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Valid confidence intervals for µ, σ when there is

only one observation available

Steve Portnoy ∗ †‡

Anirban DasGupta §

February 9, 2022

Abstract Portnoy (2019) considered the problem of constructing an optimal

confidence interval for the mean based on a single observation X ∼ N (µ, σ2) . Here

we extend this result to obtaining 1-sample confidence intervals for σ and to cases of

symmetric unimodal distributions and of distributions with compact support. Finally,

we extend the multivariate result in Portnoy (2019) to allow a sample of size m from

a multivariate normal distribution where m may be less than the dimension.
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1 Introduction

As noted in Portnoy (2019), the problem of constructing a confidence interval for the

mean based on a single observation X ∼ N (µ, σ2) has been considered for some time.

The first published version appears to be Abbott and Rosenblatt (1962) who showed

that the interval (X − cα|X|, X + cα|X|) has coverage probability at least (1−α) for

appropriately chosen cα. At about the same time Charles Stein presented a cloassroom

example of the form (−dα|X|, dα|X|) , which appeared to have been developed earlier.

Statements attributing the idea to Herb Robbins (in Rodriguez (1996) and in a personal

communication from Persi Diaconis) suggest that the example was known to theoretical

statisticians before 1960.

Portnoy (2019) considered the problem in somewhat more depth and found a legiti-

mate confidence interval that is optimal in the sense of having coverage at least (1−α)
and minimizing the maximal expected length. This interval is in fact randomized, and

it is strictly better than either interval above. This paper also considered a single ob-

servation from a multivariate normal and showed that the set { ||µ|| ≤ cα||X||2 } has

coverage probability at least (1−α) for appropriately chosen cα, and so is a legitimate

confidence set for the multivariate mean.

These results are extended in various directions here. For a single N (µ, σ2) obser-

vation, we find a legitimate confidence interval for σ, and we note that these can be

combined via the Bonferroni inequality to form a confidence set for (µ, σ) jointly. We

also generalize beyond the normal distribution to symmetric unimodal distributions

and to distributions with compact support. Finally, we extend the multivariate result

to allow a sample {X1, · · · , Xm} from the multivariate normal where m may be less

than the dimension, p (and, hence, the covariance matrix would not be estimable).

While the univariate results are mainly an intriguing curiosity, the multivariate result

may actually be useful in some modern large data problems.

Finally, it may be noted that several probability paradoxes concern possible in-

ference based on a single observation. One infamous example is the “Monte Hall”

problem: a prize is placed behind one of three doors, and the contestant may choose

one of the doors. After making a choice, the MC (Monte Hall) shows the contestant

one of the other two doors which is empty and offers to let the contestant switch. Since

at least one of the two doors must be empty, many (most?) people assume the MC

offered no new information, and take the probability of winning to be the same (1/2)
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whether or not the contestant switches. A straightforward calculation provides the

now well-known result that the probability of winning after switching is 2/3 (assuming

all guessing is random).

Another example is the “two-envelope” problem: two players each receive an en-

velope: one containing the amount X and the other 2X . By turns, each player may

either keep the amount received or switch envelopes. The conundrum is that if a player

assumes the envelopes are equally likely, it is always best to switch, which seems para-

doxical. However, having observed one value, the problem becomes essentially one of

hypothesis testing based on a single observation, and the conditional probabilities will

generally fail to be equally likely. Thus, the player must condition on the observed

value, making the problem one of standard statistical inference, and not paradoxical.

Portnoy (2020) provides a moderately complete treatment of this and related hypoth-

esis testing problems. See also Wapner (2012) for a number of such examples.

2 The Normal Case

Let X ∼ N(µ, σ2) , with −∞ < µ < ∞ , and σ > 0. As noted above, there are two

classical confidence intervals for the mean, µ, based on the single observation, X : I1 =

I1(c) ≡ (X − c|X|, X + c|X|) (Abbott-Rosenblatt), and {I2 = I2(c) ≡ (−c|X|, c|X|)
(Stein). The coverage probabilities may be found as direct corollaries of Theorem 1.1

of Portnoy (2019). The probabilities depend only on λ = µ/σ , and the minimizing

values λ∗ are direct calculations.

Corollary 2.1. The coverage probability for I1 depends only on λ, is symmetric about

zero in µ (or in λ), and is given by

P1(λ, c) = Φ

(

c

c+ 1
λ

)

+ 1− Φ

(

c

c− 1
λ

)

. (1)

P1(λ, c) is minimized over λ at

λ∗(c) =
c2 − 1√
2 c3/2

√

log
c+ 1

c− 1
. (2)

Thus, given α, 0 < α < 0.5, there exists a constant c = c(α), such that

inf
µ,σ

Pµ,σ(I1(c(α)) ≥ 1− α

.
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Corollary 2.2. The coverage probability for I2 depends only on λ, is symmetric about

zero in µ (or in λ), and is given by

P2(λ, c) = Φ

(

c− 1

c
λ

)

+ 1− Φ

(

c+ 1

c
λ

)

. (3)

P2(λ, c) is minimized over λ at

λ∗(c) =

[

c

2
log

c+ 1

c− 1

]1/2

. (4)

Thus, given α, 0 < α < 0.5, there exists a constant c = c(α), such that

inf
µ,σ

Pµ,σ(I2(c(α)) ≥ 1− α

.

Note that since the minimal coverage probability depends only of the length of the

interval (by invariance; see Portnoy (2019)), the minimal coverages for I1(c) and Ic(c)

are exactly the same (as functions of c ).

Theorem 2.1. Given α, 0 < α < 1, there exists a constant c = c(α), such that

inf
µ,σ

Pµ,σ

(

σ2 ≤ X2

c2

)

= 1− α.

Furthermore, the constant c = Φ−1(1+α
2
), where Φ(.) denotes the standard normal

CDF.

This follows since

Pµ,σ

(

σ2 ≤ X2

c2

)

= Pµ,σ

(

X2

σ2
≥ c2

)

≥ Pµ,σ

(

(X − µ)2

σ2
≥ c2

)

= Pµ,σ(Z
2 > c2)

where the inequality follows since a non-central chi-square has monotone likelihood

ratio, and where Z is a standard unit normal.

Finally, note that intervals for µ and σ may be combined (via Bonferroni inequali-

ties) to provide a rectangular simultaneous confidence set for {µ, σ}. Of course, other

simultaneous confidence sets can be constructed, and it seems clear that more circular

sets will have smaller area. The problem of finding an minimax confidence set (in

analogy with the result in Portnoy (2019)) seems extremely difficult, and it will not be

pursued here.
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3 More General Symmetric Unimodal Families

Theorem 3.1. Let X ∼ 1
σ
f0(

x−µ
σ

), where f0(−z) = f0(z) for all real z and f0(.) is

strictly decreasing on [0,∞). Then, given α, 0 < α < 1, there exists c = c(α) such that

inf
µ,σ

Pµ,σ

(

σ ≤ |X|
c

)

= 1− α.

Furthermore, this constant c satisfies
∫ c

0

f0(z) dz =
α

2
. (5)

Theorem 3.2. Let X ∼ 1
σ
f0(

x−µ
σ

), where f0(.) is a continuous function and f0(−z) =
f0(z) for all real z. Let F0(.) denote the CDF corresponding to f0, F0(x) =

∫ x

−∞ f0(z)dz.

Let g(θ|α) = α f0(α θ), α, θ > 0. Assume further that

(a) g(θ|α) is strictly MLR in θ.

(b) For all α1, α2 with α2 > α1, log
g(θ|α2)
g(θ|α1)

is convex in θ.

Then,

(i) Given c > 1, there exists a unique root θ = θ(c) of the equation

f0(
c

c+1
θ)

f0(
c

c−1
θ)

=
c+ 1

c− 1
. (6)

(ii) θ(c) is continuous in c.

(iii) Moreover, for every c > 1,

inf
µ,σ

P

(

X − c|X| ≤ µ ≤ X + c|X|
)

= ψ(c) = F0(
c

c+ 1
θ(c)) + 1− F0(

c

c− 1
θ(c)). (7)

(iv) ψ(c) is continuous in c.

Example 3.1. The Cauchy Case: Suppose X ∼ C(µ, σ), the Cauchy distribution

with location parameter µ and scale parameter σ,−∞ < µ < ∞, σ > 0. Therefore,

f0(z) =
1

π (1+z2)
, and direct calculation gives that θ(c) of part (i) of Theorem 3.2 is given

by θ(c) =
√
c2−1
c

, c > 1. It follows that θ(c) → 0 as c → 1 and θ(c) → 1 as c → ∞,

and, c
c+1

θ(c) → 0 and c
c−1

θ(c) → ∞ if c → 1, while both c
c+1

θ(c) and c
c−1

θ(c) → 1

if c → ∞. Together, these imply that ψ(c), the infimum coverage probability of part

(iii), equation (5), in Theorem 3.2 satisfies ψ(c) → 0.5 as c → 1 and ψ(c) → 1 as

c→ ∞. Hence, by the continuity of ψ(c) (part (iv), Theorem 3.2)), given α such that

0.5 < 1 − α < 1, there is a c = c(α) such that ψ(c) = 1 − α. Thus, in the Cauchy

case, any nominal confidence level 1− α > .5 can be exactly attained by a confidence

interval of the form X ± c|X|.
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4 General Distributions with Compact Support

Theorem 4.1. Let X ∼ F and suppose that PF (a ≤ |X| ≤ b) = 1, where 0 < a <

b <∞. Let σ2 = σ2(F ) = VarF (X).

Let K2 = 4
( b

a
+ a

b
)2
, and α > 1−K2. Then,

PF

(

σ2 ≤ X2

c2

)

≥ 1− α,

where c2 = 1−
√
1−α
K

.

5 A confidence set for µ based on a sample of size

m from Np(µ, Σ)

Theorem 5.1. Let {X1, · · · , Xm} be a sample from Np(µ, Σ). Then to achieve

inf
µ,Σ

P

{

||µ|| ≤ c ||X||√
m

}

≥ 1− α (8)

it suffices to take c = 3.85α−1/(pm) .

6 Proofs

(Theorem 3.1). If X ∼ 1
σ
f0(

x−µ
σ
), then Y = X

σ
∼ f0(y − θ) where θ = µ

σ
, and hence,

|Y | ∼ f0(y − θ) + f0(y + θ) under the assumptions made on f0(.). Therefore,

Pµ,σ

( |X|
σ

≤ c

)

= Pµ,σ (|Y | ≤ c)

=

∫ c

0

[f0(y + θ) + f0(y − θ)] dy =

∫ θ+c

θ

f0(z) dz +

∫ c−θ

−θ

f0(z) dz

=

∫ θ+c

θ−c

f0(z) dz (9)

(since f0(−z) = f0(z) for all z)

≤
∫ c

−c

f0(z) dz = 2

∫ c

0

f0(z) dz.
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(since f0(.) is strictly decreasing on (0,∞))

Therefore, if c is chosen such that
∫ c

0
f0(z) dz =

α
2
, then, we have

Pµ,σ

(

σ ≥ |X|
c

)

≤ α⇒ Pµ,σ

(

σ ≤ |X|
c

)

≥ 1− α,

and the infimum of Pµ,σ

(

σ ≤ |X|
c

)

= 1−α by construction of c. This proves Theorem

3.1.

(Theorem 3.2). Following exactly the same lines as in Theorem 2.1, one has that

Pµ,σ,F0

( |X|
σ

≤ c

)

= F0(
c

c+ 1
θ) + 1− F0(

c

c− 1
θ), (10)

where θ = µ
σ
. The minimum must be at a critical point, which would satisfy

c

c+ 1
f0(

c

c+ 1
θ)− c

c− 1
f0(

c

c− 1
θ) = 0

⇔
f0(

c
c+1

θ)

f0(
c

c−1
θ)

=
c+ 1

c− 1
⇔ c

c+ 1
f0(

c

c+ 1
θ) =

c

c− 1
f0(

c

c− 1
θ). (11)

Since g(θ|α) = α f(α θ) is strictly MLR, it follows that (10) has at most one root.

However, since for any α1 < α2, log
g(θ|α2)
g(θ|α1)

is convex, it follows that
f0(

c

c+1
θ)

f0(
c

c−1
θ)

→ ∞ as

θ → ∞, and hence (10) must have a root. This establishes part (i) of Theorem 3.2.

Continuity of this unique root, θ(c) follows from joint continuity of c
c+1

f0(
c

c+1
θ) −

c
c−1

f0(
c

c−1
θ) in c and θ, as f0(z) has been assumed to be continuous in z. The conti-

nuity of the infimum ψ(c) follows from continuity of F0(.) and continuity of θ(c).

(Theorem 4.1). Since 0 ≤ a ≤ |X| ≤ b < ∞, by the reverse Cauchy-Schwarz

inequality,

E(X4) ≤ ( b
a
+ a

b
)2

4
[E(X2)]2 ⇒ [E(X2)]2 ≥ K2E(X4), (12)

with K defined as in the statement of the theorem.

On the other hand, since E(X2) = µ2+σ2, for any c, 0 < c < 1, by the Paley-Zygmund

inequality,

P (X2 > c2 σ2) ≥ P (X2 > c2 (µ2 + σ2)) ≥ (1− c2)2
[E(X2)]2

E(X4)
≥ (1− c2)2K2. (13)
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Hence, if α is such that 1− α < K2, then

P (σ2 <
X2

c2
) ≥ 1− α, (14)

with c2 being chosen as 1−
√
1−α
K

.

(Theorem 5.1). Follow the proof of Theorem 3 in Portnoy (2018) almost exactly.

Noting that
∑m

j=1 ||Xj||2 is a non-central chi-square, the coverage probability (CP) of

the set (8) can be written exactly as in equation 8 of Portnoy (2018):

CP = P
{

||mν||2 ≤ c2 χ2
pm+2K

}

(15)

where K is Poisson with mean ||ν||2/2 . Note that the only difference here is the

appearance of m.

The development and calculations in Portnoy (2018) now go through without any

change except that p is replaced by mp. This again provides:

1− CP ≤ α a−pm/2 ≤ α (16)

where a = 1/(1− exp(−2π ep/4 + 1)) , and where c is defined by

c2 = 2e2 α−2/p a . (17)

Theorem 5.1 follows trivially by dividing both sides of (15) by m.
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