
Portland State University Portland State University 

PDXScholar PDXScholar 

Physics Faculty Publications and Presentations Physics 

9-2020 

Electromagnetic Reciprocity in the Presence of Electromagnetic Reciprocity in the Presence of 

Topological Insulators Topological Insulators 

Huai-Yi Xie 
Institute of Nuclear Energy Research 

P. T. Leung 
Portland State University, hopl@pdx.edu 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/phy_fac 

 Part of the Physics Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
H. Y. Xie and P. T. Leung, 2020, " Electromagnetic reciprocity in the presence of topological insulators " J. 
Phys. Commun. 4: 095014 

This Article is brought to you for free and open access. It has been accepted for inclusion in Physics Faculty 
Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make 
this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/phy_fac
https://pdxscholar.library.pdx.edu/phy
https://pdxscholar.library.pdx.edu/phy_fac?utm_source=pdxscholar.library.pdx.edu%2Fphy_fac%2F388&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=pdxscholar.library.pdx.edu%2Fphy_fac%2F388&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/phy_fac/388
mailto:pdxscholar@pdx.edu


J. Phys. Commun. 4 (2020) 095014 https://doi.org/10.1088/2399-6528/aba851

PAPER

Electromagnetic reciprocity in the presence of topological insulators

Huai-Yi Xie1 andPTLeung2

1 Division of Physics, Institute ofNuclear Energy Research, TaoyuanCounty 32546, Taiwan
2 Department of Physics, Portland StateUniversity, POBox 751, Portland,Oregon 97207,United States of America

E-mail: damoxie@iner.gov.tw

Keywords: topological insulator, axion electrodynamics, reciprocity, Green dyadic

Abstract
Electromagnetic reciprocity is studied in the presence of topological insulators (TI)with application of
axion electrodynamics for harmonic electromagnetic fields. The corresponding generalized Lorentz
and Feld-Tai type lemmas are derived in terms of the axion coupling parameter, and their correlation
to the conditional symmetry in source-observer coordinates for the variousGreen dyadics is
established subjected to different types of boundary conditions. Possible application of the results to
the probing of the topologicalmagneto-electric effects fromTI is discussed.

Introduction

Reciprocity inwave propagation refers to the symmetry in the interchange of the source and the observer, and is
an important concept in both classical and quantumphysics concerning the transmission of acoustic,
electromagnetic, andmatter waves.While such symmetry is trivial when propagation is considered in infinite
vacuum space, the situation can be rather nontrivial and intriguing in the presence ofmaterialmediumor an
external potential in the propagation ofmatter waves [1, 2]. In particular, the possible breakdown of this
symmetry in both classical electromagnetic waves [3] and quantummatter waves [4]have recently received
much attention among researchers in the field. Such breakdown can lead to applications in device design such as
optical isolators and one-way quantum tunneling processes, for example.

Conventionally, optical reciprocity has been studied exclusively with the formulation ofMaxwell’s
electrodynamics [1–3, 5], including approaches based onmicroscopicmodeling of general dielectricmedia as
collections of point dipoles [6]. Nevertheless, the study of the problemhas also been extended to certain
generalizations ofMaxwell’s equations such as the case with the existence ofmagneticmonopoles [7].Moreover,
amore significant extension ofMaxwell’s theory to include the axionfields has recently been realizedwith the
discovery of the topological insulators (TI) [8, 9]with exciting development in the recent observation of the
axionic charge-density waves in theWeyl semimetal [10]. It is of interest to recall that the illusive axionwhich
wasfirst introduced decades ago in a nonmetric theory of gravitation [11], and in an attempt to account for the
‘strongCPproblem’ [12] turned out to lead tomodified electrodynamics which can be realized in awide class of
topologicalmaterials. Thuswe aremotivated in the present work to extend the conventional study of reciprocity
inwave propagation to situations with the presence of TI, via the application of axion electrodynamics (AED) to
this system.

As is well-known, themathematical formulation of reciprocity symmetry in electromagnetism can be
achieved in the following threemost effective ways: (1) the Lorentz and Feld-Tai lemmas; (2) the symmetry in the
Green dyadic; and (3) the symmetry in the scatteringmatrix.While there have been some studies of (3) in recent
literature which among to the asymmetry in left/right incidence in the case of 1Dpropagation through a
topological insulator with the presence of certain surfacewaves [13], here in our present studywe shall focus on
the formulation based on (1) and (2) and the equivalence between them.Our goal is to provide rigorous
mathematical derivation of the extended versions of each to axion electrodynamics as applied to TI, and to
establish the correlation between them subjected to various general class of boundary conditions. Such
correlationwas established previously in the literature for conventionalMaxwell electrodynamics in the
presence of various linearmedia including anisotropic and nonlocal dielectric response [14].
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Theoretical formulation: general results
Webegin by recalling the followingfield equations inAEDwhichwasfirst shown to be applicable to TI as a low-
frequency effective theory and can be expressed inGaussian units as follows [15]:
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with notations as in our recent work [16]where k = a
p4 2 and a is thefine structure constant, q is the axion

coupling taken to be time-independent: ( ) ( ) 
q q=r t r, .The corresponding equations in the frequency domain

then take the following form [17]:
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Note that all the field quantities andmaterial parameters in (2) are functions of frequencywith the following
linear constitutive relationswhich are linear and isotropic, but can be inhomogeneous: ( )

  
e=D r E

and ( )
  

m=B r H.

(I)Generalized Lorentz and Feld-Tai lemmas
Consider two sources


J1 and


J2 at two different locations in the samemediumwith the axion field; and the

corresponding electromagnetic fields associatedwith them as given by themodifiedAmpere’s law in (2):
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Taking the inner products of equation (3)with

E2 and equation (4)with


E ,1 one obtains with the use of the

constitutive relation and a triple product identity the following results:
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Subtracting the two equations in (5) fromone another and use the result for · ( ) 
 ´a b , one obtains:
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Using Faraday’s lawwith
 

m=B H in equation (2), one sees that the second and fourth terms on the LHS of
(6) cancel, leading to the following generalized Lorentz lemma for AED as applied toTI:
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Note that in going from (6) to (7), we have integrated the result over a volumeV with boundary S, and have
applied the divergence theorem to the LHS. It is obvious equation (7) reduces to thewell-knownLorentz lemma
for q = 0, reconfirming thewell-known fact that an axionfieldwhich is constant and uniformwill lead to no
observable physical effect since the additional ( · )

 
qE B term in the AEDLagrangianwill simply reduce to a total

differential in this case [15]. Hence for a homogeneous TIwith afinite boundary, themodification to the Lorentz
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lemmawill emerge exclusively from the discontinuity of the axion coupling across the boundary on the surface of
theTI, as in those studied intensively by researcherswithin the context of the so-called q- electrodynamics [18, 19].

Next we derive the generalized Feld-Tai lemma for AED. To do this we consider the scalar products of (3)
and (4)with the respectivemagnetic


H fields instead, using both the electric andmagnetic constitutive relations.

By going through similar steps as above, we obtain the following result:
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However, using Faraday’s lawwill not lead to cancelation of the second termon the LHS in this case. Instead,
with the application of various vector identities, it can be shown that equation (8) can be re-expressed in terms of
a total differential on the LHS to take the following form:
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Again, integrating over a volumeV with boundary S, andwith the application of the divergence theorem to
the LHS,we obtain the following generalized Feld-Tai lemma for AED as applied to TI:
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In the limit for homogeneousmedia with both ( )em q =  =- 0 and 0,1 the result in (10) simply reduces
to the conventional Feld-Tai lemma as appeared in the literature [20].

(II)Green reciprocity
It is well-known that one powerful way to formulate reciprocity for wave propagation is to refer to the symmetry
of the correspondingGreen function orGreen dyadic for thewave equation [2, 20]. To achieve this for AED as
applied to TI, we first introduce the electric andmagnetic Green dyadic via the following definitions:
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Hence Faraday’s law in equation (2) leads to the following simple relation between the two dyadics:
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II (a)The electricGreen dyadic
It is straightforward to derive from (2) the followingwave equation for the electric dyadic


Ge (see appendix A for

a simple derivation) [17]:

( ) ( ) ( ) ( ) ( )
           

m
w

e
pk w

q
p
d ´  ´ ¢ - ¢ +  ´ ¢ = - - ¢- G r r

c
G r r

i

c
G r r

c
r r I, ,

4
,

4
. 14e e e

1
2

2

To study the symmetry property of


G ,e we employ the following generalizedGreen’s theorem for dyadic [21]:
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where [ ]T stands for transpose.With ( )
   
= ¢P G r r, ,e ( )

   
= Q G r r,e and l m= -1 into (15), we obtain
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wherewe have used the dyadic triple product rule [ ] · ( ) [ ] ·     
´ = - ´c a b a c bT T to get to thefinal result.
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Using thewave equation in equation (14), the result in (19)finally leads to:
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Furthermore, with the application of the dyadic triple product rule as follows:
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equation (20) leads to thefinal result showing the general possible correction to the symmetry of the electric
Green dyadic due to the axion coupling term:
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It is possible to show explicitly the equivalence between the generalized Lorentz lemma in equation (7) and
the result in (22) (see appendix B). Once again, (22)will guarantee the symmetry of


Ge when q = 0 as in the

conventionalMaxwell electrodynamics with linear dielectricmedia [14]. Note also that although the axion term
in (22) seems to imply the breaking ofGreen reciprocity in general in AED, there are important cases when such
symmetry still prevails when applied to certain TI’s as illustrated in the section below.

II (b)Themagnetic Green dyadic
Nextwe study the reciprocal symmetry of themagnetic Green dyadic in AED. To achieve this, we shall introduce
two types of electric dyadics


Ge1 and
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symmetry similar to that revealed from (22) for the electric dyadics.
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To explore the consequence of the result in (25), we employ thewave equation in (14) to expand each of the
two integrals in (25) intomultiple terms and obtain:
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While the d- function integral in (27) is trivial and gives:

[ ( )] · ( ) ( )[ ( )] ( )
          

ò m d m ´  - ¢ = ¢ ¢ ´ ¢ - -G r r I r r d r r G r r, , , 28
V

e
T

e
T1

2
3 1

2

that in (26) can also be simplified by using the following dyadic-dyadic divergence theorem (see appendix C for a
proof):
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where the condition in (23) has been used.Hencewe obtain:

[ ( )] · ( ) ( ) ( ) ( )
          

ò m d m ´ -  ¢ =   ´  ¢- -I r r G r r d r r G r r, , . 31
V

T
e e

1
1

3 1
1

Substituting (26), (27) into (25); andwith the d- function integral in each be replaced by (28) and (31),
respectively, wefinally obtain the following result:
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Equation (32) can then be re-written in the following form:
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(34) then leads to the following reciprocal relation between the twomagnetic dyadics:
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where equation (13) has been used.
Hencewe obtain the generalized reciprocal relation as in (35) for themagnetic dyadics in analogy to (22) for

the electric dyadic. Again, the equivalence between (35) and the Feld-Tai lemma can be shown explicitly
(appendixD). Note that for uniform and non-topologicalmedia with q = 0 and ( )m e =- 0,1 equation (35)
reduces to the symmetry relation between the two dyadics


Gm1 and


G .m2

Application toTIwith constant q andfinite boundary
Herewe shall apply our above results to an important class of TIwith constant q andfinite boundary which has
beenwidely studied in the literature [18, 19]. In this case, the effect of the axion coupling termwill emerge only as
a surface effect when q experiences a jump crossing the boundary. To be specific, we shall consider the source
and observer both located inside the TI and the outside is an ordinary non-topological dielectricmedium.Other
situations can be studied in a similar way by specifying the permittivity and permeability appropriately according
to the positions of these source and observer.We shall demonstrate reciprocal symmetry using the results in (22)
and (35)withmore restricted boundary conditions applied to the respective dyadic.

(I) Symmetry for the electric Green dyadic
Let us consider a time-reversal symmetric TI in region W1with the outside W2 an ordinary dielectric with q p=
and q = 0, respectively, as shown infigure 1. Let the volume of the region W1 beV and the corresponding
boundary be S with n̂ an outward normal unit vector as shown.Hence q can be expressed as follows [18, 19]:

( ) ( ) ˆ ( ) ˆ ( )   q q q d pd = - - = - -r r n r r n, 36s s2 1

Figure 1.An illustration of the TI structure.
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where

rs is the position vector on the boundary S.Withoutfirst imposing the boundary conditions in (17) and

(18), the result in (20)will bemodified to contain an additional surface integral as given by (16) to yield the
following result:

( ) [ ( )] · ( ) [ ( )]

{[ ˆ ( )] · ( ( )) [ ( )] · ( ˆ ( ))} ( )

            

           
ò

ò

p pk w
q

p

m

-  ¢ +   ´ ¢ + ¢ 

= ´   ´ ¢ -  ´  ´ ¢-

c
G r r

i

c
G r r G r r d r

c
G r r

n G r r G r r G r r n G r r da

4
,

8
, ,

4
,

, , , , . 37

e
V

e
T

e e
T

S
e

T
e e

T
e

3

1
1

Now consider an infinitesimal extension of the volumeV to ¢V (see figure 1), we can use the result in (36) to
evaluate the integral on the LHS of (37) as follows:

[ ( )] · ( )

[ ( )] · ( )

( )[ ( )] · ˆ ( )

[ ( )] · ˆ ( ) ( )

      

      

        

     

ò
ò

ò
ò

q

q

p d

p

  ´ ¢

=   ´ ¢

= - -  ´ ¢

= -  ´ ¢

¢ ¢

¢ ¢

G r r G r r d r

G r r G r r d r

r r G r r n G r r d r

G r r n G r r da

, ,

lim , ,

lim , ,

, , . 38

V
e

T
e

V V V
e

T
e

V V V
s e

T
e

S
e

T
e

3

3

3

Using (38), the result in (37) can be rewritten as follows:

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭

( ) [ ( )] [ ( )] · ˆ ( )

{[ ˆ ( )] · ( ( )) [ ( )] · ( ˆ ( ))}

[ ( )] { [ ˆ ( )] · ( ( ))}

( ) ( ) · ( ˆ ( ))

( )

           

           

        

        

ò
ò

ò

ò

p p p k w

m

p
m

m
p k w

 ¢ = ¢  -  ´ ¢

- ´   ´ ¢ -  ´  ´ ¢

= ¢  - ´   ´ ¢

+  ´  -  ´ ¢

-

-

-

c
G r r

c
G r r

i

c
G r r n G r r da

n G r r G r r G r r n G r r da

c
G r r n G r r G r r da

G r r
i

c
G r r n G r r da

4
,

4
,

8
, ,

, , , ,

4
, , ,

,
8

, , ,

39

e e
T

S
e

T
e

S
e

T
e e

T
e

e
T

S
e

T
e

S
e e

T

e

2

1
1

1
1

1
1

2

which leads to the following symmetric electric Green dyadic with the imposition of theDirichlet boundary
condition in (17):

( ) [ ( )] ( )
      ¢ = ¢ G r r G r r, , . 40e e

T

Hencewe conclude that reciprocal symmetry is pertained to this case with the imposition of the
conventional Dirichlet boundary condition, which is similar to the casewith electro-magneto statics as
established in [18, 19]. subjected to the class-I type boundary condition defined in those references.Moreover,
the conventional Neumann boundary condition (equation (18))will not ensure such reciprocal symmetry in
general. Note that the above conclusion is not restricted to our specification of q p= as for a time reversal
symmetric TI. It remains unaffected even for a time reversal non-symmetrical TIwith ( )q p= +n2 1 [22],
illustrating once again that reciprocity can still hold in such case just as in the case with the presence a linear
dissipativemedium [1–3].

(II) Symmetry for themagnetic dyadic
To illustrate the symmetry property of themagnetic dyadic, we shall consider the sameTI system as infigure 1,
and try to determine the appropriate boundary conditions of


Ge1 and


G .e2 To achieve this we shallfirst keep the

surface terms in deriving equation (25) from equation (15)without applying the boundary conditions (23) and
(24) to obtain:

[ ( )] · ( )

[ ( )] · ( )

{[ ˆ ( )] · ( ( ))}

{[ ( )] · ( ˆ ( ))} ( )

      

      

     

     

ò
ò
ò
ò

m m

m m

m m

m m

 ´  ´  ´  ¢

-  ´   ´  ´ ¢

= ´  ´   ´ ¢

-  ´  ´  ´ ¢

- -

- -

- -

- -

G r r G r r d r

G r r G r r d r

n G r r G r r da

G r r n G r r da

, ,

, ,

, ,

, , , 41

V
e

T
e

V
e

T
e

S
e

T
e

S
e

T
e

1 1
2 1

3

1
2

1
1

3

1 1
2 1

1 1
2 1
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then the result in (34)will now take the form:

( ) [ ( )]

[ ( )] ( )] · ( )

[ ( )] · ( )

[ ( )] · ( )

{[ ˆ ( )] · ( ( ))}

{[ ( )] · ( ˆ ( ))} ( )

     

      

      

      

     

     

ò

ò

ò
ò
ò

p
m

p
m

w
m e

pk w
m q

pk w
m q

m m

m m

-  ´  ¢ + ¢ ´ ¢ 

+  ´  ¢

-  ´  ´  ¢

+  ´   ´ ¢

= ´  ´   ´ ¢

-  ´  ´  ´ ¢

- -

-

-

-

- -

- -

c
G r r

c
G r r

c
G r r G r r d r

i

c
G r r G r r d r

i

c
G r r G r r d r

n G r r G r r da

G r r n G r r da

4
,

4
,

, ,

4
, ,

4
, ,

, ,

, , . 42

e e
T

V
e

T
e

V
e

T
e

V
e

T
e

S
e

T
e

S
e

T
e

1
1

1 1
1

2

2

2
1

2 1
3

1
1

2 1
3

1
1

2 1
3

1
1

1
1

2 1

1
1

1
1

2 1

In a similar way as in equation (36), we have:

( ) ( ) ( ) ˆ ( ) m e m e m e d = - -- - - r r n, 43s
1

2
1

2 1
1

1

and hence the integral in the second rowof (42) can be evaluated as:

[ ( ) ( )] · ( )

[ ( ) ( )] · ( )

[( ) ( ) ˆ ( )] · ( )

( ) [ ˆ ( )] · ( ) ( )

      

      

        

     

ò
ò
ò

ò

m e

m e

m e m e d

m e m e

 ´  ¢

=  ´  ¢

= - - ´  ¢

= - ´  ¢

-
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-
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- -

- -

G r r G r r d r

G r r G r r d r

r r n G r r G r r d r

n G r r G r r da

, ,

lim , ,

lim , ,

, , . 44

V
e

T
e

V V V
e

T
e

V V V
s e

T
e

S
e

T
e

1
2 1

3

1
2 1

3

2
1

2 1
1

1 2 1
3

2
1

2 1
1

1 2 1

Next, we again use (29)with ( )
   
= ¢A G r r,e1 and ( ) ˆ ( )

     
m d= - ´ -B r r n G r r,s e1

1
2 to obtain the following

result:

[ ( ) ˆ ( )] · ( )

[ ( ) ˆ ( )] · ( )

[ ˆ ( )] · ˆ ( ) ( )

        

        

     

ò
ò
ò

m d
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, ,
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V
s e

T
e

V
s e

T
e

S
e

T
e

1
1

2 1
3

1
1

2 1
3

1
1

2 1

With this, the integral in the third row of (42) can be evaluated as:

[ ( )] · ( )

[ ( )] · ( )

( ) [ ( ) ˆ ( )] · ( )

[ ( ) ˆ ( )] · ( )
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ò
ò

ò
ò
ò
ò
ò

m q

m q

p m d

p m d

p m

p m

p m

 ´  ´  ¢

=  ´  ´  ¢

= -  ´ - ´  ¢

= - - ´   ´ ¢

+ ´  ´ ¢
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-
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-
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-
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r r n G r r G r r d r

r r n G r r G r r d r
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e
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e
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e
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e
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e
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e
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e

T
e

S
e

T
e

1
1
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3

1
1
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1
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3

1
1
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3

1
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1
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1
1
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The fourth row in equation (42) simplifies as before to yield:

[ ( )] · ( )

[ ( )] · ( )

( ) ( )[ ( )] · ˆ ( )

[ ( )] · ˆ ( ) ( )
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Substituting equations (44), (46) and (47) into (42), we obtain:
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which, with equation (13), can be rewritten in the following form in terms of only surface integrals:

⎧⎨⎩
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⎧⎨⎩
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Now if we impose the conventional Dirichlet condition equation (23) for


Ge1 but the following Robin
(mixed) condition [23] for


G :e2

ˆ ( ) ˆ ( ) ( )
     


m

p k w
´  ´  + ´  =-

Î

n G r r
i

c
n G r r,

4
, 0, 50e e

r S
1

1
2

2

2

in place of the conventional Neumann condition, we obtain from (49) the following symmetric relation of
magnetic dyadicGreen’s function for


Gm1 and


G :m2

( ) [ ( )] ( )
     

 ¢ = ¢ G r r G r r, , . 51m m
T

1 2

Discussion and conclusion

In this work, we have extended the usualmathematical formulation for electromagnetic reciprocity to the case
when topological insulators are present.With application of axion electrodynamics, we have derived generalized

9

J. Phys. Commun. 4 (2020) 095014 H-YXie andPTLeung



Lorentz lemma, generalized Feld-Tai lemma, and themodifiedGreen reciprocity for this situation. In particular,
we have demonstrated the validity of reciprocal symmetry in the presence of a TIwith constant axion coupling
andfinite extent subjected to the appropriate boundary conditions of the electric andmagnetic dyadicGreen’s
functions, consistent with previous literature which has considered such TI’s under electro-magneto-statics
condition [18, 19].

As is well-known, one challenge for studying the electromagnetic properties of TI’s is the probing of the
topologicalmagneto-electric (TME) effect due to the axion coupling term. Several recent experiments have
successfully observed such effects via the study of Faraday/Kerr rotation of the polarization of incident THzEM
waves on such systems [24–26], and recently we have also explored possible observation of TME from red-
shifted resonances of plasmonic nanoshells [16]. Our results obtained in this studymay provide an alternative
approach to the study of TME via the probing of possible violation of the conventional Lorentz lemma
(equation (7)), inwhich case implication for theGreen reciprocity will be that thewave equation (equation (14))
will not admit physical solutions satisfying theDirichlet condition for the case of TIwith a constant axion
coupling andfinite extent. It is of interest to note that recent studies of surfacewaves at a TI boundary interfaced
with an anisotropicmedium can lead to nonreciprocal left/right propagation of optical signals [13, 27]. Since
one of themost significant applications of optical nonreciprocity is in the design of various optical isolators
[1, 28], it will be of interest to generalize our present formulation to the anisotropic case to study how the axion
parameter and various boundary conditionsmay bemanifested in the various generalized lemmas andGreen
reciprocity constraints.
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AppendixA.Derivation of equation (14)

Taking the curl of the third equation (Faraday’s law) in equation (2), we obtain:

( )
 

m
w

 ´  ´ +  ´ =- E
i

c
H 0. A11

Combiningwith the fourth equation in (2) leads to:

⎜ ⎟⎛
⎝

⎞
⎠ ( )

   
m

w w p
pk q ´  ´ + + +  ´ =- E

i

c

i

c
D

c
J E

4
4 0. A21

Hencewe have:
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w

e
pk w

q
p w

 ´  ´ - +  ´ = -- E
c

E
i

c
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i

c
J

4 4
. A31

2

2 2

Thewave equation for the electric Green dyadic followswith the application of equations (11) to (A3) to
yield:

( ) ( ) ( ) ( ) ( )
           

m
w

e
pk w

q
p
d ´  ´ ¢ - ¢ +  ´ ¢ = - - ¢- G r r

c
G r r

i

c
G r r

c
r r I, ,

4
,

4
, A4e e e

1
2

2

which is the result in equation (14).

Appendix B. Equivalence between the Lorentz lemma andGreen reciprocity

Toprove the equivalence between equations (7) and (22), we consider the currents of two harmonic point
dipoles as follows:
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w d
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2

and the corresponding electricfields as obtained from equation (11):
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with the vectors


Gei and


Gej being the column components of the electric dyadic


G .e

Nextwe substitute (B1) and (B2) into equation (7) andwith the help of Faraday’s law to obtain:
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where the vector triple product has been used in going from thefirst to the second row. (B3) can then be
rewritten in dyadic form as follows:
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Hence from either the dyadicDirichlet condition (equation (17)) or the dyadicNeumann condition
(equation (18)), the surface integrals will vanish and equation (B4) reduces to the following form:

( ) [ ( )] [ ( )] · ( ( )) ( )
            

òwk q ¢ = ¢  +   ´ ¢G r r G r r i G r r G r r d r, , 2 , , , B5e e
T

V
e

T
e

3

which is the result in equation (22).

AppendixC.Derivation of the dyadic-dyadic divergence theorem

Toderive equation (29), we consider the vector-dyadic divergence theorem as quoted from [20, 21]:

{[ ] · [ ] · } ˆ · ( ) ( )
      

ò ò ´ -  ´ = ´B A B A d r n A B da. C1
V

T T

S

3

By rewriting the RHS of (C1) as

ˆ · ( ) ( ˆ ) · [ ] · ( ˆ ) ( )
     
´ = ´ = ´n A B n A B B n A , C2T

Equation (C1) leads to:

{[ ] · [ ] · } [ ] · ( ˆ ) ( )
      

ò ò ´ -  ´ = ´B A B A d r B n A da. C3
V

T T

S

T3

It is straightforward to extend the result in (C3)with the vector

A be replaced by a higher rank tensor,

leading to the result in equation (29).

AppendixD. Equivalence between the Feld-Tai lemma andGreen reciprocity

Todemonstrate the equivalence between equations (10) and (35), we consider the electricfields due to the same
two sources in (B1), but being ‘propagated’ by the two dyadics as defined by the conditions in equations (23) and
(24):
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where


Ge i2 and


Ge j1 are the column components of the corresponding dyadic functions. Substituting (B1) and
(D1) into equation (10) leads to the following:
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Again, Faraday’s law has been utilized to express themagnetic in terms of the electric fields in deriving (D2).
Using the vector triple product, the first row in equation (D2) becomes (excluding the w p
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Substitute equations (D3) into (D2), we obtain:
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and uponusing the boundary conditions in equations (23) and (24) leads to:
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Note that the last termon the LHS of (D5) can be rewritten as follows using the dyadic triple product rule:
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hence the dyadic-dyadic divergence theorem in (29) leads to:
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wherewe use the boundary condition in equation (23). Hence equation (D5) becomes:

{ ( ) ( ) ( )[ ( )] }

[ ( ) · ( )] · ( )

[ ( )] · [ ( )]

[ ( ( ))] · ( ) ( )

       

      

      

      

ò
ò
ò

m m
w
p

em

kw m q

kw m q

  ´  ¢ - ¢ ¢ ´ ¢ 

-   ¢

-  ´   ´ ¢

+  ´  ´  ¢ =

- -

-

-

-

r G r r r G r r

c
G r r G r r d r

i G r r G r r d r

i G r r G r r d r

, ,

4
, ,

, ,

, , 0, D8

e e
T

V
e

T
e

V
e

T
e

V
e

T
e

1
1

1
2

2
1

2 1
3

1
2 1

3

1
2 1

3

which can be rewritten as (using equation (13)):
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The result in (D9) is seen to be identical with that in equation (35) and hence the equivalence between the
generalized Feld-Tai lemma and themagnetic Green reciprocity is established.
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