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Abstract

Personal UAV’s are experiencing an increase in both
functionality and popularity. Consumer-driven markets
are encouraging the UAV industry to innovate towards
the average user. Despite improvements in user friendli-
ness, cost, and technological capabilities, consumer UAV’s
are limited by pilot skill and a lack of sensory information.
This paper presents two approaches for creating a low-cost,
open-source platform capable of enabling a consumer-level
UAV to avoid hazards. A single beam LIDAR system and
a combined LIDAR-vision system are considered. The LI-
DAR variant is capable of detecting and avoiding static
obstacles in simple environments. The improved LIDAR-
vision system is able to detect and avoid moving hazards
in complex environments such as a bike path with pedes-
trian foot traffic. Finally a unified system with improved
hardware capabilities is proposed.
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1 Abstract

Personal UAV’s are experiencing an increase in
both functionality and popularity. Consumer-
driven markets are encouraging the UAV indus-
try to innovate towards the average user. De-
spite improvements in user friendliness, cost, and
technological capabilities, consumer UAV’s are
limited by pilot skill and a lack of sensory infor-
mation. This paper presents two approaches for
creating a low-cost, open-source platform capa-
ble of enabling a consumer-level UAV to avoid
hazards. A single beam LIDAR system and a
combined LIDAR-vision system are considered.
The LIDAR variant is capable of detecting and
avoiding static obstacles in simple environments.
The improved LIDAR-vision system is able to
detect and avoid moving hazards in complex en-
vironments such as a bike path with pedestrian
foot traffic. Finally a unified system with im-
proved hardware capabilities is proposed.

2 Introduction

The consumer UAV (Unmanned Areal Vehicle)
market is expected to quadruple within the next
five years as the capabilities of personal UAV’s
continue to develop and the industry expands to
encompass new consumer bases [1]. Despite gov-
ernment regulations, consumer UAV’s are find-
ing applications in diverse areas such as land
management, photography, film, and construc-
tion [1][2]. Innovations in UAV technology like
geo-fencing, autonomous navigation, and colli-
sion avoidance have lowered the threshold for
operating personal UAV’s [1]. Ease of piloting
and decreasing ownership costs appeal to casual
enthusiasts who now comprise a significant por-
tion of the private (non-defense) UAV market
[2]. Shifts in customer base from professionals
to new consumers combined with technological
advancements have stimulated industry develop-
ment towards creating airborne smartphone-like
media platforms. These UAV’s are generalized
as having a camera, wireless connectivity, a user-
friendly interface, and an on-board flight con-

troller. Common designs for a consumer grade
UAV are the quadcopter, named for having four
rotors in an ’X’configuration (Figure 1a), its cousin
the hexacopter which has six rotors equidistant
from its center (Figure 1b), and the octocopter
style with eight equally spaced rotors (Figure
1c). Despite recent advances in navigation tech-
nology, quadcopters rely primarily on pilot skill
for traversing complex environments. Evading
hazards and performing similarly difficult nav-
igation tasks pose a danger for bystanders and
the UAV itself due to the high likelihood of a
collision. Enabling UAV’s to adapt to their sur-
roundings by sensing and avoiding obstacles has
been the focus of both scholarship and indus-
trial research [1][2]. As such, a variety of sensor
driven techniques now exist to resolve this issue.
Depth sensors including laser scanners and sonar
have been deployed in numerous configurations
[3][4][5]. Vision guided systems have gained pop-
ularity as small onboard flight computers and
companion computers have increased in power.
Multi-camera systems have simulated depth in-
formation from stereoscopic vision [6] while sin-
gle camera platforms have been used to inform
probabilistic motion models [7][8]. Integrating
sensor and vision systems has produced struc-
tured light devices capable of digitally recreat-
ing a 3D environment such as the Xbox Kinect
[9] and Intel RealSense [10]. At the consumer
level, hazard evasion platforms are beholden to
weight, cost, and power consumption restrictions
to a greater degree than large UAV’s. For in-
stance, the Xbox Kinect is physically too large

(a) Quadcopter
layout

(b) Hexacopter
layout

(c) Octocopter
layout

Figure 1: Three popular personal UAV layouts
in the multirotor family.
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to be carried by consumer grade UAV’s. Laser
and sonar systems are similarly limited by size
and power constraints, often reducing them to
single beam range finders. As sensor packages
are compromised to reduce cost, they decrease in
functionality to the point of becoming nonviable
for providing the detailed information required
for maneuvering in complex 3D environments.
Vision based systems and structured light de-
vices have been more readily scaled and adopted
by the consumer UAV industry. Currently, the
DJI Mavic [11], Yuneec Typhoon H [10], and As-
cTec Firefly [12] are the first commercially avail-
able quadcopters with hazard detection and ad-
vanced GPS assisted flight paths. UAV man-
ufacturer Parrot has announced an aftermarket
sensor package for some of its products [13]. The
Typhoon H and Firefly both rely entirely on Intel
RealSense structured light sensors for situational
awareness and straddle the boundary between
consumer and professional pricing with the Fire-
fly being the more expensive of the two [10][12].
Both the DJI Mavic and Parrot sensor package
have yet to be released but boast multi-sensor
integration for enhanced navigation and obstacle
avoidance [11][13]. Although the consumer UAV
industry is focusing on multi-sensor integration
[2], the potential for a low cost, open-source, uni-
versal hazard evasion platform has yet to be well
investigated. This paper analyzes two distinct
methodologies for addressing the present discon-
nect between performance, cost, and transparency
with the goal of obtaining high-level function-
ality from low cost consumer UAV’s. Distance
sensor and combined vision-sensor platforms are
considered and tested in the context of detecting
obstacles for the purpose of real-time evasion by
a consumer grade UAV.

3 Materials and Methods

3.1 Prototype One: LIDAR Based
Hazard Detection and Evasion

3.1.1 Hardware

LIDAR distance sensors were chosen to detect
hazards in front of the vehicle (3D Robotics 2014
DIY Quadcopter [14], 3D Robotics 2015 SOLO
Quadcopter [15]). A microcontroller (Arduino
Uno R3 [16]) was responsible for translating LI-
DAR measurements into navigation commands
for the vehicle’s autopilot (Pixhawk, Pixhawk
2 [17]). Low cost, single beam LIDAR sensors
(LIDAR-Lite V1, V2[18]) were directed into a
rotating mirror at a rate of 750 readings per
second to create a planar arc of range measure-
ments (Figure 2). The mirror was mounted verti-
cally on a high-speed servomotor (Turnigy TGY-
50090M) in a 3D printed enclosure (Figure 3). A
WAAS GPS unit (Xbee) was chosen to provide
constant ground reference coordinates at a rate
of once per second for navigation. Power man-
agement on the quadcopter was handled by the
microcontroller which was connected to one of
the autopilot’s auxiliary power ports. The GPS
device was powered from a 9V battery.

3.1.2 GPS Navigation

A Dronekit [19] GOTO command was issued to
the vehicle each second directing it to the ground
reference GPS coordinates during operation. The
heading was such that the vehicle was assumed
to always face the direction of the GPS ground
reference.
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Figure 2: LIDAR scanning pattern where θ rep-
resents scan angle relative to the vehicle. 90°is
assumed to orient towards the GPS ground ref-
erence.

Figure 3: 3D CAD model of the LIDAR unit
mounted in a custom enclosure with the rotating
mirror and servo motor.

3.1.3 Point Cloud Generation

Upon detecting an object closer than the safety
trigger value (30m) with the forward facing LI-
DAR, an arc of distance measurements was ac-
quired. The LIDAR scanned through each value
of theta for angles between 45 and 135 degrees
at an increment of 1 degree per measurement in
a sweeping pattern. Two sets of measurements
were created per scan: one for theta between 45

and 135 degrees and one for returning angles be-
tween 135 and 45 degrees. To account for the for-
ward motion of the vehicle during scanning, mea-
surements sharing the same angle were averaged.
Averaging was implemented to minimize the po-
tential differences in distance values stemming
from time elapsing between a distance readings,
ensure values of theta were not overrepresented,
and reduce the chance of a faulty measurement
showing an obstacle where none were present.

3.1.4 Data Interpretation and Navigation

The resulting average distances were compared
by recording the number of consecutive distance
measurements above the trigger value. Each mea-
surement above 30m and the corresponding an-
gle were added to an array. An array of mea-
surements was considered ”safe” if it contained
greater than eight uninterrupted measurements
greater than 30 m. The center of the largest
”safe” arc in the direction of the GPS ground ref-
erence was chosen and a left/right roll command
proportional to the theta value for the center of
the ”safe” arc was sent to the vehicle’s autopilot
(Figure 4).

(a) Scan with one
obstacle.

(b) Scan with two
obstacles present.

Figure 4: Two test scans with the LIDAR sys-
tem. Gaps in coverage reveal the location of ob-
stacles and large green lines show the projected
evasion flight path.
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3.2 Prototype 2: Hazard Detection
and Evasion Through Image
Processing

3.2.1 Hardware

A 5MP digital camera (Raspberry Pi Camera
Module V1 [20]) was connected to a single board
computer (Raspberry Pi 2 Model B [21]) to pro-
cess images in front of the vehicle (3D Robotics
2015 SOLO Quadcopter). The Raspberry Pi was
integrated with the vehicle’s autopilot through
its local WIFI network. One single-beam LIDAR
range sensor (LIDAR-Lite V2) was mounted di-
rectly above the camera on a 3D printed enclo-
sure (Figure 5). The LIDAR unit collected dis-
tance measurements at a rate of 750 readings per
second and the camera captured still images at a
rate of 90 frames per second. Power for the sys-
tem passed through the 24V accessory rail into
a DC-DC converter to provide stable 5V power
at 1A to the Raspberry Pi.

Figure 5: Updated CAD model of the LIDAR
unit and color camera mounted with the Rasp-
berry Pi 2 in a custom enclosure.

3.3 Navigation

The vehicle came equipped with GPS navigation
and tracking. Further development of WAAS
GPS navigation using the ground reference unit
was halted.

3.3.1 Image Acquisition and Processing

Images and distance measurements were taken
continuously from the time of liftoff to avoid hard-
ware startup lag during operational flight. Im-
age capture and processing were split between
two parallel threads on the Raspberry Pi. When
an obstacle in front of the quadcopter closer than
the safety threshold distance (30m) was detected
by the LIDAR, a set of twenty consecutive im-
ages were pulled from the continuous capture
thread into the image processing thread (Figure
6a). Each new capture was compared to previ-
ous images to determine pixel motion using a K-
nearest neighbors background subtraction algo-
rithm. Change in pixel motion was used to pro-
vide an estimate of object persistence between
images. The algorithm presented pixel transla-
tion between frames with a gradient fluctuating
between 0 and 255 where pixels with significant
movement were assigned higher values (Figure
6b) Objects detected by pixel motion across mul-
tiple images were assumed to have a velocity rel-
ative to the quadcopter and present a risk of col-
lision. Objects very far from the camera, such as
the sky, would not appear to move between im-
ages while objects very close to the camera with
the highest risk of collision would consistently
have large translations. The complete set of still
images was averaged to create a single array rep-
resenting motion where larger values indicated
consistent motion relative to the vehicle; which
was then inverted (Figure 6c) The vehicle’s cur-
rent velocity and heading were simultaneously
logged in a third parallel thread.
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(a) Example of an orig-
inal image.

(b) Image after ap-
plying the background
subtraction algorithm.

(c) Composite image
made of the average
of twenty consecutive
pixel motion images
prior to inverting.
Darker areas indicate
persistent motion
between frames. The
trees are consistently
detected at any dis-
tance because of the
constant motion of
their leaves. Build-
ings and similarly
stationary objects
must be closer to the
camera before they are
similarly represented.

(d) Final image with
the coordinates of the
safe area marked by
two concentric circles.
The coordinates repre-
sent the navigation des-
tination’s location on
the image plane and
are provided to visually
confirm the safe area is
in a valid location.

Figure 6: Image processing pipeline.

3.3.2 Data Interpretation and Navigation

The trigger distance and vehicle velocity were
used to estimate the time until impact with the
trigger object. This information was also used
to estimate the size of the vehicle on the image
plane at the time of impact. Topological border
detection was performed on the inverted motion
sum image to locate ”safe” areas. An area in
the image plane was considered ”safe” if it was

larger than the estimated size of the vehicle mul-
tiplied by a factor of safety (2.0). The closest
”safe” area to the center of the picture along the
vehicle’s current heading was chosen (Figure 6d)
Final image. Left/right roll and raise/lower com-
mands were sent to the autopilot based on the
quadcopter’s velocity components and heading
at the time of hazard detection and the location
of the ”safe” area.

4 Results and Discussion

4.1 Prototype One: LIDAR Based
Hazard Detection and Evasion

The LIDAR system performed at a rate of ap-
proximately one second from detecting a hazard
to sending a navigation command when operat-
ing with LIDAR-Lite V2. The first generation
of LIDAR-Lite was at least five seconds slower
per flight command and deemed unsuitable for
UAV navigation early in its testing cycle. The fi-
nal system was capable of avoiding multiple large
stationary obstacles in simple environments such
as a chair and table in large room. The system
was capable of operating at the UAV’s maximum
quoted airspeed of 15 m/s and had a final cost
of $ 130 for the LIDAR-Lite V2, Arduino UNO,
and Servo Motor.
Several limitations were present which resulted
in the decision to move to an image-based plat-
form. An obstacle’s surface characteristics, such
as opacity and reflectivity, were constant failure
mechanisms for the LIDAR unit. This is because
LIDAR beam was incapable of correctly return-
ing to its receiver after interacting with these sur-
faces. Translucent surfaces created internal re-
flection and partial beam refraction rather than
total reflection causing the sensor’s timer to lapse,
resulting in a seized unit with LIDAR-Lite V1
and non-numeric values from LIDAR-Lite V2.
Additional deficiencies were inherited from the
scanning pattern. Regular gaps between mea-
surements were present beyond a certain distance
and the system had to be perfectly level to prop-
erly scan for obstacles. The laser’s aperture di-
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ameter was 12mm wide by 2mm high with a di-
vergence of 4 mRadian by 2 mRadian. There-
fore, when scanning, continuous horizontal cov-
erage was only possible at distances closer than
0.89 m. At the maximum range of 40 m, gaps as
in coverage as large as 0.52 m were possible. As
noted previously, if the quadcopter was not level
to the horizon when scanning, the point cloud
would erroneously classify the ground as an ob-
stacle resulting in invalid flight commands.

4.2 Prototype 2: Hazard Detection
and Evasion Through Image
Processing

The image-based system was capable of sending
a flight command within two and a half seconds
of detecting an object using multi-threading and
a LIDAR-Lite V2 unit. This system was capable
of avoiding both stationary and moving obsta-
cles in complex environments such as trees with
moving pedestrians on a bike path. The flight
commands were independent of whether or not
the quadcopter was level while scanning and cov-
erage was unbroken within the visible range of
the camera. The system limited the UAV’s safe
nominal airspeed to 10 m/s and had a final cost
of $ 155 for the LIDAR unit, Raspberry Pi V2,
and Raspberry Pi camera module V1. The com-
plete system is depicted in Figure 7.
Performance of the LIDAR-vision system was
limited by a variety of hardware and software
factors. The LIDAR-Lite unit suffered from the
same inability to properly detect reflective or
transparent surfaces present in the previous sys-
tem. The camera required ample light for oper-
ation, reducing the usefulness of the system to
daylight hours. In addition, the rate at which
images could be processed after acquisition and
their definition were hampered by the hardware
capabilities of the Raspberry Pi. In order to in-
crease processing speed, image resolution was re-
duced to the lowest possible level while retaining
the ability to distinguish objects of similar pixel
size to the quadcopter. Parallel threads were
utilized to allow an entire core for performing

the K-nearest neighbors background subtraction
in a further effort to optimize operation speed.
The main failure mechanism developed from a
fault in the topological border detection algo-
rithm. The algorithm failed when objects lacked
clearly defined boundaries. Overlapping objects
of similar colors, similar values, and blurry ob-
jects were potential sources for noncontinuous
boundaries. When the algorithm failed to detect
closed boundaries, it would return an empty ar-
ray which prevented further processes from hav-
ing access to any location information. As the
number of obstacles in an image increased, the
likelihood of hazards overlapping or neighbors
sharing visual characteristics increased which in
turn increased the likelihood of the border detec-
tion failing. Noise removal and feature grouping
were both explored as possible solutions to ar-
tificially insulate the border detection algorithm
from open contours. However, neither was capa-
ble of resolving the breakdown without imposing
issues of their own. Feature grouping resulted in
the complete loss of some obstacles due to im-
age homogenization removing the obstacle’s bor-
ders entirely. Noise removal was more successful
but decreased the platforms sensitivity to a point
at which hazards such as power lines and street
signs were no longer visible until they were too

Figure 7: Final system mounted on the 3D
Robotics SOLO during testing field.
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close to avoid.

4.3 Conclusions

The LIDAR-vision system outperformed the LI-
DAR system with regard to detecting the mul-
titude of obstacles encountered by a consumer
UAV. It succeeded in detecting both stationary
and mobile hazards within the visible range of
the camera whereas the LIDAR system was prone
to gaps in coverage, misidentification, and was
limited to one plane. Yet, the LIDAR system
was less expensive, independent of lighting con-
ditions, and produced a flight command on aver-
age one and a half seconds more quickly. Overall,
the LIDAR-vision system was determined to be
more practical for UAV hazard evasion for its
ability to detect both stationary and moving ob-
stacles in 3D space and provide 3D rather than
planar navigation.

4.4 Future Work

Further progress on the LIDAR system would be
possible if a two-axis gimbal capable of maintain-
ing a horizontal scanning field were used in con-
junction with an upgraded LIDAR sensor. Such
a system would require maintaining a level re-
lation to the ground and increasing either the
number of LIDAR measurements or the rate at
which measurements are acquired. Many recent
camera gimbals include leveling functionality so
including a small scanning module on an existing
camera setup is possible. To obtain more data
points, a higher speed motor for mirror rotation
or a higher performance LIDAR unit are both
possible solutions. Another method for eliminat-
ing measurement gaps with the existing system
is to modify the beam characteristics to produce
wider beam and recalibrate the unit.
The LIDAR-system system could be improved
in a number of areas. A more powerful proces-
sor could potentially handle more complex en-
vironments by processing higher resolution im-
ages. It could also reduce the amount of time
between detecting an object and sending a flight

command. A more robust optical flow algorithm
could greatly improve number of objects the sys-
tem detects and their relative locations. A supe-
rior border detection algorithm is the most press-
ing area for evolving the LIDAR-vision system.
The next step in this area would likely involve
writing a custom optical flow and border detec-
tion algorithm to meet the specific needs of high
speed and low sensitivity to discontinuity. An
ideal system would utilize the advantages of both
methods to rapidly provide overlapping levels of
sensory information to the flight computer.
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