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THE NON-VANISHING OF THE TRACE OF T3

LIUBOMIR CHIRIAC, DAPHNE KURZENHAUSER, AND ERIN WILLIAMS

Abstract. A generalized Lehmer conjecture predicts that, for every positive integer n, the
trace of the Hecke operator Tn in level one does not vanish, unless the space of cusp forms
acted upon is trivial. So far, this has only been established for n = 2. In this paper, we use
p-adic methods to prove the statement for n = 3.

1. Introduction

Consider the Delta function

∆(z) = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn, (q = exp(2πiz))

which is the unique normalized cusp form of weight 12 for the full modular group. A famous
open question, due to Lehmer [Leh47], asks whether there exists an integer n ≥ 1 such that
τ(n) is zero. It is widely believed not only that ∆ has no vanishing Fourier coefficients,
but also that the same phenomenon occurs whenever the space of cusp forms for SL2(Z) is
one-dimensional, i.e., the weight 2k is in the set {12, 16, 18, 20, 22, 26}. For these values, the
n-th Fourier coefficient of the corresponding normalized cusp form coincides with the trace
of the Hecke operator Tn acting on the space of cusp forms of weight 2k and level one, which
will be denoted by Tr Tn(2k).

Motivated by the above, Rouse [Rou06] proposed a “Generalized Lehmer Conjecture”,
which posits that the trace Tr Tn(2k) does not vanish for all even weights 2k ≥ 16 or
2k = 12. In fact, [Rou06, Conjecture 1.5] predicts the non-vanishing of the trace of Tn, with
n ≥ 1 not a square, in every level N coprime to n. As evidence, Rouse proved the case n = 2
using a computational algorithm.

In this paper, we make further progress on the Generalized Lehmer Conjecture by proving
it for n = 3 and level one.

Theorem 1. Suppose that 2k ≥ 16 or 2k = 12. Then Tr T3(2k) 6= 0.

We mention that the analogous statement for n = 2 also follows from a recent paper of
Chiriac and Jorza [CJ22], where a stronger result was obtained—namely that Tr T2(2k) takes
no repeated values, except for 0, which occurs only when the space is trivial. Their proof
combines 2-adic results from [CJ21] and a new application of classical bounds on linear forms
in logarithms in the context of exponential sums with more than two terms. The case n = 3
appears to be more difficult because of the presence of additional terms in the exponential
sums defining the trace.

2010 Mathematics Subject Classification. Primary: 11F30, Secondary: 11B37, 11F85.
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We take our lead from [CJ22] and use the Eichler-Selberg trace formula to express the trace
of T3 in terms of linear recurrence sequences. This reduces the problem to proving the non-
vanishing of three subsequences, according to some congruence classes of k (see Proposition
3). To this end, we employ a general practical method, based on p-adic arguments, developed
by Mignotte and Tzanakis [MT91]. This method has found applications in the study of
ternary sequences, particularly Berstel’s sequence [MT93]. The idea is that given an equation
of the form un = c and a conjectured set M of solutions n ∈ Z, a suitable choice of primes
possessing certain properties can guarantee that M does indeed include all solutions; we
elaborate on the specifics in Section 4.

2. Background

In this section, we briefly review some basic facts from the theory of modular forms for
the full modular group SL2(Z), that is, of level one. For a more comprehensive account, the
reader is referred to [Kil15].

Let h = {z ∈ C : Im(z) > 0} be the upper half-plane. A modular form of even weight 2k
and level one is a holomorphic function f : h→ C with the following properties:

(i) f(z + 1) = f(z) and f(−1/z) = z2kf(z) for all z ∈ h;
(ii) f(z) is bounded as Im(z)→∞.

Every modular form f admits a unique Fourier expansion f(z) =
∑

n≥0 a(n)qn, and if a(0) =
0 we call f a cusp form. In addition, a cusp form f is normalized if a(1) = 1.

Denote by S2k the set of cusp forms of weight 2k and level one. This is a vector space over
C of finite dimension d, namely

d =

{
bk/6c − 1 if k ≡ 1 (mod 6)

bk/6c otherwise.

The space S2k is endowed with the action of certain linear transformations, called Hecke
operators. These can be defined, for all positive integer m, as linear maps Tm : S2k → S2k
given by

Tm

(∑
n≥1

a(n)qn

)
=
∑
n≥1

 ∑
d|gcd(m,n)

d2k−1a(mn/d2)

 qn.

If p is a prime number, the effect of Tp on f(z) =
∑

n≥1 a(n)qn can be described as

Tpf =
∑
n≥1

(
a(pn) + p2k−1a(n/p)

)
qn,

with the understanding that a(n/p) = 0 whenever p - n. It turns out that the characteristic
polynomial of Tm has integer coefficients. In particular, its trace Tr Tm(2k) is also an integer.

A common way to compute traces of Hecke operators is using the Eichler-Selberg trace
formula. This involves the Hurwitz class number H(n), which counts the weighted number
of equivalence classes of positive definite binary quadratic forms of discriminant −n. More
precisely, the class containing x2+y2 is weighted by 1/2, and the class containing x2+xy+y2

is weighted by 1/3. For instance, H(3) = 1/3 and H(12) = 4/3, whereas H(8) = H(11) = 1.
We also set H(n) = 0 if n ≡ 1 or 2 (mod 4), and H(0) = −1/12.
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Following Zagier’s Appendix to [Lan76], we recall the following version of the Eichler-
Selberg trace formula on SL2(Z): for all integers m ≥ 1 and k ≥ 2 we have

Tr Tm(2k) = −1

2

∑
|t|≤2

√
m

P2k(t,m)H(4m− t2)− 1

2

∑
dd′=m

min(d, d′)2k−1,

where P2k(t,m) is the coefficient of x2k−2 in the power series expansion of (1−tx+mx2)−1. It
is not hard to verify (see, for example, the proof of [CJ22, Lemma 3]) that P2k(t,m) satisfies
the following combinatorial formula:

P2k(t,m) =
k−1∑
j=0

(−1)j
(

2k − 2− j
j

)
mjt2k−2−2j. (1)

Since our main interest is in the case m = 3, we compute

Tr T3(2k) = −1

2
P2k(0, 3)H(12)− P2k(1, 3)H(11)− P2k(2, 3)H(8)− P2k(3, 3)H(3)− 1

= −2

3
P2k(0, 3)− P2k(1, 3)− P2k(2, 3)− 1

3
P2k(3, 3)− 1,

which combined with (1) gives

Tr T3(2k) = −1− 2 · (−3)k−2 −
k−1∑
j=0

(−1)j
(

2k − 2− j
j

)
3j(1 + 22k−2−2j + 32k−3−2j). (2)

3. The trace as a sum of recurrent sequences

Our immediate goal is to manipulate identity (2) in order to obtain certain recurrent
sequences. The following lemma summarizes the calculations needed.

Lemma 2. For any u, v ∈ R \ {0}, consider the sequence {αn}n≥0 defined as

αn :=
n∑

j=0

(−1)j
(

2n− j
j

)
ujvn−j.

Then for every integer n ≥ 2 we have the recurrence relation

αn = (v − 2u)αn−1 − u2αn−2,

where α0 = 1 and α1 = v − u.

Proof. The generating function of the sum given by the right-hand side is

∞∑
n=0

n∑
j=0

(−1)j
(

2n− j
j

)
ujvn−jxn.

3



Setting m = n− j and changing variables gives us
∞∑

m=0

n∑
j=0

(−1)j
(

2m+ j

j

)
ujvmxjxm =

∞∑
m=0

(vx)m
∞∑
j=0

(−1)j
(

(2m+ 1) + j − 1

j

)
(ux)j

=
∞∑

m=0

(vx)m
1

(1 + ux)2m+1
(3)

=
1

1 + ux

∞∑
m=0

(
vx

(1 + ux)2

)m

=
1

1 + ux

(
1− vx

(1 + ux)2

)−1
(4)

=
1

1 + ux

(
1 + 2ux+ u2x2 − vx

(1 + ux)2

)−1
=

1 + ux

1 + (2u− v)x+ u2x2

where in (3) we have used the negative binomial series

(1 + x)−d =
∞∑
j=0

(−1)j
(
d+ j − 1

j

)
xj,

and in (4) used the formula for the sum of a geometric series. Now, let G(x) =
∑

n≥0 αnx
n

be the generating function of the sequence {αn}n≥0. As

αn + (2u− v)αn−1 + u2αn−2 = 0

for n ≥ 2, it follows that G(x) satisfies

(G(x)− 1 + (u− v)x) + (2u− v)x(G(x)− 1) + u2x2G(x) = 0.

This further shows that

G(x) =
1 + ux

1 + (2u− v)x+ u2x2
.

The generating functions of both sequences are the same, so the statement of the lemma
follows.

�

Using Lemma 2, we are now prepared to prove the main result of this section.

Proposition 3. Let {an}n≥0 and {bn}n≥0 be the sequences given by the recurrences

an = −5an−1 − 9an−2 for n ≥ 2, a0 = 1, a1 = −2

and
bn = −2bn−1 − 9bn−2 for n ≥ 2, b0 = 1, b1 = 1,

respectively. Then for all integers k ≥ 2, we have that

Tr T3(2k) =


−1− ak−1 − bk−1 if k ≡ 2 (mod 3)

−1− ak−1 − bk−1 − 3k−1 if k ≡ 1, 3 (mod 6)

−1− ak−1 − bk−1 + 3k−1 if k ≡ 0, 4 (mod 6)

.
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Proof. In view of identity (2), we can write Tr T3(2k) = −1− S1 − S2 − S3, where

S1 =
k−1∑
j=0

(−1)j
(

2k − 2− j
j

)
3j

S2 =
k−1∑
j=0

(−1)j
(

2k − 2− j
j

)
3j22k−2j−2

S3 = 2 · (−3)k−2 +
k−1∑
j=0

(−1)j
(

2k − 2− j
j

)
32k−3−j.

Setting u = 3 and v = 1 in Lemma 2, we see that S1 is equal to ak−1. Similarly, u = 3 and
v = 4 give that S2 is equal to bk−1. It remains to show that

S3 =


0 if k ≡ 2 (mod 3)

−3k−1 if k ≡ 1, 3 (mod 6)

3k−1 if k ≡ 0, 4 (mod 6).

Equivalently, for every n ≥ 1, we must prove that

2(−3)n−1 −
n∑

j=0

(−1)j
(

2n− j
j

)
32n−j−1 =


0 if n ≡ 1 (mod 3)

−3n if n ≡ 0, 2 (mod 6)

3n if n ≡ 3, 5 (mod 6)

.

To do this, we introduce an auxiliary sequence defined as

dn :=
n∑

j=0

(−1)j
(

2n− j
j

)
3n−j.

Applying Lemma 2 with u = 1 and v = 3, we see that {dn} is a sequence with initial values
d0 = 1 and d1 = 2, and dn = dn−1−dn−2 for n ≥ 2. Induction verifies that {dn} is a periodic
sequence of period 6, and

n∑
j=0

(−1)j
(

2n− j
j

)
3n−j =


2 if n ≡ 1 (mod 6)

−2 if n ≡ 4 (mod 6)

1 if n ≡ 0, 2 (mod 6)

−1 if n ≡ 3, 5 (mod 6).

Adding 2(−1)n to both sides yields

2(−1)n +
n∑

j=0

(−1)j
(

2n− j
j

)
3n−j =


0 if n ≡ 1, 4 (mod 6)

3 if n ≡ 0, 2 (mod 6)

−3 if n ≡ 3, 5 (mod 6)

,

and multiplying by −3n−1 gives the desired result.
�

As Tr T3 is the sum of recurrent sequences, it is also a recurrent sequence. The following
corollary makes this observation explicit.
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Corollary 4. Let {tk}k≥2 be the sequence defined as tk := Tr T3(2k). Then {tk} has initial
values given by the table below

k 2 3 4 5 6 7 8 9
tk 0 0 0 0 252 0 −3348 −4284

and for every k ≥ 10 it satisfies the recurrence relation

tk = −6tk−1 − 21tk−2 − 62tk−3 − 180tk−4 − 486tk−5 − 945tk−6 − 486k−7 + 2187tk−8.

Proof. It is easy to compute the initial values directly from Proposition 3. The characteristic
polynomial of {tk}, denoted by t(x), is the product of the characteristic polynomials of the
individual sequences that comprise Tr T3(2k).

Obviously, one can regard the constant −1 as a trivial recurrent sequence with charac-
teristic polynomial x − 1. The characteristic polynomials of {an} and {bn} are x2 + 5x + 9
and x2 + 2x + 9, respectively. Finally, let {cn} be the sequence satisfying cn = −27cn−3 for
n ≥ 3 with the initial conditions c0 = −1, c1 = 0, and c2 = −9; its characteristic polynomial
is x3 + 27. Using induction, one can show that

cn =


0 if n ≡ 1 (mod 3)

−3n if n ≡ 0, 2 (mod 6)

3n if n ≡ 3, 5 (mod 6)

for all n ≥ 0. We obtain that

t(x) = (x− 1)(x2 + 5x+ 9)(x2 + 2x+ 9)(x3 + 27)

= x8 + 6x7 + 21x6 + 62x5 + 180x4 + 486x3 + 945x2 + 486x− 2187

and the conclusion follows.
�

4. The non-vanishing of the trace

With an and bn as they appear in Proposition 3, let un = an + bn. We know that

Tr T3(2k) =


−1− uk−1 if k ≡ 2 (mod 3)

−1− uk−1 − 3k−1 if k ≡ 1, 3 (mod 6)

−1− uk−1 + 3k−1 if k ≡ 0, 4 (mod 6)

.

To establish Theorem 1, we must prove that Tr T3(2k) = 0 if and only if k ∈ {2, 3, 4, 5, 7}.
In fact, we will completely determine when the sequences {un} and {un± 3n} take the value
−1. Our main tool is the previously mentioned result of Mignotte and Tzanakis. Their
setup works for any k-th degree recurrence {un} with integer coefficients, as long as its
characteristic polynomial g(x) has k distinct complex roots ω1, . . . , ωk.

Given a fixed integer c, to solve the equation un = c (for n), we choose an odd prime p,
not dividing the discriminant or any of the coefficients of g(x), such that all the roots ωi

are p-adic units. We then search for positive integers S such that all the numbers ωS
i are

congruent to some common integer A modulo p. If A has the same order R both modulo p
and modulo p2, then the following result [MT91, Theorem 1] holds1.

1There is a typo in the statement of [MT91, Theorem 1], namely the part “if n ∈ P” in (ii) is omitted.
The correct version appears in [MT93, Theorem 1].
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Proposition 5 (Mignotte and Tzanakis). Suppose thatM is a finite set of solutions m ∈ Z
to the equation um = c, where either c 6≡ 0 (mod p) or c = 0. Let P be a complete system of
residues modulo S such that M⊆ P and which satisfies the following conditions:

(i) um = c for each m ∈M;
(ii) if n ∈ P and un ≡ cAr (mod p) for some r ∈ {0, 1, . . . , R− 1}, then n ∈M;

(iii) um+S 6≡ Aum (mod p2) for every m ∈M.

Then un = c implies n ∈M.

It is important to emphasize that M contains all integer solutions, not just positive
integers. To extend the definition of un to negative integers is straightforward. Indeed, since
the characteristic polynomial of {un} is assumed to have distinct roots, the general term is
of the form

un = α1ω
n
1 + . . .+ αkω

n
k ,

with αi ∈ Q(ω1, . . . , ωk). Therefore, it makes sense to talk about un for every integer n. This
will play a role in the proof of Proposition 6 below.

While directly tackling the sequence from Corollary 4 with this method is certainly pos-
sible, we take a more gradual approach. This has the advantage of better illustrating the
“dead-ends” one can run into when searching for appropriate choices of p and S. To perform
this search, we used a combination of SageMath and Pari/GP.

Proposition 6. Let un = an+bn where {an} and {bn} are the sequences given in Proposition
3. Extend the definition of {un} to all n ∈ Z as described above. Then

(a) un = −1 if and only if n ∈ {1, 4};
(b) un + 3n = −1 if and only if n ∈ {2, 6};
(c) un − 3n = −1 if and only if n ∈ {−1, 3}.

Proof. We begin by including a table of the first few values of the relevant sequences, with
the occurrences of the value −1 circled:

n −1 0 1 2 3 4 5 6

un −2/3 2 -1 −10 26 -1 −10 −730

un + 3n −1/3 3 2 -1 53 80 233 -1

un − 3n -1 1 −4 −19 -1 −82 −253 −1459

We also note that the characteristic polynomial of the sequence {un} is

g(x) = (x2 + 2x+ 9)(x2 + 5x+ 9) = x4 + 7x3 + 28x2 + 63x+ 81

and its discriminant is 25 · 38 · 11.
(a) We choose p = 59. The roots ω1 and ω2 of x2 + 2x+ 9, written 59-adically, are

12 + 43 · 59 + 28 · 592 +O(593)

and
45 + 15 · 59 + 30 · 592 +O(593).

Since
(
12
59

)
=
(
45
59

)
= 1, we see that ω29

1 ≡ ω29
2 ≡ 1 (mod 59).

Similarly, the roots ω3 and ω4 of x2 + 5x+ 9, written 59-adically, are 5 + 55 ·59 + 57 ·592 +
O(593) and 49 + 3 · 59 + 592 + O(593). As before, ω29

3 ≡ ω29
4 ≡ 1 (mod 59). Thus, all the

roots of g(x) satisfy ω29
i ≡ 1 (mod 59).
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We now apply Proposition 5 with p = 59, S = 29, A = 1 (so R = 1), c = −1, M = {1, 4}
and P = {0, . . . , 28}. Condition (i) is clear. Next, a simple computer check shows that the
only n in the range 0 ≤ n ≤ 28 for which un ≡ −1 (mod 59) are n = 1 and n = 4.

For requirement (iii), we compute

u1+S ≡ 707 6≡ u1 (mod 592)

u4+S ≡ 766 6≡ u4 (mod 592).

In conclusion, the elements of M are the only integers n such that un = −1.

(b) For convenience, let u′n := un + 3n. We claim that the set of solutions to u′n = −1 is
M = {2, 6}.

The characteristic polynomial of u′n is g(x)(x− 3) = x5 + 4x4 + 7x3 − 21x2 − 108x− 243,
which has discriminant 211 · 312 · 113. While 329 ≡ 1 (mod 59), we note that the choice from
part (a): (p, S,A) = (59, 29, 1), will not work. Indeed, requirement (ii) is not satisfied, for

u′24 = 326954692403 ≡ −1 (mod 59)

even though 24 6∈ M.
Fortunately, there are other relatively small values of p which will work. More precisely,

we take p = 251. The roots of g(x)(x− 3) reduced modulo 251 are 3, 45, 68, 181, and 201,
and

3125 ≡ 45125 ≡ 68125 ≡ 181125 ≡ 201125 ≡ 1 (mod 251).

Therefore (p, S,A) = (251, 125, 1) is a valid triple. Once again, one can use software to verify
that requirement (ii) is met for the choice P = {0, . . . , 124}. For (iii), we find that

u′2+S ≡ 24597 6≡ u′2 (mod 2512)

u′6+S ≡ 34386 6≡ u′6 (mod 2512).

Proposition 5 tells us that u′n = un + 3n = −1 only when n ∈ {2, 6}.

(c) Now let u′′n := un − 3n. This case is different from the previous ones because it is the
first time that we encounter a negative solution, namely

u′′−1 = u−1 − 3−1 = (−2/3)− (1/3) = −1.

As a result, we take M = {−1, 3}. To accommodate for the negative value in M, we let
P = {−1, . . . , 27}.

The characteristic polynomial of u′′n is also g(x)(x− 3), so the choice (p, S,A) = (59, 29, 1)
passes the root requirement. As before, software verifies requirement (ii), and we see that

u′′−1+S ≡ 2418 6≡ u′′−1 (mod 592)

u′′3+S ≡ 3303 6≡ u′′3 (mod 592).

Applying Proposition 5, we obtain that u′′n = −1 only when n ∈ {−1, 3}.
�
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5. Concluding Remarks

The methods used in this paper are amenable to generalization for larger values of n,
as well as other congruence subgroups. For instance, one can similarly establish the non-
vanishing of the trace of T3 in level 2, denoted by Tr T3(2k,Γ0(2)). Indeed, work by Frechette,
Ono, and Papanikolas [FOP04, Theorem 2.3] gives that for all k ≥ 2

Tr T3(2k,Γ0(2)) = −2− bk−1 − (−3)k−1,

where {bn} is the sequence from Proposition 3, namely b0 = b1 = 1 and bn = −2bn−1− 9bn−2
for n ≥ 2. Applying Proposition 5 with un = bn ± 3n and (p, S,A) = (11, 5, 1) we find that
the only zeros occur for 2k ∈ {4, 6}, which is precisely when the space of weight-2k cusp
forms on Γ0(2) (of dimension bk/2c − 1) is trivial.

We also remark that in the case of level 4 or level 8, the situation is even easier, for

Tr T3(2k,Γ0(4)) = −3− (−3)k−1

and
Tr T3(2k,Γ0(8)) = −4,

as can be seen from [FOP04, Proposition 2.1].
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