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MATRIX-FREE HIGH-PERFORMANCE SADDLE-POINT SOLVERS FOR

HIGH-ORDER PROBLEMS IN H(div)

WILL PAZNER1, TZANIO KOLEV2, AND PANAYOT VASSILEVSKI1

Abstract. This work describes the development of matrix-free GPU-accelerated solvers for high-order finite
element problems in H(div). The solvers are applicable to grad-div and Darcy problems in saddle-point for-

mulation, and have applications in radiation diffusion and porous media flow problems, among others. Using
the interpolation–histopolation basis (cf. [44]), efficient matrix-free preconditioners can be constructed for the

(1, 1)-block and Schur complement of the block system. With these approximations, block-preconditioned

MINRES converges in a number of iterations that is independent of the mesh size and polynomial degree.
The approximate Schur complement takes the form of an M-matrix graph Laplacian, and therefore can

be well-preconditioned by highly scalable algebraic multigrid methods. High-performance GPU-accelerated

algorithms for all components of the solution algorithm are developed, discussed, and benchmarked. Nu-
merical results are presented on a number of challenging test cases, including the “crooked pipe” grad-div

problem, the SPE10 reservoir modeling benchmark problem, and a nonlinear radiation diffusion test case.

1. Introduction

This paper is concerned with the efficient solution of high-order finite element problems posed in the space
H(div); in particular, we are interested in the grad–div problem

(1) −∇(α∇ · u) + βu = f ,

and the closely related Darcy-type problem

(2)

{
u+ ε∇q = f ,

∇ · u+ γq = g,

where u : Ω → Rd is a vector-valued unknown, q : Ω → R is a scalar unknown (Ω ⊆ Rd, d ∈ {2, 3}), and
α, β, γ and ε are potentially heterogeneous scalar coefficients. Such problems arise in numerous applications,
including, for example, radiation diffusion and porous media flow, among others [9, 13]. We consider finite
element discretizations for (1) and (2), where u is approximated in the Raviart–ThomasH(div) finite element
space, and p is approximated in the discontinuous L2 finite element space.

The solution of such problems via high-order finite element methods presents several advantageous fea-
tures, as well as some challenges. High-order methods promise high accuracy per degree of freedom, and
have been demonstrated to achieve high performance on modern supercomputing architectures, in particular
those based on graphics processing units (GPUs) and other accelerators [1, 31, 43]. However, the solution of
the resulting large linear systems remains challenging for a number of reasons. With increasing polynomial
degree, the systems become both more ill-conditioned, and less sparse: the number of nonzeros in the matrix
scales like O(p2d) and the condition number typically scales like O(p4/h2), where p is the polynomial degree
and d is the spatial dimension [40]. Consequently, it is necessary to develop effective matrix-free precondi-
tioners that give rise to well-conditioned systems without having access to an assembled matrix. There are a
number of existing approaches for matrix-free preconditioning elliptic equations; among these are p-multigrid,
low-order-refined (also known as FEM–SEM) preconditioning, and hybrid Schwarz preconditioning [35, 38,
42]. However, the extension of these approaches to problems in H(div) is not straightforward; for example,
multigrid-type methods with simple point smoothers are known not to perform well for such problems [5].

Effective preconditioners for low-order H(div) discretizations include multigrid with Schwarz smoothers
[6], auxiliary space algebraic multigrid preconditioning (e.g. the auxiliary divergence solver, ADS) [32], and
algebraic hybridization [16]. We briefly describe some existing approaches for extending these approaches
to high-order discretizations. In [44], a low-order-refined approach for preconditioning grad–div problems in

1Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, Portland, OR
2Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA

1



2 PAZNER, KOLEV, AND VASSILEVSKI

H(div) was proposed. In that work, the high-order operator discretized using the so-called interpolation–
histopolation basis was shown to be spectrally equivalent to the lowest-order discretization posed on a refined
mesh. Then, an effective preconditioner for the low-order discretization (for example, the AMG-based ADS
solver) can be used to precondition the high-order operator. In [11], a vertex-star domain decomposition
was combined with the use of a finite element basis with favorable sparsity properties to develop optimal-
complexity multigrid solvers.

In the present work, we develop efficient matrix-free preconditioners for high-order H(div) problems by
considering the associated 2 × 2 saddle-point system. Such saddle-point systems can be preconditioned
effectively using block preconditioners [8, 46, 51]. The main challenge associated with developing such
methods is the construction of spectrally equivalent approximations to the inverse of the Schur complement.
Using favorable properties of the interpolation–histopolation basis (cf. [44]) it is possible to both enhance the
sparsity of the block system, and to form sparse M-matrix approximations to the Schur complement that are
effectively preconditioned with standard algebraic multigrid methods. Although the block system is indefinite
and contains more unknowns that the positive-definite system obtained by discretizing the grad–div problem
directly, it is much less computationally expensive to precondition, resulting in significantly decreased cost
per iteration, and faster overall solve time compared with alternative approaches. Additionally, the described
methods have low memory requirements, are highly scalable, and are amenable to GPU acceleration.

The structure of this paper is as follows. In Section 2 we describe the high-order finite element dis-
cretization and the associated linear systems. This section also describes the construction of the block pre-
conditioners, and includes results concerning the estimation of the condition number of the preconditioned
system. Section 3 describes the algorithmic details and GPU acceleration of the proposed methods. Numer-
ical examples are presented in Section 4; these include several challenging grad–div and Darcy benchmark
problems, as well as a fully nonlinear time-dependent radiation-diffusion example. We end with conclusions
in Section 5.

2. Discretization and linear system

In the discrete setting, we consider a mesh T of the domain Ω, where each element κ ∈ T is the image of the
unit cube [0, 1]d under a (typically isoparametric) transformation Tκ (i.e., κ = Tκ([0, 1]

d)). In other words,
we consider quadrilateral meshes in two spatial dimensions, and hexahedral meshes in three dimensions. The
variational problem associated with (1) is given by

(3) (α∇ · u,∇ · v) + (βu,v) = (f ,v).

To discretize (3), we take u,v ∈ Vh, where Vh is the degree-p Raviart–Thomas finite element space,

Vh = {v ∈H(div) : v|κ ◦ Tκ ∈ Vh(κ) }.
The local space Vh(κ) is the image of the reference space Vh(κ̂) under the H(div) Piola transformation
Vh(κ) = det(Jκ)

−1JκVh(κ̂), where Jκ is the Jacobian of the element transformation Tκ. In three dimensions,
the reference space is given by Vh(κ̂) = Qp,p−1,p−1 ×Qp−1,p,p−1 ×Qp−1,p−1,p, where Qp1,p2,p3 is the space of
trivariate polynomials of degree at most pi in the variable xi. Vh(κ̂) is defined analogously in two dimensions.
Functions v ∈ Vh have continuous normal components across element interfaces; no tangential continuity is
enforced.

After discretization, the linear system of equations

(4) Au = f

is obtained, where A is the matrix given by the sum of the H(div) stiffness and mass matrices, u is a vector
of degrees of freedom representing u, and f is a dual vector representing f .

The grad–div problem (1) can be equivalently recast as the first-order system

(5)

{
βu−∇(αq) = f ,

∇ · u− q = 0,

leading to the symmetric variational problem

(6)
(βu,σ) + (αq,∇ · σ) = (f ,σ),

(α∇ · u, τ)− (αq, τ) = 0,
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where u,σ ∈ Vh and q, τ ∈Wh, where Wh is the degree-(p− 1) L2 finite element space

Wh = {w ∈ L2(Ω) : w|κ ◦ Tκ ∈Wh(κ) },
The local space Wh(κ) is the image of the reference space Wh(κ̂) = Qp−1 under the integral-preserving
mapping, Wh(κ) = det(Jκ)

−1Wh(κ̂). Note that the space Wh is equal to the range of divergence operator
acting on Vh

The variational system (6) can be written in matrix form as

(7)

(
Mβ BT

α

Bα −Wα

)(
u
q

)
=

(
f
0

)
,

where the matrices M, B, and W are defined by

(8)

vTMβu = (βu,v),

qTBαu = (α∇ · u, q),
rTWαq = (αq, r).

It is straightforward to see that eliminating the scalar unknown q from (5) results in the original grad–div
system (1). Likewise, the Schur complement of the saddle-point matrix with respect to the (2, 2)-block
Mβ + BT

αW
−1
α Bα is equal to the original H(div) matrix A.

Note that the block system (7) is also closely related to the discretized system corresponding to the Darcy
problem (2). In the case of the mixed finite element problem, the resulting system takes the form

(9)

(
M1/ε BT

B −Wγ

)(
u
q

)
=

(
f
g

)
,

where M1/ε is the H(div) mass matrix weighted by ε−1, B corresponds to the unweighted divergence form,

and Wγ is the L2 mass matrix weighted by γ (cf. (8)). In contrast to the variational form corresponding to
the grad-div problem, in this context the coefficient γ may be zero (corresponding to the Poisson problem
with no reaction term), leading to the saddle-point system with zero (2, 2)-block

(10)

(
M1/ε BT

B 0

)(
u
q

)
=

(
f
g

)
.

In what follows, we focus on the solution of the 2× 2 saddle-point systems (7) and (9). While the original
grad-div system is symmetric and positive-definite, and so may be solved using the conjugate gradient
method, the saddle-point system is symmetric and indefinite, and so we use the MINRES Krylov method (or
GMRES, when using a non-symmetric preconditioner). To precondition this system, we make use of block
preconditioners developed in Section 2.2. The preconditioners for the grad-div saddle-point system (7) apply
equally well to the Darcy block systems (9) and (10), including the case of zero (2, 2)-block.

2.1. Interpolation-histopolation basis. In order to construct efficient preconditioners for the block sys-
tems, we will use properties of a particular choice of bases for the high-order Raviart–Thomas space Vh and
L2 space Wh. These spaces will use the “interpolation-histopolation” basis (see [44] and also [18, 33, 43]).
To define this basis, the d-dimensional reference element [0, 1]d is subdivided into pd subelements (where p is
the polynomial degree) whose vertices are given by the d-fold Cartesian product of the p+1 Gauss–Lobatto
points (see Figure 1). Then, the basis is induced by the following choice of degrees of freedom:

• The degrees of freedom of the Raviart–Thomas space Vh are given by integrals of the normal compo-
nent over each face of the subelement mesh. The basis functions are induced by the tensor-product
of one-dimensional interpolation and histopolation operators.

• The degrees of freedom of the L2 space Wh are given by integrals over each subelement volume. The
basis functions are induced by the tensor-product of one-dimensional histopolation operators.

Given the above definitions, there is a natural identification of Raviart–Thomas degrees of freedom with
subelement faces, and L2 degrees of freedom with subelement volumes. For our purposes, this choice of basis
results in several important properties, the proofs of which can be found in [44].

• The Raviart–Thomas mass matrix M defined on Vh is spectrally equivalent to its diagonal, indepen-
dent of mesh size and polynomial degree.
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Figure 1. Left: high-order (p = 9) hexahedral element with 10 Gauss–Lobatto nodes in
each dimension. Right: subelement mesh with vertices at the Gauss–Lobatto points.

• The L2 mass matrix W defined on Wh is spectrally to its diagonal, independent of mesh size and
polynomial degree.

• The discrete divergence matrix D : Vh →Wh is sparse, with two nonzeros per column (taking values
1 and −1), regardless of polynomial degree. The matrix is entirely determined by the mesh topology
(its entries are independent of mesh geometry or distortion), and it coincides exactly with the lowest-
order discrete divergence matrix defined on the refined mesh (see the right panel of Figure 1).

Because of the sparsity afforded by the discrete divergence matrix, it is advantageous to consider the
transformed saddle-point matrix

(11) A :=

(
Mβ DT

D −W−1
α

)
=

(
I 0
0 W−1

α

)(
Mβ BT

α

Bα −Wα

)(
I 0
0 W−1

α

)
using that D = W−1

α Bα by the definitions in (8). In contrast to the untransformed saddle-point system
introduced in (7), the transformed system A has much sparser off-diagonal blocks (whose sparsity, critically,
is independent of the polynomial degree). However, a downside of this transformation is that the matrix A

involves the inverse of the L2 mass matrix Wα. In the context of an iterative solver such as MINRES, this
means that the action of W−1

α will need to be computed at every iteration. Because Wh is a discontinuous
space, Wα is block-diagonal, and, at least for low orders, the blocks can be factorized efficiently element-by-
element. For higher orders, it is not feasible to factorize (or even assemble) the blocks of Wα, and so we turn
to iterative matrix-free methods to apply the action of W−1

α . These methods are described in greater detail
in Section 2.5, and their performance is studied in the numerical results in Section 3.1. The sparsity of the
off-diagonal blocks and the diagonal spectral equivalence properties enumerated above allow for the sparse
approximation of the Schur complement and efficient algebraic multigrid preconditioning, enabling the block
preconditioning techniques described in the following section.

2.2. Block preconditioners for saddle-point systems. At this point, we make a brief digression to state
some results concerning block preconditioning of 2×2 saddle-point systems. We do not claim novelty of these
results, however we collect them here in a form that will be convenient to reference later (see, e.g., [8, 46,
51] for related results concerning block preconditioning of saddle-point systems). Consider the saddle-point
system

(12) A =

(
A BT

B −C

)
.

While the particular saddle-point system of interest is that given by (11), in this section we only make
the assumption that the blocks A and C in (12) are symmetric and positive-definite (but make no other
assumptions about the particular form of the blocks). The convergence of MINRES applied to this system
can be estimated using bounds on the positive and negative parts of the spectrum,

σ(A) ⊆ [µ1, µ2] ∪ [ν1, ν2] with µ1, µ2 < 0, ν1, ν2 > 0.

In particular, we are interested in the ratio C/c, where

C = |λ|max = max{|λ| : λ ∈ σ(A)}, c = |λ|min = min{|λ| : λ ∈ σ(A)},
resulting in

c(x,x) ≤ |(Ax,x)| ≤ C(x,x).
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Given a symmetric positive-definite preconditioner B, the relevant bounds are those that satisfy

(13) c(Bx,x) ≤ |(Ax,x)| ≤ C(Bx,x),

which can then be used to estimate the condition number, κ(B−1A) ≤ C/c, cf. [8, Section 10].

Proposition 1. Let B be the block-diagonal preconditioner

B =

(
A 0
0 S

)
,

where S = C + DA−1DT is the (negative) Schur complement of A with respect to the (1, 1)-block. This
preconditioner is optimal in the sense that

σ(B−1A) ⊆
[
−1, (1−

√
5)/2

)
∪
[
1, (1 +

√
5)/2

)
and κ(B−1A) ≤

√
5 + 1√
5− 1

≈ 2.618 . . .

The condition number in Proposition 1 can be improved slightly by using a different scaling of the blocks
(see, for example, [8, Theorem 3.8]).

Proposition 2. The block-diagonal preconditioner

B =

(
2A 0
0 S

)
,

is optimal in the sense that

σ(B−1A) ⊆ [−1,−1/2) ∪ [1/2, 1) and κ(B−1A) ≤ 2.

The constant 2 is the optimal relative scaling of A in terms of minimizing the bound on κ(B−1A).

In the above, we are assuming that the applying the preconditioner B involves exactly inverting the matrix
A and Schur complement S. In practice this is typically infeasible, and so the inverses of these blocks are
themselves approximated by spectrally equivalent preconditioners. The following proposition shows that this
does not impact the optimality of the preconditioners.

Proposition 3. Given a saddle-point system A and preconditioner B, suppose that the inequalities (13)

hold with constants c and C. Suppose further that B̃ is another preconditioner, spectrally equivalent to B,
i.e.

(14) c̃(B̃x,x) ≤ (Bx,x) ≤ C̃(B̃x,x).

Then, B̃−1A is uniformly well-conditioned, with condition number bound

κ(B̃−1A) ≤ CC̃/(cc̃).

Proof. This follows immediately by combining (13) and (14). □

Remark 1. As a consequence of the above results, a block-diagonal preconditioner of the form

B =

(
τM̃ 0

0 S̃

)
,

where M̃ is spectrally equivalent to M and S̃ is spectrally equivalent to the Schur complement S, will result
optimal (i.e. discretization parameter independent) convergence for MINRES when applied to the saddle-
point system A. The relative scaling of the blocks determined by the coefficient τ should be chosen in
accordance with Proposition 2. In the numerical examples presented in Section 4, we use the simple choice
of τ = 1.

Remark 2. Block-triangular preconditioners of the form

B =

(
M BT

0 S

)
result in a preconditioned system with exactly one eigenvalue, σ(B−1A) = {1}, and whose minimal poly-
nomial has degree two, guaranteeing convergence of GMRES in at most two iterations [8]. In practice, the

diagonal blocks must be replaced with spectrally equivalent approximations M̃ and S̃. In this setting, con-
vergence estimates for GMRES may be obtained using a field of values analysis, where the resulting bounds
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depend on the inf-sup constant of the corresponding finite element problem [7]. However, because the trian-
gular preconditioners are non-symmetric, GMRES instead of MINRES must be used, increasing the memory
requirements. Whether the reduced number of iterations warrants sacrificing the short-term recurrence is
typically problem-specific; in the numerical results we consider only the block-diagonal preconditioner.

Remark 3. Using the so-called Bramble–Pasciak (BP) transformation, it is possible to use a block-triangular
preconditioner with the conjugate gradient method in a transformed inner product [10]. This inner product
requires a scaled approximation of the (1, 1)-block of the matrix, typically necessitating the solution of an

eigenvalue problem with the matrix M̃−1M. The total work per iteration of the BP–CG method is similar
to that of block-diagonally preconditioned MINRES. Preliminary investigations into the performance of the
BP–CG method applied to the problems considered presently indicate largely similar performance to that of
MINRES with block-diagonal preconditioning (but with the added cost of estimating the extremal eigenvalue

of M̃−1M).

2.3. Application to the grad-div system. We now apply the block preconditioning techniques developed
in Section 2.2 to the mixed (H(div) and L2) saddle-point system A in the form given by (11). Using the
properties of the interpolation-histopolation basis (see Section 2.1), the H(div) mass matrix Mβ is spectrally

equivalent to its diagonal, and so we can take M̃ = diag(Mβ). We now turn to approximating the Schur

complement S = Wα+DM−1
β DT. Using the spectral equivalence ofWα to its diagonal, we take W̃ = diag(Wα),

and then define

(15) S̃ = W̃−1 + DM̃−1DT.

Because of the properties of the basis, the matrix S̃ takes a particularly simple structure. Each degree of
freedom in the space Vh corresponds to a subelement face, and each degree of freedom in Wh corresponds

to a subelement volume. The connectivity pattern of the S̃ is determined by the topological connectivity
of the subelement mesh. In particular, let F(i) denote the set of Raviart–Thomas degrees of freedom k
corresponding to subelement faces belonging to the subelement volume i. Given two subelement volumes
(i.e., two L2 degrees of freedom) sharing a common face, let kij denote the degree of freedom corresponding

to the shared face. Then, the entries of S̃ are given by

(16) S̃ij =


W̃−1

ii +
∑

k∈F(i) M̃
−1
kk if i = j,

−M̃−1
kk if i and j share common face k = kij ,

0 otherwise.

Consequently, the matrix S̃ is sparse, since the number of off-diagonal entries is bounded by the number
of faces per element (4 for a quadrilateral mesh in 2D, 6 for a hexahedral mesh in 3D), independent of

the polynomial degree of the finite element spaces. Additionally, DM̃−1DT can be viewed as a simple
discretization of the Laplacian, and the following arguments show that S is well-preconditioned by methods
such as algebraic multigrid.

Proposition 4. The approximate Schur complement S̃ is an M-matrix.

Proof. This follows from the explicit form (16) using that Wα and Mβ are positive-definite, and so W̃−1
ii > 0

and M̃−1
kk > 0. □

Furthermore, S̃ can be interpreted as a diagonal (approximate) mass matrix W̃ plus a weighted graph

Laplacian term DM̃−1DT. The graph Laplacian L of an edge-weighted graph is defined by

(17) Lij =


wi if i = j,

−wij if i ∼ j,

0 otherwise,

where we write i ∼ j if the graph vertices i and j are connected by an edge (with weight wij). The vertex

weight wi is defined by wi =
∑

i∼j wij . Comparing (16) to (17), it is straightforward to see that DM̃−1DT

is the graph Laplacian corresponding to the weighted face-neighbor connectivity graph of the subelement
mesh, with weights corresponding to the reciprocal of the diagonal entries of Mβ (the diagonal entries of Mβ
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scale like area of the corresponding subelement face). Note that this system is very closely related to the
lowest-order discontinuous Galerkin discretization described in [44]. Algebraic multigrid preconditioners for
linear systems of this form are well-studied, and can be expected to result uniform convergence independent
of problem size. The following proposition summarizes the application of block-diagonal preconditioning to
the grad-div system.

Proposition 5. Let M̃ denote the diagonal of Mβ and let Ŝ denote a matrix spectrally equivalent to S (for

example, Ŝ−1 could be given by one AMG V-cycle applied to S̃). Then, B−1A is uniformly well conditioned,
where B is the block diagonal preconditioner

B =

(
M̃ 0

0 Ŝ

)
.

Remark 4 (PDE-based Schur complement approaches). We note that instead of the algebraic approach
described above, it is also possible to consider a PDE-based Schur complement, as in the framework of
operator preconditioning [39]. In this context, the Schur complement associated with the block system (5)
is a Laplacian operator defined on the L2 space. Preconditioners based on discretizing this operator using
an interior penalty method have been considered in [48]. While this approach is robust with rest to mesh
size, a standard symmetric interior penalty DG discretization for the Schur complement does not result in a
uniform preconditioner with respect to the polynomial degree; the condition number of the preconditioned
block system is observed to grow linearly with the polynomial degree. This is in contrast to the algebraic
approach described above, which results in condition numbers that are asymptotically independent of p.

2.4. Application to the Darcy system. The treatment of the Darcy system (9) is largely similar to that
of the grad-div system (7). The relevant difference is that in the case of the Darcy system, the off-diagonal
blocks B and BT are not weighted by the coefficient γ. As a result, the transformed system takes the slightly
modified form

(18) A′ =

(
M1/ε DT

D −W−1WγW
−1

)
=

(
I 0
0 W−1

)(
M1/ε BT

B −Wγ

)(
I 0
0 W−1

)
In general, the (2, 2)-block of A′ requires two applications of W−1. However, in the special case that
γvh ∈Wh for all vh ∈Wh, this block can be simplified to −W−1

1/γ . This can be seen by noting that W−1Wγw

(where the vector w corresponds to wh ∈Wh) is the unique element uh ∈Wh satisfying

(uh, vh) = (γwh, vh)

for all vh ∈Wh. Likewise, W
−1
1/γWw is the unique element u′

h ∈Wh satisfying

(γ−1u′
h, vh) = (wh, vh)

for all vh ∈Wh. When γvh ∈Wh, we have

(uh, vh) = (γwh, vh) = (wh, γvh) = (wh, γvh) = (γ−1u′
h, γvh) = (u′

h, vh),

and hence W−1Wγ = W−1
1/γW, and so W−1WγW

−1 = W−1
1/γWW−1 = W−1

1/γ . In particular, this holds when the

coefficient γ is piecewise constant (i.e. γ|κ is constant for each κ ∈ T). In the general case, this simplification
does not hold, and the full form of the (2, 2)-block is used. In the case of the Darcy problem with zero
(2, 2)-block (corresponding to the Poisson problem −∇ · (ε∇p) = g), the matrix W−1 is not required to
compute the action of A′, reducing the computational cost of the MINRES iterations.

As before, the H(div) mass matrix M1/ε can be approximated by its diagonal, and W−1WγW
−1 can

be approximated be the product of (the reciprocals of) the diagonals of the terms in the product. The

approximate Schur complement S̃ takes the same form (16) as in the preceding section, and can be effectively
preconditioned with algebraic multigrid.

2.5. L2 mass inverse. Solving the transformed saddle-point system A given by (11) by a Krylov subspace
method such as MINRES (or GMRES in the case of a non-symmetric preconditioner) requires, at every
iteration, the action of the operator W−1. The matrix Wα corresponds to the α-weighted L2 inner product
on the space Wh, i.e.,

rTWαq = (αq, r), q, r ∈Wh.
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Figure 2. Condition number of the L2 mass matrix preconditioned by diagonal scaling
for different choices of basis. Left: 2D case on a skewed quadrilateral. Right: 3D case on a
skewed hexahedron.

Since the space Wh is discontinuous, W is block-diagonal, with blocks Wi corresponding to the ith element
of the mesh κi. The block Wi represents the L2 inner product over κi,

rTi Wiqi = (αq, r)κi
,

where qi and ri are subvectors of q and r consisting of those degrees of freedom belonging to the element κi.
Hence, each block Wi is symmetric and positive-definite, and has size pd × pd.

A significant amount of prior work on the topic of efficiently inverting the L2 mass matrix has been
performed [21, 23, 34, 45]. For modest values of p, assembling and factorizing each of the blocks Wi

(e.g. using Cholesky factorization or spectral decomposition) is an appropriate strategy, allowing for the
application of W−1

α with roughly the same cost as standard operator evaluations or matrix-vector products.
However, for higher-order problems, it becomes infeasible to assemble, store, and factorize the blocks Wi.
Each block requires O(p2d) storage, and the assembly and factorization require O(p3d) operations. In this
case, it is preferable to compute the action of W−1

α matrix-free using an iterative method.
In the matrix-free setting, the action of W−1

α is computed block-by-block using a local conjugate gradient
(CG) iteration. Because of properties of the basis for the space Wh, each block Wi is spectrally equivalent
to its diagonal, and so using diag(Wi) as a preconditioner will result in a number of CG iterations that is
independent of the polynomial degree p. Furthermore, the action of Wi can be computed efficiently with
matrix assembly using a sum factorization approach [41, 45]. Although this method is asymptotically optimal
in terms of iterations (the cost of computing W−1

α is proportional to the cost of evaluating Wα, independent
of discretization parameters), the constants in the condition number estimates can be improved by using a
change of basis.

In Figure 2 we show the condition number of the 2D and 3D L2 mass matrix on a single highly skewed
element. In each case, we consider the diagonally scaled mass matrix using a different basis. In all cases, the
condition number is bounded with respect to p. As predicted by analytical estimates (cf. [29, 49]) the condi-
tion number of the Gauss–Lobatto mass matrix improves with increasing p. The condition number obtained
using the interpolation–histopolation basis displays a preasymptotic increase in condition number, and for
larger p results in largely similar condition numbers as with the Gauss–Lobatto basis. The Gauss–Legendre
nodal basis results in the best conditioned system, with maximal condition number of approximately 1.12
in these tests. Note that on elements whose transformation has constant Jacobian determinant (i.e. paral-
lelepipeds) the Gauss–Legendre mass matrix is diagonal (and so in this special case, diagonal preconditioning
is exact). However, in the cases we consider here, the elements are skewed, resulting in non-constant Jaco-
bian determinants, and so the mass matrix is not diagonal with any of the bases considered. Even in this
case, the diagonally preconditioned matrix remains extremely well conditioned, with condition number only
slightly larger than unity.

Motivated by these results, faster CG convergence can be obtained by first performing a change of basis,
and then iteratively solving the system in the Gauss–Legendre basis with diagonal preconditioning. Per-
forming the change of basis necessitates the transformation of the right-hand side and the obtained solution.
If a non-zero initial guess is used, one additional transformation must also be performed. Each of these



MATRIX-FREE SADDLE-POINT SOLVERS 9

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

p

C
o
n
d
it
io
n
N
u
m
b
er

2D Preconditioned Schur Complement

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

p

C
o
n
d
it
io
n
N
u
m
b
er

3D Preconditioned Schur Complement

Transformed

Transformed (skewed)

Untransformed

Untransformed (skewed)

Figure 3. Computed condition numbers of preconditioner Schur complement. The trans-

formed system is given by S̃−1S, and the untransformed system is given by S̃′−1S′.

transformations is generally less expensive than one operator evaluation, and so this will result in an overall
efficiency gain if the total iteration count is reduced by at least two or three. Numerical experiments studying
these considerations are presented in Section 3.1.

2.6. Notes on the untransformed system. Instead of considering the transformed system A defined
by (11), it is also possible to apply block preconditioners directly to the saddle-point system (7). This has
the advantage that each MINRES iteration would require computing the action of Wα rather than W−1

α ,
potentially leading to computational savings. However, this approach has two drawbacks. Firstly, the off-
diagonal blocks Bα and BT

α do not enjoy the same favorable sparsity as D and DT, and therefore are more
expensive to compute. Secondly, and more importantly, the Schur complement of the original system takes
the form

(19) S′ = Wα + BαM
−1
β BT

α = Wα +WαDM
−1
β DTWα.

In order to construct block preconditioners, approximations of the inverse of S′ are required. As in the

construction of the approximate Schur complement S̃ in (15), it is possible to replace Wα and Mβ by their

diagonals, to obtain a matrix S̃′ spectrally equivalent to S′. This approximation of the second term on the
right-hand side of (19) is significantly worse that the approximation of the transformed Schur complement
S by (15).

In Figure 3, we display computed condition numbers of the transformed preconditioned Schur complement

S̃−1S and the untransformed version S̃′−1S′ for increasing polynomial degree. We consider both the unit
cube [0, 1]d, and a skewed single-element mesh (the same mesh used in the results shown in Figure 2).
The empirical results show that the transformed Schur complement results in significantly smaller condition
number, in accordance with arguments described above. These results justify the use of the transformed
system (11), despite the increased cost per iteration incurred by the inverse L2 mass matrix.

3. Algorithmic details and GPU acceleration

In this section, we give a brief overview of the solution algorithm and describe the strategies used for
GPU acceleration. To solve the variational problem (6), we solve the saddle-point system

(20)

(
Mβ DT

D −W−1
α

)(
u
q̃

)
=

(
f
0

)
,

such that (u, q) for q = W−1
α q̃ gives the solution to the untransformed system (7). A schematic of the

solution procedure is shown in Figure 4. This system is solved using MINRES (with the block-diagonal
preconditioner) or GMRES (with block-triangular preconditioners). Each iteration requires application of

the operators Mβ , D, D
T and W−1

α , and application of the preconditioners M̃−1 and Ŝ−1. The high-order
mass matrix Mβ can be applied efficiently using matrix-free algorithms with sum factorization (cf. [1, 22]).
The discrete divergence operator D can be represented explicitly as a sparse matrix (where the number of
nonzeros per row remains bounded, independent of the polynomial degree). The efficient application of W−1

α

with GPU acceleration is discussed in Section 3.1. The preconditioner M̃−1 for the (1, 1)-block is simply
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Krylov method: MINRES or GMRES

Matrix-free operator evaluation

Mβ : partial assembly

D, DT: assembled sparse matrix

W−1
α : local CG in Gauss–Legendre basis

Preconditioner application

M̃−1: diagonal scaling

Ŝ−1: AMG V-cycle

Figure 4. Solver diagram for block preconditioners applied to the transformed saddle-point
system (20).

diagonal scaling, and is trivially parallelizable. In this work, we use algebraic multigrid for the approximate
Schur complement preconditioner; details are discussed in Section 3.2.

3.1. GPU acceleration of the DG mass inverse. Because each iteration involving the system (20)
requires computing the action of W−1

α , it is imperative to develop fast algorithms for the action of the
inverse of the DG mass matrix. As described in Section 2.5, we consider several approaches, depending on the
polynomial degree and spatial dimension. The methods considered here are fairly standard and well-known
[21, 23, 34]. The empirical results of this section allow for the comparison of these methods on modern GPU-
accelerated hardware, using high-performance implementations. For relatively small polynomial degrees, it
is feasible to assemble and store the L2 mass matrix, allowing for the use of direct methods; for higher
polynomial degrees, the memory requirements and computational time required to assemble the matrix
render this option infeasible, necessitating the use of iterative solvers.

Since this matrix is block-diagonal, in the case where the matrix may be assembled, each block is stored
as a dense matrix, which can then be factorized. These operations are particularly well-suited for use with
batched linear algebra libraries [19]. The performance of batched LU solvers and matrix-matrix multiplication
operations on GPUs has been well-studied [2, 50]. Presently, we consider two approaches. The first approach
is to perform a batched Cholesky factorization (potrf) during the setup, and then each application of the
mass inverse will perform a triangular solve (potrs). Batched versions of these routines are available on
Nvidia and AMD GPU hardware through the cuSOLVER and rocSOLVER libraries. The second approach
computes the explicit inverse of each block (getrf followed by getri), and then each application is computed
using a batched matrix-vector product (gemv). While the computation of the inverse matrix necessitates
additional overhead and is less numerically stable than solving the system using the Cholesky factorization,
it has the advantage that the application of the inverse is computed using a matrix-vector product rather
than a triangular solve, which is better-suited for fine-grained parallelism. For symmetric positive-definite
matrices of small sizes, matrix inversion typically possesses satisfactory stability bounds [15]. Since direct
methods are only relevant for small-sized matrices in this application, the numerical stability of explicit
matrix inverses is not a primary concern.

For larger polynomial degrees, direct methods become impractical or infeasible. In this case, we perform
conjugate gradient iterations locally on each element in parallel. Because the system is block-diagonal, each
conjugate gradient solver is independent, and no global reductions are required. In our implementation,
the entire CG iteration is performed in a single (fused) kernel, with one block of threads per element. The
number of threads per block is chosen to facilitate the application of the local mass operator. This action
corresponds to the “CEED BP1” benchmark problem, and highly optimized GPU implementations for this
operation are available [2, 17]. This kernel also performs the initial change of basis operations, allowing the
CG iteration to solve the better-conditioned Gauss-Legendre mass matrix, regardless of the user’s choice
basis for the discretization (see Figure 2). The vector operations (axpy) in the CG method are local to
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Figure 5. GPU DG mass inverse solve phase.

each element, and are trivially parallelizable. The dot products required by CG are performed using parallel
reductions in each block.

In the context of the iterative solvers considered presently, the setup time is of lesser concern than the
operator application time: the setup is performed once, while the action of W−1 must be computed at
least once every iteration (and twice every iteration in the case of variable-coefficient Darcy problems, see
Section 2.4). Figure 5 displays GPU kernel throughput for computing the action of W−1 using the methods
described in this section. These results make clear that significantly higher performance is achieved in the
CG solvers by first changing basis to the Gauss–Legendre basis, and then solving the better-conditioned
system (cf. Figure 2). The matrix-free methods using the Gauss–Legendre basis consistently achieve over
2×109 degrees of freedom per second, with a peak performance of 3.6×109 at p = 3. In contrast, a standard
CG iteration with global reductions and without fused kernels achieves peak performance about 2–3 orders
of magnitude slower than the local CG approach described here.

Comparing the direct solvers, it is clear that using the precomputed explicit inverse matrix results in
significantly faster performance than the Cholesky factorization. This is likely attributable to the increased
fine-grain parallelism possible when performing batched matrix-vector products compared with triangular
solves. For p = 1 and p = 2, the explicit inverse results in the fastest solve time of all methods considered; the
highest throughput observed was 5.2× 109 degrees of freedom per second, achieved for the largest problem
size with p = 1. For p = 3, the explicit inverse has throughput roughly equal to that of the Gauss–Legendre
CG iteration (with significantly more expensive setup costs), and for p ≥ 4, the Gauss–Legendre CG iteration
is the most performant method considered.

We conclude with a performance comparison on a series of problems with roughly 1.7× 106 DOFs, using
polynomial degree p = 1, 2, . . . , 8. The mesh considered is Kershaw’s “Z” mesh with distortion parameter
ϵ = 0.5, cf. [28]. The mesh elements are non-affine, and the mass matrix in the Gauss–Legendre basis is not
diagonal. In order to benchmark the solvers in a situation relevant to the saddle-point solvers considered
in this paper, on each problem we apply the inverse mass matrix 100 times. In Table 1, we present the
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Table 1. DG mass inverse setup and solve run times. Solve time is reported for 100
applications of the inverse. The fastest method for each polynomial degree is shown in bold.
For p = 8, there was insufficient GPU memory to compute the explicit inverse, indicated by
“—”.

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

CG Setup 0.0019 0.0009 0.0007 0.0006 0.0005 0.0005 0.0006 0.0004

CG
(Legendre)

Its. 1 2 2 2 3 2 3 3
Solve ×100 0.2897 0.1333 0.1148 0.1554 0.1320 0.1142 0.1659 0.1353
Total 0.2918 0.1342 0.1155 0.1560 0.1326 0.1147 0.1664 0.1358

CG
(Lobatto)

Its. 5 7 9 10 12 13 13 11
Solve ×100 0.4401 0.2184 0.1929 0.3260 0.2682 0.2915 0.3375 0.3378
Total 0.4421 0.2193 0.1936 0.3266 0.2687 0.2921 0.3381 0.3382

Inverse
Setup 0.0039 0.0180 0.2276 1.0510 0.4662 1.2576 1.9993 —
Solve ×100 0.0380 0.0602 0.1154 0.2299 0.3688 0.6093 0.8066 —
Total 0.0420 0.0781 0.3430 1.2809 0.8350 1.8669 2.8059 —

Cholesky
Setup 0.0046 0.0110 0.2034 0.9056 0.1459 0.3543 0.7344 12.8996
Solve ×100 0.3482 0.3188 0.4001 0.8125 1.1600 2.3327 2.5880 5.9370
Total 0.3528 0.3299 0.6035 1.7181 1.3059 2.6870 3.3224 18.8365

time required to construct the inverse (or set up the matrix-free CG), the time required for 100 inverse
applications, and the total time. The shortest runtime for each polynomial degree is shown in bold. The
matrix-free CG method has the fastest setup time among the methods considered, with roughly constant
time required for all polynomial degrees. The explicit inverse resulted in the fastest overall runtimes for p = 1
(4.3× faster than CG) and p = 2 (1.1× faster than CG). For polynomial degrees p ≥ 3, the matrix-free CG
(changing to Legendre basis) resulted in the fastest runtime; the observed speed-up compared with direct
methods increases dramatically with the polynomial degree. The average number of iterations required per
element-local CG iteration is listed for Legendre and Lobatto CG. For p = 8, there was insufficient memory
to compute the explicit inverse. For this test case, the CG setup time was 30,000× faster than the Cholesky
factorization, the solve time was 70× faster than the triangular solve, resulting in an overall speed-up of 216×.
The Cholesky factorization was the slowest of the three methods considered; the slightly faster factorization
time compared with the explicit inverse was outweighed by the slower inverse applications.

Based on these results, in the contexts where the inverse of a fixed mass matrix will be applied many
times (such as the iterative solvers considered presently, or in the case of time stepping on a fixed mesh), it
would be efficient to use explicit inverses for p ≤ 2, and matrix-free CG for p ≥ 3. If, on the other hand, the
inverse of the mass matrix will be applied only once (for example, in situations involving a moving mesh,
necessitating the recomputation of the mass matrix at every time step), the faster setup time suggests that
the matrix-free CG iteration should be used even for p ≤ 2.

3.2. Schur complement preconditioning. We now consider GPU-accelerated preconditioning of the ap-

proximate Schur complement S̃ = W̃−1 + DM̃−1DT, where we recall that W̃ is the diagonal of the L2 mass

matrix, M̃ is the diagonal of the H(div) mass matrix, and D is the discrete divergence matrix. The approach
taken presently is algebraic multigrid preconditioning, and so the first step is the assembly of the matrix.

The diagonals W̃ and M̃ can be assembled efficiently using sum factorization [47]. Because of the properties
of the interpolation–histopolation basis, the discrete divergence matrix D has the same structure as the
lowest-order divergence matrix on a refined mesh. In particular, the entries Dij are given by

Dij =

{
σij if j ∈ F(i),

0 otherwise,

where F(i) denotes the set of subelement faces adjacent to the subelement volume i (cf. Section 2.3), and
σij = ±1 denotes the orientation of the Raviart-Thomas basis function on subelement face j relative to
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Figure 6. Throughput for discrete divergence and approximate Schur complement assem-
bly. The dashed line on the left plot indicates the theoretical peak throughput n/t(n) based
on the performance model (21).

subelement volume i. This matrix can be constructed directly in CSR format efficiently and in parallel on
the GPU; one thread is used per nonzero in the matrix. The algorithm used to construct this matrix is given
in Algorithm 1.

The kernel throughput of this algorithm is shown in the left panel of Figure 6. We construct a simple
performance model to compare the achieved throughput with the theoretical maximum. For a problem of
size N , the best theoretical runtime based solely on memory transfer can be modeled by

(21) t(N) =
DN

B
+ L,

where D is the data transfer required per DOF, B is the memory bandwidth, and L is the kernel launch
latency. In our model, we choose these parameters based on the specifications of the V100 GPU. The memory
bandwidth is given by B = 898GB/s, and we estimate the kernel launch latency to be L = 15ns. A CSR-
format matrix with the given sparsity pattern requires approximately D = 25 1

3 bytes per H(div) DOF (note
that the algorithm presented in Algorithm 1 requires an additional four-byte global read per DOF to obtain
the local DOF index and orientation). Comparing the achieved throughput to the model given by (21), we
see that this kernel achieves close to the theoretical peak performance for all considered problem sizes.

Algorithm 1 Construction of the discrete divergence matrix D in CSR format.

N ← # of L2 DOFs
parallel for i ∈ {0, . . . , N − 1}, k ∈ {1, . . . , 2d} do ▷ For each L2 DOF (subelement volume) i, and ad-

jacent subelement face k
I[i]← 2di ▷ 2d nonzeros per row
e← element map[i] ▷ e is the mesh element containing DOF i
iloc ← l2 global to local[i] ▷ iloc is the local L2 DOF index of i within e
jloc ← volume to face[k, iloc] ▷ jloc is the local RT DOF index of the subelement face k
σloc ← local orientation[jloc] ▷ σloc is the orientation of DOF jloc in the reference ele-

ment
j ← rt local to global[e, jloc] ▷ j is the global DOF index
σglob ← global orientation[j] ▷ σloc is the orientation of bluethe jth DOF relative to jloc
J [2di+ k]← j
A[2di+ k]← σlocσglob

end
I[N ]← 2dN
▷ The matrix D in CSR format is given by the arrays (I, J,A)

After constructing the discrete divergence, the approximate Schur complement can be constructed by

computing the sparse matrix-matrix product DM̃−1DT; other approaches, including custom assembly kernels,
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Figure 7. Runtime and iteration counts for the Cartesian grid test case under h- and p-refinement.

are also possible. In the current implementation, this product is computed using the sparse triple-product
algorithms provided by the hypre solvers library [20]. The throughput for the triple product operation is
shown in the right panel of Figure 6. Given the assembled Schur complement in CSR format, the approximate

inverse Ŝ−1 is given by one V-cycle of an algebraic multigrid preconditioner; in this work, we use the
BoomerAMG preconditioner from hypre [26]. Detailed GPU performance studies for AMG preconditioners
applied to similar problems are given in [43].

4. Numerical results

In the following sections, we test the performance of the saddle-point solvers on a number of grad–div and
Darcy test problems. GPU results were performed on LLNL’s Lassen supercomputer, with four Nvidia V100
GPUs per node. The methods were implemented in the framework of the open-source MFEM finite element
library [4], see also https://mfem.org. The solvers described in this paper are open-source, and have been
released as part of the MFEM library; full source code and examples are available in MFEM’s GitHub
repository at https://github.com/mfem/mfem. A relative tolerance of 10−12 was used as the stopping
criterion for all iterative solvers, unless specifically noted otherwise. The BoomerAMG algebraic multigrid
preconditioner from the hypre library is used to precondition the approximate Schur complement [26], and
hypre’s ADS preconditioner applied to the low-order-refined system is used as a comparison [32]. The AMG
preconditioner for the Schur complement uses parallel maximal independent set (PMIS) coarsening with no
aggressive coarsening levels.

4.1. Cartesian grid. As a first numerical example, we consider the simplest case of a constant-coefficient
Darcy problem on a three-dimensional regular Cartesian grid. The exact solution and right-hand side are
chosen according to the solver benchmark test-case proposed in [30]. The saddle-point system is discretized
as described above, and solved using MINRES with the block-diagonal preconditioner outlined in Figure 4.
A relative tolerance of 10−12 was used for this problem. We consider both h- and p-refinements, with
p = 2, 3, . . . , 10. The results are presented in Figure 7.

This example illustrates robust convergence typical of multigrid-type methods. The iteration counts are
roughly constant under h-refinement, and display only relatively modest growth with increasing polynomial
degree. Furthermore, the total solver runtime (including both the setup and solve phases) is observed to
scale as O(N), where N is the number of degrees of freedom; for a given problem size, only relatively minor
increases in runtime were observed for increasing polynomial degree.

We also use this simple test case to measure the runtimes of the individual components of the solver
algorithm. In Figure 8, we display the runtimes for each of the components; we run both on one V100 GPU
and four Power 9 CPU cores, and report both sets of timings. (Note that these times are not intended to
compare GPU vs. CPU performance, but rather to investigate the relative weighting of each of the algorithm
components on different architectures). These runtimes were measured for 2 ≤ p ≤ 7, on the largest mesh
considered above (corresponding to approximately 5 × 106 degrees of freedom). On both architectures,
the relative runtimes are fairly similar; solver and AMG setup represents slightly under half of the overall

https://mfem.org
https://github.com/mfem/mfem
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Figure 8. Runtimes for solver components (cf. Figure 4) for the Cartesian grid test case.
Left panel: V100 GPU. Right panel: Four Power 9 CPU cores.
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Figure 9. Crooked pipe grad-div problem (figure reproduced from [44]). Left panel: mesh
with inset showing anisotropic elements and definition of piecewise constant coefficients on
subdomains. Right panel: illustration of solution with constant forcing term.

runtime. On CPU and GPU, the AMG V-cycle for the approximate Schur complement represents the largest
per-iteration time at high orders.

4.2. Grad-div problem: crooked pipe. In this section, we consider the “crooked-pipe” grad-div problem,
which is a more realistic and challenging test case. This problem, which serves as a model problem related
radiation diffusion simulations, is posed on a cylindrical sector. The elements are divided into two materials;
the interface between the materials consists of highly stretched, anisotropic elements, increasing the problem
difficulty. We solve the problem

∇(α∇ · u)− βu = f ,

where the coefficients α and β are piecewise constants determined by the materials. A schematic of this
problem is shown in Figure 9. In the outer region (colored green in Figure 9), we have α = 1.88× 10−3 and
β = 2000, and in the inner region (colored blue in Figure 9), we have α = 1.641 and β = 0.2. This problem,
first proposed in [25], was considered as a benchmark problem using the ADS solver in [32], using algebraic
hybridization in [16], and with low-order-refined preconditioning in [44].

We use the same problem setup as in [44], and solve this problem with increasing polynomial degree. We
compare the performance of the saddle-point solvers discussed presently to applying the ADS preconditioner
directly to the high-order assembled matrix, and to ADS applied to the spectrally equivalent low-order-
refined system. We first compare CPU results computed using 144 MPI ranks on four nodes of LLNL’s
Quartz supercomputer, which is the same configuration considered in [44]. The results are shown in Table 2.
Both methods display a pre-asymptotic increase in the number of iterations with increasing polynomial
degree. At p = 6, the saddle-point solver required 1.9× as many iterations as at p = 2, and the LOR–ADS
solver required 2.5× as many iterations. Overall, the saddle-point solver required approximately 1.5× as
many iterations as the LOR–ADS solver, however it was faster overall by a factor of 6–9×. The reason
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Table 2. CPU results from the crooked pipe test problem (144 CPU cores on LLNL’s Quartz ).

Saddle-Point LOR–ADS
p Its. Time (s) Its. Time (s) Speed-up # DOFs

2 168 0.26 96 1.73 6.65× 356,500
3 231 0.87 143 5.73 6.59× 1,190,115
4 269 2.11 172 14.91 7.07× 2,805,520
5 299 4.45 206 36.90 8.29× 5,461,375
6 323 8.73 241 80.84 9.26× 9,416,340

Table 3. GPU results from the crooked pipe test problem (4 Nvidia V100 GPUs on LLNL’s Lassen).

Saddle-Point LOR–ADS
p Its. Time (s) Its. Time (s) Speed-up # DOFs

2 193 0.85 143 7.73 9.09× 356,500
3 251 1.52 206 14.97 9.85× 1,190,115
4 298 2.19 269 23.72 10.83× 2,805,520
5 335 3.49 332 37.60 10.77× 5,461,375
6 360 4.01 392 61.94 15.45× 9,416,340

Table 4. Matrix-based methods: CPU results from the crooked pipe test problem (144
CPU cores on LLNL’s Quartz).

Hybridization ADS
p Its. Time (s) Its. Time (s) # DOFs

2 28 0.16 74 2.49 356,500
3 35 0.86 85 19.20 1,190,115
4 36 5.73 92 100.77 2,805,520
5 31 29.82 102 390.32 5,461,375
6 36 245.54 112 1293.12 9,416,340

for this speed-up (despite a larger number of iterations) is that the saddle-point preconditioner is much less
computationally expensive than the ADS preconditioner: each application of the saddle-point preconditioner
requires just one diagonal scaling and one scalar AMG V-cycle (applied to the smaller L2 system), whereas
each application of ADS requires (depending on the specific solver settings) around 11 AMG V-cycles.

These tests are repeated on the GPU using one node of LLNL’s Lassen with 4 Nvidia V100 GPUs. The
results are shown in Table 3. The iteration counts for the GPU test are larger than those obtained on the
CPU. This is because different BoomerAMG settings are used when hypre is run on the CPU or GPU [20].
In particular, hybrid Gauss-Seidel smoothing is used on the CPU, while ℓ1-Jacobi smoothing is used on the
GPU. This appears to have a more significant detrimental effect on the ADS solver; the iteration counts for
the saddle-point solver are largely similar to the CPU case. The saddle-point solver consistently achieves
9–15× speed-up compared with the LOR–ADS solver, with greater speed-up at higher orders. At p = 6, the
total solve time using the saddle-point solver using the GPU on one node of Lassen is over twice as fast as
on the CPU using 4 nodes of Quartz.

For comparison, we also include CPU results for the matrix-based algebraic hybridization and ADS solvers
in Table 4; GPU results are not reported because GPU-accelerated versions of these algorithms are not
available. Consistent with the results reported in [16], the algebraic hybridization solver greatly outperforms
the ADS solver on all cases considered. Similarly, the LOR–ADS solver outperforms the ADS solver for
p ≥ 2, as reported in [44], and consequently the saddle-point solver also compares favorably to matrix-based
ADS for these test cases. The comparison with algebraic hybridization is more interesting. Our results are
largely consistent with previous comparisons of matrix-based and matrix-free solvers (including hybridizable
discontinuous Galerkin methods), see e.g. [36]. The hybridization solver (which performs a conjugate gradient
iteration directly on the hybridized Schur complement system) requires significantly fewer iterations than
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Figure 10. SPE10 problem, logarithmic color scale (cf. [14]). Left: magnitude of inverse
permeability coefficient. Right: solution velocity magnitude.

either ADS or the saddle-point solver. For p = 2, hybridization results in the fastest overall runtime, and
for p = 3, we obtained roughly equal runtimes with the hybridization and saddle-point solvers. However,
for p > 3, the time required to assemble and set up the hybridized solver becomes prohibitive, and the
saddle-point solver results in significant speed-ups. For p = 4, the saddle-point solver is almost twice as fast,
and for p = 6, the saddle-point solver results in an almost 30× speedup. We conclude that for relatively low
orders, when assembling and forming the hybridized Schur complement system is not prohibitively expensive,
algebraic hybridization is a highly competitive option. For higher orders, matrix-free methods such as the
saddle-point solver discussed presently become necessary, and we note that the benefits of the matrix-free
methods, such as reduced memory footprint, are more pronounced on GPU-based architectures.

4.3. Darcy flow: SPE10 benchmark. In this section, we consider the SPE10 benchmark problem from
the reservoir simulation community [14]. This problem has been widely used as a test case for solvers in
the literature, see e.g. [16, 27]. The problem geometry is Ω = [0, 1200]× [0, 2200]× [0, 170], represented as a
Cartesian mesh with 60× 220× 85 elements. The permeability tensor is defined as a piecewise constant on
this mesh. This coefficient is highly heterogeneous, exhibiting contrast of over 107; see Figure 10. On coarser
meshes, a coarsened piecewise constant coefficient is obtained by a simple pointwise sampling procedure at
element centers. We solve Darcy’s equations for the velocity and pressure,

{
κu+∇p = 0,

∇ · u = 0,
in Ω.

u · n = (1, 0, 0)T · n on ∂Ω,

where κ is inverse permeability matrix. Since pure Neumann boundary conditions are enforced for this
problem, the Schur complement is singular, with a nullspace consisting of all constant functions. To ensure

a convergent solver, every application of the approximate inverse Ŝ−1 is followed by an orthogonalization
step.

We use this problem to perform a weak scaling study using p = 4 and p = 6 elements. With each
refinement, the number of degrees of freedom is roughly doubled by solving on a finer mesh, and the problem
is solved using twice the number of GPUs. With increasing mesh refinement the iteration counts remain
roughly constant. The largest problem has roughly 7× 108 unknowns, and is solved in about 10 seconds on
256 GPUs. For each of the cases considered, the solve time and iterations are similar between the p = 4
and p = 6 cases, illustrating the uniform convergence of the solver with respect to polynomial degree. The
parallel scalability of the solver is largely consistent with similar results reported in [31, 43]. For the largest
problem, the weak parallel efficiency of the solver is 31%, comparing favorably to the parallel efficiency of
25% for the algebraic hybridization solver and 7.5% for the ADS solver reported for similarly sized SPE10
problems in [16].
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Table 5. Scalability study for the SPE10 benchmark problem.

p = 4

# GPUs # DOFs Its. Time (s)

1 3.36× 106 147 3.25
2 5.76× 106 155 4.31
4 1.20× 107 157 5.15
8 2.68× 107 160 6.45
16 4.58× 107 159 6.35
32 9.53× 107 164 6.94
64 2.13× 108 164 8.62
128 3.66× 108 166 8.55
256 7.61× 108 165 10.44

p = 6

# GPUs # DOFs Its. Time (s)

1 3.30× 106 165 3.14
2 5.87× 106 166 4.36
4 1.13× 107 166 4.82
8 2.63× 107 165 6.41
16 4.67× 107 165 6.19
32 9.01× 107 171 7.20
64 2.10× 108 176 8.97
128 3.73× 108 173 8.79
256 7.20× 108 175 10.53

4.4. Nonlinear radiation diffusion. As a final test case, we consider the solution of time-dependent grey
(one-group) nonlinear radiation diffusion equations. The governing equations are

ρ
∂e

∂t
= −cσ(aT 4

mat − E) +Q,(22)

∂E

∂t
+∇ · F = cσ(aT 4

mat − E) + S,(23)

F = − c

3σ
∇E,(24)

where e is the material specific internal energy, E is the radiation energy density, and F is the radiation
flux, σ is the absorption opacity, c is the speed of light, a is the black body constant, and ρ is the material
density. Q and S are given source terms. The material temperature Tmat is related to the internal energy e
through the specific heat Cv. The energy unknowns e and E are taken in the L2 finite element space Wh,
and the radiation flux is taken in the H(div) space Vh.

For this test case, we use the manufactured solution proposed in [12]. The equations are integrated in time
implicitly; we use the three-stage L-stable singly diagonal implicit Runge–Kutta (SDIRK) method [3]. The
resulting nonlinear algebraic equations are solved using an iterative scheme as follows. First, the radiation
flux F is lagged, and a coupled nonlinear system for the material energy e and radiation energy E is solved.
Then, the material energy e is fixed, and a Darcy-type linear system is solved for the radiation energy E and
radiation flux F . This procedure is repeated until the full nonlinear residual has converged to the desired
tolerance; for the time-accurate time steps considered presently, this method typically requires only one or
two outer iterations to reach a relative tolerance of 10−12.

For fixed radiation flux F , the (inner) nonlinear equations corresponding to (22) and (23) are solved
element-by-element using Newton’s method. The resulting Jacobian matrix takes the form of a 2×2 element-
wise block diagonal system, which is well-preconditioned by a block Jacobi preconditioner with blocks of
size 2 × 2. After solving for the energies e and E, the material energy e is fixed, and the coupled linear
equations for E and F corresponding to (23) and (24) are solved; the solution of this system is often
a bottleneck in radiation hydrodynamics simulations, emphasizing the importance of the development of
efficient preconditioners [24, 37]. These equations take the form of a Darcy-type problem, which can be
preconditioned using the block preconditioners described in this work.

The test problem in [12] is posed in spherical coordinates; presently, we solve this problem in Cartesian
coordinates on a three-dimensional mesh with 884,736 hexahedral elements using polynomial degree p = 4.
This problem configuration has 1.7 × 108 Raviart–Thomas degrees of freedom and 5.7 × 107 L2 degrees of
freedom, and is solved in parallel with 16 Nvidia V100 GPUs on four nodes of LLNL’s Lassen. The equations
are integrated until a final time of 0.1/τ ≈ 4.39 × 10−11 s, where τ ≈ 2.28 × 109 s−1 is the decay constant
of the test problem. The time step is chosen to be ∆t = h/τ , and 10 implicit time steps (each with three
Runge–Kutta stages) are taken. Each stage requires an outer nonlinear solve (with relative tolerance 10−12),
an inner nonlinear solve (with relative tolerance 10−8), and a linear solver (with relative tolerance 10−8). At
the final time, the relative L2 error was 7.72× 10−8 in the material energy and 5.25× 10−7 in the radiation
energy. Each Runge–Kutta stage required two outer solver iterations and four inner Newton iterations. In
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Figure 11. Left: snapshot of radiation energy density from radiation diffusion test case.
Right: timing results and iteration counts on 16 V100 GPUs.

total, 60 saddle-point linear solves were performed, and on average the linear solver converged in 84 MINRES
iterations. The timing results and iteration counts are presented in the right panel of Figure 11. Consistent
with results reported in [24], approximately 92% of the total runtime for this problem was spent in the linear
solver.

5. Conclusions

In this work, we have developed solvers for grad-div and Darcy-type problems in H(div) based on block
preconditioning for the associated saddle-point system. Properties of the interpolation–histopolation high-
order basis result in off-diagonal blocks with enhanced sparsity. The Schur complement of the block system
can be approximated by an M-matrix with sparsity independent of the polynomial degree; such systems
are amenable to preconditioning with scalable algebraic multigrid methods. The (1, 1)-block can be well-
approximated by a diagonal matrix. The resulting block preconditioners result in uniform convergence,
independent of mesh size and polynomial degree. These solvers are amenable to GPU acceleration; high-
throughput algorithms are developed and benchmarked. The performance of the solvers is demonstrated on
several benchmark problems, including the “crooked-pipe” grad-div problem, the SPE10 benchmark from
reservoir simulation, and nonlinear radiation-diffusion.
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