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Abstract
Introduction: Predicting a woman’s probability of vaginal birth after cesarean could 
facilitate the antenatal decision-making process. Having a previous vaginal birth 
strongly predicts vaginal birth after cesarean. Delivery outcome in women with only 
a cesarean delivery is more unpredictable. Therefore, to better predict vaginal birth 
in women with only one prior cesarean delivery and no vaginal deliveries would 
greatly benefit clinical practice and fill a key evidence gap in research. Our aim was 
to predict vaginal birth in women with one prior cesarean and no vaginal deliveries 
using machine-learning methods, and compare with a US prediction model and its 
further developed model for a Swedish setting.
Material and methods: A population-based cohort study with a cohort of 3116 women 
with only one prior birth, a cesarean, and a subsequent trial of labor during 2008-2014 
in the Stockholm-Gotland region, Sweden. Three machine-learning methods (condi-
tional inference tree, conditional random forest and lasso binary regression) were 
used to predict vaginal birth after cesarean among women with one previous birth. 
Performance of the new models was compared with two existing models developed 
by Grobman et al (USA) and Fagerberg et al (Sweden). Our main outcome measures 
were area under the receiver-operating curve (AUROC), overall accuracy, sensitivity 
and specificity of prediction of vaginal birth after previous cesarean delivery.
Results: The AUROC ranged from 0.61 to 0.69 for all models, sensitivity was above 
91% and specificity below 22%. The majority of women with an unplanned repeat 
cesarean had a predicted probability of vaginal birth after cesarean >60%.
Conclusions: Both classical regression models and machine-learning models had a 
high sensitivity in predicting vaginal birth after cesarean in women without a previous 
vaginal delivery. The majority of women with an unplanned repeat cesarean delivery 
were predicted to succeed with a vaginal birth (ie specificity was low). Additional 
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1  | INTRODUC TION

The choice between a trial of labor after cesarean (TOLAC) and an 
elective repeat cesarean delivery (CD) may be challenging. A suc-
cessful TOLAC, a vaginal birth after cesarean (VBAC), decreases 
epidemic CD rates and maternal morbidity associated with multiple 
CDs.1,2 Yet, TOLAC bear the risk of uterine rupture or an unplanned 
repeat CD and increased the risk of adverse outcomes,2,3 although 
generally being considered safe and encouraged in many countries.4

Success rates of TOLAC vary between 40% and 80% inter-
nationally.3,5-7 Analyses using decision models concludes, based 
on risks associated with VBAC, that when the chance of VBAC is 
greater than 50%-70%, TOLAC should be offered.6,8-10 However, 
TOLAC rates vary depending on individual women’s preferences.11 
Therefore, predicting individual probability of VBAC could facilitate 
the decision-making.

Grobman et al developed a model for predicting VBAC based 
on multivariable logistic regression,12,13 further modified and evalu-
ated in the Swedish setting by Fagerberg et al.14 Both Grobman and 
Fagerberg included women with previous vaginal delivery, one of 
the strongest predictors for VBAC.6,15 However, no model has previ-
ously been developed for women without previous vaginal delivery, 
whose outcomes are more unpredictable for clinicians.

With the growing availability of data, machine-learning meth-
ods might have an advantage as prediction tools in healthcare,16-18 
with the ability to consider many candidate predictors, taking into 
account complex relations (eg, complex interactions, non-linear-
ity).16,19,20 These algorithms sometimes include surprising predictors 
that human investigators might not otherwise have considered.21,22 
The results may improve clinical counseling, if accuracy is high.23,24

Improving quality of care and counseling and better predicting 
vaginal birth in women with only one prior cesarean and no vaginal 
deliveries would greatly benefit clinical practice and fill a gap in re-
search. Our primary aim was to develop individualized pre-delivery 
prediction models for VBAC using conditional inference tree, condi-
tional random forest and lasso binary regression. We built on a prior 
study where women with a first unplanned cesarean were associated 
with a higher risk of repeat CD compared with women with elective 
first CD. However, almost 70% of all women eligible for TOLAC had 
a vaginal birth.5 Recognizing that prior vaginal birth strongly predicts 
VBAC, we focused on predicting VBAC among women with only one 
prior birth, a cesarean, since prediction in these women is a great 
challenge in the clinics. Our second aim was to compare our models 
with previous classical regression models.12-14

2  | MATERIAL AND METHODS

2.1 | Source of data

Prospectively collected data on maternal, delivery and infant 
characteristics were obtained from the population-based regional 
Stockholm-Gotland Obstetric Cohort.25 The cohort includes all sin-
gleton births (n = 175 522) between January 2008 and October 
2014 at seven hospitals in the region. Approximately 25% of all 
annual births in Sweden occur in this region. Almost all pregnant 
women in Sweden utilize standardized antenatal care, offered free 
of charge. The cohort is based on daily, automatically forwarded 
data from the electronic medical record system (Obstetrix, Cerner 
Inc.) used at all antenatal, ultrasound, delivery and postnatal care 
units in the region. Maternal and infant information from prenatal 
care, delivery and the postpartum period are prospectively entered 
into the medical records by midwives and physicians in a standard-
ized way.25

2.2 | Participants

We extracted information on women with a first CD and a sec-
ond singleton delivery during the study period 2008-2014. We 
restricted the second delivery to liveborn infants in cephalic pres-
entation at 37 gestational weeks. Of the 5302 women with a first 
CD and a subsequent delivery in the Stockholm-Gotland Obstetric 
Cohort, 41% had an elective repeat CD and were excluded from 
our study, leaving 3116 women performing a TOLAC (Figure S1). 
Further details on data collection methods and features of this 
study population of 3116 women with a TOLAC are available 
elsewhere.5

covariates combined with machine-learning techniques did not outperform classical 
regression models in this study.

K E Y W O R D S

Cesarean delivery, machine-learning, prediction, random forest, trial of labor, vaginal birth 
after cesarean

Key message

The majority of women with an unplanned repeat cesarean 
delivery were predicted to succeed with a vaginal birth (ie 
specificity was low). Additional covariates combined with 
machine-learning techniques did not outperform clas-
sical regression models in predicting vaginal birth after 
cesarean.
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2.3 | Outcome

Our primary outcome was to study the performance of three ma-
chine-learning methods regarding the ability to predict probability 
of VBAC (area under the receiver-operating characteristics curve 
(AUROC), accuracy, sensitivity and specificity). The secondary out-
come was to compare the predicting performances with a well-used 
prediction model from the USA (Grobman et al)12 and a Swedish ver-
sion of the Grobman model (Fagerberg et al).14

2.4 | Predictors

Our intention was to inform clinical counseling before labor onset, so 
we set the temporal point of prediction before 37 gestational weeks, 
prior to term labor onset. We considered data from the first antenatal 
visit and all subsequent visits, before data about the second delivery 
were known. We included maternal characteristics from both the first 
and the second pregnancy, variables related to the first pregnancy and 
CD, and information about first infant, pre-gestational health condi-
tions, conditions that developed during either pregnancy, and informa-
tion on each maternity hospital (ie all factors presented in Table 1). We 
also included sex of the second infant. Intended onset of second labor 
was included, since this is important for a successful TOLAC (Table 1).5,6

2.5 | Overall statistical approach

We divided the study population into a training (n = 1558 women) and 
a validation (n = 1558 women) set, using a 1:1 split by random sampling, 
and predicted VBAC in the validation dataset using the estimates re-
ported by Grobman and Fagerberg. We then fit new logistic regression 
models using the same specification as the Grobman and Fagerberg 
models using the training dataset, and summarized their performance 
in the validation dataset. Finally, we fit a conditional inference tree,26 a 
conditional random forest27 and a lasso binary regression model using 
the training dataset and summarize their performance in the validation 
dataset, and28 compared the predictive performance of each.

As a sensitivity analysis, we fit the new models on the complete 
(training+validation) dataset and estimated classification error using 
fivefold cross-validation.20

2.6 | Data management

A detailed overview of our data management and missing data ap-
proach is provided in Appendix S1 and Table S1.

2.7 | Statistical analyses

We divided the study population (n = 3116 observations, with all 
of the applicable variables used in the Grobman12 and Fagerberg14 

models, in addition to the predictors described above) into a train-
ing (n = 1558 women) and a validation (n = 1558 women) set, using 
a 1:1 split by random sampling. Missing data were replaced using 

TA B L E  1   List of candidate predictors, Study population from the 
Stockholm-Gotland Obstetric Cohort, 2008-2014

Variables related to pregnancy 
and infant #1

Variables related to 
pregnancy and infant #2

Maternal Maternal

Mother’s height Mother’s height

Family situation Mother’s age

Pregnancy Mother’s BMI

In vitro fertilization Change in BMI (between first 
antenatal visit in pregnancy 
with Infant 1 and Infant 2)

Successful external cephalic 
version

Family situation

Any hypertensive disorder Tobacco use (in either 
pregnancy)

Delivery Pregnancy

Onset of labora  Pregnancies between infants 
(including second infant)

Medical induction Inter-pregnancy interval 
(years)

Mechanical induction In vitro fertilization

Cervical dilation before CD Any hypertensive disorder

Fully dilated cervix before CD Delivery

Recurrent CD indication Hospital rate of elective 
repeat CDs

CD indicationb  Hospital rate of unplanned 
CDs

Hierarchical indication for 1st 
CDc 

Onset of labor (induction, 
spontaneous)

Blood loss volume Characteristics of infant

Puerperal or postpartum 
infection

Neonate sex

Maternal length of stay in 
hospital

Gestational age

Characteristics of infant

Neonate sex Variables related to either 
pregnancy, maternal disease

Gestational age (GA) Lung disease

GA-standardized birthweight Psychiatric or psychological 
disorder

Head circumference (cm) Endocrine disease

APGAR 1 min Recurrent urinary tract 
infections

APGAR 5 min Gynecological disease

APGAR 10 min

aFor infant #1: Planned CD, induction, or spontaneous For infant #2: 
induction or spontaneous. 
bDystocia, non-reassuring status, elective, other. 
cAs defined by Carlsson Wallin et al (30). 
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single imputation (Table S2). To test the original Grobman and 
Fagerberg models in our dataset, we used the originally reported 
log odds as offsets in a logistic regression model to predict VBAC 
in the validation dataset. We then refit both models in the train-
ing dataset and repeated prediction in the validation dataset. We 
omitted race and ethnicity variables from our implementations 
of the Grobman and Fagerberg models for several reasons: Race 
and ethnicity data were unavailable in our dataset; these variables 
have a different implication in a Swedish population than in the 
American population where the Grobman model was developed;29 
and there is increasing awareness that inclusion of race in pre-
diction models is often unwarranted on theoretical grounds.30 
Because our population comprised only women with a first CD 
and a second TOLAC, we also excluded variables for prior vaginal 
delivery and prior VBAC.

We trained a conditional inference tree,26 a conditional random 
forest27,31 and a lasso logistic regression model20,32 in the training 
dataset and then used these models to predict VBAC in the validation 
dataset. For all models, we calculated AUROC, accuracy, sensitivity 
and specificity in the validation dataset, based on a 50% decision 
cut-off for predicted probability. We constructed calibration curves 
from the validation dataset for each model by coarsening predicted 
probabilities into bins of 0.05 width and calculating the proportion of 
observed VBACs within each bin. The calibration curves compares 
predicted to observed probability of VBAC and provides a view of 
model performance across the range of predicted probability. For 
all new models, we also estimated classification error using fivefold 
cross-validation in the entire (n = 3116) dataset.

The conditional random forest was grown to 200 trees, based on 
examination of out-of-bag error, with the m parameter set to 7 (of 42 
candidate predictors). We tuned the lambda parameter for the lasso 
model by selecting the value of lambda associated with the smallest 
error in the fivefold cross-validation.

All data management and statistical analyses were performed 
using R version 3.5.1. The conditional inference tree and conditional 

random forest were grown using the party package version 1.3-1. 
The lasso model was fitted using the glmnet package version 2.0-16.

2.8 | Ethical approval

The regional ethical committee at Karolinska Institutet, Stockholm, 
Sweden, approved the study protocol (No 2009/275-31, approved 
2 April 2009).

3  | RESULTS

Of all participating 3116 women performing a TOLAC, 69% (n = 2146) 
had a vaginal birth and 31% (n = 970) a repeat CD (Figure S1).

Table S3 describes the characteristics of the participants by de-
livery mode in second delivery. Compared with women with a re-
peat CD, women who had VBAC were more likely to be younger, 
taller, have a lower body mass index (BMI) and a lower change in 
BMI from first to second pregnancy. They were more likely to have 
spontaneous labor onset and deliver in a hospital with lower rate of 
unplanned CDs in the second delivery. They were less likely to have 
labor dystocia as the indication of the first CD and to have been 
induced in the first delivery, and more likely to have reached second 
stage of labor before the CD or have an elective indication for the 
first CD.

Distributions of outcome and prediction variables in the train-
ing and validation datasets (Table S4) were very similar. Although 
gestational age in the second infant was statistically significant, the 
difference is not clinically meaningful.

Estimates for variables refitted in our data were similar to the es-
timates reported by Grobman and Fagerberg, with the exception of 
the hierarchical CD indication of preterm birth (defined as birth be-
fore 37+0 gestational weeks), which flipped direction from the model 
that Fagerberg reported (Table S5).

TA B L E  2   Predictive performance of existing and new predictive models (95% CI)

Model AUROC Accuracy Sensitivity Specificity Fivefold CV accuracy

Grobman 
(original 
estimates)

0.64 (0.61-0.67) 69.9% (67.6%-72.2%) 97.6% (96.7%-98.5%) 7.1% (4.8%-9.4%) NA

Grobman (refit 
model)

0.64 (0.61-0.67) 69.9% (67.6%-72.2%) 96.5% (95.4%-97.6%) 9.6% (7.0%-12.3%) 69.0% (67.4%-70.7%)

Fagerberg 
(original 
estimates)

0.63 (0.60-0.66) 70.1% (67.8%-72.4%) 91.6% (89.9%-93.2%) 21.4% (17.7%-25.1%) NA

Fagerberg (refit 
model)

0.66 (0.63-0.69) 70.7% (68.5%-73.0%) 93.2% (91.8%-94.7%) 19.7% (16.1%-23.3%) 70.1% (68.5%-71.7%)

Conditional 
inference tree

0.61 (0.58-0.63) 69.4% (67.1%-71.7%) 100.0% (100.0%-100.0%) 0.0% (0.0%-0.0%) 68.4% (66.8%-70.0%)

Random forest 0.69 (0.66-0.72) 70.0% (67.8%-72.3%) 97.9% (97.0%-98.7%) 6.9% (4.6%-9.2%) 69.9% (68.3%-71.5%)

Lasso 0.67 (0.64-0.70) 70.4% (68.1%-72.7%) 93.4% (92.0%-94.9%) 18.2% (14.8%-21.7%) 70.4% (68.8%-72.0%)

Abbreviations: AUROC, area under the receiver-operating characteristics curve; CV, cross-validation.
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AUROC ranged from 0.61 to 0.69, with sensitivity (probability 
of correctly identifying a VBAC for second delivery) above 91% 
and specificity (probability of correctly identifying a repeat CD for 
second delivery) below 22% for all models (Table 2). The condi-
tional inference tree assigned >50% probability of VBAC to every 
individual in the validation sample, giving a 100% sensitivity and 
0% specificity. Specificity was poor in all models but was highest 
in the Fagerberg model (19.7%), while still maintaining sensitivity 
above 90% (Table 2). Accuracy (correctly classified delivery modes) 
ranged from 68.4% to 70.4%, and fivefold cross-validation accu-
racy was similar.

Accuracy, sensitivity and specificity were calculated by assign-
ing a predicted outcome based on a probability cut-off of 50%. An 
alternative way to look at predictive accuracy is to compare the dis-
tribution of observed VBACs over the range of predicted probabili-
ties; to that end, we have presented calibration plots for each model 
(Figure 1). In these calibration plots, all models except the random 
forest deviated from observed CD rates in the lower range of pre-
dicted probability (<50%) and all models had wide confidence bands 
in this lower range. In the Grobman and Fagerberg models, 53% and 
73% of individuals with an unplanned repeat CD had predicted prob-
ability of VBAC above 60%; in the conditional inference tree, random 
forest, and lasso models, 97%, 61% and 60% of unplanned repeat 
CDs had predicted probabilities of VBAC above 60% (Figure 2).

The conditional inference tree selected splits at the indication 
for the first CD and the presence of any hypertensive disorder 
during the second pregnancy (Figure S2).

Variables with the highest conditional importance in the random 
forest included indication for the first CD, onset of labor for the first 
infant and maternal characteristics (Figure S3).

The lasso model also selected indication for the first CD, al-
though the strongest predictor of VBAC in this model was being a 
single mother (vs cohabiting) (Table S6).

4  | DISCUSSION

On a population-based sample of women without previous vaginal 
delivery performing a TOLAC, we compared two existing prediction 
models with three new machine-learning models. AUROC was <0.70 
for all models, sensitivity was >91%, and specificity was <22%. The 
majority of women with an unplanned repeat CD had predicted 
probability of VBAC >60%.

All AUROCs were slightly lower than in the original studies by 
Grobman (0.75)12 and Fagerberg (0.74),14 although those models 
included women with previous vaginal birth, a strong predictor of 
VBAC.6,12,15 We excluded women with previous vaginal delivery, 
likely making prediction more difficult.

The indication for the first CD was identified as an important 
variable in all of the machine-learning approaches. This consis-
tency lends credibility to the variable’s use as a decision-making 
metric and further strengthens the notion that healthcare pro-
viders should emphasize improved birth outcomes in first-time 
mothers.

Our study is mainly restricted by the relatively short study pe-
riod (2008-2014) and the limited hospitals included, which also 
constrained the sample size and the inter-pregnancy interval of 
women included. The limited sample size reduced the fidelity of 
the hierarchical classification of indication of CD in first delivery as 
used in the Fagerberg model. Our decision to use single, rather than 

F I G U R E  1   Calibration plots of the different prediction models. The solid blue line represents the actual performance with dotted 95% 
confidence bands. Solid gray line is the ideal performance [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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multiple imputation likely resulted in higher variance in the imputed 
values, but a sensitivity analysis indicated that imputation did not 
substantially alter our results. Considering the number of predictors 

available for training, the conditional inference tree seems relatively 
short, and it produced a short range of predicted probabilities. The 
relatively poor performance of the tree may result from the high 

F I G U R E  2   Distributions of predicted probability by observed VBAC status for existing and new models [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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variance associated with the method relative to it ensemble coun-
terparts, such as random forests.20

Our population-based cohort with granular details based on the 
prospectively collected electronic medical records provides an array 
of clinically relevant maternal characteristics that were not used in 
previous models. With the growing use of the electronic medical 
records in many other countries, we believe our approach is trans-
ferable to other contexts where medical records are digitalized. 
This study is conducted in a context with universal maternity care, 
small variation of quality of care between hospitals and a high rate 
of TOLAC. This relatively equal opportunity for women to have a 
TOLAC makes the prediction model more representative of the 
chance of achieving VBAC among women with one previous CD, 
not affected by the substantial selection that occurs in settings with 
much lower TOLAC rates.

Despite the fine-grained dataset containing prospectively 
collected data, our models did not perform appreciably better 
than previous classical models, indicating that there may also be 
higher-level factors affecting TOLAC success on a patient, health 
provider, hospital and country level, as previous literature has 
suggested.33-35 Future research should explore these factors (in-
cluding obstetrician traits, maternal preferences, maternity unit 
staffing and workload during delivery), which might improve pre-
diction of VBAC success.

In their current stage, none of the prediction models is very 
useful for women without previous vaginal delivery. Most women 
were predicted to have a vaginal birth. However, in all models, the 
majority of individuals with an unplanned repeat CD had predicted 
probability of VBAC >60%, which undermines the utility of even 
the better-performing top half of the models. Although increasing 
prediction accuracy by small amounts may have a limited effect on 
an individual patient’s decision-making, it should be noted that even 
small increases in accuracy and increased VBAC success could have 
large effects at the population level, given the current drive to re-
duce cesarean use.

Sweden has a generous policy for TOLAC, encouraging women 
with one previous CD to have a TOLAC unless there is a medi-
cal contraindication for undergoing vaginal delivery (eg placenta 
previa). In this context of broad TOLAC access, improving predic-
tion of repeat CD (specificity) should be the aim of future models. 
Considering that available maternity care services vary signifi-
cantly between population groups, hospitals and countries, more 
restrictive policies may be common. In contexts where selected 
women are given the opportunity to try TOLAC, models with a 
good prediction of VBAC (sensitivity) may better fit the clinical 
purpose, encouraging women and health providers to provide a 
TOLAC more generally.

5  | CONCLUSION

It remains difficult to predict vaginal birth in women with only a prior 
cesarean. Both previous known models based on classical regression 

and new machine-learning models had a high sensitivity in predict-
ing vaginal birth, with most women predicted to have a vaginal birth. 
However, the majority of women with an unplanned repeat CD were 
also predicted to succeed with a vaginal birth. Additional covari-
ates combined with machine-learning techniques did not increase 
the prediction performance. There are most likely other factors af-
fecting TOLAC success in a patient, eg factors on the hospital level, 
which may be subject to further research.
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