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Abstract 

Our goal was to evaluate the effects of EC refill fluids and EC exhaled aerosol residue (ECEAR) 

on cultured human keratinocytes and MatTek EpiDerm™, a 3D air liquid interface human skin 

model. Quantification of flavor chemicals and nicotine in Dewberry Cream and Churrios refill 

fluids was done using GC-MS. The dominant flavor chemicals were maltol, ethyl maltol, 

vanillin, ethyl vanillin, benzyl alcohol, and furaneol. Cytotoxicity was determined with the MTT 

and LDH assays, and inflammatory markers were quantified with ELISAs. Churrios was 
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cytotoxic to keratinocytes in the MTT assay, and both fluids induced ROS production in the 

medium (ROS-Glo™) and in cells (CellROX). Exposure of EpiDerm™ to relevant 

concentrations of Dewberry Cream and Churrios for 4 or 24 hours caused secretion of 

inflammatory markers (IL-1, IL-6, and MMP-9), without altering EpiDerm™ histology. Lab 

made fluids with propylene glycol (PG) or PG plus a flavor chemical did not produce cytotoxic 

effects, but increased secretion of IL-1 and MMP-9, which was attributed to PG. ECEAR 

derived from Dewberry Cream and Churrios did not produce cytotoxicity with Epiderm™, but 

Churrios ECEAR induced IL-1 secretion. These data support the conclusion that EC chemicals 

can cause oxidative damage and inflammation to human skin. 

Keywords: Electronic cigarette, refill fluids, flavors, inflammation, oxidative stress 

 

INTRODUCTION 

Electronic cigarettes (ECs) have gained worldwide popularity since their 

introduction in 2004 (Trtchounian and Talbot, 2010; Grana et al., 2014; US Food and 

Drug Administration, 2020). There are four generations of ECs referred to as cig-a-like, 

cartomizer, mods/tanks, and pods (Williams et al., 2019; National Academies of 

Sciences, Engineering, and Medicine, 2018). Products from each generation consist of 

a cartridge/tank/pod with liquid, a battery, and a heating element (atomizer). Refill fluids 

and e-liquids contain solvents (propylene glycol (PG) and/or glycerol (G)), flavor 

chemicals, and nicotine. While the concentration of nicotine normally ranges from 0 to 

60 mg/mL (National Academies of Sciences, Engineering, and Medicine, 2018; Omaiye 

et al., 2019a), an unlabeled bottle of DIY nicotine contained over 100 mg/mL (Davis et 

al., 2015). EC liquid emissions may also have metals, such as nickel and lead, 
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originating from either the coil, joints or wires (Aherrera et al., 2017; Farsalinos et al., 

2015; Goniewicz et al., 2014; Lerner et al., 2015a; Mikheev et al., 2016; Williams et al., 

2013; 2017; 2020). The heating of e-liquids to generate aerosol causes formation of 

additional chemicals, such as acetaldehyde, many of which are toxicants (Goniewicz et 

al., 2014; Uchiyama et al., 2013; Kosmider et al., 2014; Hutzler et al., 2014). Aerosol 

chemicals that are exhaled by EC users settle on indoor surfaces where they 

accumulate as ECEAR (EC exhaled aerosol residue) (Khachatoorian et al. 2018; 2019). 

As the chemicals in EC fluids, aerosols, and ECEAR have been identified, there 

has been increased interest in evaluating their effects on human health, as many are on 

the Food and Drug Administration’s (FDA) list of Harmful and Potentially Harmful 

Chemicals (e. g., acrolein, acetaldehyde, benzene) (FDA 2012). Most health-effect 

research on ECs has involved the respiratory system (Pisinger and Døssing, 2014; Hua 

et al., 2013; 2020). However, EC chemicals also come in direct contact with the skin 

through leakage, spills, and touching of surfaces contaminated with ECEAR 

(Trtchounian et al., 2010; Won Kim and Baum, 2015; Maina et al., 2016; Hughes and 

Hendrickson, 2019; EU Health Programme, 2016; Khachatoorian et al 2019). 

 In studies that mined health data from EC internet websites, EC users reported 

skin disorders that included irritation, itchy skin, rash with burning, and eczema (Hua et 

al., 2013; 2020). Refill fluids can contain high concentrations of flavor chemicals, which 

sometimes exceed 100 mg/mL (Behar et al., 2016). Flavor chemicals, such as diacetyl 

and acetoin, can cause rashes or the development of dermatitis, and are present in 

many e-fluids and aerosols (US Department of Labor, Occupational Safety and Health 

Administration 2009; Farsalinos et al., 2014; Melvin et al., 2020). Nicotine is also a skin 
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irritant that leaks from refill fluid bottles or ECs (Maina et al., 2016) and can be absorbed 

through the skin (Zorin et al., 1999; Kuswahyuning and Roberts, 2014). Nicotine can 

remain in the skin even after vigorous hand washing (Maina et al., 2017). Nickel has 

also been reported in e-fluids and aerosols (Aherrera et al., 2017; Williams et al., 2013; 

Olmedo et al., 2018) and causes skin rashes in EC users (Maridet et al., 2015; Shim 

and Kosztyuova, 2018). 

Even though ECEAR has accumulated in the environment for over 15 years, few 

studies have addressed its effects on human health. The skin is usually the first point of 

contact and the main route of ECEAR exposure. ECEAR contains nicotine, flavor 

chemicals, solvents, nicotine alkaloids, and tobacco specific nitrosamines (TSNAs) (Son 

et al., 2020; Khachatoorian et al., 2018; 2019; 2020; Bush and Goniewicz, 2015; 

Goniewicz and Lee, 2015; Sempio et al., 2019). ECEAR chemicals increased in 

concentration in a vape shop over a month-long period of monitoring, and 

concentrations of nicotine reached 108 mg/m2 in heavily used areas (Khachatoorian et 

al., 2019). ECEAR can also move through spaces and vents, collecting and 

accumulating on surfaces away from its point of origin (Khachatoorian et al., 2018). 

Therefore, ECEAR accumulation in indoor environments presents an opportunity for 

active and passive exposure, especially through the skin. 

Understanding how EC fluids and ECEAR affect human skin is a critical 

knowledge gap. Our goal was to evaluate the responses of human keratinocytes and a 

3D tissue model of the human epidermis to EC refill fluids, flavor chemicals, and 

ECEAR. We identified the flavor chemicals in two popular brands of refill fluid, tested 

these products and their flavor chemicals at relevant concentrations using both 
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submerged cultures of human keratinocytes and a 3D air-liquid interface (ALI) model 

(EpiDerm™), and evaluated the effects of ECEAR extracts on these skin models. 

 

METHODS 

Refill fluids 

Refill fluids were purchased at a local vape shop. Dewberry Cream by Kilo was chosen 

because it has a high total concentration of flavor chemicals (Hua et al., 2019) and high 

concentrations of widely used flavor chemicals, including vanillin, ethyl vanillin, maltol 

and ethyl maltol. Churrios by the Milk Man was chosen because cinnamon-flavored refill 

fluids adversely affect cultured cells and respiratory tissues in animals (Bahl et al 2013; 

Behar et al., 2016; Wavreil and Heggland, 2019; Clapp et al., 2019; Fetterman et al., 

2018). Each refill fluid had a labeled nicotine concentration of 6 mg/mL. Dewberry 

Cream was labeled 70/30 glycerin/propylene glycol (VG/PG), and Churrios was labeled 

MAX VG. 

Lab made refill fluids 

Custom refill fluids were made in our lab using 70% PG plus one of the following flavor 

chemicals: 1.7 mg/mL maltol CAS: 118-71-8 (Sigma-Aldrich, St Louis, MO), 5.2 mg/mL 

ethyl maltol CAS: 4940-11-8 (Sigma-Aldrich, St Louis, MO), 7 mg/mL vanillin CAS: 121-

33-5 (Sigma-Aldrich, St Louis, MO), 7.5 mg/mL ethyl vanillin CAS: 121-32-4 (Sigma-

Aldrich, St Louis, MO), and 4.2 mg/mL benzyl alcohol CAS: 100-51-6 (Sigma-Aldrich, St 

Louis, MO). These concentrations of flavor chemicals were chosen to match their 

concentrations in Dewberry Cream and Churrios refill fluids. PG and ethyl maltol at the 
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above concentrations were used to test dosing exposure protocols (Figure 4). All 

chemicals were >97% pure. We also confirmed purity using GC/MS. 

Identification and quantification of flavor chemicals in refill fluids using GC/MS. 

Dewberry Cream and Churrios refill fluids were analyzed by GC/MS. Internal standard-

based calibration procedures similar to those described elsewhere were used (Tierney 

et al., 2016; Omaiye et al., 2019b; Brown et al, 2014), and analyses for 180 flavor-

related target analytes and nicotine were performed with an Agilent (Santa Clara, CA) 

5975C GCMS system. The capillary column used was a Restek (Bellefonte, PA) Rxi-

624Sil MS (30 m long, 0.25 mm id, and 1.4 µm film thickness). For each refill fluid 

sample, 50 μL was dissolved in 950 μL of isopropanol (Fisher Scientific, Fair Lawn, New 

Jersey, USA). Prior to analysis, 20 μL of internal standard solution (2 μg/μL of 1,2,3-

trichlorobenzene in isopropyl alcohol) was added into the 1 mL diluted refill samples, the 

aerosol and exhaled extract aliquots. 1 μL of the sample was injected into the GC/MS 

with a 10:1 split. The injector temperature was 235°C. The GC temperature program for 

all analyses was as follows: 40°C hold for 2 min; 10°C/min to 100°C; 12°C/min to 280°C 

and hold for 8 min at 280°C, then 10°C/min to 230°C. The MS was operated at electron 

ionization mode. The ion source temperature was 226°C. The scan range was from 34 

to 400 amu. Each target analyte was quantitated using authentic standard material, and 

an internal standard (1,2,3-trichlorobenzene) normalized multipoint calibration. The limit 

of quantification was 10 µg/ml. 

Culturing Keratinocytes 
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CCD 1106 KERTr (ATCC® CRL-2309™) transformed human keratinocytes were 

cultured on poly-L-lysine coated flasks using the supplier’s protocol in keratinocyte-

Serum Free Medium (Gibco 17005-042) with added Keratinocytes Supplements (Gibco 

37000-015) including Bovine Pituitary Extract (BPE; Gibco 13028-014) and human 

recombinant epidermal growth factor (EGF; Gibco 10450-013) further supplemented 

with a 35 ng/mL of human recombinant epidermal growth factor (EGF; BD cat# 

354052). Cells were incubated in a 37°C/5% CO2/95% relative humidity incubator for 24 

to 48 hours before processing the cells for experiments. In experiments, keratinocytes 

were dispersed into single cells and seeded at a density of 1,000 cells/well in a 96 well 

plate or 5,000 cells/well in an Ibidi µ-Slide 8 Well (Germany). Cells were counted using 

a hemocytometer. 

Cytotoxicity of refill fluids using the MTT Assay 

Refill fluids were tested for cytotoxicity using the MTT assay. The enzymatic reduction 

of 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) to MTT-formazan 

is catalyzed by mitochondrial succinate dehydrogenase. Cells were seeded and 

incubated for 24 hrs, then exposed to refill fluids for 24 hrs. After exposures, 20 μl of 1 

mg/mL of MTT reagent dissolved in phosphate buffered saline was added to each well 

in a 96 well plate for 2 hrs., then, formazan crystals were solubilized in dimethyl 

sulfoxide, and absorbance was read at 570 nm. For each refill fluid tested, three 

independent experiments were performed. 

ROS-Glo™ H2O2 Assay 

The Promega ROS-Glo™ H2O2 Assay (Madison, WI) was used to measure hydrogen 

peroxide in culture media, culture media plus refill fluid, and culture media plus refill fluid 
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and cells. According to Promega, this kit is specific for hydrogen peroxide. The non-lytic 

protocol provided by the manufacturer was followed. Control reactions without cells 

were used to determine spontaneous hydrogen peroxide generation. The groups 

studied were medium only, medium with positive control (10 μM menadione), medium 

with 1% Dewberry Cream, and medium with 1% Churrios. Cells were seeded on a 96 

well plate at 1000 cells/well and allowed to attach for 24 hrs., after which they were 

incubated in medium only, medium with the positive control, medium with 1% Dewberry 

Cream, and medium with 1% Churrios for 24 hrs. 20μl of H2O2 Substrate solution were 

added to all samples at 18 hrs. (final 6 hrs. of treatment). When treatment was done, 

50μl of medium from each sample well was combined with 50μl of ROS-Glo™ Detection 

Solution in a separate plate and incubated for 20 minutes at room temperature. A 

Synergy™ HTX Multi-Mode Microplate Reader (BioTek, VT) was used to read relative 

luminescence units (RLU) (gain = 135, bottom optics). The experiment was done in 

triplicate, and each sample was done in duplicate; average luminescence is reported. 

Live cell imaging 

InVitrogen CellROX™ Green Reagent (Carlsbad, CA) was used to assay oxidative 

stress in cells exposed to Dewberry Cream and Churrios refill fluids. Cell ROXTM Green 

reagent is a dye that binds to DNA upon oxidation. For live imaging, cells were plated 

on μ-Slide Ibidi 8-well chambers (Ibidi) at approximately 5,000 cells/well. After 24 hrs. of 

attachment to the slide, cells were exposed to Dewberry Cream and Churrios refill fluids 

for 24 hrs. 50μM menadione was used as a positive control. Cells were exposed to 5 

μM CellROX Green for 30 minutes, then rinsed three times with PBS (+). ThermoFisher 

NucBlue® (Waltham, MA) Live reagent (Hoechst® 33342 dye) was used to stain the 
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nuclei of all cells. Cells were rinsed three times with PBS (+), and medium was added to 

each well. Fluorescent images were collected using a Nikon TI Eclipse inverted 

microscope equipped with a LiveCell temperature and CO2-regulating, heated stage 

(Pathology Devices Inc). Cells were imaged live using a Nikon Eclipse Ti-E microscope 

with a 37°C, 5% CO2, and 90% relative humidity-regulated stage top LiveCell 

Incubation Chamber (Pathology Devices, Inc., San Diego, CA). The images were 

collected using a Nikon 40x objective with 0.75 NA (model: CFI Plan Fluor). A high-

resolution Andor Zyla VSC-04941 camera (Andor, Belfast, UK) was used to capture 

images. Excitation illumination was from a Nikon INTENSILIGHT C-HGFIE lamp. Nikon 

Elements was used to merge Hoechst® and CellROX™ Green images, and Fiji open-

source software was used to sharpen images. 

EpiDerm™ Culture 

EpiDerm™ is a human 3D skin tissue model that can be exposed to chemicals at the air 

liquid interface (ALI), as would occur in a natural environment. EpiDerm™ exhibits 

human epidermal tissue structure and cellular morphology with uniformity and 

reproducibility. Its 3D structure consists of organized and proliferative basal cells, 

spinous and granular layers, and cornified epidermal layers that are mitotically and 

metabolically active. Exposures are applied to the apical side, while medium feeds the 

basal surface of the tissues. Twenty-four-well EpiDermTM Skin cultures (Part No. EPI-

100) from MatTek Corporation, Ashland, Massachusetts) were transferred from agarose 

to EPI-100-NMM medium and incubated at 37°C, 5% CO2, 95% relative humidity (RH) 

for 60 ± 5 min. Tissues were transferred to fresh medium and incubated at 37°C, 5% 

CO2, 95% RH overnight (20 hrs). The In Vitro EpiDermTM Skin Irritation Test (EPI-200-
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SIT) (Kandárová et al., 2009), which has multiple validations from the European Centre 

for the Validation of Alternative Methods (ECVAM) and follows the Organization for 

Economic Co-operation and Development (OECD) TG 439 guidelines, was used to 

determine responses of EpiDermTM to EC chemicals. According to the validated 

protocol, 30 μL of liquid test solution is applied to the surface of the tissues for 24 hrs. 

We followed this protocol and added an extra time point (4 hrs). 

EpiDerm™ Exposure to Refill Fluids, Flavor Chemicals, and ECEAR 

Three independent experiments were performed for each treatment using inserts that 

were exposed with the protocol described above. All experiments had a negative control 

(30 μl of DPBS) and a positive control (30 μl 5% SDS). For refill fluid experiment, 

EpiDerm™ tissues were exposed for 4 and 24 hrs to three concentrations (10%, 30%, 

and 100%) of Dewberry Cream or Churrios. When evaluating the exposure protocol, 

EpiDerm™ tissues were exposed to a PG ethyl maltol mixture (5.2 mg/mL of ethyl 

maltol in 70% PG) for 4 hrs. using one of three protocols: (1) 30 μL for 4 hrs, (2) 30 μL 

for 2 hours followed by another 30 μL for 2 additional hrs, or (3) 60 μL for 4 hrs. For the 

lab made refill fluid experiments, EpiDerm™ tissues were exposed to authentic 

standards of the dominant flavor chemicals in Dewberry Cream and Churrios with 

protocol 1. Finally, for the ECEAR experiments, EpiDerm™ tissues were exposed to a 

piece of paper towel containing ECEAR or 30 μL of ECEAR extract for 4 and 24 hrs. 

ECEAR paper towel was cut to 0.6 cm2 and applied to the apical side of tissues, then 30 

μl of DPBS was applied on top of the paper towel to ensure adhesion to tissues for 4 or 

24 hrs. 
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Cytotoxicity of Refill Fluids and Flavor Chemical using the MTT Assay with 

EpiDerm™ 

The enzymatic reduction of MTT was measured as described above with the following 

modifications. After each exposure, EpiDerm™ inserts were washed with PBS, loaded 

with 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide according to the 

MatTek EPI-200-SIT (Skin Irritation Test) protocol, then placed in a 24-well plate 

containing 300 μL of MTT (1 mg/mL) and incubated for 3 h at 37 °C, 5% CO2. After 

incubation, tissues were transferred into 24-well plates containing 2.0 mL of isopropyl 

alcohol (IPA) (Kandárová et al., 2009), and samples were read in a spectrophotometer 

at an absorbance of 570 nm. The percent of control was determined using the equation: 

% of control = OD (treated tissue)/OD (untreated tissue) x 100. 

Histology of EpiDerm™ Tissues 

EpiDerm™ tissues were exposed to DPBS (negative control), 5% sodium dodecyl 

sulfate (SDS positive control), 100% Dewberry Cream, or 100% Churrios refill fluid for 

24 hours. Tissues were fixed in 10% paraformaldehyde overnight in 4 °C and shipped to 

MatTek for hematoxylin and eosin (H&E) staining (MatTek histology characterization 

sample preparation procedure). Histology slides were imaged using a DS-Fi1 color 

camera on a Nikon Eclipse TI inverted microscope using a 20x 0.45 NA (model: CFI 

Plan Apochromat VC 20X). Nikon Elements software was used to process images. 

IL-1, IL-6, and MMP-9 Secretion from EpiDerm™ 

After exposures to refill fluids, flavor chemicals, and ECEAR, media were collected from 

EpiDerm™ cultures, aliquoted into Eppendorf tubes, and stored at -80 °C for later 
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analysis of IL-1, IL-6, and MMP-9. R&D Systems Quantikine ELISA Human IL-1/IL-

1F1 kit, BioLegend® ELISA MAX™ Deluxe Set Human IL-6 kit, and R&D Systems 

Quantikine ELISA Human MMP-9 kit were used. Medium only was run to confirm no 

reaction with reagents. Standard curves were generated using a four-parameter logistic 

curve fit in GraphPad Prism software (GraphPad, San Diego, California, USA). Media 

from tissues were run in duplicate on each ELISA, and results were averaged. Each 

tissue was considered an independent experiment, and three independent experiments 

were done for each endpoint. 

LDH Assay with EpiDerm™ 

EpiDerm™ cell media were collected from flavor chemical and ECEAR treatments and 

immediately assayed using the OPS Diagnostics Lactate Dehydrogenase Protocol. Tris-

HCl (Sigma-Aldrich, T-3253) and Tris-base (Sigma-Aldrich, T4661) were combined to 

make TRIS, pH 8. Iodonitrotetrazolium chloride (INT, Sigma I-8377) dissolved in DMSO 

(Sigma D-8779), phenazine methosulfate (PMS, Sigma P-9625), nicotinamide adenine 

dinucleotide (NAD, Sigma N-0632), and lithium lactate (Sigma L-1500) were prepared 

before use and stored at -20°C. 50 μL of 100mM TRIS were added to 50 μl of 50 mM 

lithium lactate and 50 μl of PMS, INT, NAD. 50 μl of sample were added to each well 

and after 5 minutes, the absorbance was read on a Synergy™ HTX Multi-Mode 

Microplate Reader (BioTek, VT). The cytotoxicity was calculated: 

𝐴𝑏𝑠 (𝑥) − 𝐴𝑏𝑠 (𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐶𝑁)

𝐴𝑏𝑠 (𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑁) − 𝐴𝑏𝑠 (𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐶𝑁)
 𝑥 100 

Participant Recruitment for ECEAR Generation 
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A 21-year-old Asian male was recruited for the exhale/ECEAR generation portion of the 

study. The participant self-reported no use of combustible cigarettes during the study 

and was told to abstain from using ECs for 1 hour before reporting to our lab. The 

inclusion criteria were: (1) experienced EC users (at least 3 months) and (2) must use at 

least 3 mg of nicotine in his current EC. The participant would have been excluded if 

they were: (1) pregnant or breast feeding, (2) under the age of 18 or over 75 years, (3) a 

never-user of EC with nicotine, or (4) experiencing any medical conditions. The 

participant signed informed consent before admission into the study. The project was 

approved by the UCR Internal review Board (IRB # HS-12-023). 

ECEAR Collection 

In each 2-hour session on 5 different days, the participant exhaled ad libitum into tubing 

attached to an acrylic chamber. The EC was an Innokin iTaste MVP 3.0 battery with 

variable voltage (3V–9V) and wattage (6–30 watts) and with fresh unused Innokin 

iClear16D dual coil clearomizers (or tanks). A new tank was filled with 2 ml of either 

Dewberry Cream or Churrios before the first session and used throughout the 5 days. It 

was not refilled. The EC was set on 6 volts, 1.9 ohms, and 18.9 watts. The acrylic 

chamber was a rectangular box on wheels that had two ventilation holes. A 2 ft piece of 

Cole-Parmer Masterflex tubing L/S 18 tubing was attached to the hole on the side of the 

chamber to allow the participant to exhale into the chamber. A fresh piece of Bounty 

paper towel was placed on the floor of the chamber for 5 days of ECEAR collection. 5 

days was chosen to model a standard work week and to collect sufficient ECEAR for 

subsequent EpiDerm™ experiments; however, the amount of ECEAR collected would 
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be relatively small compared to what would accumulate in the home/office of an EC 

users or in a vape shop. 

ECEAR Extraction 

The paper towel was collected 20 minutes after the last exhale on day 5 and either 

extracted right away or cut into smaller pieces and stored in in a Ziploc bag inside a 

mylar bag in a -80°C freezer for EpiDerm™ exposure. To obtain ECEAR extract, paper 

towel was cut into small pieces for an extraction concentration of 0.1 g/mL of EpiDerm™ 

Assay Medium. 15 mL Falcon tubes with paper towel and medium were soaked for 1 

hour then medium was transferred into 1.5 ml Eppendorf tubes and stored at -80°C for 

later EpiDerm™ exposures. 

Data Analysis 

All cytotoxicity assays were carried out using three independent experiments each with 

different passages of cells, and each experiment had triplicate points. Keratinocyte MTT 

and CellROX™ data were statistically analyzed with one-way analysis of variance 

(ANOVA), and each concentration was compared to the untreated control with 

Dunnett’s post hoc test using Prism software (GraphPad, CA). Data (EpiDerm™ MTT 

and ELISA) that did not satisfy the assumptions of ANOVA (normal distribution of data 

and homogeneity of variances) were transformed by Box-Cox transformation after which 

a one-way ANOVA was applied in MiniTab 17.0 (MiniTab Inc, PA). Dunnett’s post hoc 

test was used to compare exposures to negative controls. Means were considered 

significantly different when p values were ≤ 0.05. All graphs were made using GraphPad 

Prism 8.0 software (GraphPad, San Diego, California, USA). 
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RESULTS 

Flavor Chemicals in Dewberry Cream and Churrios Refill Fluids 

Of the 180 flavor chemicals on our target list, Dewberry Cream and Churrios had 

30 and 19 mg/mL, respectively. Heatmaps show all the flavor chemicals and nicotine 

detected in the refill fluids (left y-axis), and the color gradient scale (right y-axis) shows 

their concentrations in mg/mL (Figure 1A, B). Total flavor chemicals are listed at the top 

of the heatmap columns. Flavor chemical concentrations can be found in 

Supplementary Table 1. 

The flavor profile of Dewberry Cream is described by the manufacturer as mixed 

berries, honeydew, and cream. The total concentration of flavor chemicals in Dewberry 

Cream was 30 mg/mL (Figure 1A). Five flavor chemicals had concentrations > 1 mg/mL 

(7.5 mg/ml ethyl vanillin, 7 mg/mL vanillin, 5.2 mg/mL ethyl maltol, 1.7 mg/mL maltol, 

1.6 mg/mL furaneol). Although labeled as 6 mg/mL, the measured nicotine 

concentration was 6.7 mg/mL. 

The flavor profile of Churrios is described by the manufacturer as brown sugar, 

sweet cinnamon with fresh milk, and honey-infused cereal base. The total concentration 

of flavor chemicals in Churrios was 19 mg/mL (Figure 1B). Four flavor chemicals were 

present in Churrios at concentrations > 1 mg/mL (4.6 mg/mL ethyl maltol, 6.2 mg/mL 

vanillin, 2.2 mg/mL ethyl vanillin, and 4.2 mg/mL benzyl alcohol). Churrios contained 

0.25 mg/mL of cinnamaldehyde, and although labeled as 6 mg/mL, the measured 

nicotine concentration was 7.8 mg/mL. 
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Cytotoxicity of Refill Fluids When Tested with Keratinocytes 

The cytotoxicity of Dewberry Cream and Churrios refill fluids was measured with 

human keratinocytes using the MTT assay. Keratinocytes were exposed to 0.001, 0.01, 

0.1, and 1% of Dewberry Cream or Churrios (Figure 2A). While Dewberry Cream did not 

significantly affect the cells at any concentration tested, there was a significant increase 

in cytotoxicity in the 1% Churrios group. In both the 0.01 and 0.1% Dewberry Cream 

and Churrios, there was an increase in mitochondrial reductase activity, although this 

was not significantly different than the untreated control. 

Reactive Oxygen Species in Culture Medium and Cells 

Extracellular H2O2 was measured in the culture medium, culture medium with 

refill fluids, and culture medium with refill fluids and cells using the ROS-Glo™ assay, in 

which H2O2 concentration is directly proportional to luminescence (Figure 2B). The 

negative control (culture medium only) was slightly luminescent, while the menadione 

positive control without cells had a significant elevation in luminescence. When no cells 

were present, addition of Dewberry Cream or Churrios to the culture medium produced 

a significant increase in luminescence, which was greater than that observed in the 

positive control. The increase was greater for Churrios than Dewberry Cream. Addition 

of cells had little effect on the positive and negative controls. However, addition of cells 

to the medium containing 1% Dewberry Cream significantly reduced luminescence. In 

contrast, addition of cells to the medium containing 1 % Churrios caused an elevation of 

luminescence. 

Reactive oxygen species (ROS) were measured in cells using CellROX™ Green 

Reagent, which fluoresces upon oxidation by ROS and subsequent binding to DNA. In 
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figures 2C-H, keratinocytes were exposed to 0.1% and 1% concentrations of Dewberry 

Cream or Churrios for 24 hours then assayed with CellROX™. The negative control was 

very weakly fluorescent (Figure 2C). The positive control, 50 μM menadione, was 

fluorescent, indicating ROS production (Figure 2D). Adding 0.1% and 1% Dewberry 

Cream or 0.1% Churrios to the culture medium increased CellROX™ fluorescence. 

However, cells exposed to 1% Churrios did not show fluorescence (Figure 2A). 

Cytotoxicity of Refill Fluids When Tested with EpiDerm™ 

EpiDerm™ tissues were exposed to 10%, 30%, and 100% concentrations of 

either Dewberry Cream or Churrios refill fluids for 4 and 24 hours. These concentrations 

were chosen to mimic environmental exposure with the 100% concentration 

representing refill fluid that leaked/spilled onto the skin. Tissues were then subjected to 

the MTT assay to determine if exposures were cytotoxic (Figures 3A, B). No significant 

differences were seen between the untreated control group and the groups treated with 

Dewberry Cream or with 10 or 30% Churrios. There was a small, but significant, 

decrease in mitochondrial reductase activity for EpiDerm™ exposed to 100% Churrios 

for 24 hrs., but this may not be biologically significant as the decrease was very small 

and did not reach the ISO level of cytotoxicity (< 70% of the control) (Figure 3B). 

Histology of EpiDerm™ Exposed to Refill Fluids 

Histological sections of EpiDerm™ exposed to refill fluids were evaluated 

microscopically. The positive control (treated with 5% SDS) lacked cellular integrity, did 

not have discrete cells, had empty gaps in the tissue, and lacked a clear outer cornified 

layer (Figure 3C). The negative control (treated with DPBS) (Figure 3D) had a clear 

stratum corneum, granulosum, spinosum, and basal layer. Dewberry Cream and 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Churrios exposed tissues (Figures 3E, F) were similar to the negative control. Distinct 

layers were observed within the tissues, and cells were intact, unlike the positive 

control. 

Refill Fluids Induced Secretion of Inflammatory Proteins from EpiDerm™ 

IL-1, IL-6 and MMP-9 are markers of an inflammatory response, and their 

secretion was examined in culture medium of EpiDerm™ treated with Dewberry Cream 

and Churrios (Figure 3G-L). IL-1 was significantly elevated in culture medium of 

tissues exposed to 30% and 100% Dewberry Cream or Churrios. Elevation of Il-1 was 

first observed at 4 hours of exposure, and it was further elevated at 24 hours. 

IL-6 was elevated in culture medium of EpiDerm™ treated with 100% Dewberry 

Cream at 4 hours but was not significant in the 24-hour sample (Figure 3I). For 

EpiDerm™ treated with Churrios, IL-6 was elevated in both the 4- and 24-hour samples, 

but significance was found only in the 24-hour sample (Figure 3J). 

Secreted matrix metallopeptidase 9 (MMP-9) was elevated by treatment with 

100% Dewberry Cream at both 4 and 24 hours, although only the 4-hour treatment 

showed significance (Figure 3K). Similar results were obtained with 100% Churrios 

(Figure 3L). While the 100% Churrios sample at 24 hours was not significant, it had a p 

value of 0.063. 

Effect of Exposure Protocol on Responses 

Prior to evaluating individual flavor chemicals, EpiDerm™ was treated with PG 

containing 5.2 mg/mL of ethyl maltol (the concentration in Dewberry Cream refill fluid) 

using one of three protocols: (1) one-time exposure to 30 μl of PG/ethyl maltol, (2) two-
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time exposure to 30 μl of PG/ethyl maltol with exposures done 2 hours apart, and (3) 

one-time exposure to 60 μl of PG/ethyl maltol (Figures 4A-D). In each protocol, the 

endpoints were evaluated 4 hours after exposure. None of the exposure protocols 

produced an effect in the MTT or the LDH assay (Figures 4A, B), indicating treatments 

were not cytotoxic and were not killing the tissues. IL-1 and MMP-9 were elevated in 

all three exposure protocols. Elevation was significant for each protocol in the IL-1 

assay. Significance was not reached in the MMP-9 assay for any group, although MMP-

9 secretion was increased. We used the first protocol for subsequent exposures with 

authentic standards since it gave significance, and it follows the EpiDerm™ validated 

protocol. 

Exposure of EpiDerm™ to Flavor Chemicals 

To determine if PG or specific flavor chemicals in Dewberry Cream and Churrios 

induced cell death or an inflammatory response, EpiDerm™ tissues were exposed for 4 

hours to either PG or PG containing a pure flavor chemical using exposure protocol #1 

(Figure 4 E-G).  In the LDH assay, the responses in each group were relatively low (~ 

10% greater than the control) and were not significantly different than the untreated 

control. Therefore, treatments were interpreted to be non-cytotoxic. In contrast, all 

treatment groups, except PG vanillin, produced a significant increase in IL-1 secretion 

(Figure 4F). The p value for PG/vanillin was close to significant (0.08). MMP-9 was 

elevated in all treatment groups; however, none of the groups were significant 

compared to the negative control (Figure 4G). 

Exposure of EpiDerm™ to ECEAR 
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Experiments were done to determine if ECEAR, which builds up on surfaces 

where vaping occurs, could affect EpiDerm™ (Figure 5A-F). Exposures were done for 

both 4 and 24 hours using either ECEAR or ECEAR extracts. ECEAR treatments did 

not produce effects in the MTT or LDH assay when Dewberry Cream was used to 

create ECEAR (Figure 5A, C). Similar results were obtained with ECEAR made from 

Churrios, except that there was a small (10%) (non-significant) increase in LDH activity 

in EpiDerm™ treated with ECEAR extracts for 24 hours (Figure 5D). IL-1 secretion 

was increased in both Dewberry Cream and Churrios ECEAR extract samples treated 

for 4 and 24 hours, and significance was observed in the 24-hour Churrios extract 

(Figure 5E, F). 

 

DISCUSSION 

To our knowledge, this is the first study to test cellular responses of keratinocytes 

and EpiDerm™ tissues to refill fluids, their flavor chemicals, and ECEAR. Dermal 

exposure is of interest since the skin of EC users comes into direct contact with refill 

fluids through leakage and spills and through touching of surfaces with ECEAR. Non-

users may be passively exposed via the skin when occupying indoor environments 

where ECEAR has been deposited. Both extracellular and intracellular ROS and 

secretion of inflammatory cytokines increased in keratinocytes treated with two refill 

fluids. Both refill fluids also induced secretion of inflammatory biomarkers from 

EpiDerm™. The release of inflammatory markers from EpiDerm™ was induced 

specifically by PG, but not flavor chemicals. At concentrations that were not cytotoxic in 
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the MTT and LDH assays, Churrios ECEAR extract elevated IL-1α secretion from 

EpiDerm™. 

Except for a small difference in total flavor chemical concentrations, our flavor 

chemical analysis of Dewberry Cream was in good agreement with prior studies (Hua et 

al., 2019; Khachatoorian et al., 2020). The small discrepancy is probably due to 

variations in manufacturing. Dewberry Cream was not cytotoxic to keratinocytes in the 

MTT assay at any concentration tested up to 1%. However, Hua et al. showed a 

decrease in mitochondrial reductase activity in the MTT assay using mouse neural stem 

cells (mNSC) at 1% refill fluid concentration (Hua et al., 2019). These differences 

between studies are likely related to the different cell types that were used (mNSC 

versus human keratinocytes). Stem cells are more sensitive to refill fluids than 

differentiated cells (fibroblasts), as shown previously (Bahl et al., 2012). 

Churrios has not been analyzed previously; however, many other cinnamon-

flavored refill fluids have been evaluated for cinnamaldehyde concentration, cytotoxicity, 

and cellular effects (Behar et al., 2014; Behar et al., 2016; Wavreil and Heggland, 2019; 

Clapp et al., 2019; Fetterman et al., 2018). Cinnamon-flavored refill fluids are among the 

most toxic of the many that have been tested in the MTT assay (Bahl et al., 2012; Behar 

et al., 2016). Their toxicity has been attributed to cinnamaldehyde, which produces an 

IC50 at 0.009 mg/mL when tested with human embryonic stem cells and human 

pulmonary fibroblasts (Behar et al., 2016). Cinnamaldehyde concentrations vary in 

cinnamon-flavored refill fluids (Behar et al., 2016), and Churrios contained a relatively 

low concentration of cinnamaldehyde (0.3 mg/mL), yet produced toxicity at 1% refill fluid 

concentration. Churrios also contained benzyl alcohol, which was not present in 
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Dewberry Cream, and may have contributed to Churrios’ cytotoxicity. Benzyl alcohol 

was cytotoxic to mNSC and human lung epithelial cells (BEAS-2B) in the MTT assay at 

concentrations <1 mg/mL (Hua et al., 2019), which is considerably lower than the 

concentration we detected in Churrios refill fluid (4.2 mg/mL). 

H2O2 concentration in the culture medium was affected by the refill fluids and 

keratinocytes. Dewberry Cream and Churrios increased H2O2 levels in the culture 

media. Similar elevation of ROS has been reported in other refill fluids and aerosols 

using different analytical methods (Goel et al., 2015; Lerner et al., 2015b; Muthumalage 

et al., 2018), and was associated with specific flavor chemicals, which all significantly 

increased ROS, except for vanillin (Muthumalage et al., 2018). In contrast, nicotine 

lowered the levels of H2O2 (Muthumalage et al., 2018). The decrease which we 

observed in H2O2 in the Dewberry Cream-containing culture medium with keratinocytes 

could be due to the release of antioxidants by the cells and/or the ability of aquaporin-3 

to transport H2O2 into the cell for breakdown (Miller et al., 2010). This idea is supported 

by our observation that cells exposed to Dewberry Cream are still metabolically active in 

the MTT assay. Media containing Churrios had highly elevated levels of H2O2, which 

were not reduced by the addition of cells. This may be due to the reduced metabolic 

activity (MTT assay) of keratinocytes exposed to Churrios, which in turn reduced the 

antioxidizing capacity of the cells. 

When labeled with CellROX™, the 0.1% and 1% Dewberry Cream and 0.1% 

Churrios exposed keratinocytes had mitochondrial fluorescence indicative of ROS. The 

lack of fluorescence in cells exposed to 1% Churrios was likely due to their decrease in 

mitochondrial activity, as shown in the MTT assay. Similar increases in ROS were 
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observed in osteoblast-like MG-63 cells treated with cinnamon-flavored refill fluids 

(Wavreil and Heggland, 2019). In addition to our data, other lines of evidence support 

the idea that EC refill fluids/aerosols cause oxidative damage to cells. Mitochondrial 

protein oxidation occurred in mNSC exposed to EC liquids and aerosols in vitro (Zahedi 

et al., 2019), and superoxide was generated in menthol treated BEAS-2B cells in 

submerged cultures (Nair et al., 2020). In humans, urinary biomarkers of oxidative 

stress, 8-OHdG and 8-isoprostane, increased in EC users when compared to non-users 

(Sakamaki-Ching et al., 2020; Singh et al., 2019) and biomarkers of oxidative stress and 

inflammation (I-cell adhesion molecule, endothelial ROS, and C-reactive protein) 

increased in serum of nonsmoking subjects (smoking-naïve) in response to acute EC 

aerosol inhalation (Chatterjee et al., 2019). 

An inflammatory response was seen in EpiDerm™ following exposure to 

Dewberry Cream and Churrios. Similarly, exposure of monocytes or BEAS-2B cells to 

refill fluids or EC aerosols induced secretion of biomarkers of inflammation (Lerner et 

al., 2015b; Muthumalage et al, 2018; 2019; Nair et al., 2020). Concentrations of refill 

fluids that produced an inflammatory response in Epiderm™ did not produce histological 

damage or a response in the MTT and LDH assays. Exposure of Epiderm™ to lab 

made refill fluids containing either PG or PG plus a flavor chemical further showed that 

PG, not the flavor chemicals, increased the secretion of MMP-9 and IL-1α from the 

EpiDerm™. This effect in EpiDerm™ agrees with work on gingival epithelial cells, which 

increased IL-6, IL-8, and MMP-9 secretion when exposed to PG/VG (Beklen and Uckan, 

2020). While the concentrations of flavor chemicals we tested did not elevate interleukin 

secretion in EpiDerm™, flavor chemicals (diacetyl, cinnamaldehyde, acetoin, 
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pentanedione, o-vanillin, maltol and coumarin) did so in monocytes (Muthumalage et al., 

2018). The differences in the results between this study and ours could be due to the 

use of different cell types, flavor chemicals, and concentrations. 

Although there are not many studies on the skin of EC users, it is probable that 

they experience similar effects to those caused by cigarette smoke and thirdhand 

smoke (THS). Cigarette smoking causes pre-mature aging of skin and slows wound 

healing, which are both related to increased levels of oxidative stress and extracellular 

metalloproteases (Frances, 1998; Ortiz, 2012; Silverstein, 1992). THS, tobacco smoke 

residue deposited on indoor surfaces after smoking has stopped, is analogous to 

ECEAR (Jacob et al., 2017). In mice, exposure to THS delayed closure and weakened 

cutaneous wounds, apparently due to an increase in keratins (Martins-Green, 2014). 

Future studies could address the effects of EC fluids and ECEAR on skin diseases, 

such as psoriasis and dermatitis, using EpiDerm™ models. 

Our study has several limitations. There are many refill fluids with high flavor 

chemical and nicotine concentrations that could be evaluated in future studies. In the 

ECEAR study, we did not quantify the flavor chemicals or nicotine in the participant’s 

exhale; therefore we do not know if the participant was a mouth or lung inhaler, which 

would affect the concentration of chemicals in ECEAR (Khachatoorian et al., 2020). 

Other potential toxicants in refill fluids and ECEAR which we did not study, such as, 

nicotine, formaldehyde, and acetaldehyde, could also affect the skin. Longer ECEAR 

collection periods would likely produce stronger effects in EpiDerm™ experiments. 

In conclusion, this study provides evidence that EC fluids and aerosol residues 

can adversely affect human skin. Human skin can be exposed to refill fluids due to 
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leakage or spills and/or contact with ECEAR on indoor surfaces. For both refill fluids 

and ECEAR exposures, concentrations that produced an effect in the keratinocyte and 

EpiDerm™ assays were within the range users would receive due to spills or touching 

contaminated surfaces. Our study focused on two popular refill fluids, containing mostly 

sweet flavors with a relatively low nicotine concentration, available online and in shops. 

Churrios was more cytotoxic to keratinocytes than Dewberry Cream and both fluids 

increased extracellular and intracellular ROS. Our work demonstrated a clear increase 

in inflammatory marker secretion upon ALI exposure of 3D EpiDerm™ tissues to PG, 

which is present in most EC products. EC users and employees at vape shops should 

be aware that harm could be caused by handling and/or touching refill fluids, leaky ECs, 

or by touching ECEAR. Our data suggest a need for regulation of solvents in EC 

products and accumulation of ECEAR in indoor environments. 
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Figure 1: Flavor chemicals in Dewberry Cream and Churrios. Heatmaps showing 

concentrations of flavor chemicals and nicotine in (A) Dewberry Cream and (B) Churrios 

refill fluids. Flavor chemicals are listed from high to low toxicity on the left y-axis as 

described by Hua et al., 2019. Right y-axis shows a gradient color map of chemical 

concentrations from 10 mg/mL to 0.01 mg/mL. The total concentration of flavor chemical 

is indicated above each column. 

Figure 2: Cytotoxicity and Oxidative Stress in Keratinocytes Exposed to Dewberry 

Cream and Churrios Fluids for 24 hrs. (A) The MTT assay y-axis shows the response 

of cells as a percentage of the untreated control. Each point is the mean ± standard 

error of the mean for three independent experiments. Dewberry Cream is in blue and 

Churrios is in red. (B) ROS-Glo™ experiment was done without cells (red) and with cells 

(blue) in wells. The y-axis shows the average luminescence (RLU). The negative CN is 

medium only, and the positive control is 10 µM of menadione. Each bar is the mean ± 

standard deviation for three independent experiments. (C-H) CellROX™ live cell 
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imaging was done with a 40X objective. Representative images are shown. The 

negative CN is medium only and the positive control is 50 µM of menadione. The scale 

bar = 10 µm. * = p < 0.05; ** = p < 0.01; *** p < 0.001; **** = p < 0.0001. 

Figure 3: EpiDerm™ Exposed to Dewberry Cream and Churrios. (A and B) MTT 

assay in which the y-axis shows the response of cells as a percentage of the untreated 

control. 4 hr. exposure is in blue, and 24 hr. exposure is in red. (C-F) Histological 

sections of EpiDerm 24 hours after treatment with DPBS (negative control), 5% SDS 

(positive control), or refill fluids. Scale bar = 100 µm. (G and H) Secretion of IL-1α, (I 

and J) secretion of IL-6, and (K and L) secretion of MMP-9. In all experiments, each 

point is the mean ± standard error of the mean for three independent tissues. * = p < 

0.05; ** = p < 0.01; *** p < 0.001. 

Figure 4: EpiDerm™ Exposed to Lab Made Refill Fluids for 4 hrs. (A-D) EpiDerm™ 

exposed for 4 hrs. to PG/ethyl maltol (PG EM) using three protocols (1 = 30 μL, 2 = 30 

μL + 30 μL, and 3 = 60 μL). (A) MTT assay, (B) LDH assay, (C) IL-1α secretion, (D) 

secretion of MMP-9. (E-G) EpiDerm™ exposed to lab made refill fluids with protocol 2 

for 4 hrs. total. (E) LDH assay, (F) secretion of IL-1α, and (G) secretion of MMP-9. Each 

bar is the mean ± standard error of the mean for three independent experiments. * = p < 

0.05; ** = p < 0.01. 

Figure 5: EpiDerm™ Exposed to ECEAR paper towel and ECEAR paper towel 

extract for 4 and 24 hrs. (A and B) MTT assay, (C and D) LDH assay, and (E and F) 

secretion of IL-1α. Each tissue was exposed to ECEAR or 30 μL of ECEAR extract. 

Each bar is the mean ± standard error of the mean for three independent experiments. * 

= p < 0.05. 
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Highlights 

 Electronic cigarette (EC) refill fluids increased oxidative stress in human 
keratinocytes. 

 EC refill fluid increased secretion of IL-1 and MMP-9 in a 3-D skin model 
(EpiDerm™). 

 EC exhaled aerosol residue (ECEAR) extract caused an increase in IL-1 
secretion from EpiDerm™. 

 PG, but not flavor chemicals, increased secretion of inflammatory cytokines from 
EpiDerm™. 

 Dermal exposure to EC chemicals can cause oxidative stress and inflammation 
in human skin models. 
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