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Fluorogenic probes for thioredoxin reductase activity
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Portland State University, Department of Chemistry, 1719 SW 10th Avenue, 97201 Portland, OR, USA
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A B S T R A C T

The thioredoxin system is vital in maintaining the cellular redox state and is implicated in various cancers and
other diseases. It comprises of thioredoxin reductase, thioredoxin and NADPH. Various methods have been
developed for the detection and quantification of the thioredoxin reductase enzyme. Most of these methods suf-
fer the shortfall of poor specificity, hence there is need to develop more robust and specific techniques.
Recently, there has been an increased interest in fluorescent probes that can target thioredoxin reductase.
This review highlights the progress in the synthesis and application of the different fluorescent probes that
have been employed for this purpose.

1. Introduction

Thioredoxin reductase enzymes (EC 1.8.1.9) in mammals are a
group of selenoproteins that belong to a family of homodimeric
pyridine‐nucleotide oxidoreductases. They control the cell redox state
by functioning as reducing equivalents for many proteins and cellular
processes. These enzymes exist in three main isoforms; in the cytosol
as TrxR1, in mitochondria as TrxR2 and as a third form, thioredoxin‐
glutathione reductase (TGR) which is mainly expressed in male germ
cells [1]. TrxR2 differs from TrxR1 in possessing an N‐terminal mito-
chondrial import sequence [2].

Each monomer of TrxR (Fig. 1) has a molecular weight of
55–60 kDa depending on its cellular location, and includes an FAD
prosthetic group and an NADPH binding site, both of which are
required for the enzyme’s catalytic process [3,4]. TrxR has 64%
sequence homology to glutathione reductase, which includes a ‐Cys‐
Val‐Asn‐Val‐Gly‐Cys‐ redox‐active site [5]. However, TrxR also has a
second redox active site on the C‐terminal that incorporates the unique
selenocysteine (Sec) residue (Fig. 1), affording this enzyme signifi-
cantly greater catalytic efficiency and broader substrate specificity
compared to other oxidoreductase enzymes that utilize cysteine
(Cys) [5–8]. Engineered TrxR, with Cys replacing the Sec residue, dis-
plays reduced catalytic efficiency of ∼ 2 orders of magnitude. Sec has a
pKa ∼ 5.2, whereas Cys residues typically have a pKa closer to ∼ 8.5.
Therefore, the selenol residue in mammalian TrxR is efficiently depro-
tonated at physiological pH, enhancing its nucleophilicity in compar-
ison to Cys. The insertion of Sec into the TrxR sequence occurs

through the UGA codon, which is normally a stop codon in protein
translation [9].

The thioredoxin reductase system is comprised of TrxR, NADPH
and thioredoxin (Trx). NADPH transfers electrons to the redox active
site of TrxR via an NADPH‐FAD charge transfer complex which
reduces ‐Cys‐Sec‐ on the C‐terminal active site (Fig. 2). Sec becomes
exposed on the surface of the enzyme to reduce the disulfide (‐Cys‐
Cys‐) of Trx [1,10].

Trx, the major substrate for TrxR, is a protein disulfide oxidoreduc-
tase which can reduce disulfides at a rate five orders of magnitude fas-
ter than dithiothreitol (DTT) [11]. In its reduced form, Trx controls
cellular redox potential and plays a protective role by scavenging
ROS‐derived radicals [6,12]. As a reducing equivalent for other pro-
teins, it protects cells from tumor necrosis factor, anti‐Fas antibody
and ischemic reperfusion injury [13,14]. Other known functions of
Trx include inhibiting the pro‐apoptotic protein, ASK‐1 and PTEN, a
tumor suppressor protein [15,16]. Besides its cytoprotective proper-
ties, Trx also activates redox factor‐1 (Ref‐1) and promotes DNA repair
through the reduction of ribonucleotide reductase, amongst other pro-
teins responsible for cell growth and survival.

Overall, the thioredoxin system can promote growth and prevent
apoptosis of cancer cells [19]. High levels of TrxR have been found
in colorectal carcinomas, breast cancer, prostate cancer and human
lung carcinoma, at levels that are ∼ ten‐fold greater than in normal tis-
sues [20–23]. In melanoma cells TrxR levels can correlate with metas-
tases where it aids growth and promotes DNA synthesis while
inhibiting apoptosis‐inducing proteins and tumor suppressing proteins
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such as p53 [20,21,24–29]. A good example of the requirement of this
enzyme in cancerous cells is the reverting of their morphology to nor-
mal cells when TrxR is knocked down via siRNA. This finding points to
the role of TrxR in cancer progression [29]. Additional investigations
have also shown inhibited TrxR expression in Parkinson’s disease
and stroke [30,31].

The importance of TrxR in disease necessitates useful and practical
methods for monitoring this enzyme. A common commercial method
is the DTNB assay which employs Ellman’s reagent in the colorimetric
quantification of TrxR in the presence of NADPH. DTNB is reduced to
yellow colored TNB2‐, and the absorption shifts from 305 nm to
412 nm. A modified version of this assay is the insulin end‐point assay
in which TrxR reduces Trx which goes on to reduce the insulin disul-
fide bonds. The free insulin thiols will then reduce DTNB to TNB2‐.
This is called an end‐point or discontinuous assay since it can be
quenched by a chaotrope such as guanidium hydrochloride before
quantifying the free thiols. DTNB is however a substrate for other bio-
logical reducing species, and in cell extracts, background activity can
range from 15 to 40 %. In addition, the assay can only be used in cells
after they have been lysed [32].

The SC‐TR assay is a method involving selenocystine (SC) reduc-
tion by TrxR that is readily monitored via the consumption of NADPH
(λabs 340 nm). This method not only allows quantification of TrxR but
gives the relative abundance of TrxR to Trx. It was developed for use
with spectrophotometry and is conducive for high throughput screen-
ing in multi‐well plates. The SC‐TR assay is highly specific since
selenocystine cannot be reduced by biothiols including glutathione
reductase. A limitation is the use of UV–Vis absorption which is subject
to interference from other biomolecules absorbing in the same region
as NADPH [32].

Immunological methods have been used to monitor TrxR activity
not only in melanoma cells but also in blood plasma. However, these
techniques are generally regarded to be not cost effective and prone
to error and false negatives [25,26,33].

Fluorescent probes can have enhanced utility in the detection of
TrxR due to their sensitivity and capability to give high temporal
and spatial resolution. In comparison to the methods described to date,
fluorescent probes are also a potential non‐invasive way to detect bio-
logical analytes [34,35]. Ideal fluorescent probes should be highly sen-
sitive such that they can be used in low concentrations, down to the
nanomolar range. Fluorophores with a high signal to background ratio
are therefore of interest, with near‐infrared fluorophores being desir-
able [36].

In this focused review, we highlight fluorescent probes that have
been synthesized and used for the detection of thioredoxin reductase
activity. Additional related probes have also been used to target sele-
nols and thioredoxin, but these will not be covered [37–39].

2. Probes for monitoring TrxR activity

The Fang group designed, synthesized, and evaluated the first off-
–on fluorescent probe selective for TrxR, TRFS‐green (Fig. 3), which
provides a convenient and direct method to detect and assay the TrxR
enzyme [40]. It consists of a five‐membered dithiolane ring conjugated
to a fluorescent naphthalimide via a carbamate linkage.

TRFS‐green has a λem = 480 nm at λexc = 373 nm which shifts to
λem = 538 nm at λexc = 438 nm when the probe is reduced by TrxR
in the presence of NADPH under physiological conditions. A 10 µM
solution of TRFS‐green in the presence of TrxR (75 nM) and NADPH
(200 µM) leads to a gradual increase in fluorescence over 180 min.
The proposed turn‐on mechanism for TRFS‐green was validated via
HPLC monitoring.

When the disulfide bond is reduced, a nucleophilic thiolate is
formed which promotes intramolecular cyclization to give a five mem-
bered cyclic oxathiolanone and the fluorescent naphthalimide. TRFS‐
green is selective against small reducing thiols and structurally‐
related glutathione reductase and lipoamide dehydrogenase. Hep G2

Fig. 1. (top) A subunit of TrxR showing the A chain (cyan) and the B chain
(green). Structures were obtained from the protein data bank and visualized
using UCSF Chimera [17,18] (bottom) Sec, the selenium analog of Cys, is a
unique residue found on the TrxR active site. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2. The thioredoxin reductase system catalytic mechanism.
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cells and cell lysates containing TrxR also show reduction of
TRFS‐green, but not in the presence of 2,4‐dinitrochlorobenzene
(DNCB), a known inhibitor of TrxR. Despite the selectivity of this
probe, it still has relatively low binding efficiency with a Km of
189 µM, and the fluorescence increase does not plateau after 3 h
[40]. The lengthy time for the signal to plateau is due to the slow
cyclization‐driven step to uncage the fluorophore [41]. TRFS‐green
has also been used to image the TrxR activity in HeLa cells in different
studies [42,43].

A red‐shifted probe, TRFS‐red (Fig. 3), was synthesized by conju-
gating a Nile blue fluorophore with the dithiolane quencher. TRFS‐
red has λmax,abs at 530 nm that is shifted to 615 nm in the presence
of TrxR and NADPH. [44] When excited at 615 nm, the reduced probe
fluoresces at 661 nm and the increase in fluorescence plateaus at
120 min. TRFS‐red also has an improved 90‐fold fluorescence increase
compared to TRFS‐green’s ∼ 35‐fold increase. This is a result of the
positively charged iminium cation on TRFS‐red that enhances affinity
between the probe and the negatively charged C‐terminal of TrxR.
TRFS‐red is also selectively reduced by isolated TrxR and with HeLa
cells. The turn‐on response of 10 µM TRFS‐red in cells is faster (1 h)
in comparison to TRFS‐green (4 h). This probe predominantly localizes
in the cytosol, showing higher selectivity for TrxR1 [44].

A third probe in the TRFS series, Mito‐TRFS, was synthesized to
selectively target mitochondrial TrxR, TrxR2 [31]. Mitochondria are
known to produce ROS which can cause oxidative stress in disease.

Since TrxR is involved in controlling ROS levels in cells, its activity
can be used to monitor disease states.

In a manner similar to TRFS‐green, Mito‐TRFS has a naphthalimide
fluorophore conjugated to the 1,2‐dithiolan‐4‐ol moiety, as the TrxR
recognizing motif. A triphenylphosphonium group is present in Mito‐
TRFS for mitochondrial targeting. This probe has λmax,abs = 375 nm
and emits at 480 nm. In the presence of TrxR, the disulfide bonds
are reduced, uncaging the fluorophore and the probe emits at
540 nm at λexc = 438 nm. The turn‐on response of Mito‐TRFS is rela-
tively rapid, with a 30‐fold increase that plateaus in 1 h. As in the case
of TRFS‐red, the improved kinetics is attributed to the positive charge
on Mito‐TRFS that facilitates binding to the negatively charged
enzyme active site while enhancing the hydrophilic nature of the
probe. Fluorescence colocalization experiments confirm Mito‐TRFS
distribution in mitochondria. This is the first probe to directly detect
TrxR2 activity in living cells. The study also showed a decline in TrxR2
activity in Parkinson’s disease [31]. Mito‐TRFS was additionally
employed in a separate study to image TrxR2 in HeLa cells [45].

In a related study, the Fang group altered the linker units and TrxR
recognition moieties to evaluate properties enabling faster reaction
times and heightened selectivity [41]. Findings include the fact that
6‐membered ring dithianes are not responsive to the enzyme, in con-
trast to 5‐membered ring dithiolanes. This results from heightened
ring strain and reactivity associated with smaller rings. Cyclic dise-
lenides, in contrast, are more inclined towards reduction by GSH.
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Fig. 3. The TRFS series of probes synthesized by Fang and co-workers. Turn-on mechanisms for TRFS-green and Fast-TRFS are also shown (adapted with
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referred to the web version of this article.)
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Among all the synthesized probes, Fast‐TRFS (Fig. 3) stands out due
to its quick turn‐on response. HPLC‐MS data confirms the turn‐on
mechanism of Fast‐TRFS being due to cleavage of the disulfide bond
with no cyclization‐driven release (CDR) of the fluorophore. However,
with prolonged incubation (240 min), there is a decrease in the fluo-
rescence due to re‐oxidation of the thiols to the disulfide.

Fast‐TRFS shows an 80‐fold increase in fluorescence that peaks
at ∼ 5 min (λexc = 345 nm, λem = 460 nm). Other potential reduc-
ing/interfering agents such as Trx, glutathione reductase, diaphorase,
amidehydrolase, bovine serum albumin, GSH, NADPH, Cys and Sec
have minimal interference to TrxR. This probe displays a higher selec-
tivity for TrxR over GSH (50 fold) compared to TRFS‐red (12.8) and
TRFS‐green (15.2).Treatment of HeLa cell lysates with Fast‐TRFS also
gives a more rapid and intense (70‐fold) fluorescence increase in com-
parison to previously reported probes, enabling dose‐dependent visu-
alization of TrxR. The researchers have used Fast‐TRFS in a potential
TrxR assay technique and also in the identification of TrxR inhibitors
which may be useful for cancer treatment [41].

The first two‐photon fluorescent probe for TrxR, TP‐TRFS (Fig. 3),
was recently synthesized through the conjugation of 2‐acetyl‐6‐
aminonaphthalene to a 1,2‐dithiolane quenching moiety [30]. In
two‐photon fluorescence, a fluorophore is excited by the absorption
of two photons which have half the energy and double the wavelength
of a single photon required to achieve that excitation. It is advanta-
geous in allowing non‐damaging and deeper imaging or tissue penetra-
tion, making the probe ideal for use in imaging living organisms
[46,47].

A 10 μM solution of TP‐TRFS shows an ∼ 15‐fold fluorescence
increase at 490 nm in the presence of 50 nM TrxR within 3 h. The
probe also responds in Hep G2 cell lysates and shows diminished sig-
naling in the presence of auranofin or DNCB, the TrxR inhibitors. The
fluorescence also increases in HeLa cells but is weaker when TrxR is
knocked out. TP‐TRFS has a turn‐on response in zebrafish, and is thus
the first probe to be used in detecting TrxR in living organisms. Two‐
photon fluorescence imaging with TP‐TRFS is also used to show
declined TrxR in the brain of mice with cerebral ischemic reperfusion
injury. The data supports previously reported studies on declining
TrxR mRNA in the ischemic cerebral cortex, and may help in under-
standing and in developing therapy for stroke [48].

Bu and co‐workers synthesized the probe TR‐green (Fig. 4) based
on the Michael addition of TrxR to the probe’s α,β‐unsaturated ketone
[49]. This strong covalent binding allows localized imaging of the
enzyme and detection at nanomolar levels. The mechanism of covalent
binding via conjugate addition is the same as that of the known TrxR
inhibitor curcumin whereby the Sec498 and Cys497 residues are alky-
lated [50]. TR‐green is synthesized by conjugating a coumarin fluo-
rophore to a substituted furan ring through an α,β‐unsaturated

ketone linker. This quenches the fluorescence through intramolecular
charge transfer (ICT) from the electron‐rich fluorophore to the electron
poor aromatic ring through the extended conjugation. Conjugate addi-
tion to the Sec residue of TrxR thus results in a fluorescence signal at
500 nm when TR‐green is excited at 440 nm. From a series of related
probes synthesized in this study, TR‐green is the most selective and
inhibitory for TrxR due to its 5‐methylfuran moiety. Other probes
can be attacked by thiols through a similar Michael addition reaction.

The Bu group went on to create an improved inhibitor of TrxR2
that also functions as an effective probe. TPP2a (Fig. 4) is synthesized
by conjugating a TrxR2 inhibitor, a furan analog of curcumin, to PPh3
for mitochondria targeting [51]. Since TrxR is essential in combating
the effects of ROS in cancerous cells, its inhibition by TPP2a leads to
mitochondrial apoptosis in HeLa cancer cells. Interestingly, TPP2a is
more active (IC50 = 1.44 mM) against the cancer cells compared to
the furan‐curcumin inhibitor scaffold (IC50 = 24.22 mM).

TPP2a shows environmentally sensitive fluorescence, (λex = 440 -
nm, λem = 520 nm). In the presence of thiols, the fluorescence is rela-
tively low but increases in the presence of BSA, TrxR, and other
proteins such as Trx, glutathione reductase, tubulin, horseradish per-
oxidase and superoxide dismutase.

To circumvent the non‐specific signaling, the researchers cleverly
coordinated the β‐diketone of TPP2a to a cupric ion, resulting in fluo-
rescence quenching through the disruption of conjugation. This results
in selectivity for TrxR because the coordination of cupric ion is weaker
than preferential coordination of the β‐diketone moiety with the K29
residue on the N‐terminal of the TrxR active site. This binding is
rationalized through molecular docking of the probe onto the TrxR
active site. The simulated data shows that TPP2a attains a folded con-
formation in the hydrophobic active site and its β‐diketone forms two
hydrogen bonds with the K29 residue of TrxR.

The Singh group designed carbon‐dot based probes, Biotin‐CD‐
Naph, that were conjugated to a naphthalimide moiety through a
disulfide linkage (Fig. 5) [52]. This makes a FRET pair that can be used
in the selective targeting of thioredoxin reductase. Carbon dots offer
advantages such as good water solubility, inertness in biological envi-
ronments, photostability and easy surface functionalization [53–56].

FRET pairs are advantageous in monitoring cell activities since the
fluorescence intensity of both the donor and the acceptor are consid-
ered, limiting the influence of external factors, and allowing repro-
ducibility of results. The carbon dots are the donors whereas the 3‐
aminonaphthalimide fluorophore is the acceptor. The cystamine link-
age allows the donor and acceptor to be in a favorable distance for
FRET transfer. Biotin is also attached onto the CD surface, promoting
endocytosis into cancer cells which overexpress biotin receptors on
their surfaces. The emission wavelength of CDs is known to shift
depending on the excitation therefore the emission energy can be
adjusted to suit that of the acceptor. This makes CDs ideal donors in
a FRET pair. The same property can be used to minimize background
noise by shifting the excitation to a higher wavelength.

In the presence of TrxR, the emission wavelength of the nanosensor
at 565 nm decreases whilst that at 450 nm (CD fluorescence) increases
and plateaus in 80 min. The reduction of the disulfide disrupts the
FRET pair, and this results in fluorescence. The probe is highly specific
to TrxR and the fluorescence ratio I450/I565 increases steadily over time
with a limit of detection of 7.2 × 10‐8 M. The nanosensor can image
TrxR in human breast cancer MCF‐7 and cervical cancer HeLa cell
lines. Cancer cells have about 70% reduction in viability when treated
with 100 μg/mL of the nanosensor. This is likely due to the release of
naphthalimide which resembles amonafide, a chemotherapeutic drug.

A second generation carbon dot‐based probe, fCD‐Cu2+, was syn-
thesized and evaluated for thioredoxin reductase screening by the
Singh group via conjugation of 3‐30‐dithiodipropanoic acid (DTPA)
moieties to the carbon dots (Fig. 5) [57]. The blue fluorescence of
the CDs is quenched in the presence of Cu2+ ions via the chelating
effect of DTPA. The quenching mechanism is both static and dynamic

O
OH O

O

O

PPh3

TR-green

TPP2a

Fig. 4. Mitochondria-targeting TPP2a and TR-green, synthesized by Bu and
co-workers. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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and was based on the transfer of electrons to the empty d orbitals of
Cu2+. In the presence of TrxR, the disulfide bonds are reduced and
3‐mercaptopropinoic acid is released as a bidentate Cu2+ ion chelate,
in a cation displacement assay. When exposed to TrxR, a linear
increase in the fluorescence of the functionalized CDs is observed that
plateaus after 100 min (λex = 340 nm, λem = 446 nm). The probe
exhibits minimal toxicity to mammalian MCF‐7 cells, but shows
promising cytoxicity to cancer cells, and is thus a promising theragnos-
tic tool.

Holmgren and co‐workers evaluated two probes for their selectivity
to mammalian Trx and TrxR. The probes consisted of fluorescein
isothiocyanate‐labeled insulin (FiTC‐insulin) and di‐eosin‐glutathione
disulfide (Di‐E‐GSSG). They were prepared by modifying the amino
groups of GSSG with either FiTC or EITC [58]. Di‐E‐GSSG is reduced
in the presence of Trx, TrxR and NADPH with a Km of 4.3 μM
(λex = 520 nm, λem = 545 nm). This probe is shown to be a better sub-
strate for Trx in comparison to TrxR due to the large size and
hydrophobicity of Di‐E‐GSSG that renders unfavorable binding to
TrxR. Di‐E‐GSSG is also a poor substrate for glutathione reductase
(GR), even at high enzyme concentrations. The Km for this GR reaction
is 6.3 μM, with a low turnover.

FiTC‐insulin has an average of two fluorophores per insulin mole-
cule. When the disulfide between the A and B chain of insulin is
reduced, a fluorescence increase at 520 nm occurs (λex = 480 nm).
When incubated with Trx, TrxR and NADPH, an increase in fluores-
cence is observed and the Km is 9.7 μM. FiTC‐insulin can detect low
levels of Trx (4–20 nM) and TrxR (0.4–2 nM). Trx activity can be
determined in U937, human Burkitt’s lymphoma and K562 cell lines,
and in homogenized skin biopsies, with quantification of low levels

of 0.35 ng Trx per μg of protein. FiTC‐insulin can also be used in deter-
mining Trx in serum and plasma. However, this is a relatively labori-
ous method involving initially reducing Trx with DTT and gel
filtration to remove the excess DTT. These studies led to the develop-
ment of a commercial TrxR assay kit [59].

Recently, a unique off–on probe (MPSE) containing a benzoselazole
conjugated to a naphthalimide fluorophore (Fig. 6) was synthesized to
detect TrxR2 [60].

In the presence of TrxR, the fluorescent MPSE (λem = 550 nm)
reacts to form a non‐emissive molecule, MP, due to PET quenching.
MPSE serves as a theragnostic via its ability to detect mitochondrial
TrxR and to trigger apoptosis in cancer cells. In apoptotic cells, dam-
aged mitochondria are phagocytosed by lysozymes and the acidic envi-
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ronment of the lysozomes promotes a turn‐on response of the probe
(MP‐H+ λem = 470 nm) such that the apoptotic cycle can be moni-
tored. The greater ICT in MPSE is responsible for the larger Stokes shift
and more red‐shifted emission in comparison to MP‐H+. The therag-
nostic properties are attributed to the probe promoting the expression
of caspases and apoptotic proteins while diminishing antiapoptotic
protein levels. This is accompanied by an increase in the release of
ROS and inhibition of the MAPK signal transduction pathway that is
essential for cancer cell proliferation.

Recently, the synthesis and evaluation of the first diselenide‐based
probe for the selective detection of thioredoxin reductase was reported
(Fig. 7) [61]. This involves conjugation of a linear diselenide moiety, a
fluorescence quencher, to a fluorescent seminaphthorhodafluor. The
design rationale was assisted by molecular docking studies onto the
TrxR active site. The diselenide probe (1a) has a more favorable bind-
ing energy of −11.1 kcal/mol compared to its disulfide analogue (1b)
which has a value of −9.6 kcal/mol.

Nucleophilic attack of the diselenide moiety by the Sec residue of
TrxR is envisioned to be faster in comparison to the corresponding
disulfide‐functionalized probe due to the greater electrophilicity of
Se. The selenoate formed is also a better leaving group in comparison
to thiolates. Additionally, the cylization‐driven release of the fluo-
reophore is faster for the diselende probe compared to the disulfide
due to greater nucleophilicity of the selenolate, which attacks the car-
bamate group.

Probe 1a exhibits a relatively quick turn‐on response to TrxR,
reaching maximum fluorescence within 30 min. 1a also has a low
Km value of 15.89 μM, which shows high affinity to the enzyme. In
HCC827 lung adenocarcinoma cells, the diselenide probe exhibits flu-
orescence that is diminished in the presence of the TrxR inhibitor
DNCB. As anticipated, the disulfide analog also fluoresces in
HCC827 cells but the emission is lower (∼1.6‐fold) compared to 1a.
Probe 1a shows potential as a scaffold for the development of therag-
nostics, since it affords relatively low IC50 values of 3.5 μM and 4.8 μM
with SK‐MEL‐5 and A375 melanoma cells lines respectively.

3. Conclusion

The development of probes for monitoring TrxR activity is of signif-
icant current interest due its role in cancer, oxidative stress and other
significant disease states such as ischemic repurfusion injury and
Parkinsons disease [29,30]. The Sec residue on the TrxR active site
gives this enzyme significantly greater catalytic efficiency and broader
substrate specificity compared to other oxidoreductase enzymes that
utilize cysteine (Cys) [5–8]. This unique residue allows targeted detec-
tion of TrxR using different fluorescent probes. Many of the probes
synthesized and evaluated to date target TrxR in cancer cell lines,
and some also exhibit selective cytotoxicity and show promise as ther-
agnostics. There is still a need to develop more probes with greater
kinetic and theragnostic properties. One such way would be to design
probes with a turn‐on response that is not dependent on the
cyclization‐driven step, as was done for Fast‐TRFS. The TrxR‐

recognition moiety can be selenium‐based, as designed by the Strongin
group, to allow rapid nucleophilic attack by TrxR which leads to a fas-
ter response [60,61]. Molecular docking simulation‐guided design of
fluorescent probes is an interesting avenue that can lead to more rapid
discovery of the best probes targeting TrxR. This has been utilized in
the design of ethaselen, an orally administered antineoplastic drug
which is under phase I clinical trials and covalently binds to overex-
pressed TrxR in cancers [62]. Docking simulations have also been used
to compare the binding of diselenide and disulfide probes and related
compounds onto the TrxR active site [61,63]. The progress summa-
rized herein should aid researchers in initiating additional studies of
enhanced TrxR probes and theragnostics, and in broadening applica-
tions of TrxR study to additional disease states.
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