
Portland State University Portland State University 

PDXScholar PDXScholar 

University Honors Theses University Honors College 

2016 

Convex and Nonconvex Optimization Techniques for Convex and Nonconvex Optimization Techniques for 

the Constrained Fermat-Torricelli Problem the Constrained Fermat-Torricelli Problem 

Nathan Lawrence 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/honorstheses 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Lawrence, Nathan, "Convex and Nonconvex Optimization Techniques for the Constrained Fermat-Torricelli 
Problem" (2016). University Honors Theses. Paper 317. 
https://doi.org/10.15760/honors.319 

This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors 
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/honorstheses
https://pdxscholar.library.pdx.edu/honors
https://pdxscholar.library.pdx.edu/honorstheses?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F317&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/honorstheses/317
https://doi.org/10.15760/honors.319
mailto:pdxscholar@pdx.edu


Convex and Nonconvex Optimization
Techniques for the Constrained

Fermat-Torricelli Problem

by

Nathan Lawrence

An undergraduate honors thesis submitted in partial fulfillment of the
requirements for the degree of

Bachelor of Arts
in

University Honors
and

Mathematics

Thesis Advisor
Dr. Mau Nam Nguyen

Portland State University
2016



Convex and Nonconvex Optimization
Techniques for the Constrained

Fermat-Torricelli Problem

Nathan Lawrence

Advisor: Dr. Mau Nam Nguyen

Portland State University, 2016

ABSTRACT

The Fermat-Torricelli problem asks for a point that minimizes the sum of the dis-

tances to three given points in the plane. This problem was introduced by the French

mathematician Fermat in the 17th century and was solved by the Italian mathemati-

cian and physicist Torricelli. In this thesis we introduce a constrained version of the

Fermat-Torricelli problem in high dimensions that involves distances to a finite num-

ber of points with both positive and negative weights. Based on the distance penalty

method, Nesterov’s smoothing technique, and optimization techniques for minimizing

differences of convex functions, we provide effective algorithms to solve the problem.
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Introduction

Pierre de Fermat proposed a problem in the 17th century that sparked interest in

the location sciences: given three points in the plane, find a point such that the sum

of its Euclidean distances to the three points is minimal. This problem was solved

by Evangelista Torricelli, and is now referred to as the Fermat-Torricelli problem. In

1937 Endre Weiszfeld developed the first numerical algorithm to solve this problem.

It was Harold Kuhn in 1972 who asserted and proved the necessary and sufficient

conditions for Weiszfeld’s algorithm to converge. Since then this problem has been

generalized to handle any finite number of points in Rn and the Weiszfeld algorithm

has also been improved and modified.

In this undergraduate thesis we introduce the constrained Fermat-Torricelli prob-

lem and solve it using the distance penalty method. The paper is organized as fol-

lows: Chapter 1 provides the necessary definitions and results from convex analysis in

order to understand the latter sections. Chapter 2 is a brief introduction to DC pro-

gramming and Nesterov’s smoothing technique. Chapter 3 has several key parts. We

describe the known results surrounding the Fermat-Torricelli problem, then introduce

its constrained analog with detailed proofs. A new algorithm for solving the problem

is introduced. Finally, we discuss Nesterov’s accelerated gradient method and DC

programming in light of the constrained problem. Throughout the text we provide

remarks, examples, and figures to develop the reader’s intuition on the subject.
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Chapter 1

Preliminaries

The quintessential optimization problem begins with an objective function f : Rn → R
and attains a solution if there exists x̄ ∈ Rn such that the value f(x̄) is minimal or
maximal. A constrained problem is defined similarly, but with the caveat that the
solution must adhere to the properties of what is called the constraint set. The
existence and uniqueness of an optimal solution as well as numerical methods to find
an optimal solution are vital concerns when approaching an optimization problem.
It is this stipulation that makes convex analysis desirable insofar that properties
surrounding the notion of convexity align with the necessary conditions of a solvable
optimization problem.

The goal of this chapter is to shed light on the “desirable” properties in convex
analysis relevant for later chapters of this thesis. We survey key terms and results for
understanding later sections of the thesis. Figures and examples are given to guide
the reader’s conceptual intuition. For a more comprehensive study of convex analysis
the reader is referred to [5, 10, 16].

Let Rn denote the set of n-tuples of real numbers, where each x ∈ Rn is of the form
(x1, . . . , xn). Also, let the extended real number line be defined by R := R ∪ {∞}.
Given x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn, the Euclidean norm (2-norm)
of x is defined by

‖x‖ =

√√√√ n∑
i=1

x2
i ,

2
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and the inner product of x and y is defined by

〈x, y〉 :=
n∑
i=1

xiyi.

It follows immediately that ‖x‖ =
√
〈x, x〉. With this and the property 〈x, y〉 = 〈y, x〉,

we have the identity ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2.

Definition 1.0.1. The closed ball centered at x̄ with radius r ≥ 0 and the closed
unit ball of Rn are defined, respectively, by

B(x̄; r) := {x ∈ Rn : ‖x− x̄‖ ≤ r} and B := {x ∈ Rn : ‖x‖ ≤ 1}.

Remark 1.0.2. While the definition is in terms of the Euclidean norm, the notion
of a closed ball or closed unit ball makes sense in terms of the other norms.

Figure 1.0.1: Closed unit ball with respect to various p-norms ‖·‖p
.

Definition 1.0.3. A set Ω ⊂ Rn is convex if λa+ (1− λ)b ∈ Ω for all a, b ∈ Ω and
λ ∈ [0, 1]. That is, the interval [a, b] ⊂ Ω whenever a, b ∈ Ω.

Definition 1.0.4. Given elements a1, ..., am ∈ Rn, the element x =
∑m

i=1 λiai, where∑m
i=1 λi = 1 and λi ≥ 0 for each 1 ≤ i ≤ m, is a convex combination of these

elements.
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Figure 1.0.2: A convex set on the left, and a non-convex set on the right. The line
connecting any two points in the set must also be contained.

Proposition 1.0.5. A set Ω ⊂ Rn is convex if and only if it contains all convex
combinations of its elements.

Proof. Given Ω ⊂ Rn to be convex, it is straightforward that it contains all convex
combinations of its elements. The converse is shown by induction. That is, we must
show x :=

∑m+1
i=1 λ1ωi ∈ Ω, where each ωi ∈ Ω,

∑m+1
i=1 λi = 1 with λi ≥ 0. Notice

the result follows by definition for m=1,2. So fix m ≥ 3 and suppose every convex
combination up to m of elements in Ω is contained in Ω. It is also worth pointing out
that if λm+1 = 1, then y = ωm+1 and we are done. Otherwise, we see

y :=
m∑
i=1

λi
1− λm+1

ωi ∈ Ω

Further, we get the reformulation x = (1− λm+1)y + λm+1ωm+1 ∈ Ω by definition.

Definition 1.0.6. Let Ω ⊂ Rn. The convex hull of Ω is defined and denoted by

co(Ω) :=
⋂
{C : C is convex and Ω ⊂ C}.

Proposition 1.0.7. Let Ω ⊂ Rn. The convex hull co(Ω) is the minimal convex set
containing Ω.

Proof. Define C := {C : C is convex and Ω ⊂ C}. Let a, b ∈ co(Ω) =
⋂
C, then

a, b ∈ C for all C ∈ C . Then for any λ ∈ (0, 1) we see λa + (1 − λ)b ∈ C. This
shows co(Ω) is convex. Further, for any x ∈ co(Ω) we see x ∈ C whenever Ω ⊂ C, by
properties of set intersection. Thus, co(Ω) is minimal.
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Definition 1.0.8. The domain of a function f : Rn → R is defined by

domf := {x ∈ Rn : f(x) <∞}.

Further, f is proper if domf 6= ∅.

Definition 1.0.9. Given a nonempty set Ω ⊂ Rn, the distance function associated
with Ω is defined by

d(x; Ω) = inf{‖x− ω‖ : ω ∈ Ω}.

Remark 1.0.10. For a nonempty close set, it is an important fact about the distance
function that d(x̄; Ω) = 0 whenever x̄ ∈ Ω and d(x̄; Ω) > 0 whenever x̄ /∈ Ω.

Definition 1.0.11. For any x ∈ Rn, the Euclidean projection from x to Ω is given
by

P (x; Ω) = {ω ∈ Ω: ‖x− ω‖ = d(x; Ω)}.

Definition 1.0.12. Let f : Ω→ R be an extended-real-valued function defined on a
convex set Ω ⊂ Rn. Then f is convex on Ω if for all x, y ∈ Ω and λ ∈ (0, 1)

f(λx+ (1− λy) ≤ λf(x) + (1− λ)f(y).

If this inequality is strict whenever x 6= y, we say f is strictly convex.

Example 1.0.13. We show that the norm function f(x) = ‖x‖, x ∈ Rn, is convex.
Indeed, for any x, y ∈ Rn and λ ∈ (0, 1) we have

f(λx+ (1− λ)y) = ‖λx+ (1− λ)y‖ ≤ λ ‖x‖+ (1− λ) ‖y‖ = λf(x) + (1− λ)f(x)

Proposition 1.0.14. Let fi : Rn → R be convex functions for all i = 1, . . . ,m. Then
the maximum function max1≤i≤m fi is convex.

Proof. Let g := max{fi : i = 1, . . . ,m} and x, y ∈ Rn be given. Then for any
λ ∈ (0, 1) we see

fi(λx+ (1− λ)y) ≤ λfi(x) + (1− λ)yfi(y) ≤ λg(x) + (1− λ)g(y).

for i = 1, . . . ,m. It follows that

g(λx+ (1− λ)y) = max{fi(λx+ (1− λ)y) : i = 1, . . . ,m} ≤ λg(x) + (1− λ)g(y).

Thus, the maximum function is convex.

Proposition 1.0.15. Let fi : Rn → R be convex functions for all i = 1, . . . ,m. Then∑m
i=1 fi is convex.
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Proof. We show the result for m = 2. The general result follows from mathematical
induction. For ease in notation, let f and g be convex functions on Rn. Fix any
x, y ∈ Rn and λ ∈ (0, 1). Then we see that

[f + g](λx+ (1− λ)y) = f(λx+ (1− λ)y) + g(λx+ (1− λ)y)

≤ λf(x) + (1− λ)f(y) + λg(x) + (1− λ)g(y)

= λ[f + g](x) + (1− λ)[f + g](y).

Thus, f + g is convex.

Definition 1.0.16. A function f : Rn → R is Fréchet differentiable at x̄ ∈
int(domf) if there exists an element v ∈ Rn such that

lim
x→x̄

f(x)− f(x̄)− 〈v, x− x̄〉
‖x− x̄‖

= 0.

Then v is called the Fréchet derivative of f at x̄ and is denoted by ∇f(x̄).

Definition 1.0.17. Let C1(Ω) denote the set of all functions whose partial derivatives
exist and are continuous on Ω. Then given a real-valued function f ∈ C1(Rn), the
gradient of f at x is given as

∇f(x) =
( ∂f
∂x1

(x), . . . ,
∂f

∂xn
(x)
)

Definition 1.0.18. Given a convex function f : Rn → R and x̄ ∈ domf , and element
v ∈ Rn is called a subgradient of f at x̄ if

〈v, x− x̄〉 ≤ f(x)− f(x̄) for all x ∈ Rn.

Moreover, the subdifferential refers to the collection of all the subgradients of f at x̄
and is denoted by ∂f(x̄).

Remark 1.0.19. If f : Rn → R is Fréchet differentiable at x̄, then ∂f(x̄) = {∇f(x̄)}.

Example 1.0.20. Let ρ : Rn → R be defined by ρ(x) := ‖x‖. Then

∂ρ(x) =

B if x = 0,
x

‖x‖
otherwise.

The equality is routine if x 6= 0 because the function is differentiable in this case.
Our main concern is calculating the subdifferential at x = 0. Let v ∈ ∂ρ(0), then by
definition we have that 〈v, x〉 ≤ ‖x‖ for all x ∈ Rn. This implies that 〈v, v〉 ≤ ‖v‖.
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It then follows that ‖v‖ ≤ 1, so v ∈ B. The opposite inclusion follows from the
Cauchy-Schwarz inequality. Indeed, take any v ∈ B, then

〈v, x− 0〉 = 〈v, x〉 ≤ ‖v‖ ‖x‖ ≤ ‖x‖ = p(x)− p(0) for all x ∈ Rn.

Therefore v ∈ ∂ρ(0) and we have ∂ρ(0) = B.

Figure 1.0.3: Choosing two values from the subdifferential of f at x0 we attain the
subderivatives g and h at x0. Notice g is a constant.

Proposition 1.0.21. Let f : Rn → R be convex and x̄ ∈ domf be a local minimizer
of f . Then f attains its global minimum at this point.

Proof. By our assumptions, for some δ > 0 we have

f(x̄) ≤ f(u) for all u ∈ B(x̄; δ).

Now let x ∈ Rn be given. Then any z ∈ B(x̄; δ) is expressible as a convex combination
of x and x̄. That is, for λ ∈ [0, 1] we have z = λx+ (1− λ)x̄. Now since f is convex,

f(x̄) ≤ f(z) ≤ λf(x) + (1− λ)f(x̄).

This inequality implies that λf(x̄) ≤ λf(x). Further, f(x̄) ≤ f(x) for all x ∈ Rn.

Proposition 1.0.22. Let f : Rn → R be convex and x̄ ∈ domf . Then f attains its
local/global minimum at x̄ if and only if 0 ∈ ∂f(x̄).

Proof. First suppose f attains its global minimum at x̄. Then

0 = 〈0, x− x̄〉 ≤ f(x)− f(x̄) for all x ∈ Rn,

which implies 0 ∈ ∂f(x̄) by the definition of subdifferential. The sufficient condition
follows by a similar argument.
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Definition 1.0.23. A function f : Rn → R is lower semicontinuous at x̄ ∈ Rn if
for every α ∈ R with f(x̄) > α there is δ > 0 such that

f(x) > α for all x ∈ B(δ; x̄).

Definition 1.0.24. Given a proper function f : Rn → R its Fenchel conjugate
f ∗ : Rn → R is

f ∗(v) := sup{〈v, x〉 − f(x) : x ∈ Rn} = sup{〈v, x〉 − f(x) : x ∈ domf}.

Remark 1.0.25. It is worth noting that f is not necessarily convex on Rn, but its
conjugate f ∗ is. Further, given f is proper, convex, and lower semicontinuous, then
x ∈ ∂g(y) if and only if y ∈ ∂g∗(x).

Definition 1.0.26. A function f : Rn → R is Lipschitz continuous on a set
Ω ⊂ domf if there is a constant ` ≥ 0 such that

|f(x)− f(x)| ≤ ` ‖x− y‖ for all x, y ∈ Ω. (1.0.1)

Also, f is called locally Lipschitz continuous around x̄ ∈ domf if there are con-
stants ` ≥ 0 and δ > 0 such that (1.0.1) holds, where Ω = B(x̄; δ).

The following theorem is a nice result between the concept of Lipschitz continuity
and its local analog. We see how local boundedness of a convex function is used to
show its local Lipschitz continuity.

Theorem 1.0.27. Let f : Rn → R be convex and x̄ ∈ domf . If f is bounded above
on B(x̄; δ) for some δ > 0, then f is Lipschitz continuous on B(x̄; δ

2
).

Proof. The proof is omitted here and the reader is referred to [10].

Corollary 1.0.28. Any finite convex function on Rn is locally Lipschitz continuous
on Rn.

Proof. Fix x ∈ Rn and let ε > 0. Define A := {x ± εei : i = 1, . . . , n} ⊂ Rn

where {ei : 1 = 1, . . . , n} is the standard orthonormal basis of Rn. Further, M :=
max{f(a) : a ∈ A} is finite. We express the convex combination of any x̄ ∈ B(x; ε

n
)

as

x =
m∑
i=1

λiai with
m∑
i=1

λi = 1, where ai ∈ A and λi ≥ 0.

The following is then obtained

f(x) ≤
m∑
i=1

λif(ai) ≤
m∑
i=1

λiM = M. (1.0.2)
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Thus, f is bounded above on B(x; ε
n
). By Theorem 1.0.27, f is Lipschitz continuous

on B(x; ε
2n

), which implies it is locally Lipschitz on Rn.

Remark 1.0.29. We made the assumption that B(x̄; ε
n
) ⊂ co(A). Also, (1.0.2) relies

on Jensen’s inequality. The reader is referred to [10] for more information.

Definition 1.0.30. A function f : Rn → (∞,∞] is coercive if

lim
‖x‖→∞

f(x)

‖x‖
=∞.

Definition 1.0.31. Let f : Rn → (−∞,∞] be an extended-real-valued function. We
say that ϕ is γ-convex with parameter γ ≥ 0 if the function g : Rn → (−∞,∞] given

by g(x) := f(x)− γ

2
‖x‖2 is convex. We say f is strongly convex if the convexity of

g holds for some γ > 0.



Chapter 2

Optimization Methods

This chapter outlines basic properties of functions expressible as the difference of
convex functions (DC functions). We begin with basic properties of such functions,
then introduce the reader to DC programming and the DCA. Nesterov’s smoothing
technique and accelerated gradient method are also discussed.

2.1 The Difference of Convex Functions

Definition 2.1.1. Given a convex set Ω, a function f : Ω → R is called a DC
function if there exists a pair of convex functions g, h on Ω such that f = g − h.

Proposition 2.1.2. Let fi : Rn → R be DC with the DC decompsotion fi = gi − hi
for i = 1, . . . ,m. Then the following functions are also DC:

(a)
∑m

i=1 λifi

(b) max
i=1,...,m

fi

(c) min
i=1,...,m

fi

(d) |fi| for i = 1, . . . ,m

(e)
m∏
i=1

fi.

10



11

Figure 2.1.1: A DC function and its decomposition.

Proof. These results are shown using propositions 1.0.14 and 1.0.15.

(a) Let I = {i = 1, . . . ,m : λi ≥ 0} and J = {1, . . . ,m} \ I. Also let λj = −λj for
j ∈ J . Then the following holds

m∑
i=1

λifi =
∑
i∈I

λi(gi − hi) +
∑
j∈I

λj(gj − hj)

=
[∑
i∈I

λigi +
∑
i∈I

λi(−hi)
]

+
[∑
j∈J

λjgj +
∑
j∈J

λjhj

]
=
[∑
i∈I

λigi +
∑
j∈J

λjhj

]
−
[∑
i∈I

λihi +
∑
j∈J

λjgj

]
.

(b) Notice that for any i = 1, . . . ,m that fi = gi +
∑m

j=1,j 6=i hj −
∑m

j=1 hj. Then we
have

max
i=1,...,m

fi = max
i=1,...,m

(
gi +

m∑
j=1,j 6=i

hj

)
−

m∑
j=1

hj.

(c) This is shown in a similar fashion as (b).

(d) For i = 1, . . . ,m notice that |fi| = max{fi,−fi}. The result follows by part (b).

(e) The case of m = 2 is given by Philip Hartman in [3] as a corollary to the main
theorems. The general result follows by mathematical induction.
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2.1.1 An Introduction DC programming

Here we provide a brief introduction to DC programming and the DC algorithm; for
a comprehensive study the reader is referred to [8, 17, 6]. Convexity is a desirable
property of functions in that local optimal solutions are global solutions. As convex
optimization has been studied for a quite long time, going beyond convexity is of great
interest in research of mathematical optimization. One of the first approaches in this
direction is to consider minimizing differences of convex functions. DC programming
utilizes the convexity in the decomposition of the original objective function. Consider
the following optimization problem:

minimize f(x) = g(x)− h(x), x ∈ Rn, (2.1.1)

where g : Rn → R and h : Rn → R are convex. If f is our objective function, then
g − h is called a DC decomposition of the function f . The problem illustrated by
(2.1.1) is the primal DC program and it is always expressible as an unconstrained
optimization problem. Indeed, if the objective function is constrained to a convex
set Ω, adding the indicator function δΩ, where δΩ(x) = 0 if x ∈ Ø and δΩ(x) = ∞
otherwise, to g yields an unconstrained DC program.
In a similar fashion, we define the dual DC program of (2.1.1) in terms of the Fenchel
conjugates of g and h

minimize h∗(y)− g∗(y) subject to y ∈ domh∗ (2.1.2)

The DC algorithm introduced by Tao and An [17, 18] uses components from both of
these objective functions; it is given as follows:

The DCA

INPUT: x1 ∈ Rn, N ∈ N
for k = 1, . . . , N do

Find yk ∈ ∂h(xk)
Find xk+1 ∈ ∂g∗(yk)

end for
OUTPUT: xN+1

We now discuss the sufficient conditions for the sequence {xk} to be generated.

Proposition 2.1.3. Let g : Rn → (−∞,∞] be a proper lower semicontinuous convex
function. Then

∂g(Rn) :=
⋃
x∈Rn

∂g(x) = dom ∂g∗ = {x ∈ Rn | ∂g∗(x) 6= ∅}.
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Proof. Let y ∈ ∂g(x) for some x ∈ Rn. Then x ∈ ∂g∗(y), which implies ∂g∗(y) 6= ∅,
and so y ∈ dom ∂g∗. A similar argument gives the opposite inclusion.

Remark 2.1.4. If we assume g is coercive and level-bounded, then dom ∂g∗ =
dom g∗ = Rn. The proof is given in [13].

Proposition 2.1.5. Let g : Rn → R be a proper lower semicontinuous convex func-
tion. Then v ∈ ∂g∗(y) if and only if

v ∈ argmin{g(x)− 〈y, x〉 : x ∈ Rn} (2.1.3)

Further, w ∈ ∂h(x) if and only if

w ∈ argmin{h∗(y)− 〈y, x〉 : y ∈ Rn} (2.1.4)

Proof. Suppose v ∈ argmin{g(x)− 〈y, x〉 : x ∈ Rn}. Then we see

0 ∈ ∂g(v)− y

This implies y ∈ ∂g(v), and we conclude v ∈ ∂g∗(y). Showing the other implication,
if v ∈ ∂g∗(y), then 0 ∈ ∂g(v)− y, which implies (2.1.3).
Similarly, we see that if w ∈ argmin{h∗(y)− 〈y, x〉 : y ∈ Rn}, then we have

0 ∈ ∂h∗(w)− x

Therefore, w ∈ ∂h(x). The proof that (2.1.4) implies w ∈ ∂h(x) is justified as
before.

2.1.2 Convergence of the DC Algorithm

In this section we develop some fundamental results regarding the convergence of the
DC Algorithm. The reader is referred to [6, 8, 17, 18] for a more extensive study on
DC programming.

Proposition 2.1.6. Let h : Rn → (−∞,∞] be γ-convex with x̄ ∈ dom(h). Then
v ∈ ∂h(x̄) if and only if

〈v, x− x̄〉+
γ

2
‖x− x̄‖2 ≤ h(x)− h(x̄) (2.1.5)

Proof. Let k : Rn → (−∞,∞] defined as k(x) = h(x)− γ
2
‖x‖2 be a convex function.

Given v ∈ ∂h(x̄) we apply the subdifferential sum rule to attain v ∈ ∂k(x̄) + γx̄,
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which implies v − γx̄ ∈ ∂k(x̄). By definition of subgradient we see

〈v − γx̄, x− x̄〉 ≤ k(x)− k(x̄) for all x ∈ Rn.

Therefore,

〈v, x− x̄〉 ≤ γ〈x̄, x〉 − γ〈x̄, x̄〉+ h(x)− γ

2
‖x‖2 − (h(x̄)− γ

2
‖x̄‖2)

≤ h(x)− h(x̄)− γ

2
(‖x‖2 − 2〈x, x̄〉+ ‖x̄‖2)

= h(x)− h(x̄)− γ

2
‖x− x̄‖2

We then obtain
〈v, x− x̄〉+

γ

2
‖x− x̄‖2 ≤ h(x)− h(x̄).

Conversely,

〈v, x− x̄〉 ≤ 〈v, x− x̄〉+
γ

2
‖x− x̄‖2 ≤ h(x)− h(x̄)

This implies v ∈ ∂h(x̄).

Proposition 2.1.7. Consider the f defined by (2.1.1) and the sequence {xk} gener-
ated by the DC algorithm. Let g be γ1-convex and h be γ2-convex. Then

γ1 + γ2

2
‖xk+1 − xk‖2 ≤ f(xk)− f(xk+1) for all k ∈ N (2.1.6)

Proof. Given yk ∈ ∂h(xk), we apply Proposition 2.1.6 to obtain

〈yk, xk+1 − xk〉+
γ2

2
‖xk+1 − xk‖2 ≤ h(xk+1)− h(xk)

Likewise, we have xk+1 ∈ ∂g∗(yk), which implies yk ∈ ∂g(xk+1). Therefore,

〈yk, xk − xk+1〉+
γ1

2
‖xk − xk+1‖2 ≤ g(xk)− g(xk+1)

The sum of these inequalities implies (2.1.6).

Lemma 2.1.1. Suppose h : Rn → R is a convex function with wk ∈ ∂h(xk) where
{xk} is a bounded sequence. Then {wk} is bounded.

Proof. Fix any x̄ ∈ Rn. Since {h(xk)} is bounded, by Corollary 1.0.28 there is δ > 0
and ` > 0 such that

|h(x)− h(y)| ≤ ` ‖x− y‖ whenever x, y ∈ B(x̄; δ).
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Now we show ‖w‖ ≤ ` whenever w ∈ ∂h(u) for u ∈ B(x̄; δ
2
).

Indeed,
〈w, x− u〉 ≤ h(x)− h(u) for all x ∈ Rn

Now choose positive η such that B(u; η) ⊂ B(x̄; δ). Then

〈w, x− u〉 ≤ h(x)− h(u) ≤ ` ‖x− u‖ whenever ‖x− u‖ ≤ η.

Thus, ‖w‖ ≤ `.
Let us suppose by way of contradiction that {wk} is not bounded. Then assume
‖wk‖ → ∞. By the Bolzano-Weierstrass theorem, the boundedness of {xk} implies
there is a subsequence {xkp} that converges to x0 ∈ Rn. But for Lipschitz constant
`′ > 0 of f around x0, we have ∥∥wkp∥∥ ≤ `′ for some p.

This contradicts our assumption, and a similar argument is given if ‖wk‖ → −∞.

Theorem 2.1.8. Let f be the function defined in (2.1.1) and the sequence {xk}
be generated by the DC algorithm. Then {f(xk)} is a decreasing sequence. Also
suppose f is bounded below, g is γ1-convex, and h is γ2-convex. If {xk} is bounded,
then every subsequential limit x̄ of the sequence {xk} is a stationary point of f . That
is, ∂g(x̄) ∩ ∂h(x̄) 6= ∅.

Proof. Since f is bounded below, from (2.1.6) it follows that f converges to a real
number. That is, f(xk) − f(xk+1) → 0 as k → ∞. Applying (2.1.6) again we see
‖xk+1 − xk‖ → 0. Suppose xk` → x̄ as `→∞ as `→∞. Let

yk ∈ ∂g(xk+1) for all k ∈ N.

Then by Lemma 2.1.1, {yk} is a bounded sequence. Suppose yk` → y as `→∞. By
observing that yk` ∈ ∂h(xk`) for all ` ∈ N, we now show

y ∈ ∂h(x̄).

Since 〈yk` , x− xk`〉 ≤ h(x)− h(xk`) for all x ∈ Rn and ` ∈ N, we have

〈yk` , x̄− xk`〉 ≤ h(x̄)− h(xk`)

Then h(xk`) ≤ 〈yk` , xk` − x̄〉 + h(x̄), which implies lim suph(xk`) ≤ h(x̄). Since h is
lower semicontinuous, h(xk`)→ h(x̄). Letting `→∞ we obtain y ∈ ∂h(x̄).
Confirming that y ∈ ∂g(x̄) follows a similar argument after observing xk`+1 → x̄ and
yk` ∈ ∂g(xk`+1). Thus, x̄ is a stationary point of f .
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2.2 Nesterov’s Smoothing Technique

In this section we study Nesterov’s smoothing technique with respect to nonsmooth
functions in Rn. The results in this section are based on Nesterov’s 2005 paper [14]
and are a part of a current project where we discuss the following results in Hilbert
spaces [12].

For the duration of this section, let A ∈ Rm×n. Given a nonempty closed bounded
convex subset Q of Rm and a continuous convex function φ : Rm → R, consider the
function f0 : Rn → R defined by

f0(x) := max{〈Ax, u〉 − φ(u) | u ∈ Q}, x ∈ Rn.

We define the norm of A as usual:

‖A‖ := sup
{
‖Ax‖

∣∣ ‖x‖ ≤ 1
}
.

It follows from the definition that ‖Ax‖ ≤ ‖A‖‖x‖ for all x ∈ Rn. The transpose of
A denoted by AT : Rm → Rn satisfies the identity

〈x,AT(y)〉 = 〈Ax, y〉 for all x ∈ Rn, y ∈ Rm,

Let us prove a well-known result that involves the norm of an m× n matrix.

Proposition 2.2.1. Given A ∈ Rm×n, we have ‖A‖ = ‖AT‖.

Proof. For any x ∈ Rn, one has

‖Ax‖ = sup
‖y‖≤1

〈Ax, y〉 = sup
‖y‖≤1

〈x,AT(y)〉 ≤ sup
‖y‖≤1

(‖x‖‖AT‖‖y‖) ≤ ‖AT‖‖x‖.

This implies ‖A‖ ≤ ‖AT‖. In addition, ‖AT‖ ≤ ‖(AT)T‖ = ‖A‖.

Proposition 2.2.2. Let ϕ : Rn → (−∞,∞] be strongly convex with parameter σ > 0.
Then

σ‖x1 − x2‖2 ≤ 〈v1 − v2, x1 − x2〉 (2.2.1)

whenever vi ∈ ∂ϕ(xi) for i = 1, 2.

Proof. Define g(x) := ϕ(x) − σ
2
‖x‖2 for x ∈ Rn. Then g is convex and by the

subdifferential sum rule

vi ∈ ∂g(xi) + σxi for i = 1, 2.
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By the definition of subdifferentials in the sense of convex analysis,

〈v1 − σx1, x2 − x1〉 ≤ g(x2)− g(x1),

〈v2 − σx2, x1 − x2〉 ≤ g(x1)− g(x2).

Adding these inequalities yields

〈v1 − v2 − σ(x1 − x2), x2 − x1〉 ≤ 0,

which implies (2.2.1).

Lemma 2.2.1. Let A ∈ Rm×n. Suppose that ϕ : Rm → R is a strongly convex
function with parameter µ > 0. Then the function µ : Rm → R defined by

f(x) := max{〈Ax, u〉 − ϕ(u) | u ∈ Q}

is well-defined and Fréchet differentiable with Lipschitz gradient with constant ` =
‖A‖2
µ

.

Proof. The subdifferential of the function f is given by

∂f(x) = {ATu(x)} for all x ∈ Rn,

where u(x) ∈ Rm denotes the unique element such that the maximum is attained in
the definition of f(x).

Let gx(u) = −〈Ax, u〉+ ϕ(u) + δ(x;Q). Then

0 ∈ ∂gx(u(x)) = −Ax+ ∂g(u(x)),

where g(x) := h(x) + δ(x;Q) is strongly convex with parameter µ. It follows that

Ax ∈ ∂g(u(x)). (2.2.2)

The function g is strongly convex with parameter µ, so its subdifferential is strongly
monotone in the sense that

µ‖x1 − x2‖2 ≤ 〈w1 − w2, x1 − x2〉 whenever wi ∈ ∂g(xi).

Using (2.2.2) gives

µ‖u(x1)− u(x2)‖2 ≤ 〈A(x1)− A(x2), u(x1)− u(x2)〉
= 〈x1 − x2, A

T(u(x1))− A>(u(x2))〉
≤ ‖x1 − x2‖‖AT(u(x1))− A>(u(x2))‖.
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It follows that

‖AT(u(x1))− AT(u(x2))‖2 ≤ ‖AT‖2‖u(x1)− u(x2)‖2

≤ ‖A‖
2

µ
‖x1 − x2‖‖AT(u(x1))− AT(u(x2))‖.

This implies

‖AT(u(x1))− AT(u(x2))‖ ≤ ‖A‖
2

µ
‖x1 − x2‖.

Thus, the subdifferential mapping ∂µ(·) is continuous, and so f is Fréchet differen-
tiable with ∂f(x) = {∇f(x)} = {ATu(x)}. In addition,

‖∇µ(x1)−∇µ(x2)‖ ≤ ‖A‖
2

µ
‖x1 − x2‖ for all x1, x2 ∈ Rn.

The proof is now complete.

Fix a constant µ > 0 and u0 ∈ Q. Consider the function fµ defined on Rn be

fµ(x) := max{〈Ax, u〉 − φ(u)− µ

2
‖u− u0‖2 | u ∈ Q}. (2.2.3)

Proposition 2.2.3. The function fµ given by (2.2.3) is Fréchet differentiable with
Lipschitz gradient on Rn. Its gradient is given by

∇fµ(x) = A>uµ(x).

The gradient fµ is Lipschitz continuous on Rn with Lipschitz constant ` = ‖A‖2
µ

. In
addition,

fµ(x) ≤ f0(x) ≤ fµ(x) +
µ

2
[D(u0;Q)]2 for all x ∈ Rn. (2.2.4)

Proof. Observe that the function ϕ(u) := φ(u) + µ
2
‖u− u0‖2 is strongly convex with

parameter µ. Thus, the fact that fµ is Fréchet differentiable with Lipschitz contin-
uous gradient follows from Lemma 2.2.1. The estimate (2.2.4) is straightforward.
Obviously, fµ(x) ≤ f0(x) for all x ∈ Rn. In addition,

f0(x) = max{〈Ax, u〉 − φ(u) | u ∈ Q}

= max{〈Ax, u〉 − φ(u)− µ

2
‖u− u0‖+

µ

2
‖u− u0‖ | u ∈ Q}

max{〈Ax, u〉 − φ(u)− µ

2
‖u− u0‖ | u ∈ Q}+ max{µ

2
‖u− u0‖ | u ∈ Q}

= fµ(x) + [D(u0;Q)]2.
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The proof is now complete.

In the next proposition, we consider a particular case of the function f0 where φ
is a linear function φ(u) = 〈b, u〉, where b ∈ Rn.

Proposition 2.2.4. In the setting of Proposition 2.2.3, consider the function φ given
by φ(u) = 〈b, u〉, where b ∈ Rn. Then the function fµ in has the explicit representation

fµ(x) =
‖Ax− b‖2

2µ
+ 〈Ax− b, ū〉 − µ

2

[
d(ū+

Ax− b
µ

;Q)
]2

and is continuously differentiable on Rn with its gradient given by

∇fµ(x) = A>uµ(x),

where uµ can be expressed in terms of the Euclidean projection

uµ(x) = P (ū+
Ax− b
µ

;Q).

Proof. We have

fµ(x) = sup{〈Ax− b, u〉 − µ

2
‖u− ū‖2 | u ∈ Q}

= sup{−µ
2

(
‖u− ū‖2 − 2

µ
〈Ax− b, u〉

)
| u ∈ Q}

= −µ
2

inf{‖u− ū− Ax− b
µ
‖2 − ‖Ax− b‖

2

µ2
− 2

µ
〈Ax− b, ū〉 | u ∈ Q}

=
‖Ax− b‖2

2µ
+ 〈Ax− b, ū〉 − µ

2
inf{‖u− ū− Ax− b

µ
‖2 | u ∈ Q}

=
‖Ax− b‖2

2µ
+ 〈Ax− b, ū〉 − µ

2

[
d(ū+

Ax− b
µ

;Q)
]2
.

Since the function ψ(u) := [d(u;Q)]2 is continuously differentiable with ∇ψ(u) =
2[u−P (u;Q)] for all u ∈ Rm (see, e.g., [5, p. 186]), it follows from the chain rule that

∇fµ(x) =
1

µ
A>(Ax− b) + A>ū− µ

2

[
2

µ
A>
(
ū+

Ax− b
µ

− P (ū+
Ax− b
µ

;Q)

)]
= A>P (ū+

Ax− b
µ

;Q).

The proof is now complete.



Chapter 3

The Fermat-Torricelli Problem

In this section we give a brief survey of the classical Fermat-Torricelli problem then
introduce the constrained version. Detailed proofs are given and we solve the prob-
lem using the distance penalty method, Nesterov’s smoothing technique, and DC
programming. In addition, we introduce an algorithm for solving the constrained
problem.

3.1 The Original Problem

The precise statement of the Fermat-Torricelli problem is as follows: Given a finite
set A := {a1, . . . , am} ⊂ Rn,

minimize f(x) :=
m∑
i=1

‖x− ai‖ subject to x ∈ Rn. (3.1.1)

Remark 3.1.1. Recall f is convex. Further, f is continuous.

3.1.1 Existence and Uniqueness of Solutions

Let us discuss the existence and uniqueness of solutions to this problem.

20
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Figure 3.1.1: The geometric construction for solving the classical problem raised by
Fermat. If 4ABC has an angle greater than or equal to 120◦, then the corresponding
vertex is the solution.

Proposition 3.1.2. The solution set of the Fermat-Torricelli problem (3.1.1) is
nonempty.

Proof. First, let m = inf{f(x) : x ∈ Rn}. Then choose a sequence {xk}∞k=1 ⊂ Rn

such that limk→∞ f(xk) = m. By the definition of convergence, we can find K ∈ N
such that ‖xk − a1‖ ≤ f(xk) < m + 1 whenever k ≥ K. Then ‖xk‖ ≤ m + ‖a1‖ + 1
whenever k ≥ K. Thus, {xk}∞k=1 is bounded, so it has a convergent subsequence
{xkl}∞l=1 that converges to some x̄ ∈ Rn. Then by the continuity of f , we have

f(x̄) = lim
l→∞

f(xkl) = m.

Thus, x̄ is an optimal solution to the problem.

Proposition 3.1.3. If A is not collinear, then the function f from (3.1.1) is strictly
convex and the Fermat-Torricelli problem has a unique solution.

Proof. Define fi : Rn → R by fi(x) := ‖x− ai‖ for each ai ∈ A. Then f =
∑m

i=1 fi is
convex. By way of contradiction, suppose f is not strictly convex. Then there exist
x, y ∈ Rn, where x 6= y, such that for any λ ∈ (0, 1) we have f(λx + (1 − λ)y) =
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λf(x) + (1− λ)f(y). It follows that

‖λ(x− ai) + (1− λ)(y − ai)‖ = ‖λ(x− ai)‖+ ‖(1− λ)(y − ai)‖ for ai ∈ A.

Suppose x − ai 6= 0 and y − ai 6= 0. Then for each i = 1, . . . ,m there is ti > 0 such
that tiλ(x− ai) = (1− λ)(y − ai). Let γi = 1−λ

tiλ
. Solving for ai we obtain

ai =
1

1− γi
x− γi

1− γ
y ∈ L(x, y),

where L(x, y) is the line connecting x and y. In the case where x = ai or y = ai, it is
obvious that ai ∈ L(x, y). Thus, we have arrived at a contradiction.

3.1.2 Weiszfeld’s Algorithm

For the duration of this section we assume the points in A are not collinear. Given f
from (3.1.1) we have

∇f(x) =
m∑
i=1

x− ai
‖x− ai‖

, x /∈ A.

Solving the equation ∇f(x) = 0 we obtain

x =

∑m
i=1

ai
‖x−ai‖∑m

i=1
1

‖x−ai‖
. (3.1.2)

Then we define F (x) := x as in (3.1.2) for x ∈ A.
Weiszfeld’s Algorithm.

INPUT: Given A = {a1, a2, ..., am} ⊂ Rn, x0 ∈ Rn and N ∈ N
for k = 0, 1, . . . , N do

xk+1 = F (xk)
end for
OUTPUT: xN+1

Proposition 3.1.4. If F (x) 6= x, then f(F (x)) < f(x).

Proof. We assume x is not a vertex. Further, we see F (x) is the unique minimizer of

the g(z) :=
∑m

i=1
‖z−ai‖2
‖x−ai‖ . Note g is strictly convex and that F is the unique minimizer.
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Thus, g(F (x)) < g(x) = f(x). But we need to show f(F (x)) < f(x). Indeed,

g(F (x)) =
m∑
i=1

‖F (x)− ai‖2

‖x− ai‖
=

m∑
i=1

(‖x− ai‖+ ‖F (x)− ai‖ − ‖x− ai‖)2

‖x− ai‖

= 2f(F (x)) +
m∑
i=1

(‖F (x)− ai‖ − ‖x− ai‖)2

‖x− ai‖
.

This implies f(F (x)) < f(x).

Proposition 3.1.5. Let Rk :=
∑m

i=1,i 6=k
ai−ak
‖ai−ak‖

, where each aj ∈ A. Then the vertex

ak is the optimal solution of the problem (3.1.1) if and only if

‖Rk‖ ≤ 1.

Proof. By proposition 1.0.22, we have that ak is an optimal solution if and only if

0 ∈ ∂f(ak) = −Rk + B.

Equivalently, we have ‖Rk‖ ≤ 1.

Proposition 3.1.6. Suppose ak is not the optimal solution and x is not a vertex.
Then there exists δ > 0 such that 0 < ‖x− ai‖ ≤ δ. Further, this implies there exists
a positive integer n such that∥∥F n−1(x)− ak

∥∥ ≤ δ < ‖F n(x)− ak‖ .

Proof. It follows from the mapping defining F that

F (x)− ak =

∑m
i=1,i 6=k

ai−ak
‖x−ai‖∑m

i=1
1

‖x−ai‖

It follows that limx→ak
F (x)−ak
‖x−ak‖

= Rk. Further, by proposition 3.1.5 we obtain

lim
x→ak

‖F (x)− ak‖
‖x− ak‖

= ‖Rk‖ > 1.

Therefore, we have ε > 0 and δ > 0 such that

‖F (x)− ak‖
‖x− ak‖

> 1 + ε whenever 0 < ‖x− ak‖ < δ.
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We now have the necessary tools for understanding Kuhn’s statement and proof
on the convergence of Weiszfeld’s algorithm.

Theorem 3.1.7. Let {xk}∞k=1 be the sequence formed by Weiszfeld’s algorithm. Sup-
pose that xk /∈ A for k ∈ N. Then {xk}∞k=1 converges to the unique solution of the
problem (3.1.1).

Proof. The proof is omitted and the reader is referred to [10].

3.2 The Constrained Problem

Now that we are familiar with the Fermat-Torricelli problem, let us introduce the
constrained Fermat-Torricelli problem. This is a new problem, as such the results in
the remainder of this chapter still being developed. The temporary citation for our
work is [12] in the bibliography.

Let {Ωi}pi=1 ⊂ Rn be a collection of convex sets. Our new problem is as follows:

minimize f(x) :=
m∑
i=1

‖x− ai‖ subject to x ∈
p⋂
i=1

Ωi. (3.2.1)

Figure 3.2.1: We solve for a point x contained in the intersection of a finite collection
of convex sets such that the sum of distances between x and each ai ∈ A is minimal with
respect to the intersection.
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The distance penalty method allows us to reformulate (3.2.1) into an uncon-
strained optimization problem (see, e.g., [15, sec.17.1], [7]). Let λ > 0 be the penalty
constant. Then we have the following:

minimize fλ(x) =
m∑
i=1

‖x− ai‖+
λ

2

p∑
i=1

d(x; Ωi)
2 x ∈ Rn. (3.2.2)

Computationally, this is much more feasible. Recall that ∇[d(x; Ω)]2 = 2[x−P (x; Ω)].
We then obtain

∇fλ(x) =
m∑
i=1

x− ai
‖x− ai‖

+ λ

p∑
i=1

[
x− P (x; Ωi)

]
Solving the equation ∇fλ(x) = 0 ,we have

x =

∑m
i=1

ai
‖x−ai‖ + λ

∑p
i=1 P (x; Ωi)∑m

i=1
1

‖x−ai‖ + λp

Then for x ∈ A = {a1, . . . , am} define Fλ(x) := x.
We introduce the following algorithm: choose a starting point x1 ∈ Rn and define

xk+1 = Fλ(xk) for k ∈ N. (3.2.3)

To increase the accuracy of the algorithm, we incrementally increase λ with each
iteration.

New Weiszfeld’s Algorithm.

INITIALIZE: x0 ∈ H, µ0 > 0, σ > 1.
Set k = 0.
Repeat the following
Let λ := µk and let y := xk

Repeat
y := Fλ(y)

Until a stoping criterion is satisfied
Set k := k + 1
Update xk := y and µk := σλ.

Until a stoping criterion is satisfied.

Define g : (Rn \ A)× Rn → R by

gλ(x, y) =
m∑
i=1

‖y − ai‖2

‖x− ai‖
+ λ

p∑
j=1

‖y − P (x; Ωj)‖2 − λ

2

p∑
j=1

[d(x; Ωj)]
2
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Lemma 3.2.1. We have the following properties:
(i) gλ(x, x) = f(x).
(ii) y = argminy∈Rngλ(x, y) if and only if y = Fλ(x).
(iii) gλ(x, y) ≥ 2fλ(y)− fλ(x).

Proof. The assertion (i) follows from the identity ‖x− P (x; Ωj)‖ = d(x; Ωj) for x ∈
Rn. To show (ii), note that for a fixed x /∈ A, the mapping y 7→ gλ(x, y) is smooth and
strictly convex. Therefore, y is its unique minimizer on Rn if and ony if ∇gλ(x, y) = 0.
To show the converse, note

∇ygλ(x, y) = 2
m∑
i=1

y − ai
‖x− ai‖

+ 2λ

p∑
j=1

(y − P (x; Ωj)) .

Solving ∇ygλ(x, y) = 0 yields y = Fλ(x). It remains to prove (iii). Using the inequal-

ity a2

b
≥ 2a− b for any two positive numbers a and b, we have

m∑
i=1

‖y − ai‖2

‖x− ai‖
≥ 2

m∑
i=1

‖y − ai‖ −
m∑
i=1

‖x− ai‖. (3.2.4)

Observe that ‖y − P (x; Ωj)‖ ≥ ‖y − P (y; Ωj)‖ = d(y; Ωj), then

λ

p∑
j=1

‖y − P (x; Ωj)‖2 − λ

2

p∑
j=1

[d(x; Ωj)]
2 ≥ λ

2

p∑
j=1

2[d(y; Ωj)]
2 − λ

2

p∑
j=1

[d(x; Ωj)]
2.

(3.2.5)
The result from summing (3.2.4) and (3.2.5) implies (iii).

Proposition 3.2.1. Let {xk} be the sequence generated by the method given in
(3.2.3). Assume that {xk}∩A = ∅, then the sequence {fλ(xk)} is monotone decreas-
ing. Moreover, fλ(xk+1) = fλ(xk) if and only if xk is a minimizer of fλ on Rn.

Proof. First we show that if Fλ(x) 6= x for each x ∈ Rn \ A, then fλ (Fλ(x)) < fλ(x).
Note y 7→ gλ(x, y) is a strictly convex; then by Lemma 3.2.1(ii), its unique minimizer
on Rn is Fλ(x). Now suppose Fλ(x) 6= x. Then

gλ(x, Fλ(x)) < gλ(x, x) = fλ(x),

where the equality follows from Lemma 3.2.1(i). Now by invoking Lemma 3.2.1(iii),
we have

gλ(x, Fλ(x)) ≥ 2fλ(Fλ(x))− fλ(x).

Combining the above estimates yields the desired strict monotonicity. Recall that for
x /∈ A, ∇fλ(x) = 0 if and only if x = Fλ(x), the conclusion now follows.
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Proposition 3.2.2. Define,

Rk =
m∑

i=1,i 6=k

ai − ak
‖ak − ai‖

+ λ

p∑
j=1

[P (ak; Ωj)− ak] .

The point ak is a minimizer of fλ if and only if

‖Rk‖ ≤ 1.

Proof. By the subdifferential Fermat rule in convex analysis, ak is a minimizer of fλ
if and only if

0 ∈ ∂fλ(ak) = −Rk + B.

This is equivalent to ‖Rk‖ ≤ 1.

Lemma 3.2.2. If ak is not a minimizer of fλ on Rn, then there exists δ > 0 such
that for any x ∈ B(ak; δ) \ {ak}. Further, there exists a positive integer s satisfying

‖F s−1
λ (x)− ak‖ ≤ δ and ‖F s

λ(x)− ak‖ > δ,

with convention that F 0
λ (x) = x.

Proof. For any x /∈ A, we have

Fλ(x)− ak =

∑m
i=1,i 6=k

ai−ak
‖x−ai‖ + λ

∑p
j=1 [P (x; Ωj)− ak]

λp+
∑m

i=1
1

‖x−ai‖
.

By the continuity of the projection mappings onto convex sets, we have

lim
x→ak

Fλ(x)− ak
‖x− ak‖

= lim
x→ak

∑m
i=1,i 6=k

ai−ak
‖x−ai‖ + λ

∑p
j=1 [P (x; Ωj)− ak]

λp‖x− ak‖+ 1 +
∑m

i=1,i 6=k
‖x−ak‖
‖x−ai‖

= Rk. (3.2.6)

By our assumption ak is not a minimizer of fλ; we invoke Proposition 3.2.2 to obtain
the inequality

lim
x→ak

‖Fλ(x)− ak‖
‖x− ak‖

= ‖Rk‖ > 1.

Now set ε = ‖Rk‖−1
2

> 0, then there exists δ > 0 such that

‖Fλ(x)− ak‖ > (1 + ε)‖x− ak‖ whenever 0 < ‖x− ak‖ ≤ δ.

It follows that for each x ∈ B(ak; δ) \ {ak}, there must exist a positive integer s such
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that F s(x) /∈ B(ak; δ). Suppose the contrary, then by induction we have

‖F s
λ(x)− ak‖ > (1 + ε)‖F s−1

λ (x)− ak‖ ≥ . . . ≥ (1 + ε)s‖x− ak‖ ≤ δ for each s.

This is a contradiction due to (1+ε)s →∞ as s→∞. This completes the proof.

Proposition 3.2.3. Let {xk} be the sequence generated by the method given in
(3.2.3). If xk /∈ A for all k, then every cluster point of {xk} is a minimizer of fλ on
Rn. Moreover, if the anchors are not collinear, then {xk} converges to the unique
minimizer of fλ on Rn.

Proof. Let S be the solution set of (3.2.2). In the case where xK = xK+1 for some
K, we have that xk is a constant sequence for k ≥ K . Thus, it converges to xK .
Since F (xK) = xK and xK is not a vertex, xK is a minimizer. So we can assume that
xk+1 6= xk for every k. By Proposition 3.2.1, the sequence {fλ(xk)} is nonnegative
and decreasing, so it converges. It follows that

lim
k→∞

(fλ(xk)− fλ(xk+1)) = 0. (3.2.7)

Observe that fλ is coercive, for any initial point x0, the sequence {xk} is bounded
because {xk : k ∈ N} is a subset of the bounded set {x ∈ Rn : f(x) ≤ f(x0)}. Let
{xk`} be any convergent subsequence of {xk} whose limit denoted by x̄. It remains
to prove that x̄ ∈ S. By (3.2.7),

lim
k→∞

(fλ(xk`)− fλ(Fλ(xk`))) = 0.

Using the continuity of fλ and the mapping Fλ, we have fλ(x̄) = fλ (Fλ(x̄)). If
x̄ /∈ A, from the proof of Proposition 3.2.1, we can conclude that x̄ ∈ S. If x̄ ∈ A,
without loss of generality, assume x̄ = a1. Suppose by contradiction that x̄ = a1 /∈ S.
Choose δ > 0 sufficiently small such that the property in Lemma 3.2.2 holds and
B(a1; δ) ∩ [S ∪ {a2, . . . , am}] = ∅. Since xk` → a1, we can assume without loss of
generality that this subsequence is contained in the ball B(a1; δ).

Recall that the original sequence {xk} is defined by xk+1 = Fλ(xk). For x = xk1 ,
we can choose q1 such that xq1 ∈ B(a1; δ) and F (xq1) /∈ B(a1; δ). Choose an index
k` with k` > q1 and apply Lemma 3.2.2, we find q2 > q1 such that xq2 ∈ B(a1; δ)
and F (xq2) /∈ B(a1; δ). Repeating this procedure, we construct another subsequence
{xq`} of {xk} satisfying xq` ∈ B(a1; δ) and F (xq`) /∈ B(a1; δ) for all `. Extracting a
further subsequence, we can assume that xq` → y ∈ B(a1; δ). By the argument that
has been used above, fλ(y) = fλ (Fλ(y)). From this, if y /∈ A, then y ∈ S which is a
contradiction because B(a1; δ)∩S = ∅. Thus y ∈ A and thus it must be a1. Then by
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the boundedness of {xk}, we have

lim
`→∞

‖F (xq`)− a1‖
‖xq` − a1‖

=∞.

This contradicts (3.2.6). Thus x̄ = a1 ∈ S and the proof is complete.

3.2.1 Solving with Nesterov’s Accelerated Gradient Method

We now use an alternative algorithm for solving the auxiliary problem (3.2.2). Let
f : Rn → R be a convex function with Lipschitz gradient. That is, there exists ` ≥ 0
such that ‖∇f(x) − ∇f(y)‖ ≤ `‖x − y‖ for all x, y ∈ Rn. Let Ω be a nonempty
closed convex set. Yu. Nesterov (1983, 2005) considered the optimization problem

min
{
f(x) : x ∈ Ω

}
. (3.2.8)

Define TΩ(x) := argmin
{
〈∇f(x), y − x〉+ `

2
‖x− y‖2 : y ∈ Ω

}
. Let d be a continuous

and strongly convex function on Ω with modulus σ > 0. The function d is called a
prox-function of the set Ω. Since d is a strongly convex function on the set Ω, it has
a unique minimizer on this set. Denote x0 = argmin{d(x) : x ∈ Ω}. Then Nesterov’s
accelerated gradient algorithm for solving (3.2.8) is outlined as follows.

INPUT: f , `, x0 ∈ Ω
set k = 0
repeat

find yk := TΩ(xk)

find zk := argmin
{
`
σd(x) +

∑k
i=0

i+1
2 [f(xi) + 〈∇f(xi), x− xi〉] : x ∈ Ω

}
set xk := 2

k+3z
k + k+1

k+3y
k

set k := k + 1
until a stopping criterion is satisfied.
OUTPUT: yk.

In the case where the objective function in (3.2.8) is nonsmooth but has a par-
ticular form, Nesterov made use of the special structure of f to approximate it by a
convex function with Lipschitz continuous gradient and then applied his accelerated
gradient method to minimize the smooth approximation.

Observe that

fi(x) = ‖x− ai‖ = sup{〈x− ai, u〉 : u ∈ B}.

Applying Proposition 2.2.4 with ū = 0 ∈ Q = B, ϕ(u) = 〈ai, u〉 and A is the identity
mapping, a smooth approximation of fi is given by
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fi,µ(x) =
‖x− ai‖2

2µ
− µ

2

[
d(
x− ai
µ

;B)
]2
.

Therefore, the function fλ in (3.2.2) has the following smooth approximation

fλ,µ(x) =
1

2µ

m∑
i=1

‖x− ai‖2 − µ

2

m∑
i=1

[
d(
x− ai
µ

;B)
]2

+
λ

2

p∑
j=1

[d(x; Ωj)]
2,

with its gradient given by

∇fλ,µ(x) =
m∑
i=1

P (
x− ai
µ

;B) + λ

p∑
j=1

[x− P (x; Ωj)].

This ∇fλ,µ is a Lipschitz function whose constant is

` =
m

µ
+ λp.

Moreover, we have the following estimate

fλ,µ(x) ≤ fλ(x) ≤ fλ,µ(x) +
mµ

2
.

Applying the Nesterov’s accelerated gradient method, we have the following pseudo
code for solving the auxiliary problem (3.2.2).
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Algorithm 1 AGM(fλ,µ, x
0)

INPUT: A = {a1, . . . , am}, constrained sets Ωj for j = 1, . . . , p,
λ > 0, sufficiently small µ > 0 and initial point x0 ∈ Rn.

OUTPUT: yk that approximately solve (3.2.2).

Compute ` =
m

µ
+ λp.

Set k:=0.
repeat

Compute ∇fλ,µ(xk) =
∑m

i=1 P (
xk − ai
µ

;B) + λ
∑p

j=1[xk − P (xk; Ωj)].

Find yk := xk − 1
`
∇fλ,µ(xk).

Find zk := x0 − 1
`

∑k
i=0

i+ 1

2
∇fλ,µ(xi).

Set xk+1 :=
2

k + 3
zk +

k + 1

k + 3
yk.

Set k := k + 1.
until a stopping criterion is satisfied.
return: yk.

To solve the original problem (3.2.1), we often gradually decrease the smooth
parameter µ and increase the penalty parameter λ. The general scheme is outlined
as follows.

Algorithm 2 AGMDPM(f)

INPUT: A = {a1, . . . , am}, constrained sets Ωj for j = 1, . . . , p,
parameters µ0 > 0, λ0 > 0, σ > 1, γ ∈ (0, 1) and initial point x0.

OUTPUT: xk that approximately solve (3.2.1).
Set k = 0.
repeat

Set λ := λk, µ := µk, ` =
m

µ
+ λp, y := xk, x0 := y

Compute y := AGM(fλ,µ, x
0).

Set k := k + 1
Set xk := y, µk := γµ, λk := σλ.

until a stopping criterion is satisfied.
return: xk.

Let f(x) :=
∑m

i=1 ‖x− ai‖, P (x) := 1
2

∑p
j=1[d(x; Ωj)]

2.

fµ(x) :=
1

2µ

m∑
i=1

‖x− ai‖2 − µ

2

m∑
i=1

[
d(
x− ai
µ

;B)
]2
.
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Algorithm 2 SDPM(f)

Input: Parameters sequences {λk}, {µk}.
Set k:=0
repeat

Let Qk(x) = fµk(x) + λkP (x), x∗k = argminx∈Rn Qk(x) and Lk = m
µk

+ pλk.

Using Nesterov’s accelerated gradient method to compute xk such that Qk(xk) ≤ Qk(x∗k) +
τ2k

2Lk
with the initial point xk−1.
Set k := k + 1

until a stopping criterion is satisfied.
Output: xk.

3.2.2 Solving the Fermat-Torricelli Problem via the DCA

Let F be a nonempty closed convex set that contains the origin in its interior. Con-
sider the Minkowski function associated with F defined by

ρF (x) := inf{t > 0 : x ∈ tF}.

Given a finite number of points ai with the associated weights ci for i = 1, . . . ,m,
consider the function

ϕ(x) :=
m∑
i=1

ciρF (x− ai). (3.2.9)

Then the mathematical model of the weighted constrained Fermat-Torricelli problem
is

minimize ϕ(x) subject to x ∈
p⋂
i=1

Ωi, (3.2.10)

where Ωi for i = 1, . . . , p are nonempty closed subsets of Rn.

We use this general version of the constrained Fermat-Torricelli problem for the re-
mainder of this thesis. Our methods are based on the DCA and the Distance Penalty
Method.

The objective function (3.2.9) can be rewritten as follows

ϕ(x) =
∑
i∈I

αiρF (x− ai)−
∑
j∈J

βjρF (x− aj),

where I := {i = 1, . . . ,m : ci > 0} and J := {i = 1, . . . ,m : ci < 0}, αi = ci for i ∈ I
and βj = −cj for j ∈ J .
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We reformulate the problem (3.2.10) using the Distance Penalty Method as follows

minimize ψ(x) :=
∑
i∈I

αiρF (x− ai)−
∑
j∈J

βjρF (x− aj) +

p∑
i=1

λ

2
[d(x; Ωi)]

2. (3.2.11)

Given a nonempty bounded set K, the support function associated with K is given
by

σK(x) := sup{〈x, y〉 : y ∈ K}.

It follows from the definition of the Minkowski function (see, e.g., [4, Proposition 2.1])
that ρF (x) = σF ◦(x), where

F ◦ := {y ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ F}.

In the proposition below, we consider a version of Nesterov’s smooth approxima-
tion for the Minkowski function in Rn.

Proposition 3.2.4. (DC decomposition of the Minkowski gauge). Given any
a ∈ Rn and µ > 0, a Nesterov smoothing approximation of ϕ(x) := ρF (x− a) has the
representation

ϕµ(x) =
1

2µ
‖x− a‖2 − µ

2

[
d(
x− a
µ

;F ◦)
]2
.

Moreover, ∇ϕµ(x) = P (x−a
µ

;F ◦) and

ϕµ(x) ≤ ϕ(x) ≤ ϕµ(x) +
µ

2
‖F ◦‖2, (3.2.12)

where ‖F ◦‖ := sup{‖u‖ : u ∈ F}.

Proof. The function ϕ can be represented as

ϕ(x) = σF ◦(x− a) = sup{〈x− a, u〉 | u ∈ F ◦}.

Using the prox-function d(x) = 1
2
‖x‖2 in [14], one obtains a smooth approximation
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of ϕ given by

ϕµ(x) := sup{〈x− a, u〉 − µ

2
‖u‖2 | u ∈ F ◦}

= sup{−µ
2

(‖u‖2 − 2

µ
〈x− a, u〉) | u ∈ F ◦}

= sup{−µ
2
‖u− 1

µ
(x− a)‖2 +

1

2µ
‖x− a‖2 | u ∈ F ◦}

=
1

2µ
‖x− a‖2 − µ

2
inf{‖u− 1

µ
(x− a)‖2 | u ∈ F ◦}

=
1

2µ
‖x− a‖2 − µ

2

[
d(
x− a
µ

;F ◦)
]2
.

The formula for computing the gradient of ϕµ follows from the gradient formulas
for the squared Euclidean norm and the squared distance function generated by a
nonempty closed convex set: ∇d2(x; Ω) = 2[x − P (x; Ω)]. Estimate (3.2.12) can be
proved directly; see also [14]. This completes the proof.

Proposition 3.2.5. Consider the function f define by

f(x) :=
m∑
i=1

ρF (x− ai).

Then a smooth approximation of the function f is given by

fµ(x) :=
m∑
i=1

1

2µ
‖x− ai‖2 −

m∑
i=1

µ

2

[
d(
x− a
µ

;F ◦)
]2
.

Moreover,

fµ(x) ≤ f(x) ≤ fµ(x) +
mµ

2
‖F ◦‖2.

Proposition 3.2.6. (DC decomposition of the square distance function).
Let Ω be a nonempty closed convex set in Rn. Then the square distance function
associated with Ω has the following DC decomposition

[d(x; Ω)]2 = ‖x‖2 − ϕΩ(x),

where ϕΩ(x) := 2 sup{〈x,w〉 − 1
2
‖w‖2 : w ∈ Ω} is a differentiable function with

∇ϕΩ(x) = 2P (x; Ω).
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Proof. We have

[d(x; Ω)]2 = inf{‖x− w‖2 : w ∈ Ω}
= inf{‖x‖2 − 2〈x,w〉+ ‖w‖2 : w ∈ Ω}
= ‖x‖2 + inf{‖w‖2 − 2〈x,w〉 : w ∈ Ω}
= ‖x‖2 − sup{〈2x,w〉 − ‖w‖2 : w ∈ Ω}

It follows from the representation of [d(x; Ω)]2 above that

ϕΩ(x) = ‖x‖2 − [d(x; Ω)]2.

Note that the function ψ(x) := [d(x; Ω)]2 is differentiable with∇ψ(x) = 2[x−P (x; Ω)].
Then function ϕΩ is differentiable with

∇ϕΩ(x) = 2x− 2[x− P (x; Ω)] = 2P (x; Ω),

which completes the proof.

We are now ready obtain a DC decomposition based on Nesterov’s smoothing
technique for the problem.

Proposition 3.2.7. The objective function in (3.2.11) admits the following DC
smooth approximation

fµ(x) = gµ(x)− hµ(x),

where

gµ(x) :=
pλ

2
‖x‖2 +

∑
i∈I

αi
2µ
‖x− ai‖2

and

hµ(x) :=
λ

2

p∑
i=1

ϕΩi(x) +
∑
j∈J

cj
µ

2

[
d(
x− aj
µ

;F ◦)
]2

+
∑
j∈J

βjρF (x− aj).

In this formulation, it is ready to apply the DCA.
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Algorithm 3 DCA

INPUT: points ai ∈ A for i ∈ I and aj ∈ A for j ∈ J , constrained sets Ωj for j = 1, . . . , p,
λ > 0, sufficiently small µ > 0 and initial point x0 ∈ Rn.

OUTPUT: xk that approximately solve (3.2.2).
Set k:=0.
repeat

Compute yk ∈ ∂hµ(xk)

Find xk+1 := ∇g∗µ(yk) =
yk+

∑
i∈I

αiai
µ

pλ
∑
i∈I

αi
µ

Set k := k + 1.
until a stopping criterion is satisfied.
return: xk.

To implement this algorithm, it is required to find yk ∈ ∂hµ(xk). By the subdif-
ferential sum rule,

∂hµ(x) = λ

p∑
i=1

P (x; Ωi) +
∑
j∈J

cj
[x− aj

µ
− P (

x− aj
µ

;F ◦)
]

+
∑
j∈J

βj∂ρF (x− aj).

The subdiffential formula of the Minkowski function is given by

∂ρF (x) =

{
{v ∈ Rn : ρF ◦(v) = 1, 〈v, x〉 = ρF (x)} x 6= 0,
F ◦ x = 0.

For example, in the case where F = B, the closed unit ball of Rn,

∂ρF (x) =

{ { x
‖x‖

}
x 6= 0,

F x = 0.
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