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Abstract: A new approach method has been studied for the efficient and accurate prediction of high-
entropy alloys (HEAs) properties. The artificial neural network (ANN) algorithm was employed
to predict the mechanical properties such as yield strength, microstructure, and elongation of the
alloy by training from the mole fraction and post-process information that has an influence on
the mechanical properties. The mean error rate of prediction for the yield strength was 19.6%.
Microstructure predictions were consistent for all test data. On the other hand, the ANN model
trained only with mole fraction data had a yield strength prediction error of 33.9%. Omission of
post-process data caused a decrease in the accuracy. In addition, the prediction was performed with
the lasso regression model in the same way. The mean error rate of the lasso model trained with only
a mole fraction was 26.1%. The lasso model trained with a mole fraction and post-process data had a
yield strength prediction error of 31.1%. The linear regression equation showed limitations, as the
accuracy decreased as the number of independent variables increased. As there are more variables
affecting metal properties, the ANN approach is more advantageous, and the more data there are,
the more accuracy increases, making it possible to design HEAs alloys that are simpler and more
efficient than conventional methods. This approach predicted HEAs properties using only mole
fraction and post-processing information, without the need to use conventional physicochemical
theories or perform derived complex calculations.

Keywords: prediction; properties; high-entropy alloys; yield strength; microstructure; artificial
neural network

1. Introduction

High-entropy alloys (HEAs) are alloys that are formed by mixing equal or relatively
large proportions of usually five or more elements. HEAs systems are in contrast to
traditional alloys, which contain just one or two primary constituent chemical species.
As a result of their unique microstructure and properties, these HEAs have attracted the
research interest of the scientific community and have been under development. However,
there are thousands of combinations for experiments with all elements including mole
fractions. It is impossible to carry out experiments in all cases. An empirical design
through trial and error has been replaced by computer-based alloy designs. In terms of the
formulation and accuracy of the predictive model, most of it comes from experimental data,
which requires a significant amount of experimental input. HEAs have been generally
known to require high entropy to obtain a stable phase of a single solid solution [1].
Atomic size mismatch, mixed enthalpy, valence electron concentration, and thermodynamic
parameters have been studied for the purpose of predicting these HEA properties [2–5].
The calculation of phase diagram (CALPHAD) which consists of thermodynamic databases
from extensive experimental and thermodynamic calculations based on Gibbs free energy
has been studied [6–8]. The molecular dynamics simulation method also has been used to
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predict alloy properties [9]. The method of predicting properties through thermodynamic
calculations requires calculating various indices that determine HEA properties such as the
parameters of the entropy of mixing, enthalpy of mixing, atomic size difference, valence
electron concentration, Allen, and Pauling electronegativity every time the component ratio
changes [10]. However, these methods do not always derive accurate results. In addition,
calculations require exclusive software or equipment.

In this study, based on the ANN algorism, we propose an efficient framework for
selecting the optimal component elements and post-process conditions in the most im-
portant step, HEA design. Research on efficient alloy design by machine learning has
been performed. Manzoor et al. [11] used machine learning and density functional theory
calculations to predict the vibrational entropy of FCC solids and reduce complex computa-
tions. Zhang et al. [12] studied the prediction accuracy of the phase formation problem of
HEAs using genetic algorithms. Pei et al. [13] predicted 93% of the formation of the solid
solution by machine learning. HEA is being studied not only in the metallurgical industry
but also in the medical field because of its superior properties such as high strength, high
ductility, corrosion resistance, and thermal stability compared to other alloys [14–16]. If
the mole fraction of elements and process conditions required to obtain the properties of
HEA can be known in advance, the number of experiments can be reduced in the design
stage. As input data for ANN learning, mole fraction and post-process data were used.
In order to improve the model prediction performance even with a small dataset, the
accuracy was verified through the model optimization process. The ANN prediction model
showed a similar prediction tendency to the linear regression method compared to the
lasso regression model, and the effects of variables on the alloy properties were compared.
As the number of variables and data increased, the ANN prediction model made more
accurate predictions. This methodology greatly simplifies calculation and opens a new way
to predict the properties of HEA with less data, which can be utilized to predict properties
in advance through alloy design.

2. Methodology
2.1. HEAs Data Information

From the reference [9,14–37], the experimental data for various HEAs were collected
to train the model for predicting HEA characteristics. The collected data are mole fraction,
post-process information, yield strength, phase, and elongation. There are two groups of
HEA: the refractory metal group consisting of Al, Hf, Nb, Ta, Ti, Zr, V, Mo, and W, and
the transition group containing Al, Co, Cr, Fe, Ni, Cu, and Mn. All data were obtained
after the casting process. Post-process data were arranged in order heat treatment, cooling
condition, cold-roll conditions, hot-roll conditions, heat treatment, forging condition, hot
isostatic pressing (HIP) conditions, and heat treatment. For the post-process that did not
proceed, the 0 value was put. The reason that the heat treatment condition is in three
columns is that there are cases in which heat treatment is performed after each post-process
is finished. These post-process and mole fraction data were used as input data for training
the ANN prediction model. Yield strength, elongation, and microstructure were set as the
output data to predict. The training data set was a total of 36 data. After the model was
derived, 8 test data were used to evaluate the accuracy of metal group data. All data are
shown in Table 1.
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Table 1. Collected data set of high-entropy alloys mole fraction with post-process conditions and properties results data
used for input and output in an artificial neural network prediction model.

No., [Ref] Alloy
Elements Mole Fraction (at %) Properties of Alloy

Al Co Cr Fe Ni Cu Mn Hf Nb Ta Ti Zr V Mo W σy *(MPa) Phase ε **(%)

1, [9]*** NbCrMo0.5Ta0.5TiZr 0 0 20 0 0 0 0 0 20 10 20 20 0 10 0 1595 FCC 5
2, [14] Al0.5CoCrCu0.5FeNi2 8.3 16.7 16.7 16.7 33.3 8.3 0 0 0 0 0 0 0 0 0 215 BCC 39
3, [15] Al0.5CoCrCuFeNi 9.1 18.2 18.2 18.2 18.2 18.2 0 0 0 0 0 0 0 0 0 360 BCC 19
4, [16] AlNbTiV 25 0 0 0 0 0 0 0 25 0 25 0 25 0 0 1020 FCC 5
5, [9] NbCrMo0.5Ta0.5TiZr 0 0 20 0 0 0 0 0 20 10 20 20 0 10 0 1595 FCC 5
6, [18] Al0.5NbTaTiV 11.1 0 0 0 0 0 0 0 22.2 22.2 22.2 0 22.2 0 0 1012 FCC 50
7, [19] CoCrFeNi 0 25 25 25 25 0 0 0 0 0 0 0 0 0 0 273 BCC 38
8, [20] AlCoCrCuFeNi 16.7 16.7 16.7 16.7 16.7 16.7 0 0 0 0 0 0 0 0 0 1040 BCC + FCC 1
9, [21] Al0.3CoCrFeNi 7.0 23.3 23.3 23.3 23.3 0 0 0 0 0 0 0 0 0 0 224 BCC 48

10, [22] MoNbTaVW 0 0 0 0 0 0 0 0 20 20 0 0 20 20 20 1246 FCC 1.7
11, [23] Al0.5CrCuFeNi2 9.1 0 18.2 18.2 36.4 18.2 0 0 0 0 0 0 0 0 0 704 BCC + FCC 5.6
12, [24] CrHfNbTiZr 0 0 20 0 0 0 0 20 20 0 20 20 0 0 0 1375 FCC 2.8
13, [21] Al0.3CoCrFeNi 7.0 23.3 23.3 23.3 23.3 0 0 0 0 0 0 0 0 0 0 310 BCC 44
14, [25] NbTiVZr 0 0 0 0 0 0 0 0 20 0 20 20 40 0 0 918 FCC 50
15, [26] CrCrFeMnNi 0 20 20 20 20 0 20 0 0 0 0 0 0 0 0 171 BCC 57
16, [27] Al0.3NbTaTi1.4Zr1.3 6 0 0 0 0 0 0 0 20 20 28 26 0 0 0 1965 FCC 5
17, [21] Al0.3CoCrFeNi 7.0 23.3 23.3 23.5 23.5 0 0 0 0 0 0 0 0 0 0 240 BCC 45
18, [19] CoCrMnNi 0 25 25 0 25 0 25 0 0 0 0 0 0 0 0 280 BCC 43
19, [18] AlNbTaTiV 20 0 0 0 0 0 0 0 20 20 20 0 20 0 0 991 FCC 50
20, [24] HfNbTiVZr 0 0 0 0 0 0 0 20 20 0 20 20 20 0 0 1170 FCC 30
21, [28] HfNbTaTiZr 0 0 0 0 0 0 0 20 20 20 20 20 0 0 0 1145 FCC 9.7
22, [26] CrCrFeMnNi 0 20 20 20 20 0 20 0 0 0 0 0 0 0 0 362 BCC 51
23, [25] CrNbTiZr 0 0 25 0 0 0 0 0 25 0 25 25 0 0 0 1260 FCC 6
24, [29] CoCrFeNi 0 25 25 25 25 0 0 0 0 0 0 0 0 0 0 300 BCC 42
25, [30] AlMo0.5NbTa0.5TiZr 20 0 0 0 0 0 0 0 20 10 20 20 0 10 0 2000 FCC 1
26, [31] HfMoNbTiZr 0 0 0 0 0 0 0 20 0 20 20 20 0 20 0 1575 FCC 9
27, [32] CrCrFeMnNi 0 20 20 20 20 0 20 0 0 0 0 0 0 0 0 410 BCC 57
28, [20] AlCoCrCuFeNi 16.7 16.7 16.7 16.7 16.7 16.7 0 0 0 0 0 0 0 0 0 790 BCC + FCC 0.2
29, [23] Al0.5CrCuFeNi2 9.1 0 18.2 18.2 16.4 18.2 0 0 0 0 0 0 0 0 0 630 BCC + FCC 4.2
30, [27] Al0.5NbTa0.8Ti1.5 V0.2Zr 10 0 0 0 0 0 0 0 20 16 30 20 4 0 0 2035 FCC 4.5
31, [18] Al0.25NbTaTiV 5.9 0 0 0 0 0 0 0 23.5 23.5 23.5 0 23.5 0 0 1330 FCC 50
32, [14] Al0.5CoCrCu0.5FeNi2 8.3 16.7 16.7 16.7 33.3 8.3 0 0 0 0 0 0 0 0 0 357 BCC 9
33, [33] HfNbTiZr 0 0 0 0 0 0 0 25 25 0 25 25 0 0 0 879 FCC 14.9
34, [22] MoNbTaW 0 0 0 0 0 0 0 0 25 25 0 0 0 25 25 1058 FCC 2.6
35, [34] NbTaTiV 0 0 0 0 0 0 0 0 25 25 25 0 25 0 0 1092 FCC 50
36, [27] AlNb1.5Ta0.5Ti1.5Zr0.5 20 0 0 0 0 0 0 0 30 10 30 10 0 0 0 1280 FCC 3.5

1t****, [35] Al0.5CoCrCuFeNi 9.1 18.2 18.2 18.2 18.2 18.2 0 0 0 0 0 0 0 0 0 1284 BCC 7.6
2t, [26] CrCrFeMnNi 0 20 20 20 20 0 20 0 0 0 0 0 0 0 0 197 BCC 60
3t, [27] Al0.3NbTa0.8Ti1.4V0.2Zr1.3 6 0 0 0 0 0 0 0 20 16 28 26 4 0 0 1965 FCC 5
4t, [25] CrNbTiVZr 0 0 20 0 0 0 0 0 20 0 20 20 20 0 0 1298 FCC 3
5t, [19] CoFeMnNi 0 25 0 25 25 0 25 0 0 0 0 0 0 0 0 175 BCC 41
6t, [25] NbTiVZr 0 0 0 0 0 0 0 0 25 0 25 25 25 0 0 1105 FCC 50
7t, [30] Al0.4Hf0.6NbTaTiZr 8 0 0 0 0 0 0 12 20 20 20 20 0 0 0 1841 FCC 10
8t, [36] Al0.5CoCrCuFeNi 9.1 18.2 18.2 18.2 18.2 18.2 0 0 0 0 0 0 0 0 0 655 BCC 29

No., [Ref]

Post-Process Input Data

Heat Treatment 1 Cooling CR HR Heat Treatment 2 Forge HIP Heat Treatment 3

Temp
(◦C) h WQ SC CR

(%)
Temp
(◦C)

HR
(%) Temp (◦C) h Forge Temp (◦C) Press

(MPa) h Temp (◦C) h

1, [9] 0 0 0 0 0 0 0 0 0 0 1450 207 2 1200 24
2, [14] 1150 5 1 0 0 0 0 0 0 0 0 0 0 0 0
3, [15] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4, [16] 1200 24 0 0 0 0 0 0 0 0 0 0 0 0 0
5, [9] 0 0 0 0 0 0 0 0 0 0 1200 207 2 1200 24
6, [18] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7, [19] 1200 24 0 0 92 0 0 1000 1 0 0 0 0 0 0
8, [20] 960 50 0 0 0 0 0 0 0 1 0 0 0 0 0
9, [21] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10, [22] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11, [23] 0 0 0 0 43 0 0 900 24 0 0 0 0 0 0
12, [24] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13, [21] 700 72 0 0 0 0 0 0 0 0 0 0 0 0 0
14, [25] 0 0 0 0 0 0 0 0 0 0 1200 207 2 1200 24
15, [26] 1200 48 0 0 87 0 0 1150 1 0 0 0 0 0 0
16, [27] 0 0 0 0 0 0 0 0 0 0 1200 207 2 1200 24
17, [21] 900 72 0 0 0 0 0 0 0 0 0 0 0 0 0
18, [19] 1100 24 0 0 90 0 0 1000 1 0 0 0 0 0 0
19, [18] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20, [24] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21, [28] 0 0 0 0 90 0 0 1000 2 0 1200 207 2 1200 24
22, [26] 1200 48 0 0 87 0 0 800 1 0 0 0 0 0 0
23, [25] 0 0 0 0 0 0 0 0 0 0 1200 207 2 1200 24
24, [29] 1000 24 0 0 0 1000 92 900 1 0 0 0 0 0 0
25, [30] 0 0 0 0 0 0 0 0 0 0 1400 207 2 1400 24
26, [31] 1100 10 0 1 0 0 0 0 0 0 0 0 0 0 0
27, [32] 0 0 0 0 60 0 0 800 1 1 0 0 0 0 0
28, [20] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29, [23] 0 0 0 0 43 0 0 700 24 0 0 0 0 0 0
30, [27] 0 0 0 0 0 0 0 0 0 0 1200 207 2 1200 24
31, [18] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32, [14] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33, [33] 1300 6 0 0 0 0 0 0 0 0 0 0 0 0 0
34, [22] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35, [34] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36, [27] 0 0 0 0 0 0 0 0 0 0 1400 207 2 1400 24

1t, [35] 1000 6 0 0 84 0 0 900 5 0 0 0 0 0 0
2t, [26] 1200 48 0 0 87 0 0 1000 1 0 0 0 0 0 0
3t, [27] 0 0 0 0 0 0 0 0 0 0 1200 207 2 1200 24
4t, [25] 0 0 0 0 0 0 0 0 0 0 1200 207 2 1200 24
5t, [19] 1100 24 0 0 90 0 0 1000 1 0 0 0 0 0 0
6t, [25] 0 0 0 0 0 0 0 0 0 0 1200 207 2 1200 24
7t, [30] 0 0 0 0 0 0 0 0 0 0 1200 207 2 1200 24
8t, [36] 1000 6 0 0 80 0 0 900 5 0 0 0 0 0 0

* yield strength. ** elongation. *** reference number. **** test data.
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2.2. Data Preprocessing and Model Evaluation

From the collected data, three ANN models were derived based on three result data
such as yield strength, microstructure, and elongation. These are the alloy properties that
are basic information of metal alloy to use in mechanical systems. The three models are
independent models because each model has different weights and biases even though they
are using same input data. Yield strength and elongation prediction models are predicting
the results as numeric. The output of the microstructure phase was encoded according to
FCC, BCC, and FCC + BCC. When predicting the microstructure phase, the results were
expressed as probabilistic using the softmax algorithm. All data have been normalized to
a range of 0–1 with a maximum of 1 and a minimum of 0. Normalizing is expressed as
shown in Equation (1).

Xnorm
i =

Xi − Xmin
Xmax − Xmin

(1)

where Xmax and Xmin are the maximum and minimum values of descriptor X of our
training data, respectively.

A mean square error (MSE) was used to estimate the accuracy of the prediction model.
Until MSE value is minimized through a training data set, weights and biases are updated
repeatedly. MSE is expressed as in Equation (2).

min MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

where yi is measured output data from the result of alloy analysis in previous research. ŷi
is a calculated output data from the prediction model. i is the test number in Tables 1–3.

Table 2. Particular parameter used in artificial neural network prediction model on all layers.

Layer Parameter

Input data Post-process 15 conditions
Mole fraction 15 elements

Hidden layer 1
Node 3

Activation function ReLU
Optimizer Adam

Hidden layer 2
Node 47

Activation function ReLU
Optimizer Adam

Output layer
Node 1

Activation function Regression, Softmax (phase)
Optimizer Adam

Results
Yield strength

Microstructure phase
Elongation

Table 3. The prediction results of high-entropy alloy phases.

Input
Data

1 Test
Data

2 Test
Data

3 Test
Data

4 Test
Data

5 Test
Data

6 Test
Data

7 Test
Data

8 Test
Data

Observed
Phase (1, 0) * (1, 0) (0, 1) ** (0, 1) (1, 0) (0, 1) (0, 1) (1, 0)

Predicted
Phase (1, 0) (1, 0) (0, 1) (0, 1) (1, 0) (0, 1) (0, 1) (1, 0)

Accord/
Discord Accord Accord Accord Accord Accord Accord Accord Accord

* BCC (body-centered cubic). ** FCC (face-centered cubic).

Optimization Process for ANN Prediction Model

A total of 36 input data that consist of a mole fraction and post-process information
are used as input data. When the hidden layer of the model was one layer, the model was
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evaluated by increasing the number of nodes from 1 to 100 by 1. In the case of two hidden
layers, the model was evaluated by increasing the number of nodes from 1 to 50 by 1 in
each layer. The results of the two models were evaluated by recording the MSE value and
mean error value. The results of the model optimization process are shown in Figure 1.
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An optimal model size should be found in the ANN model to get an accurate prediction
model. For the ANN model with one hidden layer, the MSE value decreased as the number
of nodes increased. The MSE value converges to 11,000 when the number of nodes is more
than 40. The average error rate converges to a value of 24% after 60 nodes. For ANN
models with two hidden layers, the accuracy increases rapidly even with a small increase in
the number of nodes, regardless of a node number in the first or second layer. The MSE
value converges to 100,000, and the mean error converges to 20%. The optimized layer size
representing the minimum mean error was (3, 47). The model training process involves
choosing the gradient descent optimizer and the type of activation function to find the
optimal parameters. In this study, an Adam optimizer was used that was introduced by
Diederik P. [37]. Features are a fast search for optimal parameters and high accuracy. ReLU
was used as the activation function. ReLU is an activation function for deep neural network
algorithms. The parameter values applied to the ANN algorithm are given in Table 2.

2.3. Optimization Process for Lasso Linear Regression Prediction Model

A conventional linear regression is described as shown in Equation (3).

ŷ = w[0]·X[0] + w[1]·X[1] + · · ·+ w[n]·X[n] + b (3)

where w [0–n] is the weights to multiply to each independent variable X[0–n]. b is a constant
called the bias. Each independent variable is multiplied by a weight and added a bias.
The calculated prediction result is compared with the actual measurement result by the
MSE equation of loss function. The purpose is to find the parameter that minimizes the
MSE value through gradient descent. For higher accuracy, these calculations are iteratively
calculated to find the optimal parameters of the weights and bias values.

The lasso regression finds the optimal parameters of weight and bias by imposing an
L1-norm penalty on the MES equation. This penalty allows the sum of the absolute values
of the weights to be minimized so that the weight of a particular independent variable
can be zero. Therefore, the influence of the independent variable term that does not have
a large effect on a dependent variable is ignored. At this time, the effect of the penalty
is adjusted by multiplying the α-constant. In this study, α was set to 0.01. The number
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of lessons was 10,000. The formula to which we added the L1-norm penalty is given in
Equation (4).

min MSE =
1
n

n

∑
i=1

(y − ŷ)2 + α
m

∑
j=1

∣∣wj
∣∣ (4)

where wj is the weight value, and α is the constant. When the α value is increased, more
weights values are zero. In this study, the α value was set at 0.01.

3. Results and Discussion
3.1. Evaluation Predicting Accuracy of ANN Models

Figure 2 shows the prediction results of the ANN model trained by mole fraction
and post-process information for eight test data. The mean error rate of yield strength on
the test data excluding the training data was 19.6%. The average difference was 205 MPa,
and the coefficient of determination was 0.9068. In the elongation model, the mean error
was 40.2%, the mean difference was 4.3%, and the coefficient of determination for all data
predictions was 0.7950. Yield strength had high accuracy in the prediction of mechanical
properties of HEAs than elongation prediction results. This low accuracy for elongation
was no different in result between the model trained by all input data and the model
trained by only mole fraction data. As for the elongation, the accuracy of prediction was
low because there was a difference in the result value depending on the shape of the
specimen to be measured or the measurement method. In order to accurately predict the
elongation in the future, unification of the measurement method and more independent
variables affecting elongation are needed. The results of the microstructure were accurately
predicted for all data. The BCC, FCC, and BCC + FCC phases were encoded to (1, 0), (0, 1),
and (1, 1) each. The result is shown in Table 3.
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Figure 2. Accuracy of an ANN model trained with elemental mole fraction and process data.

Figure 3 shows the accuracy of an ANN model trained only on mole fraction infor-
mation. For the yield strength prediction, the mean error was 33.9%. The mean difference
was 241 MPa, and the coefficient of determination was 0.8117. Compared with the results
in Figure 2, it had a higher accuracy of prediction results than the model trained with
only the mole fraction information. In addition to HEA, existing alloys and metals have a
post-process to control the mechanical properties. Even data having the same mole fraction
show different mechanical properties depending on the post-process conditions. These
facts influenced the accuracy of the model regarding data. The yield strength prediction
results of eight test data calculated from both ANN models are given in Table 4.
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Table 4. Comparison of the predicted results data calculated by the ANN model, which was trained
on post-process and mole fraction data vs. mole fraction data.

No.,
[Ref]

HEA
Group

σm
y *

(MPa)

ANN Model Trained from
Post-Process and Mole Fraction

ANN Model Trained from
Mole Fraction

σ
p
y **

(MPa)
Error
(MPa)

Error
Rate
(%)

σ
p
y **

(MPa)
Error
(MPa)

Error
Rate
(%)

1, [35] Transition 1284 735 549 42.8 617 667 52.0
2, [25] Transition 197 244 47 24.0 317 120 60.9
3, [26] Refractory 1965 1651 314 16.0 1791 174 8.8
4, [24] Refractory 1298 1141 157 12.1 1114 184 14.1
5, [18] Transition 175 148 27 15.5 331 156 89.1
6, [24] Refractory 1105 1231 126 11.4 1343 238 21.5
7, [30] Refractory 1841 1537 304 16.5 1489 352 19.1
8, [36] Transition 655 536 119 18.2 617 38 5.8

* Measured yield strength. ** Predicted yield strength.

3.2. Evaluation Predicting Accuracy of Lasso Linear Models

Figure 4 shows the prediction results of the lasso linear model for eight test data.
The mean error of yield strength was 31.1%. The mean difference was 233 MPa, and the
coefficient of determination was 0.8475. The number of independent variables used in the
lasso regression model was 28. The hot rolling rate and forge data’s weights were zero
from a total of 30 independent variables. The lasso linear regression model predicted yield
strength as 14% of accuracy for 36 training data but showed low accuracy for the eight
test data. When new HEA data were input, the output would be low accuracy. Thus, this
model cannot be used as a prediction model. Although lasso linear regression is a more
improved model than conventional linear regression, it had an error when predicting the
yield strength of HEA. The mechanical properties of HEA cannot be expressed as simply
linear regression. The HEA model has complex interaction by atomic radius, valance
electron concentration, and shear modulus.

Figure 5 shows the results of the lasso linear model trained by only mole fraction
data. The mean error was 26.1%. The mean difference was 233 MPa, and the coefficient of
determination was 0.8363. Compared with the results in Figure 4, the model trained by
mole fraction information showed higher accuracy than the model trained by the mole
fraction and post-process data to predict the mechanical properties of HEA. This result is
contrary to the prediction result of the ANN model. As the many numbers of independent
variables increased, the inaccuracy of the calculation result was also increasing. Due to this
feature of the linear regression method, it was difficult to express complex data in a linear
model. Despite imposing a lasso penalty that made the insignificant independent variable
zero, the lasso linear model with a few independent variables of the only mole fraction was
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more accurate. The yield strength prediction results of eight test data calculated from both
lasso linear models are given in Table 5.

Metals 2021, 11, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 4. Accuracy of a lasso model trained with elemental mole fraction and process data. 

Figure 5 shows the results of the lasso linear model trained by only mole fraction 
data. The mean error was 26.1%. The mean difference was 233 MPa, and the coefficient of 
determination was 0.8363. Compared with the results in Figure 4, the model trained by 
mole fraction information showed higher accuracy than the model trained by the mole 
fraction and post-process data to predict the mechanical properties of HEA. This result is 
contrary to the prediction result of the ANN model. As the many numbers of independent 
variables increased, the inaccuracy of the calculation result was also increasing. Due to 
this feature of the linear regression method, it was difficult to express complex data in a 
linear model. Despite imposing a lasso penalty that made the insignificant independent 
variable zero, the lasso linear model with a few independent variables of the only mole 
fraction was more accurate. The yield strength prediction results of eight test data 
calculated from both lasso linear models are given in Table 5. 

 
Figure 5. Accuracy of a lasso model trained only on elemental mole fractions. 

Table 5. Comparison of the predicted results data calculated by the lasso linear model, which was 
trained by post-process and mole fraction data vs. mole fraction data. 

No, 
[Ref] 

HEA 
Group 

𝝈𝒚𝒎 * 

(MPa) 

Lasso 1st Model Trained from Post-
Process and Mole Fraction 

Lasso 1st Model Trained from 
Mole Fraction 𝝈𝒚𝒑 ** 

(MPa) 
Error 
(MPa) 

Error Rate 
(%) 

𝝈𝒚𝒑 ** 
(MPa) 

Error 
(MPa) 

Error Rate 
(%) 

1, [35] Transition 1284 773 511 39.8 742 542 42.2 
2, [25] Transition 197 256 59 30.0 257 60 30.6 
3, [26] Refractory 1965 2024 59 3.0 2007 41.5 2.1 
4, [24] Refractory 1298 1056 242 18.6 1026 273 21.0 
5, [18] Transition 175 0 175 100.0 81 94 53.8 

Figure 4. Accuracy of a lasso model trained with elemental mole fraction and process data.

Metals 2021, 11, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 4. Accuracy of a lasso model trained with elemental mole fraction and process data. 

Figure 5 shows the results of the lasso linear model trained by only mole fraction 
data. The mean error was 26.1%. The mean difference was 233 MPa, and the coefficient of 
determination was 0.8363. Compared with the results in Figure 4, the model trained by 
mole fraction information showed higher accuracy than the model trained by the mole 
fraction and post-process data to predict the mechanical properties of HEA. This result is 
contrary to the prediction result of the ANN model. As the many numbers of independent 
variables increased, the inaccuracy of the calculation result was also increasing. Due to 
this feature of the linear regression method, it was difficult to express complex data in a 
linear model. Despite imposing a lasso penalty that made the insignificant independent 
variable zero, the lasso linear model with a few independent variables of the only mole 
fraction was more accurate. The yield strength prediction results of eight test data 
calculated from both lasso linear models are given in Table 5. 

 
Figure 5. Accuracy of a lasso model trained only on elemental mole fractions. 

Table 5. Comparison of the predicted results data calculated by the lasso linear model, which was 
trained by post-process and mole fraction data vs. mole fraction data. 

No, 
[Ref] 

HEA 
Group 

𝝈𝒚𝒎 * 

(MPa) 

Lasso 1st Model Trained from Post-
Process and Mole Fraction 

Lasso 1st Model Trained from 
Mole Fraction 𝝈𝒚𝒑 ** 

(MPa) 
Error 
(MPa) 

Error Rate 
(%) 

𝝈𝒚𝒑 ** 
(MPa) 

Error 
(MPa) 

Error Rate 
(%) 

1, [35] Transition 1284 773 511 39.8 742 542 42.2 
2, [25] Transition 197 256 59 30.0 257 60 30.6 
3, [26] Refractory 1965 2024 59 3.0 2007 41.5 2.1 
4, [24] Refractory 1298 1056 242 18.6 1026 273 21.0 
5, [18] Transition 175 0 175 100.0 81 94 53.8 
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Table 5. Comparison of the predicted results data calculated by the lasso linear model, which was
trained by post-process and mole fraction data vs. mole fraction data.

No.,
[Ref]

HEA
Group

σm
y *

(MPa)

Lasso 1st Model Trained from
Post-Process and Mole Fraction

Lasso 1st Model Trained from
Mole Fraction

σ
p
y **

(MPa)
Error
(MPa)

Error
Rate
(%)

σ
p
y **

(MPa)
Error
(MPa)

Error
Rate
(%)

1, [35] Transition 1284 773 511 39.8 742 542 42.2
2, [25] Transition 197 256 59 30.0 257 60 30.6
3, [26] Refractory 1965 2024 59 3.0 2007 41.5 2.1
4, [24] Refractory 1298 1056 242 18.6 1026 273 21.0
5, [18] Transition 175 0 175 100.0 81 94 53.8
6, [24] Refractory 1105 1213 108 9.7 1271 166 15.0
7, [30] Refractory 1841 1223 618 33.6 1217 624 33.9
8, [36] Transition 655 750 95 14.5 722 67 10.2

* Measured yield strength. ** Predicted yield strength.

3.3. Effect of Process Input Data on Transition Metals and Refractory Metals

In Table 4, when the results of the refractory metal group and the transition metal
group were calculated separately, the results accuracy calculated from a model trained by
mole fraction and post-process information was higher than that of the model trained by
only mole fraction. The transition metal group improved the accuracy by 25.0% from 52.0%
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to 27.0%. The refractory metal group improved the accuracy by 1.9% from 15.9% to 14.0%.
In particular, the transition metal showed significant improvement. The characteristic of
the transition metal group is basically a group with a low yield strength. Yield strength is
largely changed according to post-treatment process conditions. To get higher prediction
accuracy of the transition metal group, post-process information that has more effect on
the mechanical properties was important. When post-process information is more detailed,
such as at a big data level, the accuracy of the prediction model is likely to improve. The
lasso prediction results in Table 5 showed the opposite results to the ANN prediction
results. In the transition metal group, the error rate of the model trained only with the
mole fraction was 34%, and the model trained with the post-process showed an error rate
of 46%, which actually decreased the accuracy by 12%. Similarly, the refractory metal
group showed a 2% reduction in error rate from 18% to 16%. This result also reflected the
character of the linear regression equation through which the prediction accuracy decreases
as the number of variables increases.

3.4. Assessment of the Influence of Elements in Alloys

Figure 6 shows the coefficient ratio of each variable in the lasso regression analysis
derived from only element data. The absolute value of the coefficient is expressed as
a percentage, and the coefficient having a negative value is indicated as a minus in the
variable name. It is correct to derive the model by dividing the transition and refractory
groups, but since the elements included in the alloy are often manufactured by mixing
them, they were used as input data without classifying all elements. Mn and W are not
indicated because the coefficients are 0, as the characteristics of the lasso regression analysis
make the coefficients 0 if there is no influence. Elements that had a positive effect on
strength were Al, Mo, Zr, Ti, Ta, Cu, and Cr, whereas elements that had a negative effect
were V, Nb, Hf, Ni, Co, and Fe.
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Table 6 shows the effect of the change of each variable value on the yield strength in
the ANN model derived from elemental data and process data. These data are obtained
by calculating the value that changes when 1 is increased in the normalized data. It is
similar to the coefficient value of each variable derived from lasso regression. Unlike lasso
regression, the effect of the same element on the 44 data used for training and testing each
piece of data is different for each piece of data. Due to the nature of the neural network,
each and every datum has an effect on all nodes, resulting in a yield strength value, so the
correlation between input variables is strong. Elements that had a positive influence on
strength were Al, Cr, Cu, Nb, Ta, Ti, Zr, Mo, and W, whereas elements that had a negative
influence were Co, Fe, Ni, Mn, Hf, and V. Compared with the lasso regression analysis,
only Nb elements showed different results, but other elements showed the same results. In
Table 6, the ratio of whether the effect of a specific element on the yield strength is positive
or negative for each data is shown. The effect of each element on the yield strength of
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the alloy was confirmed similarly, but the ANN model shows higher accuracy because
it reflects the different correlations due to different elements and post-process for each
data. In the case of Cr, the yield strength increased as the amount of Cr increased in most
HEAs, but the 28 AlCoCrCuFeNi and eight Al0.5CoCrCuFeNi alloys in Table 6 resulted in
a decrease in yield strength. This was the result of a complex causal relationship.

Table 6. Yield strength prediction data set that changes when the input data increases by 1.

No., [Ref] Alloy Yield Strength Increase per 1 Increase in Input Data

Al Co Cr Fe Ni Cu Mn Hf Nb Ta Ti Zr V Mo W

1, [9] * NbCrMo0.5Ta0.5TiZr 245 −83 195 −193 −107 119 −166 −346 348 153 609 810 −331 338 658
2, [14] Al0.5CoCrCu0.5FeNi2 155 −5 111 −107 −17 99 −113 −167 242 68 405 598 −161 199 451
3, [15] Al0.5CoCrCuFeNi 231 −26 179 −134 −43 109 −92 −220 332 137 596 796 −228 323 644
4, [16] AlNbTiV 236 −89 186 −199 −113 111 −171 −352 339 144 600 801 −337 329 649
5, [9] NbCrMo0.5Ta0.5TiZr 414 90 362 −2 85 286 35 −138 515 320 779 979 −136 506 828
6, [18] Al0.5NbTaTiV 255 −70 205 −181 −94 130 −152 −333 358 163 619 819 −319 348 667
7, [19] CoCrFeNi 175 −32 162 −134 −43 104 −146 −211 267 100 494 694 −204 261 544
8, [20] AlCoCrCuFeNi 238 −87 188 −197 −111 113 −170 −350 341 146 602 803 −335 331 651
9, [21] Al0.3CoCrFeNi 199 −9 164 −111 −22 104 −81 −166 299 113 564 764 −159 291 613

10, [22] MoNbTaVW 235 −90 185 −201 −114 110 −172 −353 338 143 599 799 −339 328 647
11, [23] Al0.5CrCuFeNi2 237 −78 187 −198 −115 111 −175 −319 339 144 601 802 −312 330 650
12, [24] CrHfNbTiZr 260 −65 211 −175 −88 135 −147 −327 364 169 624 825 −313 353 673
13, [21] Al0.3CoCrFeNi 213 −45 161 −147 −57 86 −125 −240 314 119 578 778 −236 305 626
14, [25] NbTiVZr 254 −43 202 −136 −48 127 −98 −272 355 160 619 819 −270 346 668
15, [26] CrCrFeMnNi 200 −3 186 −99 −15 117 −76 −143 305 135 543 743 −141 299 594
16, [27] Al0.3NbTaTi1.4Zr1.3 62 −265 13 −375 −289 −62 −348 −528 166 −29 426 627 −513 155 475
17, [21] Al0.3CoCrFeNi 258 14 206 −88 3 130 −70 −177 359 164 622 823 −172 350 671
18, [19] CoCrMnNi 188 −41 174 −151 −59 105 −112 −222 293 123 522 722 −214 287 573
19, [18] AlNbTaTiV 297 −28 247 −139 −52 172 −110 −291 400 205 660 861 −277 389 709
20, [24] HfNbTiVZr 148 −177 98 −288 −201 23 −260 −441 251 56 512 712 −426 241 560
21, [28] HfNbTaTiZr 344 14 292 −96 −10 216 −69 −249 445 250 708 909 −234 436 757
22, [26] CoCrFeMnNi 11 −187 −3 −286 −198 −72 −263 −332 116 −54 359 559 −331 110 409
23, [25] CrNbTiZr 747 419 698 309 395 622 336 156 850 655 1111 1312 171 840 1160
24, [29] CoCrFeNi 52 −119 29 −199 −116 −15 −181 −249 152 −21 395 595 −236 143 445
25, [30] AlMo0.5NbTa0.5TiZr −127 −454 −177 −564 −478 −252 −537 −717 −24 −219 237 437 −702 −34 285
26, [31] HfMoNbTiZr −38 −363 −88 −474 −387 −163 −445 −626 65 −130 326 526 −612 55 374
27, [32] CrMnFeCoNi 524 199 472 84 170 396 111 −53 625 430 887 1088 −54 616 936
28, [20] AlCoCrCuFeNi −125 −410 −176 −521 −428 −252 −478 −613 −24 −219 239 440 −627 −32 288
29, [23] Al0.5CrCuFeNi2 315 −3 264 −122 −38 189 −97 −246 417 222 679 879 −237 408 727
30, [27] Al0.5NbTa0.8Ti1.5V0.2Zr −172 −499 −221 −609 −523 −296 −582 −762 −68 −263 192 393 −747 −79 241
31, [18] Al0.25NbTaTiV −75 −400 −125 −510 −424 −200 −483 −663 28 −167 289 489 −648 18 337
32, [14] Al0.5CoCrCu0.5FeNi2 125 −95 81 −197 −106 24 −157 −270 226 31 490 690 −277 217 539
33, [33] HfNbTiZr 713 388 664 278 364 589 305 125 817 622 1077 1278 140 806 1126
34, [22] MoNbTaW 872 547 822 437 523 747 465 284 975 780 1236 1436 299 965 1284
35, [34] NbTaTiV 150 −175 101 −285 −199 25 −258 −438 254 59 514 715 −423 243 563
36, [27] AlNb1.5Ta0.5Ti1.5Zr0.5 466 139 417 29 115 342 56 −118 570 375 830 1031 −109 559 879

1t**, [35] Al0.5CoCrCuFeNi −618 −847 −640 −968 −878 −705 −965 −1071 −518 −691 −254 −54 −1075 −526 −206
2t, [26] CrCrFeMnNi 175 −26 161 −124 −38 92 −100 −169 279 110 520 720 −167 274 571
3t, [27] Al0.3NbTa0.8Ti1.4V0.2Zr1.3 5 −322 −44 −432 −346 −119 −405 −585 109 −86 369 570 −570 98 418
4t, [25] CrNbTiVZr 193 −137 141 −247 −161 65 −220 −400 294 99 557 758 −385 285 606
5t, [19] CoFeMnNi −2 −144 −46 −157 −124 −54 −146 −157 97 −74 258 439 −157 54 318
6t, [25] NbTiVZr 505 176 454 66 152 379 95 −78 607 412 869 1070 −72 598 918
7t, [30] Al0.4Hf0.6NbTaTiZr −308 −638 −360 −749 −662 −436 −716 −889 −208 −403 55 256 −886 −216 104
8t, [36] Al0.5CoCrCuFeNi 4 −225 −18 −346 −256 −83 −341 −447 105 −69 368 569 −453 96 417

Positive effect ratio (%) 82 20 75 14 18 70 16 7 89 70 98 98 7 89 98

No., [Ref]

Post−Process Input Data

Heat
Treatment 1 Cooling CR HR Heat

Treatment 2 Forge HIP Heat
Treatment 3

Temp (◦C) h WQ SC CR (%) Temp
(◦C)

HR
(%)

Temp
(◦C) h Forge Temp

(◦C)
Press
(MPa) h Temp

(◦C) h

1, [9] −142 190 −104 9 153 56 8 −12 301 609 −39 −38 −77 −56 −1595

2, [14] −63 86 −2 5 115 51 −8 −25 195 398 −20 −40 −55 6 −215

3, [15] −90 175 −29 15 151 55 10 −8 285 595 −30 −41 −50 −9 −360

4, [16] −148 181 −110 1 144 48 2 −20 292 600 −47 −45 −83 −62 −1020

5, [9] 31 358 73 175 320 223 175 155 468 778 133 129 112 136 −929

6, [18] −129 199 −91 19 162 67 20 −2 311 618 −28 −26 −64 −43 −1012

7, [19] −90 123 −29 4 156 29 −4 2 249 493 −47 −59 −82 −21 −273

8, [20] −146 183 −108 3 146 50 4 −18 294 602 −45 −43 −81 −60 −1040

9, [21] −69 143 −8 16 137 54 6 −18 253 563 −26 −34 −46 0 −224

10, [22] −149 179 −111 −1 142 47 0 −22 291 598 −48 −46 −84 −63 −1246

11, [23] −141 182 −86 0 144 48 0 −21 293 601 −48 −47 −86 −64 −704

12, [24] −124 205 −85 25 168 73 26 4 316 624 −22 −21 −58 −38 −1375

13, [21] −103 158 −42 −12 124 38 −18 −31 268 577 −46 −60 −68 −34 −310

14, [25] −103 198 −60 16 160 85 16 −5 308 619 −1 −13 −21 3 −918

15, [26] −62 145 −1 23 163 57 18 9 265 543 −19 −31 −35 7 −171

16, [27] −323 7 −285 −173 −30 −125 −173 −194 118 426 −221 −220 −259 −238 −1965

17, [21] −44 202 17 37 177 88 31 23 312 622 8 −10 −18 25 −240

18, [19] −106 133 −45 12 148 32 6 −11 253 522 −49 −56 −68 −24 −280

19, [18] −87 241 −49 61 204 109 62 40 353 660 14 15 −22 −1 −991

20, [24] −236 92 −198 −87 55 −40 −87 −108 204 511 −135 −133 −172 −150 −1170

21, [28] −45 288 −7 105 250 153 105 85 398 708 58 59 20 41 −1145

22, [26] −245 −44 −184 −163 −29 −124 −171 −183 76 358 −202 −212 −220 −176 −362

23, [25] 361 692 399 511 655 559 511 490 803 1111 463 464 425 447 −1260

24, [29] −159 −12 −117 −104 13 −64 −94 −127 109 394 −128 −132 −136 −109 −300
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Table 6. Cont.

No., [Ref]

Post−Process Input Data

Heat
Treatment 1 Cooling CR HR Heat

Treatment 2 Forge HIP Heat
Treatment 3

Temp (◦C) h WQ SC CR (%) Temp
(◦C)

HR
(%)

Temp
(◦C) h Forge Temp

(◦C)
Press
(MPa) h Temp

(◦C) h

25, [30] −513 −183 −475 −363 −220 −315 −363 −384 −71 236 −410 −409 −448 −427 −2000

26, [31] −422 −94 −384 −274 −131 −226 −273 −295 18 325 −321 −319 −357 −336 −1575

27, [32] 135 468 178 285 430 333 285 264 578 887 238 239 199 221 −410

28, [20] −481 −180 −420 −358 −218 −310 −363 −381 −70 239 −395 −408 −415 −391 −790

29, [23] −65 260 −12 78 222 126 78 57 371 678 30 31 −8 14 −630

30, [27] −557 −227 −519 −407 −264 −359 −407 −428 −115 192 −455 −454 −493 −472 −2035

31, [18] −459 −130 −421 −310 −168 −263 −309 −331 −19 289 −358 −356 −394 −373 −1330

32, [14] −153 69 −92 −65 54 −26 −74 −104 179 489 −108 −115 −126 −83 −357

33, [33] 329 658 368 478 621 526 479 457 769 1077 431 432 394 415 −879

34, [22] 488 817 526 637 779 684 638 616 928 1236 589 591 553 574 −1058

35, [34] −234 95 −195 −85 58 −37 −84 −106 206 514 −132 −131 −169 −148 −1092

36, [27] 80 411 119 231 374 279 230 210 523 830 183 184 145 167 −1280

1t, [35] −905 −674 −849 −803 −653 −780 −809 −807 −560 −255 −862 −868 −914 −856 −1284

2t, [26] −85 120 −24 −2 137 35 −7 −17 240 520 −41 −53 −58 −16 −197

3t, [27] −380 −50 −342 −230 −87 −182 −230 −251 62 369 −278 −277 −316 −295 −1965

4t, [25] −196 137 −158 −45 99 3 −46 −66 247 557 −93 −92 −132 −110 −1298

5t, [19] −146 −71 −142 −130 −41 −101 −127 −132 38 244 −131 −127 −133 −138 −175

6t, [25] 117 450 156 268 412 316 267 247 560 869 220 221 182 203 −1105

7t, [30] −697 −364 −659 −547 −403 −499 −547 −568 −254 55 −595 −594 −633 −611 −1841

8t, [36] −283 −51 −227 −181 −31 −158 −186 −185 62 368 −239 −246 −292 −234 −655

Ratio (%) 16 73 18 55 73 64 50 32 86 98 25 23 18 32 0

* reference number. ** test data.

In TiZrHfNbX (X = V or Cr) HEA, the yield strength was increased when the Cr
element was added instead of the V element [28]. The fact that the V element lowers the
yield strength was similar to the conclusion calculated from the ANN and lasso model.
In addition, the effect of Al on Al CoCrFeNi HEA was found to be positive. At low Al
content, the alloys form FCC structures. When the Al amount is continuously increased,
the formation of the BCC phase has been induced. It also increases the strength of the HEA
with a modulated spinodal structure. The complete spinodal structure can be obtained
in amounts of Al0.9-2.0. The cast Al0.9 alloy has a maximum hardness of HV 527 due to
the optimal radial decomposition and interconnecting structure [38]. Positively affecting
elements such as Al had the same positive effects on other HEAs. In addition, elements
such as Fe, Ni, and Co also had a negative effect on other alloys.

In the post-process data of Table 6, the size of the data set is small, and inaccurate
results are often shown. The HIP process reduces the tensile strength due to grain coars-
ening in AlxCoCrFeNi alloy of the transition metal group [39]. Table 6 also shows that
hot isostatic pressing has a negative effect on yield strength. However, similar to other
heat treatment temperatures, it is difficult to obtain accurate and detailed results because
the experimental data by temperature or time conditions are not trained. In the case of
trend prediction, cold rolling and forge were confirmed as variables to improve the tensile
strength. This process is known to increase the yield strength of metals through work
hardening. In the case of heat treatment, the result was that the tensile strength decreased
as the temperature increased and the tensile strength increased with time. This result is
also difficult to be trusted due to the lack of heat treatment data, and more accurate results
can be obtained when more data are collected in the future.

4. Conclusions

In this paper, a new methodology for predicting the mechanical properties of HEA
is proposed. The design of HEA is complicatedly entangled with material theories in-
cluding thermodynamic and physical relationships between constituent elements and
post-processing. To approach this process efficiently, the mechanical properties of the
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alloy were predicted using only the mole fraction and post-process data using the ANN
algorithm. The main results are as follows:

1. The ANN prediction model showed high accuracy only when learning the post-
process data together; the tensile strength showed an error rate of 19.7%, and the
microstructure was consistent in all test data. Elongation prediction showed a high
error rate of 40.2%.

2. In the case of the lasso linear regression, the error rate of the model trained with
post-processing data was 31.1%, and the error rate of the lasso model trained only
on the mole fraction was 26.1%, showing low accuracy. The linear regression model
did not sufficiently reflect the complex causal relationships in the data as the variable
increased.

3. When post-process data were trained with the element mole fraction, the model error
rate decreased from 15.9% to 14% in the refractory metal group, and the error rate of
the transition metal group decreased from 52% to 27% in the transition metal group.
In contrast, the lasso model showed the opposite trend.

4. In the ANN model, Al, Cr, Cu, Nb, Ta, Ti, Zr, Mo, and W increased the strength as
these components increased, and Co, Fe, Ni, Mn, Hf, and V decreased the tensile
strength. In the lasso model, the same results were obtained except for Nb. In addition,
in the post-process, cold rolling and forging improved the tensile strength.
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