicated that the article fit within the 

scope of our review, we downloaded the article and stored it for later coding. Based on the following 

selection criteria, forty-five articles were initially downloaded and coded for inclusion in this study. First, 255 

a study had to report either between-group (e.g., treatment vs control) or within-group (e.g., pretest vs 

posttest) comparisons. Second, studies had to report measures of performance outcomes (e.g., chemistry 

content exam, course grades, etc.) because these are commonly used metrics for summative 

assessments of student learning in college chemistry courses. Third, the comparison of performance 

outcomes had to be accompanied by a quantitative result. Fourth, studies had to take place in college-260 

level chemistry classroom settings. To ensure the identified articles met the criteria for inclusion, the 

first two authors jointly reviewed and discussed how the article did or did not meet the selection criteria. 

Based on an initial review of the 45 selected articles, the first two authors agreed that 24 met the 

selection criteria. A list of the 24 sampled articles is provided in Table S1. 

Coding, Inter-Rater Agreement, and Data Displays 265 
Based on the conceptual framework described in the previous section, the first author developed 

a reading protocol to provide consistency in interpretations across articles and reviewers. A copy of the 

protocol is provided in the Supporting Information. The first two authors independently coded each 

article using the reading protocol. Following several rounds of coding and discussion, raters established 

100% agreement on study design elements, performance metrics, comparison groups, quantitative 270 

methods, and validity considerations. 

Codes were organized into data matrices according to our conceptual framework. This data 

reduction technique facilitated our ability to see “what’s there” and the relative prevalence of codes 

within each research question.17 Table S2 displays the distribution of quasi-experimental frameworks 

coded in our sample of articles and Tables S3-S5 display the distributions of the most commonly coded 275 

performance metrics, types of comparisons, and the methods used for statistical inference, respectively.  
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RESULTS AND DISCUSSION 
Question 1: What experimental designs have been used to study the effects of instructional interventions on 
student performance? 

Sixteen articles reported posttest-only designs (i.e., Designs #1, #3, #6, and #8), making these 280 

the most prominent experimental design used to evaluate instructional interventions in the Journal. The 

remaining eight articles established pretest comparisons across experimental conditions (i.e., Designs 

#2, #4, #5, #7, and #9). Table S2 reports the distribution of experimental design codes for the sample of 

articles. 

Posttest-Only Designs 285 

Using a modified version of Design #1, Weaver and Sturtevant18 assessed the status of performance 

outcomes in a first-semester general chemistry course for majors with TAU followed by outcomes in the 

subsequent second-semester general chemistry course with a flipped course design. The schematic for 

their design can be represented as Y – O1 – X – O2, where Y represents TAU in the first-semester course 

and X represents flipped instruction the second semester course. The authors evaluated performance 290 

using the American Chemical Society (ACS) Exams Institute Paired Question Exams for First Semester 

General Chemistry19 (O1) and the ACS Paired Question Exams for Second Semester General Chemistry20 

(O2). The status of students following the flipped instructional design was contrasted to that following 

TAU based on how well students performed relative to the norming sample for each exam. Had the 

authors only compared O2 to O1 (i.e., no comparison to the norming sample), then the results would 295 

have been threatened by maturation, selection, history, and attrition biases. But if we assume students 

in the norming sample followed trajectories like Y – O1 – Y – O2, then effects due to students’ natural 

development in college and in the subject of chemistry could be ruled out (Threat A1). We further discuss 

the use of ACS exams to measure student outcomes and validity considerations with respect to norming 

samples when we answer Questions 2 and 3. 300 

The inclusion of comparison groups into study designs can help to decouple treatment effects 

from students’ natural development over time. Under Design #3, four studies used comparison groups 

to evaluate the impact of instructional interventions in general chemistry courses, including: flipped 

instruction,21,22 PLTL,23 and POGIL.12 Another six studies used comparison groups to evaluate 

instructional interventions in organic chemistry courses, including: POGIL,12,24 classroom space 305 
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innovations,25 and flipped instruction.26–28 By adding multiple posttests to their experimental design 

(i.e., Design #6), Lewis23 evaluated the downstream effects of PLTL in general chemistry courses on 

student persistence and grades in subsequent chemistry courses. Within Design #8, Hall et al. 201429 

estimated the effect of the Science Advancement through Group Engagement (SAGE) program on exam 

performance and persistence in general and organic chemistry courses. By conducting multiple and 310 

sequential measurements, the authors were able to estimate the sustained effect of SAGE participation 

on performance across the curriculum.  

Pretest-Posttest Designs 

Pretest-posttest designs answer questions of the form: What is the effect of X on the outcome 

compared to Y, given O1? Under Design #4, Hall et al. 201230 compared performance outcomes in a three-315 

week summer intensive introductory chemistry course to outcomes from the same course taught during 

a normal academic semester. The authors administered and scored an in-house 24-item multiple-choice 

pretest to account for individual differences in chemistry content knowledge at the start of the course. 

Rath et al.31 examined the impact of SI on average grades, pass rates, and graduation rates for 

participating students (relative to non-participants) across four chemistry courses using SAT and high 320 

school GPA data as their pre-treatment assessment. Both studies were coded as Design #4 because they 

utilized proxy pretests. By proxy pretests, we refer to the measurement of variables that are conceptually 

related and correlated with performance outcomes (i.e., O2), but they are different metrics.5  

Ideally, pretest-posttest designs use the same assessment instrument under the same conditions 

to ensure that the same constructs are being assessed before and after exposure to the treatment. 325 

However, for convenience or by necessity, authors used proxy pretests to assess pre-existing factors that 

may influence the outcome of the treatment. In fact, all pretest-posttest studies in our sample utilized 

proxy pretests because students are not typically pretested using exams or other outcomes typically 

reported in intervention studies, which we discuss more about when we answer Question 2. Shadish et 

al.5 described two ways in which proxy pretests can enhance study designs in the absence of repeated 330 

pretest-posttest measures. First, researchers can gather evidence for selection bias by comparing groups 

initially on the pretest (Threat A2). To this end, proxies should adequately index group differences on 

the outcome measure to the extent that the proxy correlates with the posttest. Second, researchers can 
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gather evidence for attrition bias by conducting both between-group comparisons initially on the proxy 

pretest and those who remain in the study on the posttest, as well as within-group comparisons across 335 

the proxy pretest and posttest (Threat A4).  

Building upon Design #4, RD designs model the selection process across groups by assigning 

participants to treatment conditions based on a cutoff score associated with a pretreatment assessment 

or an alternative assignment variable (Treat A2). Consequently, RD designs can yield unbiased estimates 

compared to non-randomized control trials under certain conditions.5 Under Design #5, Shultz et al.32 340 

retrospectively evaluated the impact of a first-semester general chemistry course on subsequent course 

grades by comparing students who shared similar cutoff scores on a placement exam (i.e., a proxy 

pretest) but who differed in their compliance with course placement advise.  

Unlike the sample of studies utilizing post-test only designs, no studies reported results from a 

removed treatment design with pretests (i.e., Design #7) or a repeated measures design with pretests 345 

(i.e., Design #9). 

Question 2: What metrics have been used to measure student performance outcomes? 
 

The most commonly coded performance metrics reported in the sample of articles were: instructor-

authored exams (n=12), persistence/retention rates (n=11), ACS exams (n=9), letter grades (n=7), and 350 

course grade point average (n=4). Table S3 displays the distribution of articles across each code.  

Instructor-Authored Exams 

Instructor-authored exams were reported in half of the sampled articles, making exam scores the 

most frequently coded measure of student performance. Both midterm and final exams are included in 

this category. The ways in which researchers characterized exam properties varied. Some authors 355 

reported exam content (e.g., topics), while others reported Classical Test Theory (CTT) and/or Item-

Response Theory (IRT) metrics, and some did not include exam characteristics in their report. In the 

context of performance measurement in intervention studies, establishing and reporting psychometric 

properties of tests is important for obtaining consistent scores for the same metric across treatment 

conditions. In terms of the validity typology for intervention studies, gathering and reporting reliability 360 

evidence for test properties reduces bias in estimates of treatment effects. For example, Ryan and Reid33 
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evaluated difficulty and discrimination indices as well as person- and item-reliability parameter 

estimates from Rasch analysis to judge the consistency of item functioning across groups in their 

sample. Evidence from their CTT and IRT analyses was used to support comparisons of exam scores 

across comparison groups (Threat C3).  365 

Persistence/Retention Rates 

Persistence or retention rates were the second most commonly coded performance metric in the 

sample of articles (n=11). This outcome included DFW (D or F grades or course withdraw) rates, FW 

rates, withdraw rates, and pass/fail rates. These measures typically complimented other measures of 

performance, such as exam scores or course grade-point averages, thereby providing a second measure 370 

of the treatment’s impact. For example, by showing consistently superior effects of a “web-enhanced” 

first-semester general chemistry course on both course grades and withdrawal rates relative to TAU, 

Amaral et al.21 gathered external validity evidence to generalize treatment effects across multiple 

outcomes (Threat D3).   

ACS Exams 375 

Exams developed and distributed by the ACS Examinations Institute (i.e., ACS Exams) were the 

third most frequently reported performance metric coded in the sample of articles. Nine studies reported 

performance outcomes on ACS exams, five of which utilized the exams as the sole measure of 

performance. Some researchers specifically cited using ACS exams for the additional comparison they 

afforded. As Weaver and Sturtevant18 stated, “[u]sing these [ACS] exams allowed us to measure student 380 

performance against national norms from data made available for each exam by the ACS Exams 

Institute” (p. 1440).  

In a study on POGIL in an organic chemistry course using the 2002 ACS Standardized Organic Exam 

and 2008 exam forms, Hein24 compared outcomes both locally across comparison groups as well as to 

the original norming sample. The local comparison indicated a statistically significant treatment effect 385 

when controlling for students incoming college GPA. Upon binning students into three groups based on 

percentile rankings, the authors reported the number of students in the lowest rank decreased over 

each year POGIL was used. Furthermore, increased proportions of students scoring in the middle and 

high ranks was evident for the treated groups. By comparing outcomes both locally and to the norming 
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sample, the authors provided evidence for a positive treatment effect; POGIL students ranked higher in 390 

both median and mean national percentile ranking compared to comparison group.24 However, the 

statistical inferences made were threatened by a change in exam from the 2002 Organic Exam form to 

the 2008 form. (Citations are not provided as these exam forms are no longer available.) When a variable 

is measured inconsistently, like when two different tests are used to measure the same construct, 

estimates to treatment effects may be biased without the appropriate psychometric data to support the 395 

comparison (Threat A5). 

Course Grades 

The fourth and fifth most frequently reported performance metrics were related to course grades. 

Course letter grades were reported in seven articles and course grade-point averages were reported in 

four articles in our sample. For example, Rath et al.31 compared course grade point averages across 400 

students receiving SI and students not receiving SI. In addition to contrasting final exam scores, 

Conway13 compared letter grade distributions across three teaching conditions: full guided inquiry, 

partial guided inquiry, and non-guided inquiry or TAU. In this example, course grades served as a 

complementary metric to report in combination with exam scores and provided additional information 

about student achievement that might not be captured in high-stakes exams (Threat D3). 405 

Additional Metrics 

We observed several other metrics in our sample that were less commonly used across studies. These 

included: retention rates in subsequent courses, change in probability of earning a passing grade, 

graduation rate, GPA in subsequent courses, total points earned after the first exam, percent of students 

who took final exam, students who received a final grade, problem set grades, and quiz grades. While 410 

some metrics were less common than others in our sample of articles, they can still be useful when they 

are well-aligned with the goals of the investigation.   

Question 3: What types of groups have been used to compare performance outcomes? 
 

The most common comparison groups reported in the sample of articles were: concurrent (n=12) 415 

and historical (n=9) groups, comparisons across successive assessments (n=12), comparisons across 

student interest groups (n=7), comparisons of ACS exam performance with nationally normed sample 
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(n=3), and comparisons across multiple outcomes (n=3). Table S4 reports the distribution of articles 

across the different comparison group categories. 

Concurrent Comparison Groups 420 

Twelve studies concurrently compared performance outcomes across treatment and comparison 

groups. Chase et al.12 examined an adaptation of POGIL in three out of nine discussion sections in a 

general chemistry course and three of the five discussion sections in an organic chemistry course. The 

remaining discussion sections were TAU comparison groups. Similarly, Lewis 201134 examined the 

implementation of PLTL in eight sections of a first-semester general chemistry course in comparison to 425 

twenty-one sections of the same course under TAU over a span of four semesters. Concurrent 

comparison group designs are sometimes threatened by instructor and/or time-of-day effects (Threat 

A2). To assess the extent of such bias, Lewis 2011 evaluated outcomes across PLTL and TAU sections 

with the same instructor. The author found a negligible section effect bias (Threat A2); however, the 

method of statistical inference chosen for the analysis was not capable of accounting for both treatment 430 

and section-level effects (and pre-treatment assessment data) within one statistical model (Threat C1). 

We further discuss statistical methods for comparing performance outcomes when we answer Question 

4. 

Historical Comparison Groups 

Nine studies compared performance outcomes across treatment and historical comparison groups. 435 

Amaral et al.21 compared performance outcomes in a web-enhanced delivery of a general chemistry 

course to outcomes in prior years under TAU instruction. Mooring et al.27 compared performance 

outcomes in a flipped first-semester organic chemistry course to TAU in the five-year period preceding 

the change. Crimmins and Midkiff35 compared performance outcomes in their organic chemistry 

curriculum with a “high structure active learning” pedagogy in the 2013-14 academic year to outcomes 440 

in the same course taught by the same instructor in the 2002-03 academic year under a TAU model. In 

this study, the authors utilized propensity score matching based on SAT scores and demographic data 

to establish common overlap across treatment and comparison groups. Under strict assumptions, 

propensity score matching yields an unbiased estimate of the average treatment effect.5,36 This is one 
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way in which historical comparison groups with large sample sizes can support powerful statistical 445 

inferences.  

Historical comparisons are not without their limitations. In contrast to concurrent comparison 

groups, historical comparisons are threatened by an unshared history, meaning events occurring 

external to the study during the two time periods differ in ways that could be confused with treatment 

effects.5 Crimmins and Midkiff35 discussed this threat when they stated their treatment condition was 450 

confounded by advances in technology and the external resources available to students via the Internet 

due to the 11-year separation between treatment and comparison group samples (Threat A3).  

Comparing Groups on Successive Assessments 

Twelve studies compared performance on successive assessments. By successive assessments, we 

refer to the sequential assessment of outcomes within and/or across groups. For example, Lewis 201423 455 

demonstrated the rise and fall of course grades in the presence and absence of PLTL across subsequent 

chemistry courses. The author reported the PLTL model in a first-semester general chemistry course 

“had a small effect on the grade distribution in the target class of GC1, which steadily drops off in 

subsequent classes” operating under the TAU model (p. 2041). In a second comparison, Lewis 201423 

examined the effect of PLTL on course grades in a second-semester general chemistry course and TAU 460 

in successive chemistry courses. Again, a rise and fall in course grades was observed. Overall, Lewis 

201423 concluded that PLTL had a “statistically significant and small effect on enrollment in the class 

that directly succeeds the target class,” but that “[a]s students progress through the curriculum the 

impact of the reform on course enrollment declines until it becomes attributable to chance” (p. 2042).   

Comparing Student Subpopulations  465 

Seven studies compared performance outcomes based on demographic variables, such as binary 

gender, race and ethnicity, socioeconomic status, and/or family education background. In their 

retrospective analysis, Shultz et al.32 compared differential impacts of taking general chemistry on 

progression to subsequent chemistry courses for men and women. Rath et al.31 compared the impact of 

an SI program for general and organic chemistry courses for historically underrepresented racial and 470 

ethnic minorities in STEM and well represented students. Lewis 201134 compared the differential impact 

of PLTL in a first-semester general chemistry course on pass rates by binary gender and racial and 
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ethnic minority status separately. Testing the robustness of treatment effects across student 

subpopulations may confirm or refute inferences that an educational intervention had an impact. For 

example, the efficacy of that intervention would be challenged if it had inequitable impacts across 475 

different student groups. Comparing across student subpopulations is one method for gathering 

external validity evidence to support or refute inferences about treatment effects (Threat D1). 

Normed Comparisons 

Three studies compared performance outcomes on ACS exams to the original norming sample. One 

benefit of using ACS exams as a performance metric is the opportunity to compare local outcomes to 480 

the norming sample. In general, comparisons ACS exam scores made with norming samples is 

informative because it affords an additional comparison that is not typically available with other kinds 

assessments in the chemistry education community. However, comparing ACS exam scores to the 

original norming sample may not be strongly indicative of how the treated group would have performed 

without the treatment, and care should be taken to understand the similarities and differences between 485 

local and original norming samples. Without knowing the identities and characteristics (e.g., size, 

selectivity, region, etc.) of the institutions represented in the norming sample, population differences 

confound the treatment effect (Threat A2). History threats also bias the comparison because the norming 

sample was collected before the data from the treated sample (Threat A3).  

Comparing Groups on Different Outcome Measures 490 

Three studies in the sample of articles examined the impact of instructional interventions on both 

affective- and performance-based outcomes. The National Research Council37 stated that the affective 

domain consists of psychological constructs including, but not limited to, anxiety, fear, motivation, 

attitudes, and self-efficacy, as well as sociocultural factors including values, social pressures, and 

stereotypes. Using the ASCIv2,38 Mooring et al.27 compared pre/post responses on the emotional 495 

satisfaction and intellectual accessibility scales for students in a flipped first-semester organic chemistry 

course and students in concurrent sections taught under the TAU model. Separately, the authors 

compared final grades and withdrawal rates in the experimental course to the concurrent TAU section 

as well as a historical TAU comparison group. Similarly, Chase et al.12 evaluated the impact of an 

adaptation of POGIL on performance, attitudes towards chemistry (using the ASCI39), and self-efficacy 500 
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(as measured by the CAEQ40), separately, for both experimental groups. Examining the variation in 

outcomes across several measures is one way to gather external validity evidence to support or refute 

inferences about treatment effect estimates (Threat D3). It is possible that an effect found on one 

outcome might not hold true for another. However, researchers and practitioners should take care in 

aligning assessments with the underlying theory of the instructional intervention when collecting 505 

cognitive and affective data (Threat B1), as theory plays an essential role in the selection of variables in 

experimental research by specifying the relevant constructs to be measured.5,41 We discuss this point 

further in the Recommendations section.  

Question 4: What quantitative methods have been used to analyze the comparison data? 
 510 
 Authors utilized a range of statistical methods for quantifying relationships between people, 

treatments, outcomes, and settings. Below we discuss how descriptive statistics, univariate statistics, 

and multivariate statistical methods supported researchers and practitioners in gathering evidence for 

estimating treatment effects. Table S5 reports the distribution of articles across each analysis type.  

Descriptive Statistics 515 

 Descriptive statistics provided efficient summaries of performance outcomes. Nearly every article in 

our sample (N=22) displayed data using tables and/or graphs. Histograms displayed letter grade 

distributions. Boxplots displayed exam grade distributions. Bar charts were used to visually represent 

average scores across course sections, academic quarters, and years. Furthermore, these kind of data 

displays provided readers with visual contrasts of performance outcomes across treatment and 520 

comparison groups. Tables also provided efficient summaries of performance outcomes by displaying 

raw counts, mean scores, standard deviations, percentages, etc., depending on the outcome.  Reporting 

outcomes in tables and graphs is useful for summarizing outcomes and can support further inferencing 

using univariate and/or multivariate statistical methods.  

Univariate Statistics 525 

 Researchers and practitioners interested in estimating the effects of instructional interventions 

generally asked questions of the form: What is the effect of an instructional intervention on the outcome 

variable compared to TAU? One approach to answering such a question is to construct falsifiable null 
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and alternative hypotheses about the relationship between teaching model and outcomes. Under the 

traditional null hypothesis significance testing framework, the alternative hypothesis would stipulate a 530 

model where the treatment condition covaries with outcomes while the null hypothesis stipulates no 

relationship between treatment and outcome. Once the null and alternative hypotheses are constructed 

and the data is collected, inferential statistical techniques can support researchers in gathering evidence 

to evaluate the tenability of the null hypothesis. The alternative hypothesis is never confirmed. Instead, 

probability statements about the likelihood of observing the data given the null hypothesis is true in the 535 

population are constructed.42  

 Nineteen of the 24 studies utilized univariate statistical analyses—e.g., analysis of variance (ANOVA), 

t-tests, and non-parametric equivalents—to test the tenability of the null hypothesis. For example, Lewis 

201134 sampled 29 sections of a first-semester general chemistry course to test the hypothesis that PLTL 

had a superior effect on final exam performance relative to TAU. While no discernable difference in exam 540 

performance was observed based on a t-test, a larger proportion of students in the PLTL sections took 

the final and received passing grades. Following up on that study, Lewis 201423 compared the 

proportions of students progressing to advanced courses using chi-square test statistics and 

corresponding effect size estimates (Threat C4). Robert et al.43 compared average exam scores between 

four sections of general chemistry under a flipped PLTL model and four sections under a TAU model and 545 

observed large effects in favor of flipped PLTL. However, the authors cautioned readers about potentially 

inflated effect size estimates since the data were analyzed at the class level rather than at the student 

level (Threat C4).  

Multivariate Statistical Analyses 

 Researchers and practitioners were also interested in estimating the effects of instructional 550 

interventions beyond individual differences in students’ prior knowledge and/or academic attainment. 

These studies generally asked questions of the form: What is the effect of an instructional intervention on 

the outcome compared to TAU controlling for performance-related covariates? Selection bias that arises 

due to non-randomly distributed participants can be addressed when covariates are included in 

statistical analyses (Threat A2 and C1).  555 
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 Ten studies applied multivariate statistical methods for analyzing the relations between a single 

outcome measure and multiple explanatory variables, usually indicators of students’ prior chemistry 

content knowledge and/or academic attainment. In some studies, authors included demographic 

characteristics as additional covariates. Six of the 10 studies analyzed data using multiple regression 

analyses. For example, Eichler and Peeples44 applied multiple linear regression to contrast the effects of 560 

different online homework platforms on final exam performance while adjusting for SAT scores, high 

school GPA, and demographic variables (Threats A2 and C1). Shultz et al.32 adjusted their linear 

regression model for chemistry placement exam scores when they tested the effect of “bypassing” first-

semester general chemistry on performance outcomes in subsequent courses compared to students who 

enrolled and completed first-semester general chemistry (Threats A2 and C1). The remaining four 565 

studies utilized analysis of covariance (ANCOVA) to estimate treatment effects while simultaneously 

accounting for individual differences in prior knowledge or academic attainment. For example, Cook et 

al.45 compared total exam points in a general chemistry course between treatment and control groups 

while adjusting for performance on the first exam (Threats A2 and C1). Similarly, Hall et al.30 compared 

total points earned across treatment and control groups while adjusting for a chemistry content pretest, 570 

cumulative college GPA, and ACT scores (Threats A2 and C1). The authors addressed the threat of low 

statistical power to their ANCOVA adjusted for ACT scores due to insufficient sampling (Threat C1) by 

conducting the analysis twice with and without the ACT data and comparing the results.  

 No studies in the sample of articles used multivariate statistical modeling with multiple outcomes 

(e.g., multivariate analysis of variance), or both multiple predictors and multiple outcomes (e.g., 575 

Structural Equation Modeling).46 We discuss how these statistical methods can play a role in advancing 

future intervention studies in CER in the Recommendations section.  

RECOMMENDATIONS FOR FUTURE CAUSAL STUDIES 
We reviewed the experimental designs, metrics, comparison groups, and quantitative methods used 

to estimate the impacts of instructional interventions on performance outcomes in 24 chemistry 580 

education research (CER) articles published in the Journal. We also examined the kind of validity 

evidence used to support or refute inferences made about treatments and the observed effects. Based 

on our findings, we recommend three ways in which causal studies in CER can be advanced moving 
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forward. We use our conceptual framework based on quasi-experimental design and the validity 

typology5 to guide our recommendations. We hope that consideration of any one recommendation will 585 

aid in the future planning of intervention studies in CER.   

Recommendation #1: Collection of pretreatment assessment data 
 The posttest-only alternative treatment control group design was the most prominent design used 

to evaluate instructional interventions in our sample of articles. Using this design, authors gathered 

evidence to contrast the impacts of different teaching models on an outcome. However, given that 590 

treatments were not randomly distributed across participants, selection bias was assumed without any 

information about differences in students’ prior abilities and other performance-related characteristics 

prior to the intervention. To overcome this threat, future studies would benefit from collecting 

pretreatment assessment data and incorporating into their analysis.  

 With pretreatment assessment data, researchers and practitioners can assess the impacts of 595 

different teaching models on an outcome while considering population differences on a pretest measure. 

For example, by assessing students’ prior academic attainment (e.g., SAT or ACT scores, grades in 

prerequisite courses), content knowledge (e.g., diagnostic tests), or other variables specified by theory 

(e.g., motivation, self-efficacy, etc.), researchers and practitioners can identify population differences 

between groups, which can then be accounted for using multivariate statistics.10  Attrition bias can also 600 

be assessed with pretest data. If students who score lowest on a diagnostic pretest withdraw from the 

treatment condition at disproportionate rates, then treatment effects are confounded by attrition bias. 

We recommend that researchers and practitioners examine attrition descriptively by reporting attrition 

rates for every experimental condition, as well as the similarities and differences in pretest scores for 

students who completed the study and those who did not.  605 

 While the addition of pretests can create a more complicated approach to intervention studies 

published in the Journal, the added complexity affords researchers and practitioners the opportunity to 

rule out validity threats that would otherwise be unavailable in post-test only experimental designs.  

Recommendation #2: Use of theory to guide variable selection 
 How should researchers and practitioners go about choosing which pre- and post-treatment 610 

assessment data to collect? Theory plays an essential role in the selection of variables in experimental 
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research by specifying the relevant constructs to be measured.5,41 Looking back to the sample of articles 

utilizing pretest-posttest designs, authors were generally guided by the theory that pre-existing cognitive 

factors (e.g., students’ prior chemistry content knowledge and/or prior academic attainment) influenced 

performance outcomes in chemistry courses. While it is intuitive to think of a student’s performance in 615 

general and organic chemistry as a function of their prior knowledge and past performances in 

education, teaching interventions are typically grounded in psychological and sociocultural theories of 

how people learn. For example, Cook et al.45 hypothesized that training students in metacognitive 

learning strategies would lead to more sophisticated study habits, which in turn would promote higher 

scores on course examinations. As another example, Crimmins and Midkiff35 hypothesized that high-620 

structure active learning would lead to a stronger sense of classroom community and social integration, 

which in turn would lead to improved performance on final exam scores and pass rates. Examples like 

these suggest that the chemistry education community is interested in further understanding the 

complex relations between instructional strategies and student outcomes within broader psychological 

and sociocultural theories. Therefore, we recommend researchers and practitioners to thoroughly 625 

explicate the theoretical constructs underpinning their instructional intervention and to use those 

constructs to guide the selection of pre- and post-treatment assessments. By accepting this 

recommendation, researchers and practitioners will use theory to guide the design and implementation 

of instructional interventions, as well as the selection or creation of assessment instruments.   

Recommendation #3: Use of theory to guide data analysis 630 
 It was common for authors to describe the theoretical underpinnings of instructional interventions, 

but the measurement of theoretically specified constructs and mediated processes was a less established 

practice in the sample of articles. Once variables are identified (i.e., Recommendation #2) and 

assessment data collected (i.e., Recommendation #1), we recommend that researchers and practitioners 

conduct statistical analyses capable of evaluating the relations among variables postulated by the 635 

guiding conceptual framework. Structural equation modeling (SEM), multiple regression, and 

multivariate analysis of covariance (i.e., MANCOVA) are a few examples of statistical methods that are 

capable of evaluating multiple outcomes and explanatory variables under one conceptual framework. 
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(The mathematical formulations of these statistical methods are beyond the scope of this article, so we 

direct interested readers to more comprehensive introductions in other sources.10,47–52)  640 

 By accepting these recommendations, researchers and practitioners who conduct causal studies 

will: (i) build and evaluate complex models of teaching and learning in college-level chemistry classrooms 

situated in broader psychological and sociocultural theories, (ii) measure all the constructs specified in 

the theory, (iii) gather inferential evidence for the extent to which relations between constructs were 

observed in the data, and (iv) interpret the results within the context of a conceptual framework. The 645 

point is to use theory to guide the design, implementation, and evaluation of teaching and student 

outcomes. Not only will theory help researchers and practitioners to make sense of data collected from 

causal studies, we believe an intensified use of theory will support the community in building more 

comprehensive understandings of teaching models and their impacts on student outcomes. 

LIMITATIONS 650 
 There are five limitations to this review that we present. First, the findings and recommendations 

are mainly applicable to chemistry education researchers and practitioners interested in publishing 

future intervention studies in the Journal. We do not claim that the same patterns of experimental 

designs, performance metrics, comparison groups, and analysis techniques will be found among 

collections of articles from other journals during the same time frame. However, we do suggest the 655 

lessons learned from this review can be used as a resource for researchers and practitioners interested 

in conducting future causal studies in CER.  

 Second, designs #1-9 in Table 1 represent a limited sample of quasi-experimental designs for 

conducting causal studies of instructional interventions in CER. Although the nine designs were 

comprehensive for our sample of articles, Table 1 not an exhaustive list. Therefore, chemistry education 660 

researchers and practitioners interested in conducting causal intervention studies should familiarize 

themselves with other design frameworks, such as interrupted time-series designs, as well as the myriad 

ways of strengthening designs, such as pattern matching, using multiple or different outcomes, and 

using high quality assessments.5  

 Third, the validity typology presented in this study represents a limited sample of validity threats 665 

addressed by Shadish et al. We made a concerted attempt to include a comprehensive set of validity 
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threats that were relevant to our sample of articles. However, we acknowledge this was not an exhaustive 

list of threats to each validity type. For example, we did not discuss how regression to the mean and 

testing effects can threaten the internal validity of treatment effect estimates.5 Therefore, interested 

researchers and practitioners would benefit from familiarizing themselves with the entire framework 670 

presented in Ref. 5 and readings therein.   

 Fourth, this review focused exclusively on intervention studies that evaluated performance-based 

outcomes. Intervention studies that exclusively examined student affect or outcomes on concept 

inventories were not represented in our sample of articles. Therefore, it is imperative that this work be 

interpreted only within the context of quantitative investigations of performance outcomes across 675 

instructional interventions. 

 Finally, this review did not paint the whole picture of intervention studies in the Journal. Focusing 

our review on quasi-experimental studies meant that we did not examine studies under qualitative 

paradigms of inquiry. Consequently, the unique contributions that qualitative research methods have 

for causal studies in CER were not addressed in this review.  680 

CONCLUSION 
 We examined 24 articles published in the Journal from January 2011 to April 2017 that reported 

quantitative investigations of student performance outcomes across varied instructional strategies in 

college-level chemistry courses. The findings serve as an indicator of the state of causal studies of 

instructional strategies published in the Journal. Several quasi-experimental designs were utilized by 685 

chemistry education researchers and practitioners to support their investigations, with the most 

common being posttest-only designs. Student performance outcomes were most commonly contrasted 

using instructor-authored exams across concurrent comparison groups. Most studies analyzed data 

using univariate statistical methods. In some instances, inferences about the effect of an intervention 

were strengthened by addressing threats to at least one validity consideration. We would like to 690 

emphasize that it is not possible for a single study to address all, or even most, of the threats that can 

bias comparisons made within non-randomized controlled trials. Therefore, researchers and 

practitioners should strategically prioritize their effort at combatting validity threats. At the very least, 
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threats to treatment effect estimates should be reported on in detail so that future researchers and 

practitioners can more effectively target known gaps in prior studies.   695 

 As a result of this review, we recommended a closer alignment between theory and measurement in 

future casual intervention studies. We acknowledge that the inclusion of theoretical considerations at 

all stages of the intervention (i.e., design, data collection, and analysis) creates a more complicated 

approach to causal studies in CER, conceptually, statistically, and logistically. To ease this 

responsibility, evidence for the efficacy of an instructional model should accumulate over time using 700 

diverse experimental designs, data collection and analysis procedures, and settings. No single study can 

evaluate every variable and every theoretical relationship underlying an instructional model. Therefore, 

intervention studies should progressively build upon one another with evidence for the relationships 

between people, treatments, outcomes, and settings accumulating over time. We hope the information 

compiled in this review can encourage and facilitate this effort within the chemistry education 705 

community. 
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List of Sampled Articles 

Table S1. List of articles reviewed in this manuscript. Labels represent how each is 
referred to within the manuscript and additional Supporting Information tables below. 

Label Year Author(s) Title 

Amaral et al. 2013 Amaral, Shank, 
Shibley, & Shibley 

Web-Enhanced General Chemistry Increases Student 
Completion Rates, Success, and Satisfaction 

Carmel et al. 2015 Carmel,Jessa, & 
Yezierski 

Targeting the Development of Content Knowledge and 
Scientific Reasoning: Reforming College-Level 
Chemistry for Nonscience Majors 

Chase et al. 2013 Chase,Pakhira, & 
Stains 

Implementing Process-Oriented, Guided-Inquiry 
Learning for the First Time: Adaptations and Short-
Term Impacts on Students' Attitude and Performance 

Christiansen 
et al. 

2016 Christiansen, 
Lambert, Nadelson, 
Dupree, & Kingsford 

In-Class Versus At-Home Quizzes: Which is Better? A 
Flipped Learning Study in a Two-Site Synchronously 
Broadcast Organic Chemistry Course 

Conway 2014 Conway Effects of Guided Inquiry versus Lecture Instruction 
on Final Grade Distribution in a One-Semester 
Organic and Biochemistry Course 

Cook et al. 2013 Cook, Kennedy, & 
McGuire 

Effect of Teaching Metacognitive Learning Strategies 
on Performance in General Chemistry Courses 

Crimmins and 
Midkiff 

2017 Crimmins and 
Midkiff 

High Structure Active Learning Pedagogy for the 
Teaching of Organic Chemistry: Assessing the Impact 
on Academic Outcomes 

Eichler and 
Peeples 

2013 Eichler and Peeples Online Homework Put to the Test: A Report on the 
Impact of Two Online Learning Systems on Student 
Performance in General Chemistry 

Esterling and 
Bartles 

2013 Esterling and 
Bartles 

Atoms-First Curriculum: A Comparison of Student 
Success in General Chemistry 

Hall et al. 
2012 

2012 Hall, Wilson, & 
Sanger 

Student Success in Intensive versus Traditional 
Introductory College Chemistry Courses 

Hall et al. 
2014 

2014 Hall, Curtin-Soydan, 
& Canelas 

The Science Advancement through Group 
Engagement Program: Leveling the Playing Field and 
Increasing Retention in Science 

Hein 2012 Hein Positive Impacts Using POGIL in Organic Chemistry 
Hibbard et al. 2016 Hibbard, Sung, & 

Wells 
Examining the Effectiveness of a Semi-Self-Paced 
Flipped Learning Format in a College General 
Chemistry Sequence 

Lewis 2011 2011 Lewis Retention and Reform: An Evaluation of Peer-Led 
Team Learning 

Lewis 2014 2014 Lewis Investigating the Longitudinal Impact of a Successful 
Reform in General Chemistry on Student Enrollment 
and Academic Performance 

Malik et al. 2014 Malik, Martinez, 
Romero, Schubel, & 
Janowicz 

Mixed-Methods Study of Online and Written Organic 
Chemistry Homework 

Mooring et al. 2016 Mooring, Mitchell, & 
Burrows 

Evaluation of a Flipped, Large-Enrollment Organic 
Chemistry Course on Student Attitude and 
Achievement 

Muthyala and 
Wei 

2012 Muthyala and Wei Does Space Matter? Impact of Classroom Space on 
Student Learning in a Organic-First Curriculum 
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Rath et al. 2012 Rath, Peterfreund, 
Bayliss, Runquist, & 
Simonis 

Impact of Supplemental Instruction in Entry-Level 
Chemistry Courses at a Midsized Public University 

Robert et al. 2016 Robert, Lewis, 
Oueini, & Mapugay 

Coordinated Implementation and Evaluation of 
Flipped Classes and Peer-Led Team Learning in 
General Chemistry 

Ryan and Reid 2016 Ryan and Reid Impact of the Flipped Classroom on Student 
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Study in General Chemistry 

Shattuck 2016 Shattuck A Parallel Controlled Study of the Effectiveness of a 
Partially Flipped Organic Chemistry Course on 
Student Performance, Perceptions, and Course 
Completion 

Shultz et al. 2015 Shultz, Gottfried, & 
Winschel 

Impact of General Chemistry on Student 
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Weaver and 
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2015 Weaver and 
Sturtevant 

Design, Implementation, and Evaluation of a Flipped 
Format General Chemistry Course 
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Reading Protocol 

Context 
● Why are the evaluators judging students’ performance in a chemistry course? 
● In which settings (e.g., classes, size, institution, etc.) are students’ performance being 

judged?  
● Who are the performers?  

 
Research questions 

1. What experimental design was used to compare student performance? 
2. What metrics were used to make judgements about performance?  
3. What types of comparison groups were used to make judgements about treatment 

effects?  
4. What methods were used to analyze the performance data? 

 
Validity considerations 

● (Internal) In what ways did the authors address threats to the validity of inferences 
about the relationship between treatments and outcomes? 

● (Statistical) In what ways did the authors address threats to the validity of statistical 
inferences? 

● (Construct) In what ways did the authors address threats to the accurate 
characterization of treatments and their relationships to measured outcomes? 

● (External) In what ways did the authors address threats to the generalization of 
inferences across varied persons, settings, treatments, and outcomes? 
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Data Matrices 

Table S2. Distribution of quasi-experimental frameworks used in the sample of 
articles. Article labels can be matched to the list of references in Table S2. See the 
‘Code Descriptions’ section for more details about each code. 
Design 
Label Code Count Article Label 

#1 One Group Posttest-Only Design 1 Weaver and Sturtevant 

#2 One Group Pretest-Posttest Design 0  

#3 Posttest-Only Alternative Treatment (or No 
Treatment) Control Group Design 

13 Amaral et al.; Carmel et al. 
Chase et al; Christiansen et al.; 
Conway; Hein; Hibbard et al.; 
Lewis 2011; Malik et al; 
Mooring et al; Muthyala and 
Wei; Robert et al.; Shattuck 

#4 Pretest-Posttest Alternative Treatment (or No 
Treatment) Control Group Design 

7 Cook et al.; Crimmins and 
Midkiff; Eichler and Peeples; 
Esterling and Bartels; Hall et 
al. 2012; Rath et al.; Ryan and 
Reid 

#5 Pretest-Posttest Alternative Treatment (or No 
Treatment) Control Group Regression 
Discontinuity Design 

1 Shultz et al. 

#6 Posttest-Only Alternative Treatment (or No 
Treatment) Control Group Design with Removed 
Treatment 

1 Lewis 2014 

#7 Pretest-Posttest Alternative Treatment (or No 
Treatment) Control Group Design with Removed 
Treatment 

0  

#8 Posttest-Only Alternative Treatment (or No 
Treatment) Control Group Design with Repeated 
Measures 

1 Hall et al. 2014 

#9 Pretest-Posttest Alternative Treatment (or No 
Treatment) Control Group with Repeated 
Measures 

0  

	
	
	
	
	
	
	 	



6—Supporting Information for Metrics and Methods – Mack, Hensen, & Barbera, 2018 
	

Table S3. Distribution of the five most common performance metrics reported in the 
sample of articles. Article labels can be matched to the list of references in Table S2. See 
the ‘Code Descriptions’ section for more details about each code. 

Code Count Article Label 

Instructor-authored exams 12 Carmel et al.; Chase et al.; Christiansen et al.; Conway; Cook 
et al.; Crimmins and Midkiff; Eichler and Peeples; Hall et al. 
2014; Muthyala and Wei; Robert et al.; Ryan and Reid; 
Shattuck 

Persistence/Retention Rates 11 Amaral et al.; Chase et al.; Esterling and Bartels; Hall et al. 
2014; Lewis 2011; Mooring et al.; Rath et al.; Robert et al.; 
Ryan and Reid; Shattuck; Shultz et al. 

ACS exams 9 Hein; Hibbard et al.; Lewis 2011; Lewis 2014; Malik et al.; 
Mooring et al.; Robert et al.; Ryan and Reid; Weaver and 
Sturtevant 

Letter grades 7 Amaral et al.; Conway; Crimmins and Midkiff; Hall et al. 
2012; Hibbard et al.; Mooring et al.; Shattuck 

Course grade-point average 4 Amaral et al.; Cook et al.; Hall et al. 2014; Rath et al. 
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Table S4. Distribution of five most common types of comparisons reported in the 
sample of articles. Article labels can be matched to the list of references in Table S2. 
See the ‘Code Descriptions’ section for more details about each code. 

Code Count Article Label 

Concurrent 12 Chase et al.; Christiansen et al.; Cook et al.; Eichler and 
Peeples; Hall et al. 2014; Lewis 2011; Lewis 2014; Malik et al.; 
Muthyala and Wei and Wei; Robert et al.; Ryan and Reid; 
Shattuck 

Historical 9 Amaral et al.; Carmel et al.; Conway; Crimmins and Midkiff; 
Esterling and Bartels; Hall et al. 2014; Hein; Hibbard et al.; 
Mooring et al. 

Successive assessments 12 Chase et al.; Christiansen et al.; Esterling and Bartels; Hall et 
al. 2014; Lewis 2014; Muthyala and Wei; Rath et al.Robert et 
al.; Ryan and Reid; Shattuck; Shultz et al.; Weaver and 
Sturtevant 

Student subpopulations 7 Eichler and Peeples; Lewis 2011; Lewis 2014; Rath et al.; 
Robert et al.; Ryan and Reid; Shultz et al. 

Normed comparisons 3 Hein; Ryan and Reid; Weaver and Sturtevant 

Multiple outcome measures 3 Chase et. al; Hibbard et al.; Mooring et al. 
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Table S5. Distribution of methods for statistical inference used in the sample of articles. 
Article labels can be matched to the list of references in Table S2. See the ‘Code 
Descriptions’ section for more details about each code. 

Code Subcode Count Article Label 

Multivariate Statistics Multiple predictors 
and outcomes 

0  

Multiple outcomes 0  

Multiple predictors 10 Crimmins and Midkiff; Cook et al.; Eichler 
and Peeples; Esterling and Bartels; Hall et al. 
2012; Hein; Hibbard et al.; Rath et al.; Robert 
et al.; Schultz et al. 

Univariate Statistics  19 Amaral et al.; Carmel et al.; Chase et al.; 
Christiansen et al.; Conway; Cook et al.; Hall 
et al. 2014; Hein; Hibbard et al.; Lewis 2011; 
Lewis 2014; Malik et al.; Mooring et al.; 
Muthyala and Wei; Rath et al.; Robert et al.; 
Ryan and Reid; Shattuck; Weaver and 
Sturtevant 

Descriptive Statistics  22 Amaral et al.; Carmel et al.; Chase et al.; 
Christiansen et al.; Conway; Cook et al.; 
Crimmins and Midkiff; Eichler and Peeples; 
Esterling and Bartels; Hall et al. 2012; Hall et 
al. 2014; Hein; Hibbard et al.; Lewis 2014; 
Lewis 2011; Malik et al.; Muthyala and Wei; 
Rath et al.; Robert et al.; Ryan and Reid; 
Shattuck; Weaver and Sturtevant 
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Code Descriptions 

Question 1: What types of experimental designs have been used to study the effects of 
instructional interventions on student performance? 

One Group Posttest-Only Design (Design #1) 
In this design, a group receives a treatment and afterwards they are assessed on the outcome 
measure. 

One Group Pretest-Posttest Design (Design #2) 
In this design, a group is first assessed on a pretreatment assessment, subsequently receive a 
treatment condition, and afterwards they are assessed on the outcome measure.  

Posttest-Only Alternative Treatment (or No Treatment) Control Group Design (Design #3) 
In this design, one group receives a treatment while a different group receives an alternative 
treatment (or the absence of that treatment). Each group is later assessed on the same outcome 
measure at about the same time and under similar conditions.  

Pretest-Posttest Alternative Treatment (or No Treatment) Control Group Design (Design #4) 
In this design, two groups are first assessed on the same outcome measure at about the same 
time and under similar conditions. Then, one group receives a treatment while a different group 
receives an alternative treatment (or the absence of that treatment). Each group is later assessed 
on the same outcome measure at about the same time and under similar conditions.  

Pretest-Posttest Alternative Treatment (or No Treatment) Control Group Regression Discontinuity 
Design (Design #5) 
Like the previous design, two groups are first assessed on the same outcome measure at about 
the same time and under similar conditions. Then, participants are distributed across conditions 
based on a cutoff score or an alternative assignment variable. One group receives a treatment 
while the other group receives an alternative treatment (or the absence of that treatment). Each 
group is later assessed on the same outcome measure at about the same time and under similar 
conditions. 

While regression discontinuity (RD) designs have unique properties that afford researchers 
unbiased causal inferences under certain assumptions, we follow Shadish et al.’s classification 
of RD designs as quasi-experiments because they lack random assignment.1 In fact, the only 
study in our sample with a RD design is technically a “fuzzy” RD design because in some cases 
the assignment to experimental condition did not adhere fully to the cutoff.2 But as Shadish et 
al. note, “a fuzzy cutoff RD design may produce better estimates than many other quasi-
experiments if the fuzziness is not too great” (p. 229).1 

Posttest-Only Alternative Treatment (or No Treatment) Control Group Design with Removed 
Treatment (Design #6) 
This design extends Design #3 by adding another wave of exposure and posttest measurement, 
but this time both groups receive the alternative treatment or absence of treatment. This design 
allows for the comparison of long-term effects of a treatment X after the treatment has been 
removed to a comparison group that received an alternative treatment or no treatment all along.  

Pretest-Posttest Alternative Treatment (or No Treatment) Control Group Design with Removed 
Treatment (Design #7) 
This design extends Design #4 by adding another wave of pretest, exposure, and posttest 
measurement, but this time both groups receive the alternative treatment or absence of 
treatment. This design allows for the comparison of long-term effects of a treatment X after the 
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treatment has been removed to a comparison group that received an alternative treatment or no 
treatment all along. Unlike Design #6, this design allows for within-group comparisons across 
assessments to understand how the outcome rises and falls with the introduction and removal 
of treatment.  

Posttest-Only Alternative Treatment (or No Treatment) Control Group Design with Repeated 
Measures (Design #8) 
This design extends Design #3 by adding another wave of exposure and posttest measurement. 
Unlike Design #6, the treated group is repeatedly exposed while the treatment is withheld from 
the comparison group or they repeatedly receive an alternative treatment. This design affords 
estimates for the sustained effect of treatment over time in contrast to the sustained effect of an 
alternative treatment or the absence of the treatment. As Shadish et al. explained, “few threats 
to validity could explain a close relationship between treatment introductions and removals on 
the one hand and parallel changes in outcome on the other… Such threats would have to come 
and go on the same schedule” (p. 113).1 

Pretest-Posttest Alternative Treatment (or No Treatment) Control Group with Repeated Measures 
(Design #9) 
This design extends Design #4 by adding another wave of pretest, exposure, and posttest 
measurement. Unlike Design #7, the treated group is repeatedly exposed while the treatment is 
withheld from the comparison group or they repeatedly receive an alternative treatment. Similar 
to Design #8, this design affords estimates for the sustained effect of treatment over time in 
contrast to the sustained effect of an alternative treatment or the absence of the treatment.  

Question 2: Which metrics have been used to measure student performance outcomes? 

Instructor-authored exams 
In general, instructor-authored exams are high-stakes, summative evaluations of students’ 
chemistry content knowledge that were authored by the instructor of a course or authored by a 
common group of instructors. Both midterm and final exams are included in this category. 

Persistence/Retention Rates 
Persistence/retention rates were indicated by pass rates, withdrawal rates, or the proportion of 
students receiving D or F grades or withdrawing from the course (i.e., “DFW” rate).  

ACS exams 
ACS exams refer to examinations developed and distributed by the American Chemical Society 
Examinations Institute.  

Letter grades 
Letter grades refer to course grades on an ordinal scale (e.g., A, B, C, and D). The values rank 
students according to their performance.  

Course grade-point average 
Course grade-point average refers to course grades on an interval scale (e.g., 0-4 scale). The 
values rank students according to their performance.  

Question 3: What types of groups have been used to compare performance across 
experimental conditions? 

Concurrent comparison group 
In a concurrent comparison, experimental groups receive different treatment conditions at the 
same time.  



11—Supporting Information for Metrics and Methods – Mack, Hensen, & Barbera, 2018 
	

Historical comparison group 
In a historical comparison, researchers compare outcomes from the treated group with 
outcomes among participants who received the alternative treatment (or absence of treatment) 
at a previous time.  

Time/successive assessments 
This category encompasses studies that compared the same metric over time, such as grades 
in a course-based intervention and then also grades in subsequent chemistry courses. 
Alternatively, some studies compared performance on successive assessments within a course, 
such as midterms, final exams, and course grades. 

Student subpopulations 
This code refers to comparing outcomes across student subpopulations, such as men and 
women, racial/ethnic minority and well-represented groups, etc. 

ACS norming sample 
ACS exam outcomes were compared with the original norming sample. In some studies, 
contrasts are only made to the nationally normed dataset and no local contrasts were made 
across experimental groups. In other studies, researchers compare ACS exam outcomes across 
local groups and to the original norming sample.  

Comparing Performance and Affective Outcomes 
Performance and affective outcomes were measured and reported, but not necessarily 
correlated simultaneously with the experimental condition. 

Question 4: What quantitative methods have been used to analyze the comparison data? 

Descriptive statistics 
Researchers used descriptive statistics to summarize performance outcomes and other group 
comparisons using tables and/or graphs. 	
Univariate statistics 
Researchers working within univariate statistical frameworks constructed falsifiable null and 
alternative hypotheses about group differences and then tested the tenability of the null 
hypothesis based on sample data. Common statistical tests include the t-test, chi-squared test, 
analysis of variance, and non-parametric extensions.  

Multivariate statistics 
Researchers working within multivariate statistical frameworks constructed falsifiable null and 
alternative hypotheses about group differences beyond the effects of prior abilities, 
demographic characteristics, or other student-level factors and then tested the tenability of the 
null hypothesis based on sample data.  Common multivariate statistical techniques used in the 
sample of articles included multiple regression and ANCOVA.  
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