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Enhancing Translation Validation of Compiler
Transformations with Large Language Models

Yanzhao Wang and Fei Xie
Department of Computer Science

Portland State University
Portland, OR 97201, USA
{wyanzhao, xie}@pdx.edu

Abstract—This paper presents a framework that inte-
grates Large Language Models (LLMs) into translation val-
idation, targeting LLVM compiler transformations where
formal verification tools fall short. Our framework first
utilizes existing formal verification tools for translation
validation. In this work, we use Alive2, a well-known tool in
LLVM compiler verification, as an example. When formal
verification tools are unable to confirm a transformation’s
soundness, our framework employs fine-tuned LLMs for
prediction. It then applies fuzzing to transformations pre-
dicted as potentially unsound by the LLMs due to return
values or memory inconsistencies, aiming to find counterex-
amples. In cases where transformations are unsound for
other reasons or sound, or if no counterexamples emerge,
the framework directly reports these outcomes without
further fuzzing. This methodology has shown effectiveness
in complex application such as deep-learning accelerator
designs, where traditional formal verification tools struggle.

I. INTRODUCTION

LLVM [1], a versatile open-source compiler, supports
an extensive range of programming languages and hard-
ware design languages. The core element of LLVM is
its intermediate representation (IR). It serves as a key
interface that streamlines interactions among frontends,
backends, and transformation passes in the middle of
the compiler, and therefore, is critical in integrating the
varied components of the LLVM framework.

Translation validation, as detailed in [11], has evolved
into a powerful method for verifying the correctness of
compiler transformations. By validating the semantics
of the source and transformed IRs, it establishes an
efficient and robust mechanism for ensuring the reli-
ability of compiler transformations. Alive2 [10] is such
a translation validation tool specialized for LLVM IR.
It leverages formal verification techniques, aiming to
prevent that compiler optimizations do not introduce
bugs into the resultant code.

Despite their advantages, translation validation tools
such as Alive2 have significant limitations. They typi-
cally cannot manage unbounded loops and have limited
ability in handling external function calls. Moreover, the

SMT (Satisfiability modulo theories) solver [3], a fun-
damental component of these tools, is often incapable
of dealing with complex computations.

Our framework introduces a novel integration of fine-
tuned Large Language Models (LLMs) to overcome
limitations in current compiler transformation valida-
tion flows. It can conduct predictive analyses of the
correctness of transformations at which formal verifica-
tion tools fall short. The process begins with inputting
source and target Intermediate Representations (IR), the
latter being a transformed version of the former. If the
verification of this transformation is deemed unsolvable
by the SMT solver of formal tools such as Alive2
(the example used in this paper), it is then passed to
our LLM-based transformation predictor.
This predictor assesses the transformation, categorizing
it as likely sound or unsound. For transformations
predicted as unsound, the predictor also provides the
reasons underlying the unsoundness. Where transfor-
mations are unsound due to return values or mem-
ory inconsistencies, our framework employs fuzzing to
find counterexamples. If the fuzzer finds counterex-
amples, it confirms the transformation’s unsoundness.
In cases where transformations are unsound for other
reasons or sound, or if no counterexamples emerge,
our framework reports their predicted soundness/un-
soundness. This framework has been proven effective
in practical applications, such as in Intel’s deep-learning
accelerator designs [2], addressing the challenges posed
by unbounded loops and complex computations.

Our primary contributions are as follows:

• We pioneered the application LLMs in enhancing
the reliability of compiler transformations.

• We seamlessly integrated Large Language Models
(LLMs) with formal verification tools, exemplified
by application to Alive2, to rapidly and efficiently
assess LLVM transformation soundness. This in-
tegration proves particularly effective in scenarios
where traditional formal verification tools struggle.
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The remainder of this paper is structured as fol-
lows. Section 2 introduces the background. Section 3
presents an overview of our framework, while Section
4 dives into the specifics of our implementation. Section
5 reports our evaluation results. Section 6 discusses
limitations and future work, and Section 7 concludes.

II. BACKGROUND

Two primary methodologies are currently widely used
in the domain of formal compiler verification:

1. Theorem Proving: This approach formally verifies
if every transformation of a compiler preserves the
semantics of the input program, e.g., CompCert [9]
is a compiler for C that is formalized and verified
in Coq. However, compiler certification using theorem
proving is a highly complex and labor-intensive process,
and every compiler revision requires reproofing. These
drawbacks hinder future compiler improvements.

2. Translation Validation: The translation validation
approach was first introduced by [11]; it entails a
weaker formal technique that effectively certifies the
conformity of a compiler’s individual executions to
the compiler’s specification. This approach compares a
compiler’s input and output for its specific application.
As illustrated in Figure 1, the workflow for translation

Fig. 1. Workflow of the Translation Validation Approach

validation sends both source and target programs to
a validator. If the validator confirms that the target
program refines the source program, it generates a proof.
Conversely, it produces a counterexample if discrepan-
cies are detected. Translation Validation is practical and
adaptable, efficiently ensuring compiler execution aligns
with specifications.

III. OVERVIEW OF THE FRAMEWORK

This section presents our novel translation vali-
dation framework, consisting of three major compo-
nents: the formal transformation checker,
LLM-based transformation predictor, and
fuzzer. As shown in Figure 2, the framework aims to
offer an efficient approach for evaluating the soundness
of compiler transformations, particularly in scenarios
where traditional formal verification tools struggle.

The workflow starts with a source IR and a tar-
get IR transformed from the source IR. In this pa-
per, we use LLVM IR as an example, as demon-
strated in Figure 3. The IRs are first processed by
the formal transformation checker, utiliz-
ing the capabilities of established translation validation
tools to analyze and verify IR transformations. In this
paper, we use Alive2 as the example. The formal
transformation checker compares the memory
states and return values of the transformed code, en-
suring no new undefined behavior arises. This involves
encoding the source and target IR programs into SMT
encodings and submitting these to the SMT solver [3]
for verification.

If the SMT solver is able to verify the transfor-
mation, our framework reports the transformation val-
idation results (indicating soundness or unsoundness)
directly. However, if the SMT solver fails to verify the
transformation, due to factors such as complex SMT
expressions or unbounded loops, our framework for-
wards the IR program pair to the transformation
predictor (Step 1 in Figure 2). After processing
through the prompt encode/decoder, the input
is sent to the fine-tuned LLM models, which gen-
erate the prediction results (Steps 2 and 3). Our
transformation predictor currently supports
the fine-tuned models: Mistral-7B [5], Llama2-7B [12],
and GPT-3.5 [4]. The fine-tuning process of these LLM
models is elaborated in a subsequent section.

Then, for transformations predicted as unsound due
to inconsistent memory or return values, our framework
sends both the program pair and the reasons for un-
soundness to the fuzzer to identify counterexamples
(Step 4). If the fuzzer finds any counterexamples,
the transformation is deemed unsound (Step 5 and 6).
For transformations predicted as sound, and for unsound
transformations where no counterexamples are found or
those caused by other reasons, our framework directly
reports their predicted soundness/unsoundness (Step 4).

IV. IMPLEMENTATIONS

A. Formal Transformation Checker

The formal transformation checker is crucial for
analyzing compiler transformations. It focuses on veri-
fying memory states, return values, and preventing the
introduction of new undefined behaviors (UBs), thereby
ensuring transformation correctness and reliability.

1) Checking Memory States: The checker uses exist-
ing formal verification tools for a detailed comparison
of memory states between the source IR Psrc and the
target IR Ptgt. It verifies that memory operations in Psrc

and Ptgt are equivalent, denoted as:



Fig. 2. Schematic Diagram of the Translation Validation Framework

Fig. 3. Example of LLVM programs

∀σsrc, σtgt : Memory(Psrc, σsrc) ≡ Memory(Ptgt, σtgt)

2) Checking Return Values: Similar to memory state
verification, the checker ensures consistent return val-
ues post-transformation, preserving the program’s func-
tional behavior. It encodes return values from both
source and target programs and employs a SMT solver,
such as Z3 [3], to compare these SMT encodings,
flagging any discrepancies.

3) Detecting Introduction of New Undefined Behav-
iors: The checker detects new undefined behaviors
(UBs) in the transformed program, ensuring no new
UBs are introduced. This involves checking against
division by zero, null pointer dereferencing, and other
unpredictable or unsafe operations, thereby maintaining
the program’s correctness and reliability.

B. LLM-Based Transformation Predictor

This subsection introduces our primary innovation:
fine-tuning Large Language Models (LLMs) in enhanc-
ing the robustness of the compiler transformations.

Currently, our training data originates from the ver-
ification outcomes of llvm-project [7] transformations
and unit tests conducted by Alive2, while similar data
from other tools could also be applied. After eliminating
duplicate records, our dataset comprised 32,850 sound
transformations and 405 unsound transformations. We
randomly selected 40 pairs from these to form our test
dataset and allocated the remainder to the training set.
For each unsound transformation, we included reasons
for the unsoundness, such as memory issues, return

values, or the introduction of new undefined behaviors
(UB). We then formatted this data into prompts for LLM
fine-tuning, utilizing the prompt encode/decoder
within the transformation predictor. We de-
fined the fine-tuning prompt structure as follows:

• System Content: ”Your task involves analyzing
the given IR transformations. On receiving a trans-
formation in the ”Transformation: X → Y” format,
analyze and respond in the ”Status: A Reason:
B” format. ”A” denotes the transformation’s cor-
rectness as CORRECT or UNSOUND. For UN-
SOUND transformations, list reasons ”B”. Your
analysis involves a two-step approach:

– Special Value Injection: Inject specific val-
ues into both original and transformed IR to
observe and compare behaviors.

– Step-by-Step Computation and Analysis:
Execute detailed computations for both IR
versions to pinpoint discrepancies.

Base your analysis on the following to assess
soundness:

– Undefined Behavior Consistency: The target
should only trigger UB if the source does.
New UB in the target renders the transforma-
tion unsound.

– Return Domain Consistency: The target’s
return domain must align with the source’s,
except when the source triggers UB. A mis-
matched return domain without source UB
suggests unsoundness.

– Poison Value Propagation: The target’s re-
turn value should indicate poison only if the
source’s does. Any additional poison in the
target signals unsoundness.

– Undefined Value Handling: The target’s re-
turn value should be Undefined only if the
source’s is Undefined or poison. Introduction
of Undefined values by the target without
source justification is unsound.

– Return Value Consistency: The return values



of both the source and target should match
when the source is clear of Undefined or
poison. Variances under a well-defined source
indicate unsoundness.

– Memory State Refinement: Verify that the
memory state after target execution refines that
of the source’s. Memory state inconsistencies
suggest unsoundness.

• User Content: “{Source IR} → {Target IR}”
• Assistant Content: ”Transformation status:

{SOUND/UNSOUND} Reason: {UNSOUND
REASON}”

Choosing the appropriate training data is crucial. Our
dataset is imbalanced, with far more sound than un-
sound transformations. Using the dataset directly could
make the model biased. To alleviate the potential bias
issue, for sound transformations, we removed 1,874
instances where the source and target code were exactly
the same. Then we sampled the sound and unsound
data at ratios of 1:1, 2:1, 4:1, and 8:1 to evaluate the
performance.

After fine-tuning, when our framework identi-
fies transformations that the SMT solver cannot
prove, it forwards the transformation pair to the
transformation predictor. First, this data is
structured using the prompt encoder, adhering to
the fine-tuning prompt structure. Next, the formatted
data is sent to the LLMs. The LLMs then predict the
soundness/unsoundness of the transformations. Finally,
the prompt decoder converts the models’ output
into a human-readable text format, completing the trans-
formation prediction process.

C. Fuzzer

The fuzzer module is a key part of our frame-
work. It aims to find concrete counterexamples that
confirm the unsoundness due to inconsistent memory
or return values predicted by the transformation
predictor. For LLVM transformations, our frame-
work uses LibFuzzer [7].

The fuzzer takes program pairs and their LLM-
predicted unsound reasons given by the framework as
inputs. The input format is:

Input: {Source IR,Target IR,Unsoundness Reasons}

Based on the predicted reasons for unsoundness,
the fuzzer employs different strategies to fuzz the
predictions:

• Handling Return Value Inconsistencies: If the
unsoundness is caused by return value issues, the
fuzzer focuses on the return logic of the program

pair. It tests both programs under various inputs to
spot any output differences.

• Handling Memory Inconsistencies: For unsound-
ness caused by memory, the fuzzer examines
memory operations in both source and target IRs.
It aims to find any differences in memory state
after execution, checking that the target IR does not
introduce new memory behaviors or access issues
not in the source IR.

V. EVALUATION RESULTS

In this section, we present the evaluation results
of our framework, focusing on assessing the accuracy
of LLMs in determining the soundness of compiler
transformations. We selected 80 transformations from
the llvm-project and Alive2’s unit tests, main-
taining a balanced ratio of sound to unsound results.
For locally deployed models such as Llama2-7B and
Mistral-7B, we conducted our runs on an Apple M3
Max 128GB platform. For GPT-3.5, we accessed the
model via the OpenAI API. Additionally, we assessed
the baseline performance of the original GPT-4 and
GPT-3.5 models without fine-tuning.

We conducted comparison of the fine-tuned
Llama2-7B, Mistral-7B, and GPT-3.5 models,
as well as the GPT-4 and GPT-3.5 models without
fine-tuning, using the same test data. These models
were evaluated based on their accuracy, considering
various ratios of SOUND to UNSOUND data in the
training set, specifically 1:1, 2:1, 4:1, and 8:1.

As depicted in Figure 4, the fine-tuned GPT-3.5
model achieved an accuracy of up to 88%, while locally
deployable models, like the fine-tuned Llama2-7B,
reached an accuracy of up to 86%, and the
Mistral-7B reached an accuracy of up to 79%. The
GPT-4 model, without fine-tuning, attained only an
accuracy of 64%, and the GPT-3.5 without fine-tuning
achieved only 50% accuracy. These results demonstrate
that LLMs, when fine-tuned with an appropriate dataset,
can effectively provide rapid assessments of com-
piler transformations. Moreover, it shows that properly
fine-tuned smaller models, such as Llama2-7B and
GPT-3.5, can outperform larger models like GPT-4.
This evaluation highlights the potential of LLMs in
assessing the soundness of compiler transformations.

A. Evaluation of Deep-learning Accelerator Designs in
LLVM IR

We employed our framework to assess Intel deep-
learning accelerator designs [2] specified using Het-
eroCL [6], which features a Python-based domain-
specific language (DSL) for specifying hardware de-
signs at a high abstraction level. It then compiles the



Fig. 4. Evaluation Results on LLVM Transformations

Fig. 5. load 2d module from hVTA

hardware from this DSL to a lower-level design lan-
guage such as LLVM, and that of high-level synthesis.
In this evaluation, we utilized one source deep-learning
design (named hVTA), and two transformed designs
from the source design (named sVTA and uVTA) as
examples. These designs adhere to the VTA open-source
accelerator specifications1 and consist of four modules:
load, ALU, GEMM, and store.

We discovered that individual modules generated
LLVM code exceeding the LLMs’ 4096 token limit.
Therefore, we further divided the modules into smaller,
functionally discrete units such as store 2d, load data,
load uop, and others, totaling 19 modules. Figure 5
shows an example of the store 2d module’s code from
hVTA, illustrating how it performs tiling according to
VTA’s SRAM shape and writes data into DRAM. Out of
these 19 modules, 12 were not successfully processed
by Alive2. For each of these 12 modules from hVTA,
sVTA, and uVTA, we used hVTA’s modules’ LLVM
IR as the source program and the respective modules’

1github.com/apache/tvm/blob/v0.6/vta/include/vta/hw
spec.h

LLVM IR from sVTA and uVTA as the targets. We
employed a fine-tuned GPT-3.5 model, with a SOUND:
UNSOUND data ratio of 2:1, to predict the soundness
of their LLVM IR. The model indicated UNSOUND
results for the pad top modules in hVTA and uVTA
with inconsistent memory. The fuzzer generated a coun-
terexample with is_min_pad_value set to true.
As shown in Figure 6, we found that uVTA altered
hVTA’s behavior. While the hVTA module directly
wrote 0 to SRAM, uVTA’s value written to SRAM
depended on pad val.

VI. LIMITATIONS AND FUTURE WORK

This section discusses current limitations of our ap-
proach and outlines potential directions for future work.

Limitations: Our framework, despite promising re-
sults, has limitations. One primary constraint is the
limited diversity of our dataset. We managed to collect
only 405 unsound transformations, which may not suffi-
ciently represent the wide spectrum of potential unsound
transformations in the wild. This limitation could affect
the generalizability of our model’s predictions.

Moreover, our fine-tuning efforts were constrained by
platform capabilities. We only conducted the fine-tuning
of the Llama2-7B model and Mistral-7B locally. Larger
models may yield better performance.

Additionally, the inherent limitations of the models’
context window restrict our framework’s ability to han-
dle larger programs. This limitation can prevent the
processing of more extensive and complex program
structures, posing a challenge to the scope of transfor-
mations that our framework can accurately evaluate.

github.com/apache/tvm/blob/v0.6/vta/include/vta/hw_spec.h
github.com/apache/tvm/blob/v0.6/vta/include/vta/hw_spec.h


Fig. 6. load 2d module from hVTA-uVTA

Future Work: To address these limitations and en-
hance the robustness of our framework, we plan to
undertake the following initiatives in our future work:

• Synthetic Data Generation: We are considering
developing rules for synthetic data generation. This
approach could potentially enable us to generate a
larger number of training samples, thereby enhanc-
ing the training process and potentially improving
the model’s predictive accuracy. A larger and more
diverse dataset will likely improve the model’s
ability to generalize and accurately predict the
correctness of LLVM transformations.

• Exploring Larger Models: We intend to experi-
ment with fine-tuning larger LLM models. Larger
models have a greater capacity for learning and
might demonstrate superior performance in pre-
dicting transformation correctness.

• Exploring Other IRs: While our method is cur-
rently using LLVM IR and Alive2 as examples, it is
not inherently limited to them. In our future work,
we also aim to explore its applicability to other
IRs, such as MLIR [8], broadening the scope and
versatility of our framework.

VII. SUMMARY

In this paper, we have presented a Translation Valida-
tion framework integrated with LLMs. We utilized ver-
ification data from an existing formal verification tool’s
processing of LLVM transformations as the training set
to fine-tune models such as Llama2-7B, Mistral-7B, and
GPT-3.5. This approach aimed to provide a predictive
mechanism for transformations that prove challenging
for traditional formal verification tools. The evaluation
results underscore the potential of LLMs in enhancing
the robustness of compiler transformations.
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