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Abstract

Electromagnetic reciprocity is studied in the presence of topological insulators (TI) with application of
axion electrodynamics for harmonic electromagnetic fields. The corresponding generalized Lorentz
and Feld-Tai type lemmas are derived in terms of the axion coupling parameter, and their correlation
to the conditional symmetry in source-observer coordinates for the various Green dyadics is
established subjected to different types of boundary conditions. Possible application of the results to
the probing of the topological magneto-electric effects from TT is discussed.

Introduction

Reciprocity in wave propagation refers to the symmetry in the interchange of the source and the observer, and is
an important concept in both classical and quantum physics concerning the transmission of acoustic,
electromagnetic, and matter waves. While such symmetry is trivial when propagation is considered in infinite
vacuum space, the situation can be rather nontrivial and intriguing in the presence of material medium or an
external potential in the propagation of matter waves [1, 2]. In particular, the possible breakdown of this
symmetry in both classical electromagnetic waves [3] and quantum matter waves [4] have recently received
much attention among researchers in the field. Such breakdown can lead to applications in device design such as
optical isolators and one-way quantum tunneling processes, for example.

Conventionally, optical reciprocity has been studied exclusively with the formulation of Maxwell’s
electrodynamics [1-3, 5], including approaches based on microscopic modeling of general dielectric media as
collections of point dipoles [6]. Nevertheless, the study of the problem has also been extended to certain
generalizations of Maxwell’s equations such as the case with the existence of magnetic monopoles [7]. Moreover,
amore significant extension of Maxwell’s theory to include the axion fields has recently been realized with the
discovery of the topological insulators (TT) [8, 9] with exciting development in the recent observation of the
axionic charge-density waves in the Weyl semimetal [10]. It is of interest to recall that the illusive axion which
was first introduced decades ago in a nonmetric theory of gravitation [11], and in an attempt to account for the
‘strong CP problem’ [12] turned out to lead to modified electrodynamics which can be realized in a wide class of
topological materials. Thus we are motivated in the present work to extend the conventional study of reciprocity
in wave propagation to situations with the presence of TI, via the application of axion electrodynamics (AED) to
this system.

As is well-known, the mathematical formulation of reciprocity symmetry in electromagnetism can be
achieved in the following three most effective ways: (1) the Lorentz and Feld-Tai lemmas; (2) the symmetry in the
Green dyadic; and (3) the symmetry in the scattering matrix. While there have been some studies of (3) in recent
literature which among to the asymmetry in left/right incidence in the case of 1D propagation through a
topological insulator with the presence of certain surface waves [13], here in our present study we shall focus on
the formulation based on (1) and (2) and the equivalence between them. Our goal is to provide rigorous
mathematical derivation of the extended versions of each to axion electrodynamics as applied to TI, and to
establish the correlation between them subjected to various general class of boundary conditions. Such
correlation was established previously in the literature for conventional Maxwell electrodynamics in the
presence of various linear media including anisotropic and nonlocal dielectric response [14].

© 2020 The Author(s). Published by IOP Publishing Ltd
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Theoretical formulation: general results
We begin by recalling the following field equations in AED which was first shown to be applicable to TT as alow-
frequency effective theory and can be expressed in Gaussian units as follows [15]:

V -D=4rp — 47xV0 - B

V-B=0

V><E+la—B=O
c Ot

V x Fl—la—D_4—7TT+4mvexE (1)
c Ot c

with notations as in our recent work [16] where k = 4— and « is the fine structure constant, 6 is the axion

coupling taken to be time-independent: 6 (7, t) = (7). The corresponding equations in the frequency domain
then take the following form [17]:

V -D = 4np — 47V - B
V-B=
V x E+ ﬂE 0
C
vV x H - ’%"D T”f 4 47KV6 x E. Q)

Note that all the field quantities and material parameters in (2) are functions of frequency with the following
linear constitutive relations which are linear and isotropic, but can be inhomogeneous: D = ¢(¥)E
and B = pu(¥)H.

(I) Generalized Lorentz and Feld-Tai lemmas
Consider two sources J; and J, at two different locations in the same medium with the axion field; and the
corresponding electromagnetic fields associated with them as given by the modified Ampere’s law in (2):

Vox - 5 =¥ 4 areve x B, 3)
C C

V x Hz lﬂﬁz —7[-72 + 47k VO x Ez, (4)
c C

Taking the inner products of equation (3) with E,and equation (4) with E;, one obtains with the use of the
constitutive relation and a triple product identity the following results:

(V X Ij]l) . EZ Lgﬁl E, = —]1 EZ — 47TI€(V0 X Ez) . El
c
S o WE = B = . )
(V X H2) . E1 —E2 = _IZ E1 —+ 47TI€(V0 X Ez) . El.
c
Subtracting the two equations in (5) from one another and use the result for V - (@ x b ), one obtains:
V. (HxE)+H - (VxE) -V (HxE) —-H-(VxE)
4 =3 = =3 =3 = -
= 7”(11 Ey— T+ Ey) — 87k(VO x Ey) - Ey. 6)

Using Faraday’s law with B = p.H in equation (2), one sees that the second and fourth terms on the LHS of
(6) cancel, leading to the following generalized Lorentz lemma for AED as applied to TI:

fﬁ-(ﬁlxﬁz—ﬁzxﬁl)da
S

_ 4_”f G- By — Jo - ENdF — smf V0 x B, - E,dF. )
(s 14 174

Note that in going from (6) to (7), we have integrated the result over a volume V with boundary S, and have
applied the divergence theorem to the LHS. It is obvious equation (7) reduces to the well-known Lorentz lemma
for VO = 0, reconfirming the well-known fact that an axion field which is constant and uniform will lead to no
observable physical effect since the additional (§E - B) term in the AED Lagrangian will simply reduce to a total
differential in this case [15]. Hence for a homogeneous TI with a finite boundary, the modification to the Lorentz

2
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lemma will emerge exclusively from the discontinuity of the axion coupling across the boundary on the surface of
the T1, as in those studied intensively by researchers within the context of the so-called §— electrodynamics [18, 19].

Next we derive the generalized Feld-Tai lemma for AED. To do this we consider the scalar products of (3)
and (4) with the respective magnetic H fields instead, using both the electric and magnetic constitutive relations.
By going through similar steps as above, we obtain the following result:

— _ lw = = - —
V- (H x H) — Tflfl(El - By — E;- By
4 - — - — = > = —
= —W(h -H, — - H) + 47xV#6 - [E; x H, — E;, X Hi]. (8)
c

However, using Faraday’s law will not lead to cancelation of the second term on the LHS in this case. Instead,
with the application of various vector identities, it can be shown that equation (8) can be re-expressed in terms of
atotal differential on the LHS to take the following form:

V(- Lo )
¢
T - o > o = = = . = _,
= —0-H—L-H)—VEp") - (E x E) + 4nxV0 - [E; x H, — E; x Hl. C)
¢

Again, integrating over a volume V' with boundary S, and with the application of the divergence theorem to
the LHS, we obtain the following generalized Feld-Tai lemma for AED as applied to TI:

f i - (Hﬁ x H, — leu“fi] X Ez)da
S c
:4_7Tf Oi- B, — ], - B)d’r — f V(™) - (B x E)dF + 47mf VO - [E x By — B, x Hi]dF.
c JV % v
(10)

In the limit for homogeneous media with both V(e =!) = 0 and V8 = 0, the resultin (10) simply reduces
to the conventional Feld-Tailemma as appeared in the literature [20].

(II) Green reciprocity

Itis well-known that one powerful way to formulate reciprocity for wave propagation is to refer to the symmetry
of the corresponding Green function or Green dyadic for the wave equation [2, 20]. To achieve this for AED as
applied to T1, we first introduce the electric and magnetic Green dyadic via the following definitions:

E=2 [ G T, (11)
c Jv
B= [ G 7 - T@)d7. (12)
v
Hence Faraday’s law in equation (2) leads to the following simple relation between the two dyadics:

V x G(7, 7) + Gu(7, 7) = 0. (13)

II (a) The electric Green dyadic
Itis straightforward to derive from (2) the following wave equation for the electric dyadic G, (see appendix A for
asimple derivation) [17]:

, .
V x (7' x Go(7, 71) — eGo(F, 7) + MR G0« G771y = — s — P (14)
C C C

To study the symmetry property of G,, we employ the following generalized Green’s theorem for dyadic [21]:
f (IV x AV x GFF - B =[O -V x AV x B1d*
v

= [ Al x QI - (7 x B) — [V x QFF - (3 x P)}da, (15)
S
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where [ ]7 stands for transpose. With P =G, 7),Q = G,(7, 7"yand A = pinto (15), we obtain
f (VX p7'V x G PO - Go(7, 71) — [Go(F, POIT -V x 7'V x G (7, )} d°F
14

= [0 MR X G T (V% GuB ) — IV X GG 7T - (¢ G, 7)) da
S

=— J; pHIGF PO - (i x V x Go(F, 7)) — [ x V x G(F, I - (G(F, 7))} da, (16)
where we have used the dyadic triple product rule [€]" - (@ x b Y= —[a x ¢]F - b to get to the final result.
Hence from either the dyadic Dirichlet condition:

A x Go(F, P)lses = 0, (17)
or the dyadic Neumann condition:
A x V x G(F, #)res = 0, (18)

Equation (16) leads to the following conclusion:

f {(IV x IV x G N - G.(7, ) — [G(7, )T - V x p~'V x G.(7, 7)}d*F = 0. (19)
\%4

Using the wave equation in equation (14), the result in (19) finally leads to:

T[99 x Gol@, POT - oG, AT — G, 7
C 14 [

+4Wwf [GoF, I - V0 x Gu(F, P + (G, I = 0. (20)
C |4 C

Furthermore, with the application of the dyadic triple product rule as follows:
[VO x G(7, 7" - Go(7, 7) = ~[Ge(7, PO - VO x Go(F, ), e2))

equation (20) leads to the final result showing the general possible correction to the symmetry of the electric
Green dyadic due to the axion coupling term:

G.@", ) = [G.(7', "' + 2kiw f [(Ge(7, TN - VO x G.(F, 7)d°T. (22)
14

Itis possible to show explicitly the equivalence between the generalized Lorentz lemma in equation (7) and
the resultin (22) (see appendix B). Once again, (22) will guarantee the symmetry of ée when V0 = 0asinthe
conventional Maxwell electrodynamics with linear dielectric media [14]. Note also that although the axion term
in (22) seems to imply the breaking of Green reciprocity in general in AED, there are important cases when such
symmetry still prevails when applied to certain TD’s as illustrated in the section below.

IT (b) The magnetic Green dyadic
Next we study the reciprocal symmetry of the magnetic Green dyadic in AED. To achieve this, we shall introduce
two types of electric dyadics G,; and G,, with one satisfying the conventional Dirichlet condition:

it % Gai(7, T)lres = 0, (23)
and the other satisfying the Neumann condition as follows:
it x V % G, 7)les = 0. 24)

We shall show that the two magnetic dyadics, Gy and G, corresponding to the two electric dyadics defined
in (22) and (24) via equation (13), will reveal similar relation to the generalized Feld-Tailemmain (10) as that
between (7) and (22) for the electric case. In addition, these two magnetic dyadics will also exhibit reciprocal
symmetry similar to that revealed from (22) for the electric dyadics.

We start with equation (15) and let P =G,F )0 = TR VAP G (7, 7"y and A = w1, together with
the boundary conditions in (23) and (24), we obtain:

f [V x M_IV X M_IV X 6@2(?) ?//)]T . éel(?: ?/)d3?
\4

- f [V % G (7, PO - V % 1 'V % Gu(#, 7)d°F = 0. (25)
14
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To explore the consequence of the result in (25), we employ the wave equation in (14) to expand each of the
two integrals in (25) into multiple terms and obtain:

f [V x 'V x 7'V x G (7, NI - Gu(F, 7)dF
14

2
= G 1V u G O G,

_ Amhiw f [V x 7'V0 x G (7, PO - G (7, 7 dF
c \4
4m “175(7 — 2T . & (7. 2N\ 37
— = | [V x pT6G — ) - Ga(7, 7)d°7, (26)
c JVv

and
f [V X Go@ P -V x 'V x Gu(7, 7)dF
14

2
=L 7V X Ga@ T - Ga (P, Py
c v

B 47rmwf [V % G, PO - VO x Gu(F, 7)d*F
c Vv
= [ 1V x Gatr, T - To — @7

While the §— function integral in (27) is trivial and gives:
[ WtV X GaE T80 = F)EF = p @IV X Gl I (28)
1%

thatin (26) can also be simplified by using the following dyadic-dyadic divergence theorem (see appendix C for a
proof):

fv{[ﬁ]T-vxAL[vxE]T-A'}dS*:fS[E]T-ﬁdea. (29)
Setting A = G, (7, 7)and B = i~ 'T6(7 — 7")leads to:
fv ([wT6@F@ — T -V x Gu(7, 7) — [V x pT6@F — P - Gu(F, )} dF
- j; [ T8 — 7T - A x Gu(#, 7')da = 0, (30)
where the condition in (23) has been used. Hence we obtain:
j; [V x p T6F — 7D - Gu(F, #)d’F = p ' (F)V" x Gu(F", 7). (1)

Substituting (26), (27) into (25); and with the 6— function integral in each be replaced by (28) and (31),
respectively, we finally obtain the following result:

2
1V X G O - G, P
c 14

4T Riw

o o 4 o
IV X V0 G B Ga Py T — T FOV x GG )

2
- ‘:—2 j; ('Y X G (7, PO - Gt (7, 7)dF

4TRIW

+ T [V X oG PO V0 X GaG PO + S (OIV X Gl PO = 0. (32)
\4 Cc

c

The two integrals with the coefficient ‘“—22 can be combined using the following identity:
c

V x ueGu (@, ") = p eV X Go(#, 7) + V(o) x Gu(7, ), (33)
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Figure 1. An illustration of the TI structure.

Equation (32) can then be re-written in the following form:

4 S oy o
T DV X Gl )

2
= S @Y x Ba?, P + 5 [ [V e) x Gall, T - G, Pa?

_ dmhiw [ 19 % w71V0 x Ga@, P - Ga @, Py
c \4

4rriw

f [V X G 7T - VO x G (7, 7)d5F. (34)
C 14

(34) then leads to the following reciprocal relation between the two magnetic dyadics:

2
u_1(7//)Gm1(7/,’ 7,) = /’6_1(?/) [GmZ(?,’ ?”)]T - 4C:TC‘]\1/ [V(M_lg) X GEZ(?) 7”/)]T : Gel(?’ 7,)d3?
+ kiw [ [V x p7'VO x Go(7, 7O - Gu (7, 7)d°7
\4

~ Kiw j; [V % G, 7T - VO x Gu(F, 7 dF (35)

where equation (13) has been used.

Hence we obtain the generalized reciprocal relation as in (35) for the magnetic dyadics in analogy to (22) for
the electric dyadic. Again, the equivalence between (35) and the Feld-Tai lemma can be shown explicitly
(appendix D). Note that for uniform and non-topological media with V6 = 0and V(') = 0, equation (35)
reduces to the symmetry relation between the two dyadics @ml and émz.

Application to TI with constant ¢ and finite boundary

Here we shall apply our above results to an important class of TI with constant 6 and finite boundary which has
been widely studied in the literature [18, 19]. In this case, the effect of the axion coupling term will emerge only as
asurface effect when 6 experiences a jump crossing the boundary. To be specific, we shall consider the source
and observer both located inside the TI and the outside is an ordinary non-topological dielectric medium. Other
situations can be studied in a similar way by specifying the permittivity and permeability appropriately according
to the positions of these source and observer. We shall demonstrate reciprocal symmetry using the results in (22)
and (35) with more restricted boundary conditions applied to the respective dyadic.

(I) Symmetry for the electric Green dyadic

Let us consider a time-reversal symmetric T in region ), with the outside {2, an ordinary dielectricwith § = 7
and 6 = 0, respectively, as shown in figure 1. Let the volume of the region ), be V and the corresponding
boundary be S with 7 an outward normal unit vector as shown. Hence V6 can be expressed as follows [18, 19]:

VO = (0, — 0)6(F7 — 7)f = —m6(7 — 7)), (36)
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where 7 is the position vector on the boundary S. Without first imposing the boundary conditions in (17) and
(18), the result in (20) will be modified to contain an additional surface integral as given by (16) to yield the
following result:

AT e,y 4 BT f (GoF, PO - V0 x G, #)d + “Z[G.(7, 71T
c Cc Vv c
:f py A % G PO - (V x Ge(7, 7)) = [V % Ge(7, P - (i1 x Ge(F, 7))} da. (37)
S

Now consider an infinitesimal extension of the volume V to V' (see figure 1), we can use the result in (36) to
evaluate the integral on the LHS of (37) as follows:

[ 16 71 - V0 x Go7, )

|4

= lim | [G.(F ¥ - VO x G.(7F, #)dF
Vi—vdJy’

— 7 lim 5§ — BIGE I - A x G.(7, #)dF
! V V/

Vis
- f (@ PO - 7 x G, 7)da. (38)
S

Using (38), the result in (37) can be rewritten as follows:
)
G ) = TG, O~ T [ [G@, T i x GG, ) da
c c c S
— [ A X GE I (V) GuE, ) — IV x Gu(E, I - (3 x Gu(F, 7)) da
S

= GG O = [T % G FOF - (V % G, 7)) da
c N

5 T
+ f {[u;‘v x Gu(F, 71y — T & (7, 7")] (7 x (7, ?’))}da,
S c

(39)

which leads to the following symmetric electric Green dyadic with the imposition of the Dirichlet boundary
conditionin (17):

(7", 7) = (G, 7T (40)

Hence we conclude that reciprocal symmetry is pertained to this case with the imposition of the
conventional Dirichlet boundary condition, which is similar to the case with electro-magneto statics as
established in [18, 19]. subjected to the class-I type boundary condition defined in those references. Moreover,
the conventional Neumann boundary condition (equation (18)) will not ensure such reciprocal symmetry in
general. Note that the above conclusion is not restricted to our specification of § = 7 as for a time reversal
symmetric T1. [t remains unaffected even for a time reversal non-symmetrical TIwith 6 = 2n + 1)7 [22],
illustrating once again that reciprocity can still hold in such case just as in the case with the presence a linear
dissipative medium [1-3].

(II) Symmetry for the magnetic dyadic

To illustrate the symmetry property of the magnetic dyadic, we shall consider the same TI system as in figure 1,
and try to determine the appropriate boundary conditions of G,1 and G,,. To achieve this we shall first keep the
surface terms in deriving equation (25) from equation (15) without applying the boundary conditions (23) and
(24) to obtain:

[ IV 5% 071V X Y x G PO - Ga(F, P

\4

~ [ Y X Ga BT+ VX IV x Ga P, )
\%4

= [ I XV x Ga POT (V% Ga(F, 7)) da
S

*f PV X pmIV X G (7, POIT - (A X Ga(F, 7))} da, (41)
S
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then the result in (34) will now take the form:

4 o 4 o
= X G ) 4 TV X G P
Cc Cc

w? -1 S 2 2T B 2 2 37
+7fv[v<u O X G (7, P - G (7, 7 dF

4T Riw

[ 19 % 171V0 X Ga Py BT - Ga (7, 7P
Cc \4
+ [ 'V x Gl T V0 % Ga (7,
[ 14
= [ 1 A X VG P (9 % Ga(F, 7)) da
S

- f 1, IV X 'V x G (7, PO - (A x Ga(F, 7))} da. (42)
S

In a similar way as in equation (36), we have:
Vple) = (uy'er — py @) 6(F — )4, (43)

and hence the integral in the second row of (42) can be evaluated as:

[ 1901 % Ga@ I - Ga(F, 7)dF
v

= lim [ (V1) x Gal, POI - Gu(F, PP

V-V
= tim [ 105" = 17 @)8(F = B X Ga(Fy PO - Ga P, 77
VsvdJdy!
= (1y'er — p ') f [ % G, P - G (7> 7)da. (44)
S

Next, we again use (29) with A = G,,(7, 7)and B = u;lé(? — 7)A X Gyp(F, 7") to obtain the following
result:

[ 19 5% 116G = 0 x Ga (B PO - Gu (7, 7)d'F
1%
= [ 716G = )t x Ga I -V x GaF 77
14
[l X G FOT - x Ga P, 7). (45)
S
With this, the integral in the third row of (42) can be evaluated as:
[ 19 5% 1190 x Ga(7, P - Ga (7, 7)d'F
1%

= lim fv IV % 1V X Go(F, T - G (P, 77

V-V
—1im (=) [ [V % 1, "8G = ) x Ga(P, P - Ga (7, 7)d'F
V-V \%4

= =7 [ 1 "8G = ) x Galy PO -V x Ga(F, 7
\%4
7 [y i x G FOT - x Ga (7, ) da
S
= =7 [ i x G FOF -V x Ga(F, ¥)da
S

+ | [y ' X Ga (@ PO - i x Ga(F, 7)da. (46)
S
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The fourth row in equation (42) simplifies as before to yield:
f [17'V % GoF, T - VO x G (7, 7)dF
14
— lim f [V x G, POIT - VO x Gy (7, 7)dF
V-vdJy!
= 1im (=) [ 8G = D'V x G PO - it x Ga(F, 7)dF
V=V \d

= =7 [ 11 'V X GalB, #IF X Ga(F, 7)da. (47)
S

Substituting equations (44), (46) and (47) into (42), we obtain:

4 o 4 o
T U MG S R T A GO\
c c

2
G e = iy e [ 1 % Ga P - GaF, )da
c S

42K o o
+ g X G POV x Ga(F, Pda
Cc S

4Am2Kiw A A o o NP BN
- thnxﬁdhﬂﬂ'nX@WSWW
C

y
ST [ % G P A x G, ) da
Cc N
= [ 1 Uy % V% G I (V% Ga P, 7)) da
S

*IMWVXMWXQﬂﬁNVMXQ@Wmm (48)
S

which, with equation (13), can be rewritten in the following form in terms of only surface integrals:

4T 1 e Ly o 4T e L, L
) "G (P, ') — ~ NG (7!, PN

2,5 T
= f {[ulzﬁ XV x G, 7y — I 1 G ?”)] (V x Ga(?, ?’))}da
S Cc

AmKiw o
'V x G (7, 77)

2
w - - 5 o oo
+L{|: C2 (NZIEZ - Ml 151) GeZ(r) T”) +

2.7 T
4 AR i x G, 71 — 12V X VX Go(F, 7")] (7 % Go(F, ?’))}da. (49)
C

Now if we impose the conventional Dirichlet condition equation (23) for G, but the following Robin
(mixed) condition [23] for G,»:

ATRkiw , e L,
i X G (7, 7

pth x Vox Go(F, 7 + =0, (50)

7eS

in place of the conventional Neumann condition, we obtain from (49) the following symmetric relation of
magnetic dyadic Green’s function for G,,; and G,

G (7", ) = [Gua (7', 7T (51)

Discussion and conclusion

In this work, we have extended the usual mathematical formulation for electromagnetic reciprocity to the case
when topological insulators are present. With application of axion electrodynamics, we have derived generalized
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Lorentz lemma, generalized Feld-Tai lemma, and the modified Green reciprocity for this situation. In particular,
we have demonstrated the validity of reciprocal symmetry in the presence of a TI with constant axion coupling
and finite extent subjected to the appropriate boundary conditions of the electric and magnetic dyadic Green’s
functions, consistent with previous literature which has considered such TT’s under electro-magneto-statics
condition [18, 19].

As is well-known, one challenge for studying the electromagnetic properties of TT’s is the probing of the
topological magneto-electric (TME) effect due to the axion coupling term. Several recent experiments have
successfully observed such effects via the study of Faraday/Kerr rotation of the polarization of incident THz EM
waves on such systems [24—26], and recently we have also explored possible observation of TME from red-
shifted resonances of plasmonic nanoshells [16]. Our results obtained in this study may provide an alternative
approach to the study of TME via the probing of possible violation of the conventional Lorentz lemma
(equation (7)), in which case implication for the Green reciprocity will be that the wave equation (equation (14))
will not admit physical solutions satisfying the Dirichlet condition for the case of TI with a constant axion
coupling and finite extent. It is of interest to note that recent studies of surface waves at a TI boundary interfaced
with an anisotropic medium can lead to nonreciprocal left /right propagation of optical signals [13, 27]. Since
one of the most significant applications of optical nonreciprocity is in the design of various optical isolators
[1, 28], it will be of interest to generalize our present formulation to the anisotropic case to study how the axion
parameter and various boundary conditions may be manifested in the various generalized lemmas and Green
reciprocity constraints.
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Appendix A. Derivation of equation (14)

Taking the curl of the third equation (Faraday’s law) in equation (2), we obtain:

Vxu'VxE+r®VxH=0. (A1)
C

Combining with the fourth equation in (2) leads to:

V x u'V x E + E(ED + 4—”? + 41K VO x E) =0. (A2)
C C C

Hence we have:

) _ .
Vox p WV x B - LoF ¢ Mgy o o 2Ty (A3)
c C c

The wave equation for the electric Green dyadic follows with the application of equations (11) to (A3) to
yield:

4T Kiw

2
VX gV x G, ) — LG, ) + L0 ¢ G, 7) = — Lo (7 - #I, (Ad)
Cc c

which is the result in equation (14).

Appendix B. Equivalence between the Lorentz lemma and Green reciprocity

To prove the equivalence between equations (7) and (22), we consider the currents of two harmonic point
dipoles as follows:

10
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Ji = —iwpd(F — 7")é;

Jo = —iwpé(F — )¢, (B1)

and the corresponding electric fields as obtained from equation (11):

- w? o W o w o

B=2E [ G607 - ined? = 226G, 7) - &= 226, 7)
Cc 14 C Cc

- wzp o R W o R wp =

E, =28 f Go@, ") - 87" — P8 dF" = Z2G,(F, ') - & = ——Gy(7, 7, (B2)
Cc \4 Cc C

with the vectors G,; and @ej being the column components of the electric dyadic @e.
Next we substitute (B1) and (B2) into equation (7) and with the help of Faraday’s law to obtain:

P L4 x Gad, 7)) - (A Gi(7, 7)) — (V x Gi(7, 7)) - (i x Gu(7, 7"))}da

i Js p
= P [ LGy ) - 1 x (V x GalF, #)] — GuF 7) - [ x (V x Gy(7, )]} da
i Js p
: 2
= L GG, T — G T — P [ (V0% Gy, 7)) - GulF, PHAF, (BY)
Cc C \'4

where the vector triple product has been used in going from the first to the second row. (B3) can then be
rewritten in dyadic form as follows:

L LY % G, PO Gx G, ) = [ x G 7T+ (7 x Gl 7)) da
i Js p

=L {1 % (V% G, PO+ GulP 7)) — [Ge(E, PO - [ x (V% Go(7, 7)) da
1 Js u

47 o o B P -
= TR (G, it — (G, Py} — oL [ (G, O - (V6 x Gl PV,
c c %
(B4)
Hence from either the dyadic Dirichlet condition (equation (17)) or the dyadic Neumann condition
(equation (18)), the surface integrals will vanish and equation (B4) reduces to the following form:
GG, #) = G, P + 2wmi [ (G770 - (V0 x Go(, P T, (B)
%
which is the result in equation (22).
Appendix C. Derivation of the dyadic-dyadic divergence theorem
To derive equation (29), we consider the vector-dyadic divergence theorem as quoted from [20, 21]:
f{[E]T.VXA’—[V><1§']T~K}d3*:fﬁ-(ﬁ><§)da. (C1)
% s
By rewriting the RHS of (C1) as
A-(AxB)=@xA) - -B=[B % x A), (C2)
Equation (C1) leads to:
f ;Y xA'—[Vxﬁ]T-K}d3*:f[1§']T (A x A)da. (C3)
1% s

It is straightforward to extend the result in (C3) with the vector A be replaced by a higher rank tensor,
leading to the result in equation (29).

Appendix D. Equivalence between the Feld-Tailemma and Green reciprocity

To demonstrate the equivalence between equations (10) and (35), we consider the electric fields due to the same
two sources in (B1), but being ‘propagated’ by the two dyadics as defined by the conditions in equations (23) and
(24):

11
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2

S wha o
E = LG,
c
S Wwhra oL,
E, = 7 elj(ra ), (DD)

where GeZi and éelj are the column components of the corresponding dyadic functions. Substituting (B1) and
(D1) into equation (10) leads to the following:

W W
—47TP[M_1(7”)V X Gaj (7", 7') - & — p~ PV X G (7, 77 - ]

P L[ [——(v x Gai?y #0) X (7 x Gy, #) = ~ep” Goa(P, #)Guy 7 ?’)]

P [ Ven - G, 7 x Gem AT
\4

4 o o o o
— S [0 1V0 - [Goi(, ) X (V% G ) = Guaj(7, ) % (V% Geai(7, 7)1, (D2)
1 \4

Again, Faraday’s law has been utilized to express the magnetic in terms of the electric fields in deriving (D2).

Using the vector triple product, the first row in equation (D2) becomes (excluding the w%p factor):
’ 1
Jod [{L] (V % Geai(F, 7)) X (V X Geij(F, 7)) — —ep™'Geai(F, 7") x Gy (7, ?')]da
S iwp c
=—fi- f{( ) [(V x G (F, 7)) x (V x Gei(F, 7)) + —€/FlGe21(f )G (7, 7 )}dﬂ
W

— (—.C ] (V % Gy 7 1] X (V X G #0Dda — [ Zep™ Go(F, 7 - [ % Goy (7, 7)) da.
WL S c
(D3)

Substitute equations (D3) into (D2), we obtain:

2 2
—”—pf(#] [ x V x Go(@, P - V x Gu(7, 7)da
Wt

_ep eGP, I - (i x CalF, )da
c S
= 4mp{p PV X Ga (@, ) — ' TV x Ga, 7))

Cad VG x GalF, PO - Ga (P, P
c

47mwp

f [V x Go(Fy PO - [V x Gar(7, 7)1d%F
\74

4TrWp

+ = [ G PN - [ V0 X (V x Ga (P, P17, (D4)
14

and upon using the boundary conditions in equations (23) and (24) leads to:

mp [ F)IV" X (P, 7] = p PV x G, 701
2
= 22 [ [9en) x G T - GaGr, 7)dF
c \4

dTrwp

f [V x Go(7, PO - [1'V0 x Gy (F, 7)1 dF
\4

4TRW
+ - p

f [Gea (7, FOIT - [p7IV0 x (V x G (7, F)IdF = 0. (D5)
\4
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Note that the last term on the LHS of (D5) can be rewritten as follows using the dyadic triple product rule:
j; [GoF, PO - [p'V0 x (V x Ga(F, P)IdF
= - fv [171V0 x Go(F, PO - (V x Gu(F, 7)) x d°F, (D6)
hence the dyadic-dyadic divergence theorem in (29) leads to:
fv [171V0 x GaF, PO - (V x Gu(F, ) dF
- fv [V % (V0 x GaF, DI - Gu(F, 7)dF
— j; [V x G, PO - [A % Co(F, 7)]da = 0, (D7)

where we use the boundary condition in equation (23). Hence equation (D5) becomes:

P

(W' ENVY x Ga (@ ) = p FHIV! X G (77T

o

2
— [ Ve - GaE PO - Galr 77
dmcdv

o

— ikw f LY % Go@ O - [VO x G (@, 7)1d°7
1%

i [ [V % (V0 x Gal®, 7NN - Ga(?, 7)dF = 0, (D)
14

which can be rewritten as (using equation (13)):
p EN G (P 7 = NG FOI

2
— [ V) x oG PO - Galr 7)dF
4mcJv

o

+ikw [ [V x (u7'VO x G (7, 7D - Gu(#, 7)dF
14

— ikw fv WUV x Go (@, )T - [VO % Ga(7, 7)]d°7. (DY)

The resultin (D9) is seen to be identical with that in equation (35) and hence the equivalence between the
generalized Feld-Tai lemma and the magnetic Green reciprocity is established.
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