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Abstract: Complex and customized manufacturing requires a high level of collaboration between
production and logistics in a flexible production system. With the widespread use of Internet of
Things technology in manufacturing, a great amount of real-time and multi-source manufacturing
data and logistics data is created, that can be used to perform production-logistics collaboration.
To solve the aforementioned problems, this paper proposes a timed colored Petri net simulation-based
self-adaptive collaboration method for Internet of Things-enabled production-logistics systems.
The method combines the schedule of token sequences in the timed colored Petri net with real-time
status of key production and logistics equipment. The key equipment is made ‘smart’ to actively
publish or request logistics tasks. An integrated framework based on a cloud service platform
is introduced to provide the basis for self-adaptive collaboration of production-logistics systems.
A simulation experiment is conducted by using colored Petri nets (CPN) Tools to validate the
performance and applicability of the proposed method. Computational experiments demonstrate
that the proposed method outperforms the event-driven method in terms of reductions of waiting
time, makespan, and electricity consumption. This proposed method is also applicable to other
manufacturing systems to implement production-logistics collaboration.

Keywords: timed colored Petri net; Internet of Things; production-logistics; self-adaptive collaboration;
flexible manufacturing systems

1. Introduction

Nowadays, in order to survive in the competitive market, manufacturing enterprises have changed
the mode of production from mass production to customized and on-demand production with small
batches and short cycles. Flexible manufacturing systems (FMS) can produce a mid-volume and
a mid-variety of products and allow rapid changes between them [1]. However, due to external
and internal fluctuations, the machining environment changes dynamically and the optimal process
plan and schedule becomes less efficient or even infeasible. In order to solve the aforementioned
problems, many research efforts have been made by using the advanced technologies, such as Internet
of Things (IoT) [2], cloud computing (CC) [3], cyber-physical systems (CPS) [4], and service-oriented
technologies (SOT) [5]. Based on these types of research and technology, real-time and multi-source
manufacturing data and logistics data are easier to access than ever before [6]. The advances in IoT and
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CC have provided promising opportunities to further address the aforementioned problems. Firstly,
real-time and accurate information of manufacturing things can be collected by using embedded
devices and sensors, such as radio frequency identification (RFID) sensors, etc. Real-time information
capturing and integration architecture of the internet of manufacturing things has been presented to
support optimal control and decision during manufacturing execution [7]. Secondly, researchers and
practitioners have proposed a variety of cloud services, ranging from product design, manufacturing,
performance analysis, and exception diagnosis. For example, an architecture of scientific workflow
management system based on a cloud manufacturing service platform has been proposed to formalize
and structure distributed scientific processes [8].

An FMS is a computerized and highly automated production system that integrates a set
of computer numerically-controlled machines and a material handling system [9]. In an FMS,
the automated guided vehicle (AGV) is widely used for transportation among production cells and
warehouses. Petri nets (PNs) are widely used to model, analyze, and control FMSs [10,11] and other
discrete event systems (DES) [12,13] since they can well depict the relation between equipment status
and operations. The simultaneous scheduling of different components of FMS has drawn research
attentions in recent years. For instance, Baruwa and Piera investigated the simultaneous scheduling of
machines and AGVs using a Petri net approach [14]. Raj et al. studied the simultaneous scheduling
of machines and tools in an FMS [15]. However, in real production, the manufacturing environment
changes dynamically because of uncertainties and disturbances, which makes the schedule less efficient
or infeasible [16]. Moreover, the scheduling tasks are complicated and time-consuming. With respect
to the topic of production and logistics in manufacturing systems, a lot of research work has been
done, such as simultaneous scheduling of production and logistics [17]. Only a few researchers have
focused on works dealing with IoT-based production-logistics collaboration [18,19]. Despite significant
achievements, several challenges still exist in the production-logistics collaboration. These challenges
are summarized as follows:

(1) How can the advantages of IoT and CC technology be leveraged to model the behaviors of
key production and logistics equipment and make the equipment ‘smart’? Generally, key
equipment such as machines and AGVs simply execute the commands of the preset programs or
workers. The equipment is not aware and cannot make decisions based on dynamic changes in the
manufacturing environment. Thus, they cannot adjust the schedule according to real-time scenarios.

(2) How can a production-logistics collaboration strategy be designed to undertake active response
and self-organizing configuration? In traditional manufacturing systems, the behaviors of both
machines and AGVs are event-driven. The logistics task generates after the machine processing
is finished. However, this kind of production-logistics system is time-consuming, which may
cause high costs.

(3) How can key manufacturing resources be integrated with cloud service platforms to provide
the foundations for production-logistics collaboration? Despite the achievements in Industry 4.0
and CPS models, it is not clear how to implement production-logistics collaboration in an FMS.
An integrated framework is needed to describe the relationships among different components of
the FMS and the cloud service platform.

In order to address these challenges, this paper investigates the mechanism of production-logistics
collaboration in an FMS. A self-adaptive collaboration method based on a timed colored Petri net
(TCPN) is proposed for production-logistics systems. The proposed method combines the schedule of
token sequences in the TCPN model with real-time status of key production and logistics equipment
such as machines and AGVs. In the simulation experiment, colored Petri nets (CPN) Tools is used
to validate the performance and applicability of the proposed method. Three key performance
indicators (KPI), including waiting time, makespan, and electricity consumption are considered.
Several contributions are significant to the literature. In the first place, intelligent modeling of key
equipment is implemented by equipping the equipment with embedded devices or sensors and
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establishing a knowledge base. The behaviors of key equipment are associated with the TCPN model.
Thus, key production and logistics equipment, such as machines and AGVs, are made ‘smart’ to
actively publish logistic tasks and actively request logistics tasks. Secondly, an integrated framework
based on a cloud service platform is introduced to provide the basis for self-adaptive collaboration of
production-logistics systems. The capacity and real-time status of key equipment are packaged as cloud
services to be published on the cloud services platform. Thus, the production-logistics collaboration is
switched to the matching of tasks with services. Thirdly, simulation studies are carried out to compare
the proposed method with the event-driven method. The results present the outperformance of the
proposed method in reductions of waiting time, makespan, and electricity consumption.

The rest of this paper is organized as follows. Section 2 introduces an integrated framework based
on cloud service platform for production-logistics systems. Section 3 performs a detailed description
of a TCPN-based self-adaptive collaboration method for IoT-enabled production-logistics systems.
Section 4 presents an industrial case and a simulation experiment to evaluate the fulfillment and
feasibility of the proposed method. Section 5 draws conclusions and describes future work activities.

2. Framework

In order to solve the aforementioned problems, an integrated framework based on a cloud service
platform for production-logistics systems is introduced as shown in Figure 1. The proposed framework
is composed of three layers, namely the physical layer, the cyber layer, and the application layer.
The aim of this framework is to provide the foundations for production-logistics collaboration.
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2.1. The Physical Layer

The physical layer consists of manufacturing resources, such as smart production cells, smart
AGVs, materials, pallets, RFID readers and tags, etc. These manufacturing objects are equipped with
embedded devices and sensors so that they can perceive real-time status of themselves as well as
others. The objective of the physical layer is to realize real-time status information perception and
interaction between machine tools, AGVs, buffers, workers, and cloud clients.

In a smart production cell, cameras and sensors are used to perceive real-time status of machines
during machine processing. RFID tags are attached to machines, materials, pallets, and workers. Thus,
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RFID readers can obtain the location information and basic information of these manufacturing objects.
For a smart AGV, embedded devices and sensors are used to collect real-time status information.
For example, global positioning system (GPS) devices can capture real-time location information in
a real manufacturing environment. An AGV with RFID tags can be associated with the pallet and
materials that are being transported. Hence, by integrating manufacturing objects with IoT technology,
real-time status information is more easily collected and accessed. The real-time status information
can be divided into five parts, including product information, production cell information, AGV
information, storage information, and manpower information.

2.2. The Cyber Layer

The cyber layer is composed of cloud computing centers and other computational resources,
such as servers, processors, disks, and databases, etc. These computational resources provide the
capabilities that include data storage, data processing, statistical analysis, and simulation. This layer
aims at managing the collected information and providing the basis for decision-making.

In this layer, there are two steps to implement the intelligent modeling of key equipment. Firstly,
data cubes are constructed to store the collected status information. A large number of data cubes
compose a data warehouse. On-line analytical processing (OLAP) tools are used to process the
data in the data warehouse. Secondly, virtual devices including virtual machines and virtual AGVs
are designed based on the collected status information to monitor and control the behaviors of key
equipment. The characteristic of a virtual machine contains the location, current operation, temperature,
and vibration, etc. The characteristic of a virtual AGV contains the location, current operation, speed,
and voltage, etc. Thus, real-time status of key equipment can be associated with the characteristic of
virtual devices.

2.3. The Application Layer

In the application layer, a cloud services platform is constructed to provide cloud services and
publish logistics tasks through cloud clients. The cloud client includes thin clients, mobile apps, and
web browsers, etc. Thus, these cloud services can be well integrated with embedded devices and
mobile devices, such as smartphones and tablets. In this layer, a TCPN model is developed to depict
and control the behaviors of key equipment by adjusting the schedule of token sequences. A rule base
and a knowledge base are set up based on real-time data and historical data. The rules and knowledge
are learned from historical data and are tuned by real-time data.

In order to implement production-logistics collaboration, a self-adaptive collaborative strategy
is designed as follows. Firstly, smart machines actively publish logistics tasks on the cloud services
platform at the beginning of machine processing. Then, smart AGVs actively request the logistics tasks
once published and provide logistics services. The nearest AGV with enough space will be selected as
a feasible option. The selected AGV will accept or reject the logistics task according to the priority of
the task. Real-time routing optimization is implemented during the empty trip and the transport.

For the data communication between key equipment and servers, a variety of connection
technologies and protocols for wireless communication including fourth-generation (4G) connectivity
and Wi-Fi access can be used to realize the proposed framework. 4G Long-Term Evolution (LTE)
standard provides data transfer rates of 100 Mb/s in the downlink and 50 Mb/s in the uplink,
which is enough to satisfy the demand of speed and time [20,21]. Thus, the proposed framework is
technically feasible.

3. Method

In this section, a self-adaptive collaboration method is proposed for IoT-enabled production-logistics
systems. TCPN is used to develop the model of production-logistics systems. The mechanism of
self-adaptive collaboration between production and logistics is investigated. Conflict-free routing is
not dealt with in the proposed TCPN model.
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3.1. Problem Definition and Notations

In this part, the production-logistics problem and corresponding notations are given as
follows. Generally, an FMS consists of a set of computer numerically controlled machines and
a material-handling system. AGVs are widely used to facilitate the transport of raw materials, work
in process (WIP), finished products, and waste materials between warehouses and production cells.
Consider an FMS that contains a set of machines and a set of AGVs. A set of jobs is to be processed on
a list of machines in a predetermined order. A machine can perform one operation once. The warehouse
and every production cell has an input buffer and an output buffer served as the unloading point and
the loading point respectively. Both the number and the loading space of AGVs are limited.

The notations used in the problem statement, algorithm description, and throughout the paper
are as follows:

i, h: machine
j: job
(i, j): an operation that job j is processed on machine i
(i, j)→ (h, j) : job j should be firstly processed on machine i and then on machine h
t: current time
yij: starting time of operation (i, j)
pij: processing time of operation (i, j)
∆TR

ij : remaining time of operation (i, j)

Pihj: priority of logistics task between operation (i, j) and operation (h, j)

Qih: volume of parts transported from machine i to machine h
QA

k (t): remaining space of AGV k at time t
Lr: path length of road segment r
vk: speed of AGV k

T(r)
ik : time cost of AGV k passing road segment r

Tik: time cost of AGV k arriving at machine i
∆TA

ihk: time cost of AGV k going from machine i to machine h
∆Ttotal : total waiting time
∆Tihj: waiting time between operation (i, j) and operation (h, j)

∆TWB
ij : waiting time of job j on machine i before processing

∆TWA
ij : waiting time of job j on machine i after processing

Cmax: makespan
Cj: completion time of job j
Cij: completion time of operation (i, j)
Etotal : total electricity consumption

E(i)
M : electricity consumption of machine i

E(k)
AGV : electricity consumption of AGV k

P(i)
MP: average power of machine i when processing

P(i)
MI : average power of machine i when idle

P(k)
AGV : average power of AGV k

Assuming that a feasible schedule plan is given as in Figure 2, first, the job j is processed on
the machine i. The starting time of operation (i, j) is yij. The processing time of operation (i, j) is pij.
The completion time of operation (i, j) is Cij. The remaining time of operation (i, j) is ∆TR

ij . Then, after
the operation (i, j), the WIP is transported to the next machine h. The waiting time between operation
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(i, j) and operation (h, j) is ∆Tihj. The waiting time of the job j on machine i before processing is ∆TWB
ij .

The time cost of AGV k going from machine i to machine h is ∆TA
ihk. The waiting time of the job j on

machine i after processing is ∆TWA
ij . Next, the job j is processed on the machine h. The starting time of

operation (h, j) is yhj. The processing time of operation (h, j) is phj. The completion time of operation
(h, j) is Chj. The completion time of the job j is Cj.
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3.2. Timed Colored Petri Net Model

Colored Petri nets (CPNs) form a graphical language for constructing models and analyzing
properties of concurrent systems and distributed systems, which extends PNs with data types,
functions, and modules.

A CPN is a directed bipartite graph that includes two types of nodes, namely the place and the
transition [22]. The nodes are connected via directed arcs. The place is used to describe resources and
status in the system, which contains colored tokens. The colored token is used to describe the entity
attributes. The transition is used to describe the event in the system, which can be fired based on the
preconditions of input arc expressions and guards. In a CPN, places, transitions, arcs, and guards are
graphically represented by ellipses, rectangles, arrows, and parentheses respectively.

In order to evaluate the performance of the model system, TCPNs are introduced with a global
clock to represent the model time [23]. Each token has a time attribute called the time stamp which
describes the earliest time at which a token becomes available. Hence, both the temporal behavior and
the logical behavior can be described by TCPNs explicitly in a concise manner.

The definition of a TCPN can be formalized as follows [24].
A TCPN is defined as a nine-tuple, TCPN = {P, T, A, Σ , N, C, G, E, I} which satisfies the

following conditions:

1. P = {p1, p2, ..., pm} is a finite set of places.
2. T = {t1, t2, ..., tn} is a finite set of transitions, P ∪ T 6= ∅ and P ∩ T = ∅.
3. A = {a1, a2, ..., al} is a finite set of directed arcs, A ⊆ P× T ∪ T × P.
4. Σ is a finite set of non-empty color sets.
5. N is a node function defined from A into P× T ∪ T × P.
6. C: P→ ∑ is a color set function that assigns a color set to each place.
7. G: T → EXPR is a guard function that assigns a guard to each transition t such that:

[Type(G(t)) = Bool ∧ Type(Var(G(t))) ⊆ Σ].

8. E: A→ EXPR is an arc expression function that assigns an arc expression to each arc a such that:

∀a ∈ A : [Type(E(a)) = C(p(a))MS ∧ Type(Var(E(a))) ⊆ Σ]
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where p(a) is the place of N(a).
9. I: P→ EXPR is an initialization function that assigns an initialization expression to each place p

such that:
∀p ∈ P : [Type(I(p)) = C(p)MS ∧ Type(Var(I(p))) ⊆ ∅].

Type(v) denotes the type of the variable v. Var(expr) denotes a set of variables in the expression expr.

Based on the description of the production logistics problem, TCPN is used to model production
and logistics in an FMS. The TCPN model of the self-adaptive collaboration method is established as
shown in Figure 3.
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Figure 3. The timed colored Petri net model for self-adaptive collaborative production-logistics systems.

In the TCPN model, the meaning of each transition has been briefly explained in Table 1. Table 2
explains the meaning of each place. The global color set declarations are given in Table 3.

Table 1. Transitions in Figure 3.

Transition Description of Transitions

t1 The transition aims at modeling the check of the worker
t2 The transition aims at modeling the check of the material
t3 The transition aims at modeling requesting the worker
t4 The transition aims at modeling requesting the material
t5 The transition aims at modeling the machine processing and publishing a logistics task
t6 The transition aims at modeling the quality detection
t7 The transition aims at modeling the selection of the AGV
t8 The transition aims at modeling the temporary storage
t9 The transition aims at modeling the selected AGV going to the start point
t10 The transition aims at modeling the reprocessing or the scarp
t11 The transition aims at modeling the rejection of the AGV
t12 The transition aims at modeling picking pallet and loading
t13 The transition aims at modeling the selected AGV going to the destination
t14 The transition aims at modeling the unloading
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Table 2. Places in Figure 3. WIP: work in process.

Place Description of Places

p1 A token in this place represents a production task
p2 A token in this place represents a worker
p3 A token in this place represents a material
p4 A token in this place represents the attendance of the worker
p5 A token in this place represents enough materials
p6 A token in this place represents the absence of the worker
p7 A token in this place represents insufficient materials
p8 A token in this place represents the sataus information of a machine
p9 A token in this place represents the sataus information of an AGV
p10 A token in this place represents the finish of the machine processing
p11 A token in this place represents the request to the logistics task
p12 A token in this place represents the detection result
p13 A token in this place represents the qualified WIP
p14 A token in this place represents the nearest and available AGV
p15 A token in this place represents the unqualified WIP
p16 A token in this place represents the remote or unavailable AGV
p17 A token in this place represents an out-buffer
p18 A token in this place represents the selected logistics task
p19 A token in this place represents the correct start point
p20 A token in this place represents the transport time
p21 A token in this place represents the transport to the destination
p22 A token in this place represents the correct destination
p23 A token in this place represents the end and next cycle

Table 3. Global color set declarations.

Color Set Place

colset UNIT = unit; colset INT = int; colset REAL = real; colset STRING = string;
colset MIDxWIDxMAIDxNUMxT = product STRING*STRING*STRING*REAL*REAL timed; p1
colset MIDxMAIDxNUMxT = product STRING*STRING*REAL*REAL timed; p3, p5, p7, p10, p13, p15, p17
colset MIDxWIDxT = product STRING*STRING*REAL timed; p2, p4, p6
colset MIDxMAIDxNUMxPT = product STRING*STRING*REAL*REAL timed; p8
colset AIDxLOCxRSxT = product STRING*STRING*REAL*REAL timed; p9, p14, p16
colset AIDxLOCxRSxNUMxT = product STRING*STRING*REAL*REAL*REAL timed; p11
colset Q = string; p12
colset SPxDES = product STRING*STRING; p18
colset AIDxSPxDESxT = product STRING*STRING*STRING*REAL timed; p19, p21, p22, p23
colset TT = real; p20
var MID,WID,MAID,AID,LOC,Q,SP,DES: STRING; var T,NUM,PT,RS,TT: REAL;

Figure 3 shows the TCPN model of the self-adaptive collaboration method. This model refers
to the basic cycle of production-logistics systems, which consists of twenty-three places and fourteen
transitions. Conditional statement expressions are assigned to the directed arcs a1, a2, a3, a4, a5, a6,
a7, and a8. The cycle starts with checking workers and materials to be processed in production cells.
Transition t1 denotes the check of workers while transition t2 denotes the check of materials. If the
workers or materials are not ready, they will be requested. Otherwise, the materials will be processed on
the machine. Transition t5 describes machine processing as well as publishing a logistics task. The two
processes are performed at the same time. The remaining time of the current operation of the machine
is calculated and considered as a critical parameter for selecting an AGV. While a logistics task is
published, all AGVs actively request the task. A token in the place p9 represents the status information
of an AGV, including current location and remaining space, which are collected by embedded devices
or sensors. Thus, the machine can perceive the status of the AGV. Transition t6 represents the quality
detection of the WIP after machine processing. Unqualified WIP will be reprocessed or abandoned
based on the detection standards. Transition t10 denotes the reprocessing or the scarp. If the WIP
is unqualified and needs to be reprocessed or abandoned, this cycle ends and the next cycle begins.
Only the qualified one will be sent to the out-buffer of the production cell and wait to be transported to
the next production cell. Transition t7 represents selection of an AGV. The nearest AGV with remaining
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space will be selected as one of the feasible options. Based on the current tasks and routes, the selected
AGV will decide whether to accept the logistics task or not. Finally, the most appropriate AGV will
be selected to finish the logistics task. t9 and t12 represent that the AGV goes to the out-buffer and
then picks and loads the pallet which carries the WIP. t13 and t14 represent that the AGV goes to the
destination and unloads the pallet on the in-buffer of the next production cell. After the selected AGVs
have finished their deliveries, the smart machine will select the nearest AGVs with enough remaining
space to conduct the transportation of other jobs. Then, this cycle ends and next cycle begins.

3.3. Mechanism of Self-Adaptive Collaboration

In this part, based on the depiction of the proposed TCPN model, the mechanism of self-adaptive
collaboration for production-logistics systems is investigated. The objective of the proposed TCPN
model is to minimize the waiting time of all jobs, the makespan, and the electricity consumption of
all machines and AGVs. Three KPIs including waiting time, makespan, and electricity consumption
are considered.

The KPI waiting time is used to calculate the total waiting time of all jobs. The waiting time
represents the time between two sequential operations of the same job. The total waiting time of all
jobs is mathematically formulated to minimize the objective ∆Ttotal as follows:

Minimize ∆Ttotal =
m−1

∑
i=1

m

∑
h=2

n

∑
j=1

∆Tihj (1)

where ∆Tihj = ∆TWA
ij + ∆TA

ihk + ∆TWB
hj , for all (i, j)→ (h, j) (2)

In Equations (1) and (2), the waiting time ∆Tihj is composed of three parts, namely the waiting
time after processing ∆TWA

ij , the transport time ∆TA
ihk, and the waiting time before processing ∆TWB

hj .

∆TWA
ij can be reduced by calling for AGVs once the job j begins being processed on machine i.

The transport time refers to the time cost of transporting materials between machines. ∆TA
ihk can be

reduced by selecting the nearest available AGV and planning a time-saving route. ∆TWB
hj is influenced

by the former two parts and is related to the production schedule.
The KPI makespan is used to calculate the maximum completion time of all jobs. The makespan

is mathematically formulated to minimize the objective Cmax as follows:

Minimize Cmax = max
j

Cj (3)

where Cj = y1j +
m

∑
i=1

pij +
m−1

∑
i=1

m

∑
h=2

∆Tihj, for all (i, j)→ (h, j) (4)

In Equations (3) and (4), Cj denotes the completion time of the job j, y1j denotes the starting time

of the first operation of the job j,
m
∑

i=1
pij denotes the processing time of the job j, and

m−1
∑

i=1

m
∑

h=2
∆Tihj

denotes the total waiting time of the job j. To reduce the makespan, the processing sequence or the
processing speed of machines can be adjusted based on realities of the situation.

The KPI electricity consumption is used to calculate the total electricity consumption of all
machine tools and AGVs. The total electricity consumption is mathematically formulated to minimize
the objective Etotal as follows:

Minimize Etotal =
m

∑
i=1

E(i)
M +

w

∑
k=1

E(k)
AGV (5)

where E(i)
M =

∫ t

0
P(i)

M (t)dt, P(i)
M = P(i)

MP when processing, P(i)
M = P(i)

MI when idle (6)
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E(k)
AGV =

∫ t

0
P(k)

AGV(t)dt (7)

In Equations (5)–(7), E(i)
M denotes the electricity consumption of machine i, E(k)

AGV denotes the

electricity consumption of AGV j, P(i)
M denotes the power of the machine i, P(i)

MP denotes the average

power of the machine i when processing, P(i)
MI denotes the average power of the machine i when

idle, and P(k)
AGV denotes the average power of AGV k. To reduce the total electricity consumption, the

running time of all machines and AGVs should be shortened.
In the proposed TCPN model, the smart machine can calculate the remaining time of current

operations. The remaining time of operation (i, j) can be formulated as follows.

∆TR
ij = max

{
0, Cij − t

}
(8)

where ∆TR
ij denotes the remaining time of operation (i, j), Cij denotes the completion time of operation

(i, j), and t denotes the current time.
While the machine processing begins, the smart machine actively publishes a logistics task for the

WIP being processed. All AGVs actively request the logistics task and provide with real-time status
information, such as current location and remaining space. The smart machine will select AGVs which
are nearest and have enough remaining space. For example, if an available AGV can arrive at the
smart machine within the remaining time of current operation, the waiting time of the operation after
processing will be reduced to 0. The optimization of matches between logistics tasks and AGVs can be
formulated as follows.

Minimize
m

∑
i=1

w

∑
k=1

(
Tik − ∆TR

ij

)2
(9)

where Qih ≤ QA
k (t) (10)

In Equations (9) and (10), Tik denotes the time cost of AGV k arriving at the machine i, ∆TR
ij denotes

the remaining time of operation (i, j), Qih denotes the volume of WIP transported from machine i to
machine h, and QA

k (t) denotes the remaining space of AGV k at the current time t.
While a logistics task is published, the smart AGV will actively request the task. If several

machines choose a smart AGV simultaneously, the smart AGV makes a decision based on the priority
of these tasks as well as the remaining space. The priority of tasks can be formulated as follows:

Pihj = yhj − t, for all (i, j)→ (h, j) (11)

where Pihj denotes the priority of logistics task between operation (i, j) and operation (h, j), yhj denotes
the starting time of operation (h, j), and t denotes the current time. Based on the proposed priority,
the logistics task can be categorized into two types, namely the urgent logistics task and the normal
logistics task. If Pihj < 0, then the task is an urgent task. Otherwise, the task is a normal task. For the
urgent logistics task, the next machine is idle and waiting for the task. For the normal logistics task,
the next machine is not available and the WIP being transported has to wait in a list. The smart AGV
will select logistics tasks that have the highest priority and the volume of tasks must be less than the
remaining space of the AGV. Then, the smart AGV can compute the time cost of feasible routes to go
to the start point and transport the WIP to the destination. The time cost Tik for AGV k arriving at the
machine i can be formulated as follows:

Tik =
n

∑
r=1

T(r)
ik (t) (12)

where T(r)
ik (t) = Lr/vk(t) (13)
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In Equations (12) and (13), T(r)
ik (t) denotes the time cost of AGV k passing road segment r at current

time t, Lr denotes the path length of the road segment r, and vk(t) denotes the current speed of AGV k.
Thus, a feasible route with the least time cost will be selected as the optimal route. The optimization of
routes selection is implemented constantly during the transport and in real time.

In this paper, based on the real-time status information of machines, AGVs, and WIP, the objective
functions are implemented in the application layer of the cloud service platform and the results are
input into the TCPN model through the colored tokens located in the places.

4. Simulation Results

This section introduced an industrial case from an engine manufacturing company in Xi’an. In the
case company, FMS was used to manage and coordinate key equipment and automatize the production.
Engine components were processed on different machines in the given processing sequence. A material
handling system was used to transport these components between machines. However, the machining
environment changed dynamically due to the external and internal fluctuations, and the optimal
process plan and schedule became less efficient or even infeasible. Thus, the case company needed
production-logistic collaboration methods and tools to solve the problems. Based on the investigation
of the case company, a simulation experiment was conducted in the laboratory by using CPN Tools to
validate the performance and applicability of the proposed method.

In the simulation experiment, an instance of job shop problems from [25] was used as a feasible
schedule plan, including four machines and three jobs, as shown in Table 4. pij denotes the processing
time of the operation that job j is processed on machine i, i = 1, 2, 3, 4, j = 1, 2, 3. These jobs would be
processed by a list of machines in a given order. The volume of each job was given in Table 4 because
the volume capacity of AGVs was considered as a constraint in the simulation experiment. A feasible
schedule plan is shown Figure 4. The initial time of the schedule was 0. The gray segment represented
the variable waiting time between two continuous operations of the same job. In addition, two AGVs
were added in the simulation experiment in order to investigate the collaborative relationship between
production and logistics in a job shop.

Table 4. The instance of the job shop problem.

Jobs Machine Sequence Processing Times Volume

1 1, 2, 3 p11 = 10, p21 = 8, p31 = 4 1
2 2, 1, 4, 3 p22 = 8, p12 = 3, p42 = 5, p32 = 6 2
3 1, 2, 4 p13 = 4, p23 = 7, p43 = 3 1.5
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Thus, the aforementioned job shop consisted of the following main components, namely
a warehouse, four production cells, and two AGVs. The warehouse had an in-buffer and an out-buffer.
Each production cell had a machine, an in-buffer, and an out-buffer. Machines and AGVs installed with
sensors had the capability of perceiving status information in real time and making decisions based on
the knowledge base and real-time information. Other manufacturing resources, such as in-buffers,
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out-buffers, pallets, and WIP were attached RFID tags to provide real-time location information.
The workers had staff cards with embedded RFID tags to provide individual information.

For simplicity of understanding but without losing generality of principle, some initial and basic
information of manufacturing resources were given as follows. The average power of each machine
when processing was 15, while the average power of each machine when idle was 4. AGV1 and AGV2
had the same initial location (0, 4.5). The average power of each AGV was 7. The speed of each AGV
was 5 and the maximum space of each AGV was 3. The production and logistics began at initial time
0. Firstly, raw materials were transported to smart machines by smart AGVs. Then, the machine
processing started and smart machines actively published logistics tasks. Next, smart AGVs actively
requested the logistics tasks. The layout of the shop floor is shown in Figure 5. The black spots in the
layout represented the location of in-buffers or out-buffers of the warehouse or production cells.
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As shown in Figure 5, a simulation experiment was conducted based on the case scenario. In the
experiment, a personal computer, fifteen antennas, four RFID readers, and nine RFID tags were used.
Antennas were connected to readers and readers were connected to the computer. The RFID tags were
attached to different manufacturing objects, such as machines, AGVs, and WIP. Antennas were used to
collect real-time status information of these manufacturing objects from attached RFID tags.

Computational experiments were conducted by R-3.3.0 for Windows (64-bit) in a PC with
a quad-core AMD A10-5750M processor at 2.5 GHz and 8 GB DDR3-1333 RAM. R-3.3.0 for
Windows (64-bit) is a software environment for statistical computing and graphics. Referring to the
manufacturing process, the TCPN model was built up in CPN Tools, as shown in Figure 5. The TCPN
model started running at the same time when the production and logistics were executed according to
the planned time. Firstly, real-time status information of machines, AGVs, and WIP were transmitted
to the PC through RFID reader ports. Secondly, based on the collected information, the objective
functions were implemented by R-3.3.0 for Windows (64-bit) in the PC and the results were stored in
Standard ML (SML) files. Thirdly, every time the cycle of the TCPN model started, the information in
the SML files was updated. By loading SML files, the status of colored tokens was tuned accordingly.

Using the proposed method, the simulation result is shown in Table 5. T0001 denotes the first
published logistics task, W denotes the warehouse, M1 denotes the machine1, A001 denotes the AGV1,
and similarly for the others. The total waiting time was 26.4. The makespan was 30.3. The electricity
consumption of machines was 894.8, while the electricity consumption of AGVs was 98.7. Thus, the
total electricity consumption was 993.5. The efficiency of the proposed model was verified and the
result showed that the computing time was less than 0.01 s, which was reasonable for implementing
the proposed method in the real manufacturing environment.

A comparative study between an event-driven method [18] and the proposed TCPN based
self-adaptive collaboration method was presented. Since real-life data were not given in the paper
used for the comparative study, an instance of job shop problems from [25] was used as a feasible
schedule plan, including four machines and three jobs, as shown in Table 4. Based on the same
benchmark, the objective functions were implemented by R-3.3.0 for Windows (64-bit) in the PC
with the consideration of three KPIs including waiting time, makespan, and electricity consumption.
The result of the comparative study is shown in Table 6. The result demonstrated that the TCPN-based
self-adaptive collaboration method outperformed the event-driven method in reductions of waiting
time, makespan, and electricity consumption.

Table 5. The result of the simulation experiment.

Task
ID

Start Point
(X, Y)

Destination
(X, Y)

Job
ID

Priority AGV
ID

Remaining
Space

Waiting Time Computing
Time (s)After Transport Before

T0001 W(0, 4.5) M1(2.5, 4.5) 1 0-t A001 2 0 0.5 0 <0.01
T0002 W(0, 4.5) M2(2.5, 2) 2 0-t A002 1 0 1 0 <0.01
T0003 W(0, 4.5) M1(2.5, 4.5) 3 10-t A001 0.5 0 0.5 10 <0.01
T0004 M1(5.5, 3) M2(2.5, 2) 1 10-t A002 2 0 0.8 0 <0.01
T0005 M2(5.5, 0.5) M1(2.5, 4.5) 2 14-t A002 1 4.1 1.4 0 <0.01
T0006 M1(5.5, 3) M4(6.5, 2) 2 17-t A002 1 0 0.4 0 <0.01
T0007 M1(5.5, 3) M2(2.5., 2) 3 18-t A001 1.5 4 0.8 0 <0.01
T0008 M2(5.5, 0.5) M3(6.5., 4.5) 1 18-t A002 2 0 1 0 <0.01
T0009 M4(9.5, 0.5) M3(6.5., 4.5) 2 22-t A002 1 0 1.4 0 <0.01
T0010 M2(5.5, 0.5) M4(6.5., 2) 3 25-t A001 1.5 0 0.5 0 <0.01

Table 6. The result of the comparative study. KPI: key performance indicators.

KPI Event-Driven Method Self-Adaptive Collaboration Method

Total waiting time 37.1 26.4
Makespan 36.3 30.3

Total electricity consumption 1035.3 993.5
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5. Conclusions

This work contributes to the study of production-logistics collaboration to improve economic and
environmental performances of production-logistics systems. A TCPN simulation-based self-adaptive
collaboration method for production-logistics systems is proposed. The method combines the schedule
of token sequences in the timed colored Petri net with real-time status of key production and
logistics equipment. The key equipment is made ‘smart’ to actively publish or request logistics tasks.
An integrated framework based on cloud service platform is introduced to provide the foundations
for self-adaptive collaboration of production-logistics systems. The capabilities of key equipment are
packaged as cloud services to be published on the cloud services platform. Computational experiments
demonstrate that the proposed method is feasible and effective in reducing waiting time, makespan,
and electricity consumption. A comparative study is implemented and the result indicates that the
proposed method outperforms the event-driven method in improving the overall efficiency of the
production-logistics systems and reducing electricity consumption. This work can be applied to other
types of manufacturing systems to implement production-logistics collaboration. Future research will
mainly focus on the following aspects. Other algorithms would be investigated and used to develop
the production-logistics collaboration model and real-life data from the manufacturing environment
would be used to verify the production-logistics collaboration model.
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