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Abstract
Tabular data are the most widely used data formats in almost every
application domain, such as, biology, ecology, and material science.
The purpose of tabular data-centric AI is to use AI to augment
the predictive power of tabular data to get better AI. Tabular data-
centric AI is essential because it can reconstruct distance measures,
reshape discriminative patterns, and improve data AI readiness
(structural, predictive, interaction, and expression levels), which
is signifcant in industries and real-world deployments. Therefore,
our tutorial is designed to capture the interest of professionals with
expertise in artifcial intelligence, machine learning, and data min-
ing, as well as researchers engaged in specifc application areas and
interdisciplinary studies. Examples of such applications include
quality control, predictive maintenance, supply chain optimization,
process efciency improvements, biomarker identifcation, material
performance screening. In this tutorial, we will explore the emerg-
ing feld of Tabular Data-Centric AI. Our discussion will provide a
comprehensive overview of this domain: (1) We will demonstrate
the diferent settings within this research domain based on distinct
application scenarios. (2) We will identify and explain the signif-
cant challenges encountered in tabular data-centric AI. (3) We will
highlight existing methods and benchmarks. (4) We will discuss
future potential directions for this domain and examine its inter-
connections with other research areas. To enhance the learning
experience, this tutorial will include a hands-on section designed
to teach participants the fundamental aspects of developing, evalu-
ating and visualizing techniques in tabular data-centric AI. After
this tutorial, attendees will have a deep understanding of tabular
data-centric AI research, including its key challenges, seminal tech-
niques, and insights into integrating tabular data-centric AI into
their own research.

CCS Concepts
• Computing methodologies → Feature selection.
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1 Tutorial outline
Numerous felds, including healthcare, biology, and fnance, have
collected and accumulated extensive tabular data sets. The refne-
ment of tabular data spaces to enhance decision-making analyses
has emerged as an important research area. Existing work, however,
necessitates substantial domain expertise and is often ungeneraliz-
able and labor intensive. Therefore, the exploration of methods for
automatically operating the rows and columns of tabular data—i.e.
tabular data-centric AI—to make it more distinctive and informative
has gained signifcant interest. This research domain can be easily
incorporated with other domains to conduct many interdisciplinary
studies such as bio-marker identifcation, health care feature anal-
ysis, material generation, and etc. Challenges confronting tabular
data-centric AI includes processing heterogeneous data types, tack-
ling high dimensionality, ensuring scalability, achieving data space
interpretability, and mitigating the efects of distribution shifts,
among others. This tutorial aims to discuss the emerging research
feld of Tabular Data-Centric AI. We will start by outlining various
research settings within this domain, tailored to specifc application
contexts. Following this, we will demonstrate the principal chal-
lenges faced, underscore current methodologies and benchmarks,
and illustrate prospective directions for future investigation.

2 Our Uniqueness and Comparison with
Relevant Tutorials

This tutorial is related to some earlier tutorials:
• NIPS 2024 Data-Centric AI for reliable and responsible AI
tutorial 1

• KDD 2023 Data-Cenetric AI tutorial 2.
1https://www.vanderschaar-lab.com/neurips-2023-data-centric-ai-tutorial/
2Project page: https://dcaitutorial.github.io
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However, our tutorial has the following uniquenesses:
• From the research problem perspective, this tutorial will
focus on tabular data-centric AI, particularly on augment-
ing the AI readiness of tabular data for diverse tabular data
modeling enabled applications. Among the two previous tuo-
torials, one is focusing on address data erros, missing, shifts,
drifts, bias, and quality issues for reliable and responsible AI;
another one is focusing on covering how to improve AI via
the machine learning life cycle: training data, inference data,
and data maintenance.

• From the underlying AI Tasks perspective, this tutorial will
focus on introducing the feature-based DCAI, instance-based
DCAI, and joint feature-instance based DCAI under the con-
texts of tabular data. Among the two previous DCAI tu-
torials,the KDD23 tutorial more focuses techniques about
collection, labeling, preparation, cleaning, in or out of distri-
butions, storage, retrieval for general data types; the NIPS23
tutorial focues on data characterization, generating synthetic
data, data privacy, as well as practices with existing tools.

• From the technical framework perspective, this tutorial will
focus on advanced automated intelligent tabular DCAI tech-
niques, including reinforcement intelligence, generative in-
telligence, neuro-symbolic methods to enable auto data aug-
mentation. The two previous tutorials focus on comprehen-
sively reviewing classic methods.

As a result, our tutorial will provide a deeper focused tutorial on
intorducing advnaced reinforcement, generative AI for auto im-
provement of tabular data AI readiness from three focused angles:
feature-based, instance-based, and joint feature-instance based. Af-
ter this tutorial, participants will gain a comprehensive understand-
ing of tabular DCAI and its developmental trajectory. Furthermore,
they will obtain in-depth knowledge on the formulation and im-
plementation of strategies for this domain, as well as insights into
future research directions and potential advancements.

3 Prerequisite knowledge
Our tutorial targets the audiencewith a basic knowledge of databases,
data mining, machine learning such as reinforcement learning, deep
learning, generative learning. The knowledge of data-centric AI is
not required.

4 Content
Tabular datasets ubiquitously exist in many scenarios, including
healthcare, biology, and fnance, have collected and accumulated
extensive. Tabular data space refnement has emerged as a hot re-
search topic in recent days. However, existing works in this domain
require substantial domain knowledge and are often ungeneraliz-
able and labor-intensive. Therefore, the exploration of methods for
automatically operating the feature and instance of tabular data—i.e.
tabular data-centric AI—tomake the data space more distinctive and
informative has gained signifcant interest [2, 6, 8, 16, 18, 22, 29, 30].

Owing to the diversity in data types and the distinct distributions
observed across various application contexts, coupled with the im-
perative for interpretability, tabular data-centric AI fundamentally
diferent from and exhibit greater complexity than conventional
data-centric AI methodologies.

To beginwith, there are extensive techniques to refne the pattern
and quality of tabular data space. In this tutorial, we will focus on
making improvements by managing the features or instances of the
data space. We can divide the corresponding tabular data-centric
AI tasks into three categories:

(1) Exclusive Feature Manipulation refers to the refnement of
features within tabular data, focusing on enhancing the dis-
criminative patterns of the data space.

(2) Exclusive Instance Manipulation focuses on handling of in-
dividual instances within tabular data, aimed at identifying
valuable data samples for model learning.

(3) Joint Feature and Instance Manipulation refers to the simul-
taneous optimization of both features and instances within
tabular data, aiming to broadly improve the confguration
and utility of the data space.

Based on these aforementioned settings, we will introduce the
key challenges of the tabular data-centric AI tasks. The frst ma-
jor challenge of tabular data-centric AI is to efciently handle
large search space when confronted with large-scale tabular data
space(i.e. large feature dimension or large instance number) [1,
9, 21, 23, 24]. The second challenges is that substantial domain
knowledge is required to get refne the tabular data space for better
quality [10, 17, 31]. The third challenge is that the learned data-
oriented knowledge relevant to data-centric AI is hard to generalize
to diferent domains, distributions and scenarios [15, 19, 20]. There
are also other challenges like the robustness and interpretability
of tabular data-centric AI techniques, which will be detailed in our
tutorial.

Addressing the aforementioned challenges, we introduce exist-
ing methodologies and demonstrate how these approaches miti-
gate challenges across various tabular data-centric tasks. Initially,
we delve into feature selection and generation within the task
of Exclusive Feature Manipulation, drawing on insights from the
realms of reinforcement learning and generative AI [12, 13, 25–27].
Subsequently, we discuss the application of coreset selection and
sample reweighting in the context of Exclusive Instance Manipula-
tion [3, 7, 11]. Furthermore, we demonstrate the contributions in the
area of Joint Feature and Instance Manipulation, providing a com-
prehensive overview of the integrated strategies employed [5, 14].
Following these techniques, we will introduce relevant benchmark
works [4, 15, 28], which set up standard experimental settings and
provide a fair platform for developing new tabular data-centric AI
techniques.

After introducing the current progress of tabular data-centric
AI, as a newly emerging and fast-growing area, there are still many
challenges to tackle and various promising directions to explore.
Tabular data-centric AI is actually highly relevant to many research
areas, and could potentially beneft a vast majority of the research
community, such as fnance, health care. We will frst discuss some
challenges within the tabular data-centric AI feld awaiting to be
tackled, then summarize the topics that transcend the boundary of
current tabular data-centric AI research and intersect with other
areas.
5 Supplementary materials

(1) The frst DCAI workshop https://data-centric-ai-dev.github.
io/ICDM/
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(2) The secondDCAIworkshop https://data-centric-ai-dev.github.
io/BigData/

(3) The third DCAI workshop https://data-centric-ai-dev.github.
io/BigData2024/

6 Short biographies of presenters:
There are three presenters on tabular data-centric AI.
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