Portland State University PDXScholar

Student Research Symposium

Student Research Symposium 2024

May 8th, 1:00 PM - 3:00 PM

Comparative Life Cycle Assessment of Hydrogen Production via Various PV-Assisted Electrochemical Water Splitting Techniques

Achyuth Ravilla Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/studentsymposium

Part of the Civil and Environmental Engineering Commons Let us know how access to this document benefits you.

Ravilla, Achyuth, "Comparative Life Cycle Assessment of Hydrogen Production via Various PV-Assisted Electrochemical Water Splitting Techniques" (2024). *Student Research Symposium*. 17. https://pdxscholar.library.pdx.edu/studentsymposium/2024/presentations/17

This Oral Presentation is brought to you for free and open access. It has been accepted for inclusion in Student Research Symposium by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

Comparative Life Cycle Assessment of Hydrogen Production Via Various **PV-Assisted Electrochemical Water Splitting Techniques**

May 8, 2024

Achyuth Ravilla PhD Student Civil and Environmental Engineering achyuth@pdx.edu

Steam Methane Reforming

- Wellestablished
- Natural gas as a methane sources.

Electrolysis

- Electric current as a source
- Recently commercially deployed

- Microbes to produce hydrogen
- Waste water as a source

Hydrogen Production

Biological

Thermochemical

• High temperature heat for series of chemical reactions

Photoelectrochemical

- Water splitting using semiconductor
- Cost-effective

Why Photoelectrochemical Water Splitting?

Improved efficiency of semiconductor materials

Cost effective

Renewable energy source

Feasible for all locations

Photoelectrochemical Configurations

Photoelectrochemical (PEC) Water Splitting

- Photovoltaic (PV) material is directly Immersed in water.
- Directly convert sunlight to chemical energy, higher efficiencies.
- No need of external electrical power sources. Simpler design

Decoupled Photovoltaic-Electrochemical (PV-EC) Water Splitting

- PV and electrochemical cell is connected in series or parallel.
- Solar energy first converted to electricity. Generated electricity used for electrochemical reactions.
- Complex design. Higher efficiencies than PEC due to improved stability.

Components of Photoelectrochemical Configurations

	System Com
PV panel	Perovs
Membrane	Perflu
HER electrode	
OER electrode	
Electrolyte	
Chassis	

Sustainability Status of Photoelectrochemical Water Splitting

U.S. Department of Energy Target for H₂ production is <\$2/kg

Economic Sustainability

- The cost of hydrogen production using photoelectrochemical water splitting varies from \$4 to \$10 per kg hydrogen produced.
- Decoupled PV-EC achieved low-cost so far compared to PEC

Research Questions

Limited research has been conducted on environmental performance.

- Which photoelectrochemical water splitting technique offers better environmental performance?
- What are the significant influencing parameters on the environmental performance ?

Life Cycle Assessment (LCA)

Functional Unit

1kg hydrogen generation from each system in 10 years lifetime

Software for LCA

Data from literature and Ecoinvent database

Acidification (kg SO_{2eq}.), **Ecotoxicity** (CTUe), Eutrophication (kg N_{eq}), **Global Warming Potential** (kg CO_{2eq}), Human toxicity (CTUh), cancer and non-cancer, Human health particular air (kg PM_{2.5-eq}), **Resources-fossil fuels** (MJ surplus energy), **Ozone depletion** (kg CFC11_{eq}), **Cumulative energy demand** (CED)

Impact Category	Units	PEC	D PV
Acidification	kg SO2-Eq	7.08E-03	5.16
Ecotoxicity	kg N-Eq	4.85E+01	4.01E
Eutrophication	kg CO _{2-Eq}	7.19E-03	5.76
Global Warming Air	CTUe	7.99E+01	2.10E
Human Health Particulate Air	kg CFC-11-Eq	2.73E-03	1.52
Human toxicity, cancer	kg PM2.5-Eq	3.60E-03	6.011
Human toxicity, non-canc.	CTUh	3.60E-04	6.60
Ozone Depletion Air	CTUh	1.14E-07	9.61

Most of the environmental impacts in both water splitting configurations are due to operation and maintenance

Decoupled PV-EC configuration has 50% lower environmental impacts compared to PEC water splitting for 1 kg of H2 generation

- Conducting sensitivity analysis for various efficiencies and lifetimes.
- In my Summer 2024 internship at the National Renewable Energy Laboratory (NREL), I will upscale these configurations by gathering real time data.

This work is partially funded by the US National Science Foundation's Grants # 2350521 and #2350522.

Questions?

