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Agile & Adaptive Robotics Lab

A Comparison of Absolute & Relative Neural Encoding 

Schemes in Arithmetic Functional Subnetworks

Cody Scharzenberger1, Alexander Hunt1

1Department of Mechanical & Materials Engineering, Portland State University, Portland, OR

As neural networks have become increasingly prolific solutions to 

modern problems in science and engineering, there has been a 

congruent rise in the popularity of the numerical machine learning 

techniques used to design them. While numerical methods are highly 

generalizable, they also tend to produce unintuitive networks with 

inscrutable behavior. One solution to the problem of network 

interpretability is to use analytical design techniques, but these 

methods are relatively under-developed compared to their numerical 

alternatives. To facilitate the utilization of analytical techniques, this 

work extends previous efforts to quantify the impact that non-spiking 

neural encoding schemes have on the approximation quality of the 

arithmetic subnetworks of the functional subnetwork approach (FSA). 

In particular, novel design constraints are derived for inversion, 

division, and multiplication functional subnetworks using: (1) an 

“absolute” encoding scheme in which information is represented by 

the membrane voltages of the subnetwork’s constituent neurons, and 

(2) a “relative” encoding scheme wherein information is represented 

by the percent activation of the subnetwork’s constituent neurons.  

Numerical simulation results for each type of subnetwork indicate that 

there are both qualitative and quantitative advantages to selecting a 

relative encoding scheme over an absolute one, including an 

increased approximation accuracy of 3%-6% for normal operational 

ranges, greater numerical conditioning, and the freedom to choose 

more biologically realistic subnetwork parameters.

Background
Functional Subnetwork Approach (FSA): [1,2]

The FSA provides analytical rules for designing subnetworks that 

perform simple mathematical operations at steady state.  It encodes 

information directly in the membrane voltages of the neurons.

The goal of this work is to compare a different “relative” encoding with 

the existing “absolute” encoding from prior work.

Neuron Model (Leaky Integrator): [1, 2, 3]

Consider a network of 𝑛 ∈ ℕ leaky integrator neurons. Then ∀𝑖 ∈ ℕ≤𝑛,

where: 𝑈𝑖, 𝐶𝑚,𝑖, 𝐺𝑚,𝑖 are the membrane voltage, capacitance, and 

conductance of the 𝑖th neuron, respectively; 𝑅𝑗 is the activation 

domain of the 𝑗th neuron; 𝑔𝑠,𝑖𝑗 and ∆𝐸𝑠,𝑖𝑗 are the conductance and 

reversal potential of the synapse from neuron 𝑗 to 𝑖, respectively; and 

𝐼𝑎,𝑖 are the external currents applied to neuron 𝑖. 

Leaky Integrator Steady State Behavior: [3]

Consider a system of 𝑛 ∈ ℕ neurons with each of the first 𝑛 −
1 neurons connected to the final 𝑛th neuron via some combination of 

excitatory and inhibitory synapses.  The steady state membrane 

voltage of the output neuron is then

Eq. 2 describes the steady state behavior of the upcoming addition, 

subtraction, inversion, and division subnetwork architectures.

Abstract Addition/Subtraction Subnetwork
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1. For biological parameters, a relative encoding scheme produces a 

better numerically conditioned and more accurate approximation. 

especially as gains are increased.

2. Relative encoding schemes have practical design advantages, 

such as bounding the operational domain of the output.

3. Relative & absolute encoding schemes are isomorphic.  This 

means that it is possible to choose contrived parameters that 

make their approximations theoretically the same, not accounting 

for numerical conditioning. 
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Division Subnetwork

Consider the same network architecture whose steady state 

response is described by Eq. 2 (simplified architecture in Fig. 3a).

Absolute Subtraction: The membrane voltage of the output neuron is 

the sum of the membrane voltages of the excitatory input neurons 

less that of the inhibitory input neurons (Eq. 3a).

Relative Subtraction: The activation ratio of the output neuron is the 

average activation ratio of the excitatory input neurons less that of the 

inhibitory input neurons (Eq. 3b).

To achieve agreement between the achieved (Eq. 2) and desired (Eq. 

3a & 3b) steady state response, several design constraints must be 

satisfied, the most important of which are the synaptic conductances:

where: 𝑠𝑖 is the sign of the 𝑖th input neuron; 𝑛𝑖
± is the number of 

excitatory inputs or the number of inhibitory inputs, depending on the 

sign of 𝑠𝑖.  See supplementary materials for other design constraints.
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Consider a network comprised of one excitatory input neuron and one 

inhibitory input neuron connected to a single output neuron as shown 

in Fig. 3a.  Then this network satisfies a simplified version of Eq. 2.

Absolute Division: The membrane voltage of the output neuron is the 

quotient of the membrane voltages of the input neurons (Eq. 14a).

Relative Division: The activation ratio of the output neuron is the 

quotient of the activation ratios of the input neurons (Eq. 14b).

To achieve agreement between the achieved (Eq. 2) and desired (Eq. 

5) steady state membrane voltages, several design constraints must 
be satisfied, including the synaptic conductances:
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Multiplication Subnetwork
Consider a network comprised of an inversion subnetwork in parallel 

with a division subnetwork as shown in Fig. 3c. The steady state 

membrane voltage of the output is

where the 𝑘𝑖 are long expressions in the supplementary material. 

Absolute Multiplication: The membrane voltage of the output neuron 

is the product of those of the input neurons (Eq. 6a).

Relative Multiplication: The activation ratio of the output neuron is the 

product of those of the input neurons (Eq. 6b).

The previously derived inversion and division subnetworks provide a 
convenient avenue for designing a multiplication subnetwork.
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Figure 2. (a) A comparison of the steady state responses of an example 
absolute inversion subnetwork (𝑅1 = 20[mV], 𝑅2 = 40[mv]) and an 
example relative inversion subnetwork (𝑅1 = 20[mV], 𝑅2 = 20[mv]). (b) 
The difference in the percent error of each encoding scheme.  Since the 
inversion operation can be approximated exactly (less numerical error), 
both schemes are nearly identical to machine precision.
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Figure 5. (a) A comparison of the steady state responses of an example 
absolute multiplication subnetwork (𝑅1 = 20[mV], 𝑅2 = 20[mv] , 𝑅4 =
30[mv]) and an example relative multiplication subnetwork (𝑅1 = 20[mV], 
𝑅2 = 20[mv] , 𝑅4 = 20[mv]) (b) The difference in the percent error of each 
encoding scheme.  In this example, the “relative” encoding scheme is 
always more accurate than the “absolute” encoding scheme.
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Figure 4. (a) A comparison of the steady state responses of an example 
absolute division subnetwork (𝑅1 = 20[mV], 𝑅2 = 20[mv] , 𝑅3 = 40[mv]) 
and an example relative division subnetwork (𝑅1 = 20[mV], 𝑅2 = 20[mv] , 
𝑅3 = 20[mv]) (b) The difference in the percent error of each encoding 
scheme.  In this example, the “relative” encoding scheme is always more 
accurate than the “absolute” encoding scheme.
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Figure 1. (a) A comparison of the steady state responses of an example 
absolute subtraction subnetwork (𝑅1 = 40[mV], 𝑅2 = 20[mv], 𝑅3 =
40[mV]) and an example relative subtraction subnetwork (𝑅1 = 40[mV], 
𝑅2 = 20[mv], 𝑅3 = 20[mV]). (b) The difference in the percent error of each 
encoding scheme.  Blue regions indicate that the “relative” scheme has less 
error, red regions indicate that the “absolute” scheme has less error.
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Inversion Subnetwork
Consider a single input neuron connected to a single output neuron 

via an excitatory synapse as shown in Fig. 3b.  This satisfies a 

simplified version of Eq. 2.

Absolute Inversion: The membrane voltage of the output neuron is a 

constant over the membrane voltage of the input neuron plus a small 

constant (Eq. 4a).

Relative Inversion: The activation ratio of the output neuron is a 

constant over the activation ratio of the input neuron plus a small 

constant (Eq. 4b).

To achieve agreement between the achieved (Eq. 2) and desired (Eq. 

4a & 4b) steady state membrane voltages, several design constraints 

must be satisfied, including the synaptic conductances:
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Figure 3. Functional subnetwork architectures: (a) Subtraction & Division 
(different parameters); (b) Inversion; and (c) Multiplication.
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