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Membraneless H2O2 Fuel Cells Driven by Metallophthalocyanine
Electrocatalysts
Bao Nguyen, Neal Kuperman,z Gary Goncher, and Raj Solanki

Department of Physics, Portland State University, Portland, Oregon 97201, United States of America

One-compartment hydrogen peroxide fuel cells with Co, Cu, and Fe phthalocyanine (PC) and iron nitride (FexN) as cathodes and
Ni anode have been investigated as sustainable energy sources. The cells were operated under acidic conditions and at room
temperature. The potentials for onset of the catalytic currents in these cells were determined via cyclic voltammograms. The
reduction current onset potentials of FePC, CoPC, CuPC and FexN were 0.56 V, 0.42 V, 0.51 V and 0.57 V, respectively. Potential-
current linear sweep voltammetry was utilized to determine the open circuit potentials (OCP) and the power densities the fuel cells.
The OCPs for Co, Cu, and Fe phthalocyanines and FexN were 0.47 V, 0.57 V, 0.56 V and 0.58 V, respectively. The maximum output
power densities of FePC and CoPC, CuPC, and FexN were 3.41 mW cm−2, 0.39 mW cm−2, 0.39 mW cm−2 and 0.76 mW cm−2,
respectively. These power densities are suitable for powering micro-devices.
© 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/
2162-8777/aba1fd]

Manuscript submitted May 16, 2020; revised manuscript received June 20, 2020. Published July 10, 2020. This paper is part of the
JSS Focus Issue on Porphyrins, Phthalocyanines, and Supramolecular Assemblies in Honor of Karl M. Kadish.

In order to address the challenge of climate change, environ-
mental-friendly energy producing technologies are gaining attention.
Besides wind and solar power, fuel cells offer an alternative that can
potentially utilize abundant natural resources. To address develop-
ment of fuel cells that utilize green processes requires the investiga-
tion of environmentally friendly catalysts, in combination with clean
reagents, such as oxygen and hydrogen peroxide for oxidation
reactions. We describe below our results of hydrogen peroxide
based fuel cells that are not only carbon- free but can also serve both
as fuel (electron donor) and as an oxidant (electron acceptor) in a
single chamber fuel cell without a separator membrane. Moreover,
H2O2 has high energy density, is cheap, clean, safe, and produces
water as a by-product. Another advantage is that solar energy can be
used to produce H2O2 photo-catalytically under acidic conditions
from H2O, which can then be stored for later generation of electricity
in a fuel cell.1

Metallophthalocyanine catalysts.—In H2O2 fuel cells, oxygen
reduction reaction (ORR) at the cathode is a half reaction that
generally determines the performance of these devices. Hence,
choice of an appropriate electrocatalyst as the cathode can enhance
the ORR. Although Pt would serve this purpose well, its prohibitive
cost has prompted search for alternatives. In nature, the most
common enzymes found in plants and animals contain porphyrin
complexes, which are responsible for catalytic aerobic oxidation,
reduction, transport of dioxygen, as well as destruction of
peroxides.2

Metallophthalocyanines (MPCs) are structurally related metal
complexes to porphyrins and can be produced synthetically.3 In such
metal-nitrogen–carbon (M–N–C) based catalysts, incorporation of
metal atoms into the phthalocyanine (PC) ring produces a π-electron
conjugation system in the PC molecular structure that results in high
oxidation and reduction properties.4–7 MPCs are attractive catalysts
since they are inexpensive and available in a large scale since they
are used in several industrial applications.3 Their thermal and
environmental stability are important considerations for their appli-
cations in fuel cells. In what follows below, we have examined and
compared single chamber H2O2 fuel cells with Fe, Cu, and Co
transition metal phthalocyanines as the catalysts operating at room
temperature.

The choice of these 3 phthalocyanines is based on their catalytic
properties. In nature, Cu based complexes appear in many forms of

life, ranging from bacteria to humans, as catalysts for oxygen
reduction to water.8,9 Also, CoPC has been shown to be a highly
effective electrocatalyst and has recently been employed as an
effective catalyst in microbial fuel cells.10–13 Iron–nitrogen–carbon
(Fe–N–Cs) containing materials, such as FePC, are some of the most
effective catalysts for ORRs where the FeN4 moieties serve as active
sites.14,15 This has been attributed to the uncommon spin state of a
Fe(II) electron that enhances the ORR process.16,17 In the M–N–C
materials, the metal centers are bound to the nitrogen atoms in the
complex that act as active sites, whereas the carbonaceous support is
believed to improve the electron transfer.18 Hence, a fourth catalyst,
FexN (x = 2–4) was also examined, to compare its fuel cell
performance with FePC. Cu, Co and Fe phthalocyanines were
purchased from Sigma-Aldrich and FexN from Beantown Chemical.

H2O2 fuel cells.—H2O2 fuel cells have been demonstrated in
acidic-basic electrolytes, separated with a Nafion membrane.19

Separation of anode and cathode, each at different pH results in
enhancement in the output power but makes the system more
expensive and complex.7 Cells based on a microfluidic channel
have also been reported where mixing is confined at a specific
location to achieve liquid-liquid interface.20 However, unlike hy-
drogen fuel cells, H2O2 can act as both an oxidant and a reductant.
Then by selecting appropriate anode and cathode materials, based on
their catalytic activity, the cell configuration can be simplified into a
single chamber, membraneless cell.21 The reason for choosing
MPCs for this investigation is that these complexes can mediate
selective oxidation reactions dependent on the choice of the oxidant
in a single chamber reactor.22 This selectivity is important because
although catalysts such as Pt can provide efficient reduction of H2O2

to water, it can also cause its direct decomposition to oxygen.23

Hence, in a single cell configuration, electrodes with different
reactivity to oxidation and reduction of H2O2 can be employed to
facilitate the following reactions21:

( ) [ ] + ++ -Anode: H O O 2H 2e 0.68 V vs NHE 12 2 2

( ) [ ]+ + + -Cathode: O 2H 2e 2H O 1.78 V vs NHE 22 2

( ) [ ] +Total reaction: 2H O 2H O O 1.09 V vs NHE 32 2 2 2

The theoretical electromotive force for these reactions is 1.09 V
which is comparable to the theoretical open-circuit voltage (OCV) of
a hydrogen–oxygen fuel cell (1.23 V).21 The final products in this
case are water and oxygen.zE-mail: nwk@pdx.edu
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Single compartment hydrogen peroxide cells operating under
either alkaline and acidic environments have been reported where
the catalysts have included metal (Pt, Pd, Ni and Au) wires, Pb-Ag
nanoparticles, ferric ferrocyanide (Prussian Blue), and protonated
iron phthalocyanine [FeIII(Pc)Cl].7,21,24,25 In this investigation, we
have compared performance of iron, cobalt, and copper phthalocya-
nines and FexN as cathodes, in single chamber, acidic H2O2 fuels
cells. The anode consisted of a strip of a nickel mesh.

Materials and Methods

The electrocatalytic reduction of H2O2 was examined in a three-
electrode cell with a strip of carbon paper coated with MPC or FexN
as cathodes, a Ni mesh as the anode, and an Ag/AgCl reference
electrode. The Ni anode and MPC cathode act as selective electrodes
for the H2O2 oxidation and reduction, respectively. Thus, a one-
compartment fuel cell without a membrane separator between the
anode and cathode can be realized. One of the drawbacks of PC
complexes is their low electron conductivity.6,26 Hence, to improve
the electrocatalytic activity, conductive materials were necessary in
preparing the electrodes. For this purpose, the MPCs were mixed
with carbon black, multi walled carbon nanotubes, and polyvinyli-
dene difluoride (PVDF) as the binder. The ratios of the powder

mixtures were 80% MPC powder, 9% MWCNTs, 9% PVDF binder,
and 2% carbon black. N-Methyl-2-pyrrolidone (NMP) was added to
the powder mixtures to produce a paste which was applied to carbon
paper strips that had been rinsed with ethanol and dried in an oven at
60 °C for 15 min. The physical surface area of the applied region
was 1 cm2. The electrodes were left to dry overnight. Lastly, the
electrodes were coated with 0.2% wt. Nafion and annealed at 110 °C
under low vacuum for 1 h and cooled overnight.

Results and Discussion

Cyclic voltammetry experiments were carried out with the
electrodes immersed in an electrolyte that consisted of 40 ml
equivolume of 0.5 M H2O2 and 0.1 M HCl. Ag/AgCl served as the
reference electrode (reported vs SCE) and 1 cm diameter carbon rods
were used as the counter electrodes for the experiments. A Gamry
potentiostat was used for the electrocatalytic measurements. Before
the experiments began, the cells were allowed to stabilize for 10 min.
All experiments were done at 10 mV s−1 sweep rate. Each material
was examined in electrolytes with and without H2O2 to determine
the background effect. Cyclic voltammograms of the 4 catalysts
examined are shown in Fig. 1, where the voltage sweeps without
H2O2 are shown in orange and with H2O2 in blue. From the sweeps

Figure 1. Cyclic voltammograms of H2O2 on carbon paper modified with supported M-PC complexes and FexN. (A) FePC, (B) CoPC, (C) CuPC and (D) FexN.
The measurements were made in 0.1 M HCl with (in blue) and without 0.5 M H2O2 (orange). Scan rate of 10 mV s−1 was used for the experiments.
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with H2O2, the potentials for onset of the catalytic currents of the
peroxide reduction were observed. The reduction onset potentials of
FePC, CoPC, CuPC and FexN were 0.56 V, 0.42 V, 0.51 V and
0.57 V, respectively. The performances of the fuel cells were
examined by recording polarization curves via linear potential sweep
voltammetry to determine the potential–current and power density
characteristics. The sweep rate for the polarization curves was
1 μA cm−2 and the electrolyte composition was the same as
for voltammetry. The results are shown in Fig. 2. Open circuit
potentials (OCPs) were measured at the beginning of the polarization
curves. The OCPs for FePC, CoPc, CuPc, and FexN were determined
to be 0.56 V, 0.47 V, 0.57 V, and 0.58 V, respectively. The
maximum output power densities of FePC and CoPC, CuPC, and
FexN were 3.41 mW cm−2, 0.39 mW cm−2, 0.39 mW cm−2 and
0.76 mW cm−2, respectively. These results are summarized in
Table I. Clearly, the power density of FePC is more than an order
of magnitude higher than of CoPC and CuPC. The power density of
FePC is also significantly higher than the reported for protonated
iron phthalocyanine cathode in membraneless hydrogen peroxide
fuel cells and Ni anodes.21

Although the active center of FePC is similar to the catalyst
FexN, FePC produces a higher power density. This could be due to
the presence of the carbonaceous support providing improved
electron transfer as stated before.18

Conclusions

Membraneless, one-compartment H2O2 fuel cells have been in-
vestigated as potentially low cost, environmentally friendly energy
sources. The catalysts on the cathodes were Cu, Co, and Fe
phthalocyanines and FexN. Polarization measurements were performed
to determine OCP and maximum power density. Of all the 3 MPC

catalysts examined, CoPC had the lowest potential for the onset of
reduction current, whereas FexN had the highest OCP, and FePC
produced the highest power density. Considering all of these para-
meters, FePC showed the best performance for the H2O2 fuel cell
operating at room temperature. Although further work is required for
optimizing the performance of the membraneless fuel cell geometry, the
power density it can produce could be sufficient for operating micro-
devices. The single compartment structure and use of environmentally
friendly H2O2 as the fuel and oxidizer demonstrates the potential of
producing a sustainable energy source.
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