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Abstract

Forest fires darken snow albedo and degrade forest structure, ultimately reducing

peak snow–water storage, and advancing snowmelt timing for up to 15 years follow-

ing fire. To date, no volumetric estimates of watershed-scale postfire effects on

snow–water storage and snowmelt timing have been quantified over decades of

postfire recovery. Using postfire parameterizations in a spatially-distributed snow

mass and energy balance model, SnowModel, we estimated postfire recovery of for-

est fire effects on snow–water equivalent (SWE) and snowmelt timing over decades

following fire. Using this model, we quantified volumetric recovery of forest fire

effects on snow hydrology across a chronosequence of eight sub-alpine forests

burned between 2000 and 2019 in the Triple Divide of western Wyoming. We found

that immediately following fire, forest fire effects reduced snow–water storage by

6.8% (SD = 11.2%) and advanced the snow disappearance date by 31 days

(SD = 9 days). Across the 15-year recovery following fire, forest fire effects reduced

snow–water storage by 4.5% (SD = 11.4%). Postfire effects on snow hydrology gen-

erally recovered over time, but still persisted beyond 15-years following fire due to

the observed postfire shift from forest to open meadow. Estimates of postfire reduc-

tions on peak SWE summed over the entire 15-year postfire recovery period were

18 times greater than the immediate losses in the first winter following fire alone.

These lasting effects of forest fires on snow hydrology decades following fire high-

light the importance of postfire parameterizations for more accurate watershed-scale

volumetric estimates of forest fire effects on snow–water resources.
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1 | INTRODUCTION

Climate warming threatens snow–water storage through feedbacks

between declining snowpacks and increased forest fire activity

(Fassnacht & López-Moreno, 2020; Gleason et al., 2019; Kampf

et al., 2022; McGrath et al., 2023; Viviroli et al., 2007). The majority

of water in the American West is seasonally stored in snowpack, with

ecosystems and human communities relying on snowmelt as a source

of water in the drier periods of late spring and summer (Li

et al., 2017; Liu et al., 2022). Climate warming has reduced snow–

water storage across the West, threatening downstream water avail-

ability (Alonso-González et al., 2022; Luce et al., 2013; Mote

et al., 2018; Wieder et al., 2022). It is predicted that spring surface

water availability will occur earlier, less reliably, and more episodically

over the coming decades (Barnett et al., 2005; Hale et al., 2022;

Wieder et al., 2022). Increasingly vulnerable snowpacks and associ-

ated earlier snowmelt have amplified forest fire activity across the

West (Abatzoglou & Williams, 2016; Westerling, 2016), particularly

in the densely forested seasonal snow zone where over 80% of west-

ern forest fires have burned since the 1980s (Gleason et al., 2013).

Snow albedo, or the reflectivity of the snow surface, is a critical

driver of the net snowpack shortwave radiation, which dominates

the snowpack energy balance during spring snowmelt periods

(Cline, 1997; Garvelmann et al., 2014; Marks & Dozier, 1992). Forest

fire in the seasonal snow zone exacerbates the influence of warming

climate on snowpacks through the postfire radiative forcing on snow,

which includes the reduction of snow albedo due to the deposition

of light absorbing particles onto snow and increased incoming solar

radiation due to the degradation of forest trunks and forest canopy

(Gleason et al., 2013, 2019; Gleason & Nolin, 2016; Smoot &

Gleason, 2021). Here, we use the term “forest degradation” to define

the progressive decline in aboveground forest structure that affects

the snowpack energy balance (i.e., trunk and canopy) due to

disturbance-induced mortality (delayed or otherwise) and direct

structural damage.

Forest degradation and associated canopy removal by wildfire

may enhance snow accumulation in winter through reduced canopy

interception, but also influences snowpack energy balance and mass

balance by increasing exposure to solar energy and wind-driven subli-

mation losses (Moeser et al., 2020; Ueyama et al., 2014). Forest deg-

radation also reduces longwave radiative inputs to the snowpack from

the surrounding forest canopy, particularly in warmer maritime snow

climates (Lundquist et al., 2013). In continental regions where temper-

atures are colder and longwave radiative inputs from the forest can-

opy are small, additional shortwave radiative inputs from reductions in

shading may outweigh the losses in longwave radiative inputs from

forest structure degradation (Lundquist et al., 2013; Sicart

et al., 2004). The overall net change in combined net shortwave and

longwave radiative forcing on snowpack following canopy removal

depends on the forest structure and snow climate (Lundquist

et al., 2013; Musselman et al., 2008; Varhola et al., 2010). In addition

to the enhanced radiation effects, forest canopy removal may also

increase the turbulent fluxes at the snow surface ultimately reducing

snow–water storage and increasing snow melt rates (Harpold

et al., 2014; McGrath et al., 2023).

Forest fires further alter the snowpack energy and mass balance

due to the postfire radiative forcing on snow. Following forest fire,

the more open forest canopy allows more incoming solar radiation

incident on the snowpack surface, while the degradation of the post-

fire forest canopy sheds black carbon and burned woody debris onto

snowpack, which concentrates on the surface during snowmelt, dark-

ening snow albedo and increasing the solar energy absorbed by the

snowpack (Gleason et al., 2013, 2019; Gleason & Nolin, 2016).

Increased radiative forcing on snow enhances the rate of snow meta-

morphism and the rate of snow albedo decay following fresh snowfall

(Gleason et al., 2013; Gleason & Nolin, 2016). This postfire radiative

forcing on snow profoundly increases the net snowpack shortwave

radiation, which ultimately reduces peak snow water equivalent

(SWE), and advances the timing of snowmelt and snow disappearance

date (SDD) (Gleason et al., 2019; Smoot & Gleason, 2021;

Stevens, 2017). Forest fire effects on snow hydrology including darker

snow surface albedo, reduced snow–water storage, and earlier snow-

melt extend across the burned forest area (Gleason & Nolin, 2016)

and persist for at least 10 winters following fire across the West

(Gleason et al., 2019; Smoot & Gleason, 2021). An interesting paradox

is that at coarse spatial scales, postfire landscape-scale snow albedo

brightened immediately following fire, and as the postfire forest

degraded over time and revealed more of the snowpack beneath

burned forests resembled an open meadow after 15 years following

fire (Gersh et al., 2022).

High-severity burned forests are composed of dead and dying

trees that fall apart in the years following fire (Dunn & Bailey, 2012)

exposing greater snow surface areas to solar radiative forcing (Gersh

et al., 2022). Postfire forest degradation and subsequent regeneration

of high-elevation evergreen forests often spans decades to centuries

depending on fire severity, fire extent, distance to seed sources, ele-

vation, and climate such as postfire drought conditions (Busby

et al., 2020; Coop et al., 2010; Dunn & Bailey, 2012; Vanderhoof

et al., 2021; Viana-Soto et al., 2022). In some cases, such as high-

elevation dry and moist forests occurring at the edge of their climatic

tolerance, forests do not regenerate back to prefire conditions and

instead convert to non-forests especially towards the interior of the

burned area (Harvey et al., 2016; Rodman et al., 2020; Stevens-

Rumann et al., 2018; Stevens-Rumann & Morgan, 2019). Combined

with postfire radiative forcing on snow, delayed postfire forest regen-

eration or forest-to-open conversion in the seasonal zone, may sus-

tain postfire forest structural changes and associated shifts in snow–

water storage for decades following fire.

To date, no study has quantified volumetric estimates of postfire

effects on snow–water storage and snowmelt timing across burned

forested areas and over the decades of postfire recovery. Forest fires

are extensive and increasing in occurrence across the West, changing

forest structure and ultimately snow hydrology over vast regions

(Burles & Boon, 2011; Dennison et al., 2014; Westerling, 2016) that

are difficult to quantify through in situ measurements alone. The lim-

ited spatial extent of in situ measurements and coarse resolution of
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satellite-based remote sensing observations make process-based

snow evolution models a critical tool enabling spatially distributed vol-

umetric estimates of postfire effects on snow–water storage and

snowmelt timing over decades following fire.

In order to understand the recovery of postfire effects on snow

hydrology and, by extension, water resource availability, we used a

physically-based spatially-distributed snow mass and energy balance

model, with best estimate postfire parameterizations to estimate volu-

metric forest fire effects on snow–water storage and snowmelt timing

over decades following fire. We focused on a chronosequence of

eight forests, burned from 2000 to 2019, in the Triple Divide region

of western Wyoming to answer the research question: what is the

modelled magnitude and persistence of postfire volumetric effects on

snow–water storage (SWE) and snowmelt timing (SDD) over the snow

season and over years since fire? Our primary goal is to provide the

most informed estimates of the magnitude of postfire volumetric

changes to snow hydrology, based on the best available data, parame-

terizations, and modelling. We aim to provide best guess estimates of

the magnitude of postfire volumetric changes to snow hydrology to

help to guide decision-making and improve streamflow forecasting of

water resource managers over decades of postfire recovery. As cli-

mate warms and snowpacks are ever more vulnerable, while forest

fires increase in occurrence and extent across the West, estimates of

postfire effects on snow albedo, forest structure, and ultimately snow

hydrology over decades following fire are vital for future land man-

agement and water resource planning.

2 | MATERIALS AND METHODS

Our approach to evaluate recovery of changes in snow hydrology due

to postfire effects on snow albedo and forest structure relied on best

estimate parameterizations employed in a physically-based spatially-

distributed snow evolution model. Across a chronosequence of eight

burned forests, burned from 2000 to 2019, we compared modelled

snow volume outputs between an unparameterized base model, a

postfire forest structure model, and a combined postfire forest struc-

ture and postfire snow albedo model, in forest fire perimeters and at

the watershed scale. All climatic variables were held constant between

models allowing us to compartmentalize and directly compute postfire

effects on snow storage and snowmelt. We evaluated impacts to

snowpack energy and mass balance from postfire forest structure

degradation and postfire snow albedo reductions seasonally, immedi-

ately following fire, and over decades following fire. We also com-

pared modelled results with limited field observations of SWE

collected in the chronosequence of burned forests by a field team

during February and March of 2019 and 2020.

2.1 | Study region

We modelled and evaluated the postfire recovery on snow hydrology

across a chronosequence of eight forests burned from 2000 to 2019

in the seasonal snow zone of the Triple Divide region in western

Wyoming (Figure 1). The modelled domain of our study region was

determined by calculating a minimum bounding rectangle around the

chronosequence of burn perimeters taken from the Monitoring

Trends in Burn Severity (MTBS) burn perimeters dataset (Finco

et al., 2012) plus a 2 km buffer (Figure 1). The study area has an aver-

age elevation of 2503 m with a minimum and maximum elevation of

1727 m and 3596 m (Danielson & Gesch, 2011). Between 2000 and

2019, the average cold season (December to March) air temperature

was �7.7�C (SD = 5.5�C), and the region received an average annual

precipitation of 110 cm (NOAA, 2021; Saha et al., 2011; USDA-

NRCS, 2020; Western Regional Climate Center, 2021). The study

region is largely forested, consisting of 60% forested land and 40%

unforested land (35% shrub, grassland, and agricultural, 0.006% urban,

and 4% bare rock) based on Copernicus Global Landcover data

(Buchhorn et al., 2020). The forested land is pine-dominated, of which

the most common species are Lodgepole Pine (Pinus contorta) and

Whitebark Pine (Pinus albicaulis). Our study region covers the Triple

Divide region of three major river basins of the western US, including

the Colorado, Columbia, and Missouri Rivers. This area has a history

of frequent forest fire and has experienced a rapid increase in the

extent, severity, duration, and occurrence of forest fire in the seasonal

snow zone over recent decades (Frankson et al., 2022). The Triple

Divide region is an ideal test bed for investigations into our primary

research question and for better understanding the magnitude and

persistence of postfire effects on snow hydrology. This understanding

is critical to preserving snow–water resource availability in this region

and for understanding postfire effects on snow–water storage and

snowmelt broadly across the West.

2.2 | SnowModel description

To estimate the recovery of forest fire effects on snow–water storage

and snowmelt across burned forests over decades following fire, we

used a physically-based spatially-distributed snow evolution model

called SnowModel. SnowModel is a process-based model that uses

first-order physics to simulate snow accumulation, blowing-snow

redistribution and sublimation, snow-density evolution, and snowpack

melt over spatially varying topography and landcover grids driven by

temporally varying meteorological forcing fields (Liston et al., 2007;

Liston & Elder, 2006a, 2006b). SnowModel was used in this study

because of its foundation in first-order physics, ready customizability,

and extensive validation in forested, montane seasonal snowpack sim-

ilar to our study region (Hiemstra et al., 2006; Liston et al., 2007;

Liston & Elder, 2006a, 2006b; Sexstone et al., 2018).

SnowModel utilizes four sub-models in a hierarchal modelling

structure including MicroMet, EnBal, SnowPack-Multilayer

(SnowPack-ML), and SnowTran-3D. MicroMet spatially interpolates

meteorological forcing data from meteorological stations observations

and/or modelled reanalysis meteorological outputs of air temperature,

precipitation, wind speed, wind direction, air pressure, and relative

humidity (Liston & Elder, 2006a). Using a spatially weighted Barne's
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interpolation method, MicroMet produces a meteorological forcing

field for every cell in the simulation for every time step (Liston &

Elder, 2006b). MicroMet also estimates incoming shortwave and

longwave radiation inputs in each cell using solar calculations based

on the latitude of the study region and parametrizations of cloudiness

(Liston & Elder, 2006a). EnBal utilizes the outputs of MicroMet and

F IGURE 1 A map of the study region and modelling domain. The map includes Monitoring Trends in Burn Severity fire boundaries of the
eight fires that occurred in the study region over the modelling time period along with their ignition date, incident type, and total burn area. The
location and type of meteorological stations that the in situ meteorological forcing data was drawn from are shown and the boundaries of the
HUC-8 sub-basins and their names are also displayed.

4 of 21 SURUNIS and GLEASON
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physics-based mass energy balance equations to calculate the snow

mass and energy balance of the snowpack within every cell at every

time step of the simulation and, critical to our application, is where

modelling of forest-snow interactions are handled (Liston &

Hall, 1995). SnowTran-3D is a three-dimensional model that incorpo-

rates the wind-flowing forcing field from MicroMet and topographical

and vegetation inputs to compute redistribution of snow due to wind

and loss of snow by saltation and wind-induced sublimation (Liston

et al., 2007). SnowPack-ML computes snow-density through

temperature- and compaction-based snow-density evolution (Liston &

Elder, 2006b). SnowPack-ML can be run using a single layer or up to

12 distinct layers and simulates cold content, permeability, and liquid

water release from the snowpack within each cell for every time step

(Liston & Elder, 2006b).

We made modifications to SnowModel, which parameterize

postfire snow albedo decay and postfire forest canopy degradation

and their recovery over time. Using outputs from this parameter-

ized model, we generated informed volumetric estimates of postfire

effects on snow hydrology and the evolution of these effects over

postfire recovery. A brief overview of how SnowModel models

snow accumulation and snowmelt follows, however a full descrip-

tion of SnowModel operations for snow albedo and snowpack in

forests can be found in Liston and Elder (2006a). To simulate

forest-snow interactions, SnowModel uses several sub-models to

simulate canopy interception, canopy loading and unloading, subli-

mation of intercepted snow, and radiation transmission through for-

est canopies. SnowModel incorporates several forest canopy

metrics within these calculations including effective leaf area index,

canopy height, snow-holding depth, gap fraction, and forest type.

Each of these variables plays a role in determining snow-depth evo-

lution at each time step of the model and the resulting SWE in

each cell. To simulate snow albedo, the default SnowModel-EnBal

assigns a constant snow albedo value to each cell depending on

landcover type (forested, non-forested, or glacier ice) and accumu-

lating or melting snowpack.

2.2.1 | SnowModel parameterizations

We incorporated parameterizations of key postfire effects on snow

hydrology including, postfire snow albedo and postfire forest struc-

ture over years following fire, to estimate the immediate and persis-

tent volumetric changes and recovery of snow–water storage and

timing of snowmelt following fire. Our postfire snow albedo decay

and recovery model utilized the postfire snow albedo decay parame-

terization from Gleason and Nolin (2016) and a postfire forest struc-

ture degradation parameterization informed by long-term trends in

MODIS-derived landscape snow albedo from Gersh et al. (2022).

Gleason and Nolin (2016) derived empirical snow albedo decay func-

tions from broadband snow albedo measurements taken in adjacent

burned and unburned forested sites over 3 years following fire in the

high-elevation lodgepole pine forests of the Oregon Cascades. These

snow albedo exponential decay functions reduce snow albedo over

days since fresh snowfall differentially for burned and unburned for-

ested sites and open meadows and for cold and warm snow periods

throughout the snow season (Gleason & Nolin, 2016). The postfire

snow albedo recovery trends over 15 years following fire were

informed by Gersh et al. (2022), who characterized postfire snow

albedo recovery over years following fire in a chronosequence of

eight burned forests in the Triple Divide region of Wyoming burned

between 2000 and 2019, the same burned forests modelled in this

study. Gersh et al. (2022) utilized MODIS-MOD10A1 estimates of

landscape-scale snow albedo and determined that postfire landscape

snow albedo more resembled that of open areas than antecedent pre-

fire forest conditions after 15 years following fire. Other studies have

also indicated that high-elevation burned forests, typical of our study

region in the Rocky Mountains, experience slow or delayed postfire

regeneration over two to three decades (Coop et al., 2010;

Vanderhoof et al., 2021), which can be delayed further by the occur-

rence of postfire drought (Viana-Soto et al., 2022). In many other

studies, high-elevation coniferous burned forests similar to our study

region, did not regenerate back to prefire forest conditions at all and

instead converted to grass or shrubland (Harvey et al., 2016; Stevens-

Rumann et al., 2018; Stevens-Rumann & Morgan, 2019). Postfire for-

est structure conversion to open land cover was also observed in field

visits to the eight forest fires modelled in this study (Figure 2). We

acknowledge that forest regeneration continues beyond 15 years fol-

lowing fire, and that our postfire parameterizations of forest structure

represent a snapshot of postfire recovery up to two decades following

fire in high-elevation burned forests such as the Triple Divide region

of western Wyoming.

2.3 | SnowModel input data retrieval

SnowModel requires a minimum of three primary inputs including

meteorological forcing data, a topographic elevation raster, and a

landcover classification raster. Meteorological forcing data were

retrieved from both automated weather stations and modelled reana-

lysis data. In situ meteorological forcing data from automated weather

stations were retrieved from the United States Department of Agri-

culture (USDA) National Resources Conservation Service (NRCS)

automated Snow Telemetry (SNOTEL) network (USDA-NRCS, 2020)

from the National Weather and Climate Center (NWCC) data retrieval

tool (https://wcc.sc.egov.usda.gov/reportGenerator). SNOTEL data

were supplemented with additional in-situ weather data from the

Western Regional Climate Center (WRCS) Remote Automated

Weather Station (RAWS) network (Western Regional Climate

Center, 2021), and the National Oceanic and Atmospheric Administra-

tion (NOAA) Climate Data Online (CDO) network (NOAA, 2021) to

capture a wider range of weather variability over an elevation range

(Table S1). Hourly measurements of air temperature, precipitation,

wind speed, wind direction, and relative humidity were retrieved from

each of these stations, and daily average values of each were calcu-

lated over the entire modelling period (WY2000-WY2020) for use in

SnowModel. In addition, daily SWE values were retrieved from the

SURUNIS and GLEASON 5 of 21
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nine SNOTEL stations in our model domain for SWE assimilation and

calibration of SnowModel.

The in situ meteorological data were supplemented with data

from Climate Forecast System version 2 (CFSv2) modelled reanalysis

meteorological data from the NOAA National Centers for Environ-

mental Prediction (NCEP) (Saha et al., 2011). CFSv2 pixels were con-

verted into “virtual” weather stations using R's (R Core Team, 2021)

“spatial” package (v7.3–12; Venables & Ripley, 2002), where the coor-

dinates of each “station” were taken as the centroid of the pixel and

elevation was taken as a product of geopotential height at the surface.

This process effectively produced an ordered grid of weather stations

with micrometeorological forcing data across the model domain. Daily

values of temperature, precipitation, wind speed, and wind direction

were averaged from 6-hourly values, and relative humidity was com-

puted using daily averaged specific humidity value, daily average tem-

perature, and the Clausius-Clapeyron relation (O. L. I. Brown, 1951).

Digital elevation maps (DEMs) and landcover classifications were

retrieved using Google Earth Engine, a cloud-based GIS platform

(Gorelick et al., 2017). A DEM of the region was retrieved from the

Global Multi-resolution Terrain Elevation Dataset (GMTED) 2010

(Danielson & Gesch, 2011). GMTED is a product of the NASA Shuttle

Radar Topography Mission (SRTM), which generated a DEM of eleva-

tion data at a resolution of 1 arc-second. Landcover data was

retrieved from the Copernicus Global Land Cover 2015–2019 dataset,

which classifies 23 different classes of landcover at a 100 m resolu-

tion (Buchhorn et al., 2021). Landcover data was reclassified to match

the land classes defined by SnowModel. Both raster layers were

clipped to the model domain, used at their native resolutions of

100 m, and converted to ASCII using R's (R Core Team, 2021) “spa-
tial” package (v7.3–12; Venables & Ripley, 2002).

2.4 | SnowModel calibration

SnowModel was calibrated by running the base model (i.e., a model

with no burn parameters or burn classes applied) iteratively using vary-

ing sets of parameter values for gap fraction, snowfall fraction calcula-

tions, number of snowpack layers and snowpack layer width, and

scalars applied to air temperature and precipitation forcing data.

Following each run, modelled SWE values were compared to the time-

series of observed SWE values from the SNOTEL stations in the study

region. For calibration purposes, four of the nine SNOTEL stations

were excluded from the meteorological inputs to be used as

calibration-only stations. The landcover class of individual grid cells

containing SNOTEL stations was set to open meadow to reflect the

forest clearings where SNOTEL stations were located. Modelled

values of SWE at the observation locations were extracted by locating

the cell containing each SNOTEL station and compared to the associ-

ated observed SWE measured by the SNOTEL station for that time

step. Modelled versus observed SWE was plotted over all 20 years of

the simulation (Figure S3). Performance metrics were then calculated

between modelled SWE and the observed SNOTEL SWE measure-

ments using root-squared error (RSE), Nash-Sutcliffe Efficiency (NSE),

R-squared (R2), and percent bias (PBIAS) (Moriasi et al., 2007). Pixel

values were extracted using the “spatial” package (v7.3–12;

Venables & Ripley, 2002) within R (R Core Team, 2021) and the per-

formance statistics were calculated using the “HydroGOF” package

(v0.4–0; Mauricio Zambrano-Bigiarini, 2020). Optimized parameter

sets were found that met the performance thresholds outlined by

Moriasi et al. (2007) following 21 calibration runs (Table S2;

Figure S3). The best calibration was found using the default parame-

ters of SnowModel, but with the modelled (CFSv2) precipitation inputs

increased by 18.5%, an amount consistent with previous research

from Yuan et al. (2011) that found that CFSv2 modelled reanalysis

data can underestimate precipitation results by up to 20%. The precip-

itation scalar was optimized by running the model with progressively

increasing scalar values until the performance thresholds were met.

We avoided tuning this value further to avoid overfitting our model.

After calibration, SnowModel overestimated SWE by 11.40% across

all stations, a level of overestimation acceptable given the perfor-

mance thresholds determined by Moriasi et al. (2007) (jPBIASj < 15%)

(Table S2). All subsequent model runs maintained consistent parame-

ter values to evaluate the influence of postfire model parameteriza-

tions outside the individual calibrated model parameters.

2.5 | Model descriptions

We utilized three model structures to estimate how postfire effects

on snow albedo and forest structure degradation altered snowpack

F IGURE 2 Field site photos of burned forests taken on-site in April 2019 show forest structure transitioning to open land cover as a function
of years postfire (YPF). Forest fires and ignition years listed left to right: Roosevelt (2019), Cliff Creek (2016), Horsethief Canyon (2012), Bull
(2010), Purdy (2006), Green Knoll (2001), and Boulder (2000).
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volume and snowmelt timing over the decades of postfire recovery

including, the base model, a postfire forest structure recovery model,

and a combined postfire snow albedo and forest structure recovery

model. By differencing the modelled results of the postfire forest

model or postfire forest and snow model, from the base model, while

holding all meteorological forcing data constant, we isolated and esti-

mated the postfire effects of snow albedo and/or postfire forest deg-

radation on snow–water storage volume and snowmelt timing across

burned forests and over decades following fire.

2.5.1 | Base model

The base model used the default calibrated SnowModel parameters

to compare against the results of the postfire snow albedo and post-

fire forest structure recovery models. This model accounted for no

postfire effects on snow albedo or forest structure and effectively

represents a “no-burn” scenario within the study region. The base

model included a forest and open meadow snow albedo decay param-

eterizations derived from Gleason and Nolin (2016), but no postfire

parameterizations.

2.5.2 | Postfire forest structure recovery model

The postfire forest structure model consisted of the calibrated base

model described above, with the addition of time-varying postfire for-

est structure recovery parameterizations that simulated the postfire

forest structure degradation over 15 years following fire to an open

meadow. No postfire effects on snow albedo were included in the

postfire forest structure recovery model. The postfire forest structure

recovery model allowed for isolation of postfire effects on snow

hydrology due solely to forest structure changes following fire.

2.5.3 | Postfire snow albedo recovery model

The postfire snow albedo recovery model consisted of the calibrated

base model described in 2.5.1, plus the forest structure recovery

parameterizations described in 2.5.2, as well as postfire snow albedo

parameterizations from Gleason and Nolin (2016) recovering over

15 years following fire. This model simulated the postfire effects on

snow albedo, and forest structure and recovered these parameters to

that of an open meadow over the course of 15 years following fire.

2.5.4 | Recovery of postfire snow albedo and forest
structure parameterizations

To represent the recovery of postfire snow albedo and forest struc-

ture parameterizations over 15 years following fire, our parameteriza-

tions included five unique snow albedo and forest structure recovery

stages each representing 3 years of recovery (Figure 3). The 3-year

postfire recovery staged the snow albedo functions and forest struc-

ture parameters applied to each burned forest, by assigning custom

burned forest classes to grid cells in the burn perimeters over

15 years following fire. These stages utilized five sets of snow albedo

minimum, snow albedo maximum, snow albedo decay functions, and

forest structure parameters, calculated by equally spacing snow

albedo and forest structure parameters between the immediate post-

fire forest condition and an open meadow after 15 years following

fire. Immediate postfire forest conditions for snow albedo minimum,

maximum, and decay curves for burned forests, unburned forests,

and open meadows were drawn from Gleason and Nolin (2016). For-

est structure was parameterized by modifying the snow-holding

depth (SHD) of burned forest cells over the five unique recovery

stages from the date of forest fire ignition to beyond 15 years fol-

lowing fire. The SHD value is used in SnowModel to calculate the

snow holding capacity of vegetation within each grid cell. The snow

depth of a cell must exceed the SHD value before snow can reach

the ground and become affected by wind redistribution, wind abla-

tion effects, and canopy-modified solar forcing all of which ultimately

modify the resulting SWE of the grid cell. For more information, SHD

and supporting literature are explained in detail by (Liston &

Elder, 2006a).

The postfire snow albedo parameterization solved for daily mean

snow albedo using a time-varying exponential decay coefficient,

where the minimum and maximum snow albedo values and the snow

albedo decay function were modified to recover across the five

unique periods over 15 years following fire. The snow albedo decay

parameterization reset snow albedo values following a fresh snowfall

event (>5 cm), and then exponentially decayed over days following

fresh snowfall using recovery stage specific coefficients. Maximum

snow albedo (αsnow,max) represented the snow albedo of fresh snowfall

in burned forests, unburned forests, and open meadows as defined by

Gleason and Nolin (2016). Maximum snow albedo postfire recovery

(Δαsnow,max) was calculated as the difference between maximum snow

albedo αsnow,max and the snow albedo of fresh snowfall in an open

meadow divided by five (the number of three-year recovery periods

in 15 years of postfire recovery). The fresh snowfall recovery rate was

scaled by the number of 3-year recovery periods since forest fire

(p) and added to αsnow,max to produce the snow albedo of fresh snow-

fall in a burned forest during recovery (Equation 1).

αsnow ¼ αsnow,max þ p�Δαsnow,maxð Þ ð1Þ

In burned forests, snow albedo decayed using an exponential

decay coefficient that was adjusted to account for postfire recovery

periods over 15 years following forest fire (Equation 2). Snow

albedo in days-following-snowfall (αsnown + 1) was calculated as

defined in Gleason and Nolin (2016) and Equation 1 except the min-

imum snow albedo of a burned forest (αsnow,min) and the exponential

snow albedo decay rate (Ka) were adjusted by the minimum snow

albedo recovery rate (Δαsnow,min) and the snow albedo decay recov-

ery rate (ΔKa), respectively, with each rate scaled by the current

recovery period (p).
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αsnowð Þnþ1 ¼ αsnow; min þΔαsnow; min �p
� �þ αsnowð Þn� αsnow; min

��

þΔαsnow; min �p
� �KαþΔKα�pð Þ�dt½ �

ð2Þ

To simulate the postfire forest structure “recovery” of landcover

change from burned forest to an open meadow, the custom burned

forest class snow-holding depths start at a SHD value of 8.00 (roughly

half that of an unburned coniferous forest) immediately following fire

and progressed to a SHD value of an open meadow (0.25) in five

3-year steps over 15 years following fire (Equation 3).

SHDburn ¼ SHDforest� ΔSHD�pð Þ ð3Þ

The snow-holding depth of the burned forest (SHDburn) was equal

to the starting snow-holding depth value (SHDforest) adjusted by the

forest structure recovery rate (ΔSHD) scaled by the number of three-

year recovery period since the forest fire occurred (e.g., 1–3 years

postfire: p = 0, 4–6 years postfire: p = 1, etc.).

2.6 | Analysis of model results

2.6.1 | Postfire effects on snow–water storage and
snow disappearance date timing

Postfire effects on snow hydrology were estimated by differencing

modelled results of SWE and SDD from the default base model, and

the parameterized postfire forest structure recovery model and the

postfire forest structure and snow albedo recovery model. Forest fire

effects on snow–water storage were evaluated by differencing post-

fire peak SWE rasters from base model peak SWE rasters for each

year in the 20-year modelling period (2000–2020). Peak SWE rasters

were created by determining the maximum SWE for each grid cell

across the domain for each water year. Postfire peak SWE rasters

were differenced from the base model peak SWE rasters, then

averaged across each burned forest in the chronosequence for each

3-year period during the 15-year recovery following fire. Volumetric

changes in peak SWE for each burned forest were calculated by multi-

plying the peak SWE differences by the spatial resolution (100 m2),

summing the volumetric differences of each grid cell within each burn

region, and then averaging the total volumetric change in peak SWE

across the 3-year recovery period. Postfire effects on snow disappear-

ance date were quantified by determining the day-of-year of snow

disappearance, for each grid cell, for each water year, and differencing

the postfire snow albedo or forest structure model SDD from the base

model SDD value. SDD was defined as the first day following peak

SWE in which a grid cell reached below 5 mm SWE for each year. Dif-

ferences in SDD were then averaged over the first year postfire, each

three-year period following fire, and all years beyond 15 years (16+)

following the fire ignition date.

2.6.2 | Recovery of postfire effects on snow
hydrology

Postfire effects on snow–water equivalent were evaluated within

each burn perimeter both seasonally and annually across all years

available in the modelling period following fire. Seasonal changes in

SWE were evaluated by differencing SWE outputs between the base

model and the parameterized postfire models on March 1st (generally

representing accumulation), April 1st (generally representing start of

ablation), and May 1st (generally representing ablation). The differ-

enced March 1st, April 1st, and May 1st SWE rasters were then aver-

aged for each 3-year periods across the 15-year postfire recovery

period. The average proportional change in SWE and 95% confidence

interval were also calculated for each raster. Daily SWE niveographs

were created for each burned forest for each 3-year recovery period

to highlight differences in snow accumulation and ablation in recover-

ing burned forests across the entire snow season. Each point on the

daily SWE niveographs were computed by averaging all SWE values

within the burn perimeters over each day and then each three-year

F IGURE 3 A conceptual model of the postfire effects on (a) snow albedo and (b) forest structure recovery model. SnowModel was first
calibrated to the study region (1) to produce a base, unparameterized “no-burn” model. Areas affected by forest fires were identified (2). Postfire
effects on snow albedo and/or forest structure were parameterized within SnowModel (3) and recovered over time (4) to produce models A and
B. The SWE and SDD results from models A and B were differenced from the “no-burn” model (5) to compute estimates of postfire effects on
snow due to forest structure degradation and/or snow albedo darkening (6).
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recovery period (Figure S3). All calculations were computed using

base R (R Core Team, 2021) and the “spatial” package (v7.3–12;

Venables & Ripley, 2002).

2.6.3 | Recovery of watershed-scale postfire effects
on snow hydrology

Aggregated watershed-scale postfire effects and recovery on ablation

season (May 1st) SWE were investigated within the Lower Granite

Creek Hydrologic Unit Code 12 (HUC12) subbasin. Three of the eight

burned forests from the chronosequence included in the modelling

domain (Boulder, Bull, and Roosevelt) occurred entirely or partially

within the Lower Granite Creek (LGC) subbasin between 2000 and

2020. The Boulder Fire burned in 2000 and burned entirely within the

LGC subbasin (Boulder Fire burned 15 km2, 13.05% of the watershed

area), the Bull and Cliff Creek Fires burned partially within the LGC

subbasin in 2010 and 2016 (Bull fire burned 12 km2, 10.48% of the

basin; and Cliff Creek Fire burned 23 km2, 19.81% of the basin. In

combination, all three fires burned 50.45 km2 or 43.37% of the total

watershed area over the 20-year modelling period. We focused on

the ablation season for two reasons: (1) postfire effects on snow

hydrology were most pronounced following peak SWE, and (2) estima-

tions of SWE reductions due to postfire effects would likely be most

applicable to watershed managers during the snowmelt season when

snowpack is transitioning to surface water inputs. A United States

Geological Survey (USGS) delineation of the watershed was extracted

using the Living Atlas tool in ArcGIS (Esri Inc., 2022) and exported into

R (U.S. Geological Survey National Geospatial Program, 2022). Annual

postfire changes in ablation season SWE were estimated by calculat-

ing the average proportional and volumetric differences in SWE

across the watershed between the base model and parameterized

postfire snow albedo and forest structure model. Total postfire SWE

change over the 20-year modelling period was calculated by summing

the differences in May 1st SWE between the base model and postfire

forest structure and snow albedo recovery model and converting to

volume by area of the watershed. Annual ablation season (May 1st)

SWE rasters were similarly derived by differencing the base model

SWE rasters and postfire forest structure and snow albedo recovery

model SWE rasters across the watershed, and plotted using the “spa-
tial” package (v7.3–12; Venables & Ripley, 2002) in R (R Core

Team, 2021).

2.6.4 | Statistical analysis

We tested for differences between the base model and postfire snow

albedo and forest structure recovery models using the extracted

values of annual peak SWE, annual SDD, seasonal SWE (March 1st,

April 1st, and May 1st), and ablation season watershed-scale SWE

(May 1st). Differences between the base model and postfire snow

albedo and forest structure recovery model results were tested using

a two-sided, two-sample Welch t-test using an alpha value of 0.05. All

results were analysed using a subset of paired random samples from

20% of the grid cells within each burn region from the base model

and postfire snow albedo and forest structure recovery model rasters

and running the statistical analysis using base functions in R (R Core

Team, 2021).

2.6.5 | Model evaluation

Modelled SWE outputs from the base model and postfire snow

albedo and forest structure recovery models were evaluated using in-

situ field measurements of SWE taken from six of the modelled

burned forests (Horsethief Canyon, Bull, Boulder, Cliff Creek, Lava

Mountain, and Roosevelt) during February and March of 2019

(Figure 1). At each high or moderate severity measurement site within

the burn perimeters, one to three replicates of SWE measurements

were taken but, due to the close proximity of the replicates and the

modelling resolution of 100 m2, replicates were averaged as typically

fell within the same modelled grid cell. Average measured SWE values

were then matched with corresponding modelled SWE results from

the base model and postfire snow albedo and forest structure recov-

ery model, and the average percentage difference was computed

between the observed and modelled values. An overall average per-

cent difference was calculated by computing average percentage dif-

ference between all observed measurements and the associated base

model SWE and postfire snow albedo and forest structure recovery

model SWE. Observed vs modelled SWE comparisons were con-

strained due to the limitations of the situ measurements, which were

limited in temporal and spatial extent, as they were a snapshot in time

and not of adequate spatial scale for statistical evaluation.

3 | RESULTS

3.1 | Summary

Model results demonstrated that parameterizations of postfire reduc-

tions in snow albedo and forest structure degradation decreased

snow–water storage (SWE) and advanced snow disappearance date

persistently for at least 15 years following fire (Table 1). Immediately

following fire, snowpack volume increased slightly during the accumu-

lation period (March 1st) but increased solar forcing from postfire can-

opy loss and postfire reductions in snow albedo drove earlier melt

onset, leading to substantial reductions during the ablation period

(April 1st and May 1st) snowpack volume (Figure 4; Table S3b,c). Ear-

lier melt onset resulted in reduced peak SWE and earlier SDD immedi-

ately following fire and altered snowpack energy balance, which

persisted throughout the 15-year postfire recovery period (Figures 5

and 6) with the greatest reductions in peak SWE occurring 1 to 3 and

7 to 9 years following fire (Table 1). Burned forests modelled after the

15-year postfire recovery period still showed lasting changes in peak

SWE and SDD 16+ years following fire (Figure 5; Table 1). At the

watershed-scale, postfire effects and recovery of three burns
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modelled in the Lower Granite Creek subbasin reduced ablation sea-

son SWE (May 1st) in all but 1 year, with the greatest net reductions

in ablation season SWE occurring 3–5 years following fire (Figure 7).

Even with variability between individual fires, there was a consistent

overall pattern of immediate and lasting postfire effects and recovery

on SWE and SDD, which we describe in detail using two burned for-

ests as examples including, the Roosevelt fire, burned in 2019, and

the Green Knoll Fire burned in 2001.

3.2 | Immediate postfire effects on snow volume
and snow disappearance date

In the first winter immediately following fire, modelled postfire effects

on snow albedo and forest structure decreased peak SWE by over 8%

(peak SWE μ = �8.42%, σ = 9.38%; p < 0.001; Table 1) and advanced

SDD by 5 weeks (SDD μ = �34 days, σ = 7 days; p < 0.001; Table 1)

across all burned forests. Immediately following fire, peak SWE reduc-

tions varied across individual burned forests (1-year range of �1.43%

to �23.65%, 1–3 year range of �3.52% to �14.85%; Table 1), likely

due to heterogeneity in prefire landcover, postfire burn severity, and

topography and relative associated snowpack energy balance. In the

first few years (1–3 years) following fire, SDD advanced by over a

month across all modelled burned forests (SDD μ = �31 days,

σ = 9 days; p < 0.001; Table 1). During the accumulation period

(March 1st) peak SWE increased (μ = +5%, σ = 8%; p < .001;

Table S3a), during historical peak SWE (April 1st) peak SWE decreased

(μ = �5.8%, σ = 16.2%; p < 0.001; Table S3b), and during the ablation

period, peak SWE decreased substantially (μ = �51.6%, σ = 33.6%;

p < 0.001; Table S3c) across all eight modelled burned forests.

As an example of immediate postfire effects on snow–water stor-

age and snowmelt timing, we focus on one large recent modelled for-

est fire, The Roosevelt Fire, which burned in 2019. Changes in peak

SWE in the Roosevelt Fire were consistent with the broader changes

observed across all modelled forest fire immediately following fire

(peak SWE μ = � 9.34%; p < 0.001; Table 1). Over the first two win-

ters following the Roosevelt Fire included in the modelling extent

(2019 and 2020), accumulation season SWE (March 1st) increased

(μ = +7.0%, σ = 8.6%, p = 0.017; Table S3a) due to the more open

postfire forest canopy structure. The postfire forest structure model

and postfire snow albedo and forest structure recovery models

showed nearly identical increases in average SWE during March

(Figure 4d). While the postfire snow albedo and forest structure

model demonstrated reductions in SWE later in the snow season as a

result of the net increase in shortwave radiation in spring (Figure 6a).

Average April 1st SWE in the postfire snow albedo and forest struc-

ture recovery model did not differ from the base model, likely because

the increase in March 1st SWE observed earlier was offset due to ear-

lier melt onset from postfire effects on snow albedo (Figure 4d) and

resulting increase in snowpack net shortwave radiation on snowpack

(Figure 6a). After April 1st, melt onset began in earnest in the postfire

snow albedo and forest structure recovery model, while snow contin-

ued to accumulate until mid to late April in the base model and post-

fire forest structure model (Figure 4d). This indicated that earlier melt

onset was primarily due to postfire effects on snow albedo and asso-

ciated net shortwave radiation. By the ablation season (May 1st),

F IGURE 4 Change in snow–water equivalent (SWE) depth
between the base model and postfire snow albedo recovery model in
Roosevelt Forest Fire (Ignition Year: 2018). Postfire effects caused
small increases in average March 1st SWE (a), no significant
difference in average April 1st SWE (b), and large reductions in
average May 1st SWE (c) across the burn region. Prior to April 1st, the
average SWE of the postfire forest and postfire albedo model was
greater than the base model (d).
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SWE across the Roosevelt Fire substantially decreased (μ = �45.76%,

σ = 27.41%, p < 0.001; Table S3c) in the postfire snow albedo and

forest structure recovery model relative to the base model (Figure 4c).

Earlier melt onset and decreased average peak SWE in the Roosevelt

Fire culminated in an advanced SDD by almost 1 month

(μ = �29 days, σ = 5 days; p < 0.001; Table 1) over the first 2 years

immediately following fire included in the modelling period.

3.3 | Recovery of postfire effects on snow volume
and snow disappearance date

Over the 15-year recovery period following fire, modelled postfire

effects on snow albedo and forest structure steadily recovered, yet

associated decreased peak SWE and advanced timing of SDD per-

sisted. Peak SWE reductions initiated immediately following fire, per-

sisted from 1 to 6 years postfire, (1–3 years μ = �6.8% to 4–

6 years μ = �3.1%; p < 0.001; Table 1) and generally reductions in

SWE further declined 7–9 years postfire, with this amplified decrease

in SWE occurring in most fires 7–9 years postfire (4–

6 years μ = �3.1% to 7–9 years μ = �3.9%; p < 0.001; Table 1).

Across all modelled burned forests, peak SWE reductions were most

variable during this same period (4–6 years σ = 13.4%; Table 1). Over

the 15-year postfire recovery period, peak SWE reductions varied

across individual burned forests (total 15 year range of �0.7% to

�10.6%; Table 1) likely due to heterogeneity in prefire landcover,

postfire burn severity, and topography and relative associated snow-

pack energy balance. Across the 15-year postfire recovery period,

F IGURE 5 The change in snow–water equivalent depth (SWE) depth between the base model and postfire snow albedo recovery model in
the Green Knoll fire (Ignition Year: 2001). Over 15 years of postfire recovery, postfire effects caused slight changes in SWE during March 1st (a),
but then caused modest reductions in April 1st SWE (b), followed by profound reductions in May 1st (c). Postfire changes in SWE tended to
reduce in magnitude over each successive recovery period, but, critically, post-recovery reductions in SWE were still present 16+ years (Post-
Rec.) following fire (d).
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average SWE increased during the accumulation period (March 1st

range of μ = +2.4% to μ = +7.2%, p < 0.001; Table S3a), average

SWE was more variable during historical peak SWE (April 1st range of

μ = +0.4% to μ = �5.8%, p < 0.001; Table S3b), and average SWE

decreased substantially during the ablation period (May 1st range of

μ = �51.6% to μ = �17.0%, p < 0.001; Table S3c) across all eight

modelled burned forests.

As an example of long-term recovery and persistent postfire

effects on snow–water storage and snowmelt timing, we focus on

one large older modelled fire, the Green Knoll Fire, which burned in

2001. The Green Knoll fire occurred early during the modelling period

and so provides a long-term perspective of modelled postfire effects

on snow hydrology across the 15-year postfire recovery period and

beyond. Over the 15-years following fire, changes in peak SWE in the

Green Knoll Fire were consistent with the broader changes observed

across most of the chronosequence of modelled burned forests. Over

the 15-year recovery period, postfire effects on snow albedo and for-

est structure in the Green Knoll Fire reduced peak SWE substantially

in the first few years following fire (peak SWE 1–3 years μ = �11.9%,

σ = 4.0%, p < 0.001; Table 1), and reductions in peak SWE persisted

late into the postfire recovery period (peak SWE 13–

15 years μ = �6.0%, σ = 5.5%, p < 0.001; Table 1), and even beyond

the postfire recovery period (peak SWE 16+ years μ = �2.5%,

σ = 4.1%, p < 0.001; Table 1). Over the 15-year recovery period, the

greatest reduction in peak SWE in the Green Knoll Fire did not occur

immediately but during the 4–6 year following fire period

(μ = �14.93%, σ = 4.43%, p < 0.001; Table 1).

Over the 15-year following fire recovery period, postfire effects

on snow albedo and forest structure in the Green Knoll Fire produced

minimal change in accumulation season SWE (March 1st 1–

3 years μ = �0.8%, σ = 6.0%, p < 0.001; March 1st 13–

15 years μ = �2.4%, σ = 7.6%, p < 0.001; Table S3a). Accumulation

period SWE (March 1st SWE) was similar between the postfire snow

albedo and forest structure recovery model and the postfire forest

structure model for all recovery years, indicating that snow accumula-

tion may be controlled more by postfire forest structure than postfire

snow albedo (Figure 5d). SWE decreased at the start of the ablation

season (April 1st) in the postfire snow albedo and forest structure

recovery model relative to the base model across the full 15-year

recovery period (April 1st 1–3 years μ = �35.9%, σ = 20.2%,

p < 0.001; April 1st 13–15 years μ = �16.2%, σ = 16.1%, p = ns;

Table S3b). In the Green Knoll Fire, the greatest reductions in April 1st

SWE occurred 1–6 years following fire. Across the entire 15-year

postfire recovery period, SWE substantially decreased during the abla-

tion season (May 1st) in the postfire snow albedo and forest structure

recovery model (May 1st 1–3 years μ = �85.7%, σ = 21.3%,

p < 0.001; May 1st 13–15 years μ = �33.8%, σ = 20.5%, p < 0.001;

Table S3c). In the Green Knoll Fire, significant reductions ablation sea-

son SWE persisted across the entire 15-year postfire recovery period

(Table S3c).

Over the 15-year postfire recovery period, cumulative modelled

postfire effects on peak SWE in modelled fires summed to a pro-

found total reduction in snow–water storage of almost 11 M m3

(μ = �11.0 M m3, σ = 7.0 M m3, p < 0.001; Table 1) or a 4.5%

reduction (σ = 11.4%, p < 0.001; Table 1), more than double the loss

in snow–water storage in the first year following fire alone

(4.3 M m3 or 8.4%; σ = 5.0 m3 or 9.4; p < 0.001; Table 1). Even

after the 15-year postfire recovery period (16+ years postfire), peak

F IGURE 6 Difference between base model and postfire snow albedo and forest structure model net components of the snowpack energy
balance averaged over 3-year bins since burn. The progressively more open postfire canopy allowed for increased solar shortwave incident on the
snow surface over years since fire, but increasing snow albedo over years since fire drive the increases in internal snowpack energy and
associated changes in snowpack volume. The difference in net shortwave inputs between models decreases over years since fire showing that
postfire effects on snow albedo drive changes in peak snowpack volume over 15 years postfire and beyond.
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SWE still persistently decreased in the Green Knoll Fire relative to

the unburned base model (μ = �2.5%, σ = 4.1%, p < 0.001;

Table 1). Postfire effects on snow hydrology persisted during the

post-recovery period (16+ years postfire) due to the transition in

landcover. In the accumulation season (March 1st) SWE increased

(μ = 1.3%, p < 0.001; Table S3a), at historical peak SWE (April 1st)

SWE decreased (μ = �9.4%, σ = 10.9%, p < 0.001; Table S3b), and

during ablation (May 1st) SWE sharply decreased (μ = �23.5%,

σ = 30.3%, p < 0.001; Table S3c), due to the post recovery shift in

snow albedo and forest structure resembling that of an open

meadow (Figure 5b,c). Following the postfire recovery period (16+

years postfire), the postfire snow albedo had recovered over time to

resemble that of an open meadow; therefore, persistent postfire

effects on the net snowpack energy balance were primarily driven

by increases in incoming shortwave as result of forest degradation

(Figure 6f, Figure S1F).

Reductions in ablation season SWE (April 1st and May 1st)

occurred in concert with earlier snowmelt onset, typically prior to

April 1st under postfire conditions, but after April 1st under unburned

forest conditions (Figure 5d). Snow–water storage in the postfire

snow albedo and forest structure recovery model diverged from the

postfire forest structure model during peak SWE (April 1st) across

1 to 12 years following fire, with the postfire forest structure model

continuing to accumulate snow beyond April 1st (Figure 5d). Ablation

season postfire snowpack energy balance was dominated by net

snowpack shortwave radiation (SW μ = 0.1–27.6 Wm�2, LW

μ = 0.0–6.0 Wm�2; Tables S4 and S5; Figure 6). Postfire net snow-

pack shortwave radiation increased immediately following fire, as a

result of both postfire reductions in snow albedo and postfire forest

canopy degradation (ablation season ΔnSWforest μ = 37.1 Wm�2,

σ = 12.5 Wm�2, ΔnSWalbedo μ = 27.6 Wm�2, σ = 17.3 Wm�2;

Table S4; Figure 6). However, over the 15-year postfire recovery

period postfire forest degradation accounted for the majority of post-

fire radiative forcing on snow (ablation season ΔnSWforest range of

54.0%–21.3%, ΔnSWalbedo range of 28.7% to 0.21%; Table S4;

Figure 6).

F IGURE 7 Watershed scale impacts of postfire effects and recovery in the Lower Granite Creek (LGC) subbasin during the ablation period
(April 1st) for every year in the simulation. Postfire effects on snow albedo and forest structure caused net reductions in average April 1st SWE

within the LGC subbasin in all but one year between 2000 and 2020, indicating that postfire effects on snow and forest structure cause lasting
reductions in watershed-scale historical peak SWE for many years following fire.
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3.4 | Effects of postfire impacts and recovery at
the watershed scale

Watershed-scale postfire effects on snow albedo and forest structure

recovery across the Lower Granite Creek (LGC) subbasin aggregated

into persistent reductions in snow–water storage in the ablation sea-

son (April 1st). Cumulative postfire effects on snow hydrology in the

LGC subbasin at historical peak SWE decreased annual snow–water

storage volume over the 20-year modelling period (μ = �1.5%,

σ = 3.4%, p < 0.001), and the greatest proportional losses in SWE

occurred during 2012 and 2017 (2012 SWE, μ = �13.3%, σ = 17.0%,

p < 0.001; 2017 SWE, μ = �10.9% σ = 13.1%, p < 0.001) (Figure 7).

During 2012, postfire effects from the Boulder (12 years postfire) and

Bull Fires (2 years postfire) combined to produce reductions in snow–

water storage volume across the LGC subbasin. While during 2017,

postfire effects from the Cliff Creek (1 year postfire) and Bull Fires

(7 years postfire) combined to produce the reduction in snow–water

storage volume across the LGC subbasin (Figure 7). Burned forests

even late in their postfire recovery reduced SWE and contributed to

enhanced SWE reductions in recently burned forests cumulatively

across the watershed. Frequent and extensive forest fires within the

LGC subbasin and the associated postfire effects on snow albedo and

forest structure resulted in a modest total reduction at the time of his-

torical peak SWE (April 1st) over the 20-year modelling period (a total

volume of >22 M m3 or 1.5% of additional snowmelt during historical

peak SWE) (Figure 7).

The greatest reductions in watershed-scale SWE however were

observed during the ablation season (May 1st). Postfire effects on

snow hydrology during ablation season decreased annual snow–water

storage volume far more than at historical peak SWE (May 1st:

μ = �6.30%, σ = 3.43%, p < 0.001; April 1st: μ = �1.5%, σ = 3.4%,

p < 0.001; Figure S4). Further, the greatest proportional losses in abla-

tion season SWE occurred at different times then at historical peak

SWE (2015 SWE, μ = �9.5%, σ = 32.0%, p < 0.001; 2017 SWE,

μ = �14.58% σ = 38.1%, p < 0.001; Figure S4) indicating that, at the

watershed scale, timing of postfire reductions in SWE is highly vari-

able even within the same snow season. In total, forest fires within

the LGC subbasin resulted in a profound total reduction in ablation

season SWE (May 1st) over the 20-year modelling period (a total vol-

ume of >94 M m3 or 5.85% of additional snowmelt during ablation

season; Figure S4), far more than the SWE reductions that occurred at

historical peak SWE (a total volume of >22 M m3 or 1.5% of additional

snowmelt during historical peak SWE; Figure S4).

3.5 | Model and measurement comparison

Evaluation of modelled SWE results with in-situ SWE measurements

collected in several of the burned forests demonstrates an overesti-

mated SWE in both the base model (μ = +40.22%, σ = 19.44%;

Table 2) and postfire snow albedo and forest structure recovery

model (μ = +41.61, σ = 23.15%; Table 2) and both models were rela-

tively close in accuracy (<1.5% difference; Table 2). The comparison

of the few point-based measurements collected in the field to spa-

tially distributed 100 m2 spatial resolution model results highlight the

difficulty of comparisons across scales and emphasize the importance

of evaluating relative changes of postfire volumetric estimates

between the base model, postfire forest structure recovery model,

and postfire snow albedo and forest structure recovery model.

4 | DISCUSSION

Modelling the immediate and persistent postfire effects on snow

albedo and forest structure degradation over the 15-year postfire

recovery period using best estimate postfire parameterizations pro-

vided volumetric watershed-scale estimates of postfire changes in

snow–water storage and snowmelt timing. Over the 15-year postfire

recovery period across the modelled chronosequence of eight burned

forests, peak SWE decreased by over 4% and SDD advanced by over

a week on average (Table 1). Sustained shifts in postfire snow–water

storage and snowmelt timing have the capacity to decrease down-

stream minimum streamflow (Godsey et al., 2014; Hallema

et al., 2018), advance the timing of peak streamflow (Wieder

et al., 2022), reduce spring and summertime soil moisture

(Harpold, 2016; Westerling, 2016), extend vegetation growing sea-

sons, and increase risk of future forest fire (Abatzoglou &

Kolden, 2013; Westerling, 2016). Our modelled estimates discussed

here highlight the importance of understanding immediate and lasting

postfire effects and recovery of snow–water storage and snowmelt

timing and inform future water resource management in burned for-

ested snow-dominated watersheds.

4.1 | Immediate postfire effects on snow
hydrology

In the winter immediately following fire, postfire darkening of snow

albedo and forest structure degradation reduced peak SWE by over

8% and advanced SDD by over a month (Table 1). These modelled

postfire changes were driven by earlier melt onset from increased

postfire shortwave radiative forcing on snow heightened during the

spring ablation season (Figure S2; Figure 6). In the more open postfire

forest canopy, snow accumulation increased slightly during March,

but earlier melt onset reduced snow–water storage in April and even

further in May (Figure 4d). Immediately following fire, the modelled

postfire reduction in snow–water storage was amplified during spring

with heightened postfire snow albedo darkening, increased incoming

solar radiation, and warmer spring temperatures (Figure 4c,d;

Figure 6). Interannual climate variability likely influenced overall vari-

ability in postfire snow hydrology metrics as the years included in

modelled immediate and recovery postfire periods varied across the

chronosequence depending on the year of ignition for each burned

forest. Later and higher magnitude peak SWE seemed to buffer post-

fire effects on snow based on observation of average SWE within

burn regions (Figure 5d); however, further analysis on how factors
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such as precipitation, date of peak SWE, and others influence the

resulting magnitude of postfire changes in snow hydrology will be

needed to confirm this.

4.2 | Recovery of postfire effects on snow
hydrology

Over the 15-year postfire recovery period, modelled reductions in

snow–water storage persisted across the chronosequence of eight

burned forests for the entire 15-year postfire recovery period

(Table 1). Increases in net shortwave radiative forcing from the more

open forest canopy and darkening of snow albedo continued to domi-

nate changes in snowpack energy balance for the entire postfire

recovery period (Figure 6). Earlier melt onset led to advanced snow

disappearance date across the chronosequence of burned forests for

the entire 15-year postfire recovery period (ΔSDD range of �31 to

�8 days; Table 1) and even beyond into the post-recovery period

(16+ years postfire ΔSDD �5 days; Table 1). Modelled estimates of

postfire effects on snow–water storage and snow disappearance date

were consistent with previous empirical analyses of 80 burned SNO-

TEL sites across the western US (Smoot & Gleason, 2021). Smoot and

Gleason (2021) documented postfire reductions of SWE of 0.15 to

0.05 m over 10 years following fire, similar to modelled results of

approximately 0.02 m reductions from this study 10–12 years postfire

(Table 1). Smoot and Gleason (2021) reported an advancement of

SDD of �7 to �14 days over 10 years following fire, similar to

advancements of modelled SDD of �17 days 10–12 years following

fire (Table 1). In other studies, snow disappearance date advanced

8 days and peak SWE decreased 5.7% on average following fire across

burned SNOTEL sites in the middle Rockies (Giovando &

Niemann, 2022), similar trends to our modelled results for SDD

change 13+ years following fire (�8 days; Table 1) and our average

SWE change over 15 years following fire (�4.5%; Table 1). Advanced

snow disappearance date and lower magnitude peak SWE following

fire has been shown to occur in other regions across the western US

and have been shown to be driven by postfire canopy reduction and

additional shortwave radiative forcing that we modelled here

(Hatchett et al., 2023; Kampf et al., 2022; Micheletty et al., 2014).

Across the chronosequence of eight burned forests in western

Wyoming, modelled SWE and SDD metrics were variable over the

15-year postfire recovery period. These results highlight the difficulty

in predicting the degree to which snow–water storage will be affected

in burned watersheds over many years following fire, even when we

assume uniform burn patterns over forest fires occurring within a nar-

row scope of landscape and climate variability. Many regions in the

western United States rely on predictable spring runoff afforded by

ample snow–water storage (Li et al., 2017; Liu et al., 2022). The vari-

ability of postfire snow hydrology responses seen across our study

compound with the spatial and climactic variability present across the

western United States and increasing interannual variability in runoff

timing due to the effects of climate change on snow–water storage

and snowmelt timing (Li et al., 2017; Wieder et al., 2022).

4.3 | Watershed-scale postfire effects on snow
hydrology

Postfire effects on snow hydrology integrated across the Lower Gran-

ite Creek watershed reduced snow water storage, accelerated snow-

melt onset, and advanced snow disappearance date, which persisted

across the 20-year modelling period (Figure 7). Cumulative postfire

effects on snow albedo and forest structure from the three burned

forests (Boulder, Bull and Cliff Creek Fires) reduced historical peak

snow–water storage (April 1) across the watershed over most of the

20-year modelling period (Figure 7). Modelled trends in postfire

recovery of snow–water storage were consistent from individual

burned forests to the watershed-scale, with the greatest postfire

reductions in snow–water storage volume occurring approximately

1 to 3 years following each forest fire ignition in the basin. Earlier

peak SWE following fire due to earlier postfire snowmelt onset across

the watershed led to modest losses of snow–water storage in spring

(ΔSWE μ = �1.1 M m3, σ = 1.4 M m3 on average per year). Over

20 years, this resulted in a modest cumulative total loss of spring

snow–water storage (ΔSWE μ = �22.8 M m3) relative to unburned

forest conditions (Figure 7). However, at ablation season closer in

time to when snow storage converts to streamflow, cumulative reduc-

tions in SWE over 20 years resulted in a much more substantial loss in

late spring snow–water storage (ΔSWE μ = 94 M; Figure S4). As a

frame of reference, this modelled annual postfire reduction in spring

snow–water storage is the equivalent of 20% of the total annual aver-

age streamflow volume measured at the USGS stream gage at the

TABLE 2 Results of the model
validation using field measurements of
SWE collected from six of the burns
between February and March of 2019.
Percent error between the base/postfire
albedo model were calculated against the
field observations and the standard
deviation was included when n >1.
Instances where the postfire snow
albedo model performed better than the
base model are in bold.

Fire
Base model

SD (%)

Postfire snow albedo model

nAvg. % error (%) Avg. % error (%) SD (%)

Horsethief Canyon +61.06 — +58.64 — 1

Bull +24.67 16.62 +23.03 16.9 16

Boulder +40.71 11.02 +41.22 11.15 9

Cliff Creek +40.4 13.47 +41.17 9.765 13

Lava Mountain +48.89 12.04 +46.18 15.13 8

Roosevelt +59.79 13.42 +67.89 11.96 13

Overall +40.22 19.44 +41.61 23.15 60
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outlet of the Lower Granite Creek subbasin (USGS 13019438) of

29 M m3 between 1982 and 1993 (U.S. Geological Survey National

Geospatial Program, 2022). Yet, it is likely these modelled estimates

are conservative and actually underestimating the full extent of post-

fire effects on snow over the postfire recovery period as reductions in

snow–water storage persist beyond the 20-year modelling period for

individual fires in the watershed. Changes in ablation season (May 1st)

and historical peak SWE (April 1st) were still apparent as late as 2020

in the Boulder Fire, 4 years following the end of the postfire recovery

period. Postfire effects over the entire 15-year postfire

recovery period from the Bull and Cliff Creek Fires (burned in 2010

and 2016) were not fully captured in the modelling extent (Figure 7;

Figure S4).

As forest fires increase across the western US, it is increasingly

important we understand immediate and persistent postfire effects

on snow–water storage and snow–water resource availability across

burned forested watersheds. Multiple studies have demonstrated that

reductions in peak snow volume can alter summer low flows (Godsey

et al., 2014; Jenicek et al., 2018), especially in cold and dry continental

snow zones (Hammond et al., 2018), and that annual river flow can be

altered in watersheds burned over as little as 19% of their area

(Hallema et al., 2018). The modelled estimates of postfire effects on

snow–water storage presented here highlight the potential for forest

fires to markedly alter resulting annual streamflow runoff volume and

timing for decades following fire (Godsey et al., 2014; Williams

et al., 2022). Our findings provide volumetric, spatially-distributed,

time varying, process-based estimates of postfire effects on snow

hydrology and recovery over decades following fire and inform water

resource management for better estimates of postfire effects on snow

hydrology and the associated the timing and volume of water

resource availability.

4.4 | Model evaluation

According to limited in situ SWE measurements, the base model, the

postfire forest structure, and postfire snow albedo and forest structure

model similarly overestimated SWE (base model SWE difference μ =

+40.22%, σ = 19.44%; postfire snow albedo and forest structure model

SWE difference μ = +41.61%, σ = 23.15%; Table 2) in the individual

burned forests. The sparse field measurements were limited in scope

and therefore not effective to evaluate exact modelled estimates. Likely

the differences between modelled SWE results and field SWE measure-

ments were due to the offset seasonality of field measurements, the dis-

parity in spatial resolution, and the time range between the two

datasets. For these reasons, we focused the discussion on the relative

postfire effects on snow–water storage and snowmelt timing between

the base model, the postfire forest structure model, and the postfire

snow albedo and forest structure model. We acknowledge our conser-

vative approach to postfire snow albedo and forest structure modelling,

and these in situ measurement comparisons, emphasize we may be

underestimating postfire effects on snow–water storage in our modelled

estimates relative to measurements.

Field measurements of SWE were taken during early winter

(February and March of 2019 and 2020). Changes in modelled SWE

due to postfire effects were minor or near zero during the accumula-

tion season (Figure 4a; Figure 5a), which explained why the base

model and postfire snow albedo model had similar evaluation statis-

tics compared to measurements (Table 2). We expected that if the

field measurements had been taken later in the season near or after

peak SWE when the postfire models showed the greatest reductions

in SWE, modelled estimates would likely be much closer to field SWE

measurements. Further, the small spatial area and time frame in which

the field data were collected due to accessibility, made these data

inadequate for evaluating our spatial and temporally extensive mod-

elled results. For example, the field measurements for each burned

forest were collected in a small area and over the course of only

5 weeks in a single year. In contrast, the modelled results span

thousands of square kilometres, multiple decades, and were spatially-

distributed in grids of 100 m2. Although the model tended to overesti-

mate SWE at the field validation sites, the model showed good agree-

ment with 20 years of continuous SWE data from SNOTEL sites

located within the model domain (Table S2) supporting the relative

estimates of postfire effects on snow over the broad spatial and time

scales investigated in this study. In addition, the changes in modelled

postfire SWE and SDD over 10 years following fire are consistent

with SWE and SDD observations at burned SNOTEL sites across the

region (Smoot & Gleason, 2021).

4.5 | Uncertainties in model estimates of postfire
effects on snow hydrology

We incorporated best estimate postfire parameterizations of snow

albedo and forest structure recovery, in a reliable and well-tested

physically-based spatially-distributed snow evolution model, which

extended existing postfire snow albedo and forest structure algo-

rithms over decades following fire. The 15-year recovery period was

consistent with work from Gersh et al. (2022), Gleason et al. (2019)

and Smoot and Gleason (2021) which all evaluated forest fire effects

on snow hydrology in the Rocky Mountains and beyond. However,

the postfire effects on snow albedo parameterizations were based on

empirically-derived algorithms initially developed in the western Ore-

gon Cascades to model postfire effects on snow hydrology, a different

snow climate than the Rocky Mountains (Gleason & Nolin, 2016). Our

postfire parameterization of forest structure linearly represented for-

est degradation over the 15-year postfire recovery period, while pre-

vious work showed that delayed tree mortality and forest degradation

can occur at an exponentially decaying rate following fire (Angers

et al., 2011; J. K. Brown & DeByle, 1987; Dunn & Bailey, 2012) and

can depend on many factors such as seed supply, distance to sources,

and pre- and postfire climate (Stevens-Rumann & Morgan, 2019).

As observed from in-situ forest structure observations (Figure 2)

and remote sensing data (Gersh et al., 2022), the 15-year postfire

recovery period included in these parameterizations of postfire snow

albedo and forest structure recovered from a recently burned
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coniferous forest to an open meadow. These postfire snow albedo

and forest structure recovery parameterizations build upon previous

models of postfire snow hydrology (Gleason & Nolin, 2016) by

extending the immediate forest fire effects across 15-years following

forest fire. This work, modelling the lasting postfire effects on snow

hydrology over decades following fire, provides an integrated per-

spective of persistent and cumulative impacts of burned forests on

snow–water storage and snowmelt timing; however, we recognize

this is not the end of postfire forest recovery which continues beyond

the 20-year modelling period. Future modelling work needs to further

improve forest structure parameterizations to capture the complete

postfire recovery through informed potential forest regeneration sce-

narios back to antecedent prefire conditions. Our model parameteriza-

tions make meaningful strides towards more representative modelling

of the recovery of postfire effects on snow hydrology. Future expan-

sions and specificity of this work will further improve the accuracy of

estimates of complete postfire recovery of snow albedo and forest

structure and lasting postfire effects on snow hydrology across

burned forested watersheds.

5 | CONCLUSIONS

Burned forests darken snow albedo as the postfire forest structure

degrades following fire, increasing the postfire shortwave radiative

forcing on snow, decreasing snow–water storage, advancing snowmelt

timing, and potentially altering downstream water availability over

decades following fire. This study evaluated the immediate and persis-

tent postfire effects on snow–water storage and snowmelt timing by

incorporating best estimate postfire snow albedo and forest structure

recovery parameterizations in a spatially-distributed physically-based

snow mass and energy balance model. We estimated relative postfire

effects on snow albedo and forest structure, and the recovery of peak

SWE, SDD, and seasonal SWE volume reductions over a chronose-

quence of eight burned forests over 20 years following fire.

Immediately following forest fire, snow–water storage increased

by up to 7% in winter, but decreased by 6% near peak SWE, and up to

52% in spring, while earlier melt onset advanced snow disappearance

date by over 30 days. Over the 15-year postfire recovery period, for-

est fire effects on snow albedo and forest structure, reduced snow–

water storage by 4.5% overall, an additional 25.8% above the immedi-

ate postfire effects in the first year following fire alone. After the

15-year postfire recovery period, forest fire effects on snow albedo

and forest structure persisted with continued reductions in snow–

water storage of 0.30% and a 5-day earlier snow disappearance date.

Continued modelling work is required to extend these estimates to

represent the complete postfire recovery of snow albedo and forest

structure after the 20 years following fire for the Triple Divide region

of western Wyoming and beyond to the western US.

Immediate and persistent forest fire effects on snow–water storage

and snowmelt timing were consistent across the chronosequence of

eight burned forests and cumulative across a burned forested watershed

for decades following fire. The modelled results of this study highlight

that forest fires have immediate, profound, and lasting effects on snow–

water storage, snowmelt timing, and likely downstream water resource

availability that last decades beyond the initial forest fire disturbance

with hydrological implications beyond the forest fire perimeter. Volu-

metric watershed-scale estimates of postfire changes in snow–water

storage and snowmelt timing are critical to our understanding of the

immediate and lasting impacts of forest fires on the quantity and timing

snow–water resource availability across thewesternUS.
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