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Research article 

2D vs 3D tracking in bacterial motility analysis 

Jacqueline Acres and Jay Nadeau* 

Department of Physics, Portland State University, 1719 SW 10th Ave., Portland, OR 97201, USA 

* Correspondence: Email: nadeau@pdx.edu; Tel: +15037958929. 

Abstract: Digital holographic microscopy provides the ability to observe throughout a large volume 

without refocusing. This capability enables simultaneous observations of large numbers of 

microorganisms swimming in an essentially unconstrained fashion. However, computational tools for 

tracking large 4D datasets remain lacking. In this paper, we examine the errors introduced by tracking 

bacterial motion as 2D projections vs. 3D volumes under different circumstances: bacteria free in 

liquid media and bacteria near a glass surface. We find that while XYZ speeds are generally equal to 

or larger than XY speeds, they are still within empirical uncertainties. Additionally, when studying 

dynamic surface behavior, the Z coordinate cannot be neglected. 

Keywords: holographic microscopy; microbial motility; Vibrio; reverse and flick; chemotaxis; 

tracking 

 

1. Introduction 

Quantifying bacterial motility is important for a fundamental understanding of processes related 

to virulence and biofouling such as invasion, chemotaxis, biofilm formation, and other collective 

behaviors such as swarming [1–4] For all of its importance, bacterial motility remains incompletely 

studied and poorly characterized; even a seemingly simple parameter such as average swimming speed 

is difficult to find for most species and strains. A database called BOSO-Micro was created in 2021 to 

catalog known motility data for self-propelled unicellular swimmers, emphasizing the need for data in 

this growing field [5]. 

Technical and computational barriers make quantification of bacterial motility challenging. 

Typical light microscopic techniques, such as phase contrast microscopy, show excellent resolution 

and signal-to-noise and are thus typically used for tracking individual bacteria. However, in typical 

microscopy applications the cells are confined to chambers tens to hundreds of µm thick. Errors may 
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be introduced both by the confinement and by the lack of Z-coordinate information. Methods for 

determining Z position are slow relative to the microorganisms’ swimming speed and usually permit 

tracking of only a few cells at a time [6], although recent computational approaches have permitted 

inference of Z coordinates from defocusing patterns [7–10]. 

Volumetric techniques, such as digital holographic microscopy (DHM), are emerging solutions 

to the problem [11,12]. DHM is a brightfield/phase volumetric technique that permits digital 

refocusing through sample depths of millimeters. However, its images tend to be noisy, and particle 

identification remains difficult. Some custom microscopes have been created that yield greater 

resolution than DHM alone; approaches include multiwavelength imaging and coupling DHM to other 

imaging modalities [13–19]. Other approaches rely upon computational processing for cell 

identification and tracking [20–23].  

In all cases, the data volumes required are very high, with a typical size of 0.5 Tb for an XYZ 

hyperstack of a 30-second recording at 15 frames/s. Most laboratories do not have the computational 

resources needed to process such data volumes on a regular basis. Most methods to reduce stack size 

either reduce cell count or resolution. Alternatives to full XYZ reconstruction, such as fitting 

holograms to scattering models [24], limit stack size but are at least as computationally intensive as 

reconstruction if the cells are not spherical. 

Of fundamental importance to quantifying motility is cell tracking via instantaneous or average 

speeds, total distance/displacement and cell trajectory or turn angles. Since bacterial motility is 

stochastic in nature, tracking either large numbers of cells or cells for long time periods is desirable to 

generate robust statistics. In general, most high throughput methods available for cell tracking have 

been developed for 2D tracking often with less reliable extensions to 3D tracking. This is due to a few 

factors. Many microscopes have a single plane of focus. A high-resolution objective provides images 

that demonstrate high signal to noise. While DHM data can provide 3D information on cell locations 

in unconstrained volumes, processing this data is computationally intensive and pre- and post-

processing of data remains unique to the dataset of interest prohibiting a “black box” high throughput 

approach.  

The purpose of this study was to develop methods to determine key motility parameters in free-

swimming bacteria while minimizing computational intensity. Rapid tracking of thousands of 10 µm 

organisms has been shown by Sheng et al. [25,26] Single nonpigmented bacteria represent a “no man’s 

land” where tracking requires manual tracking or computationally intensive procedures such as 

extensive denoising [27] or fitting to non-linear scattering models [28]. Depending on the dataset and 

signal-to-noise ratios, different tracking algorithms may confuse particles of interest with noise 

resulting in false positives and erroneous tracks. Tracking processes that work for objects of known 

size and shape may not work with motile particles of a similar size. A recent review details different 

methods of cell tracking of DHM data illustrates that methods tend to alter based on cell size [29]. In 

both these cases, it is important to identify whether computer generated tracks match the dataset. The 

method shown here allows researchers to make these comparisons and provide quality assurance for 

bulk processing. With this goal in mind, we make no attempt to quantify specific motility behaviors 

of the organisms in this study. We are merely interested in ascertaining what localization errors arise 

when tracking non-labeled cells ~1–2 µm in length. We use DHM to record from volumes of 263.25 

x 263.25 x 1200 µm in X, Y, and Z respectively, then track individual cells and ensembles of cells in 

both XY projections and full XYZ hyperstacks. The errors introduced by projecting the motion into 

XY are quantified for free-swimming organisms as well as those near solid surfaces. We used two test 
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organisms: Vibrio alginolyticus and Shewanella putrefaciens. Vibrio sp. And S. putrefaciens swim by 

means of a single polar flagellum and “reverse and flick” [30,31] motility. Vibrio represents some 

pathogens of great importance to human health (V. cholerae, the causative agent of cholera), as well 

as many species that are less dangerous to humans but which are pathogenic to marine organisms such 

as coral and fish. The role of motility to virulence in V. cholerae is intriguing, as non-motile mutants 

show 10-fold less pathogenicity than the wild type [32,33]. S. putrefaciens is a recently discovered fish 

pathogen [34,35] (and occasional opportunistic human pathogen [36]) for which the role of motility in 

virulence has not been explored. 

We find that in the case of determining average speeds that 2D tracking is generally sufficient. 

This is due to the formulaic and empirical nature of identifying 3D coordinates and calculating 3D 

speeds. However, we also show that knowledge of relative position in Z is valuable with the subset of 

bacterial motility as it relates to a solid surface. Not only are bacteria influenced by the surface presence, 

speeds calculated by the surface should be omitted when averaging unconstrained swimming speeds. 

2. Materials and methods 

2.1. Culture conditions 

An overnight culture of Vibrio alginolyticus YM4 (gift of R. Stocker, MIT) was diluted into BD 

DifcoTM Marine Broth (Thermo Fisher Scientific) and incubated at 30 ℃ until reaching an OD600 

reading ~0.2. Cultures were grown aerobically in 1 mL HARV bioreactors (Synthecon, Houston, TX) 

in both the vertical orientation (simulated microgravity) and horizontal orientation (normal gravity). 

Bubbles were removed to eliminate the possibility of turbulence. A semi-permeable membrane along 

the back of the bioreactor provides oxygenation. The chambers were rotated in both configurations at 20 

rpm for five hours before microbes were removed. OD600 readings upon removal corresponded to the 

mid-exponential growth phase. Vibrio were then diluted into 1 to 100 mL motility medium (300 mM 

NaCl and 5 mM MgCl2 (Macron Fine Chemicals), 50 mM Hepes and 5 mM glucose (Sigma-Aldrich)). 

Motility imaging occurred directly after removal. 

Shewanella putrefaciens (gift of Ken Nealson of Southern California) was maintained in Luria 

Broth. Overnight cultures at an OD600 reading of 0.3–0.4 were placed into a sealed sample chamber 

containing minimal medium for recording. 

2.2. Holographic microscopy 

The microscope used was a custom Mach–Zehnder design as described previously [37,38], where 

high-NA objectives were placed in both the science and reference beams. The microscope objectives 

used for the recordings shown here were Mitutoyo Plan Apo 50x long working-distance objectives 

with a numerical aperture (NA) of 0.55. The objective is infinity corrected so an achromatic field lens 

of 200 mm focal length is used to form the image on the CCD. Illumination was from a single-mode 405 

nm fiber-coupled diode laser (Thorlabs); diffraction-limited resolution is estimated at /2NA = 0.37 

μm in XY and 2/(NA)2 = 2.7 µm in Z. 

Data acquisition was performed using either Koala (LynceeTec, Lausanne, Switzerland) (Vibrio 

dataset) or a custom open-source software package, DHMx [39] (Shewanella dataset). Recordings for 

the Vibrio dataset were captured at approximate 7 fps for a total of 120 seconds. Recordings for the 
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Shewanella dataset were captured at 15 fps for 60 seconds. Reconstruction in phase was performed 

using the angular spectrum method [40] using custom Fiji plug-ins as previously described [41]. Phase 

reconstructions made use a reference hologram to remove noise [42]; this reference hologram was the 

median of all holograms in the recording. The lateral field of view was 263.25 x 263.25 µm for 2048 

x 2048 pixels, and the axial z-spacing was chosen to be 2 µm based upon the particle size and nominal 

axial resolution of the system. 

2.3. Data processing and analysis 

All manipulations were performed in FIJI [43]. Reconstructions for both samples were performed 

in phase. The Vibrio dataset required no further manipulation. The Shewanella dataset required median 

subtraction after phase reconstruction to remove excess noise.  

XYZT tracking was performed by creating an XYZT hyperstack and cell body center positions 

were recorded in Excel after manually focusing through Z. An example of this process can be seen in 

Figure 1. To limit the size of the hyperstack (hyperstacks constructed in this study average ~15 Gb in 

size), we used hyperstacks with a wide range in z (~100–300µm) for ~15 time points. Microbes were 

selected, tracked, then new hyperstacks were constructed with the same XYZ parameters for the next set of 

time points. In addition to Figure 1, our supplementary videos show the appearance of Vibrio (Supplementary 

Video 1) and Shewanella (Supplementary Video 2) as they swim in and out of focus. Analysis, including 

instantaneous and average speeds, was done in Microsoft Excel. Plots were constructed using Origin. 

 

Figure 1. A processed reconstruction. Each subsequent image from left to right show 

Shewanella cells coming into focus. The XY positions do not change.  

3. Results and discussion 

3.1. Comparison of 2D vs. 3D phenotypes and speeds 

Vibrio and Shewanella cells were tracked in 3D and their traces are shown in Figure 1. The Vibrio 

cells (Figure 1a) had an ~8 µm and ~40 µm (Figure 1b) displacement in Z, respectively. The 

Shewanella cell in (Figure 1c) had ~60 µm displacement in Z, while the cell in (Figure 1d) had a ~70 

µm displacement. The traces were limited to the time the microbe was in the field of view, which 

ranged from 3.5 to 6 seconds. The color bars indicate the progression of the microbe through time. The 

traces connect the observed data points with no smoothing. The Vibrio cells appear to have bigger 

jumps in their traces due to the lower framerate while the Shewanella cell traces were smoother due to 

both a faster framerate and no dropped frames. Although more cell traces were recorded, we have 
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chosen these for both the length of time tracked and to illustrate cells that moved little in Z vs. longer 

periods in Z. 

 

Figure 2. 3D cell traces. Top: Vibrio cell traces. Bottom (c-d): Shewanella cell traces. 

For the above cell traces, we calculated instantaneous speeds. Speeds were calculated using 

Equation 1: 

𝑣𝑥 =
𝑥𝑖+1−𝑥𝑖

𝑡𝑖+1−𝑡𝑖
         (1) 

Where 𝑣𝑥 was calculated as the change of the center of the cell body from frame to frame in the 

X-direction. Similar calculations were performed in the Y and Z directions. These speeds were then 

used to generate XY and XYZ speeds using Equations 2 and 3 respectively: 

𝑣𝑥𝑦 = √𝑣𝑥
2 + 𝑣𝑦

2        (2) 

𝑣𝑥𝑦𝑧 = √𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2        (3) 

We calculated instantaneous changes in speed from frame to frame and plotted these vs. time as 

seen in Figure 2. The error bars illustrate the uncertainty associated with tracking cell body centers. In 

the X and Y directions, the associated uncertainty comes from the total pixels divided by the field of 
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view. However, the Z-positions result in a larger uncertainty based on the Z-distance reconstruction 

of 2 µm. These uncertainties were used to calculate speeds by dividing by the change in time which 

varied between the Vibrio and Shewanella datasets.  

 

Figure 3. Plots showing instantaneous speed vs. time for the 3D cell traces shown in Figure 

2. Top (a-b): Speed changes for Vibrio. Bottom (c-d): Speed changes for Shewanella. 

Shaded regions correspond to XYZ velocities that are significantly higher XY velocities. 

These plots show that accounting for movement in Z influences speeds both formulaically and 

empirically. The way speeds are calculated in Equations 2 and 3 results in either 𝑣𝑥𝑦 = 𝑣𝑥𝑦𝑧 if 𝑣𝑧 =

0 or 𝑣𝑥𝑦 < 𝑣𝑥𝑦𝑧 if 𝑣𝑧 > 0. We can see this effect in Figure 2. In all cases, as predicted, 𝑣𝑥𝑦 ≤ 𝑣𝑥𝑦𝑧. 

Especially when considering the uncertainty introduced when calculating 𝑣𝑥𝑦𝑧 , in most cases 

instantaneous speeds are within the projected uncertainty. However, there are exceptions to this in 

Figure 2c-d, illustrated by the shaded regions. These regions show that 𝑣𝑥𝑦𝑧 speeds increased to 

~90–100µm/s. The 𝑣𝑥𝑦 speeds fell well below these values even when considering uncertainty. When 

compared with the cell traces in Figure 1c-d, these also correspond to substantial movement of the 

cells in Z. Together, these plots show that for fast-moving cells traveling through Z (speeds greater 

than ~90 µm/s), the changes in Z should not be neglected. 

When tracking cells over long time periods, often it is desired to calculate average speeds. These 

averages are summarized in Table 1.  
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Table 1. Summary of average speeds [µm/s]. 

Microbe 𝑣𝑥𝑦[µm/s]  𝑣𝑥𝑦𝑧[µm/s] 

a 17.37 19.25 

b 17.41 20.16 

c 46.48 72.93 

d 24.35 55.52 

From the Vibrio dataset, the average speeds between 𝑣𝑥𝑦  and 𝑣𝑥𝑦𝑧  were within projected 

uncertainty regardless of small or large displacement in Z. For the Shewanella dataset, although 𝑣𝑥𝑦𝑧 

appears much larger than 𝑣𝑥𝑦, these average speeds were also nearly within projected uncertainty (~± 

30 µm/s) due to the faster framerate. The Shewanella cells had a large displacement in Z which also 

makes this finding interesting. 

A common method to simplify cell tracking is to construct 2D projections from 3D 

reconstructions, removing fine Z coordinate information. They may be constructed using FIJI. For 

example, using the max project function takes the maximum intensity value within a specified Z-range 

for each XY position. Repeating this process through time can generate high signal XY traces, however, 

in the process, Z-coordinate information is removed. Additionally, cell centers can be obscured as this 

method might occasionally project noise instead, especially for cells of the size used in this study. 

Other complications arise when cells trace or cross paths in Z, a problem that is exacerbated with larger 

cell sizes or crowded datasets. Taute et al. [44] also compared differences between 2D projections and 3D 

speeds. However, they estimated a particle’s Z location using a diffraction pattern library ignoring 

localization errors and acquisition frequency. In this work, we have identified the source of these 

localization errors and shown how these errors influence average 2D and 3D speeds.  

In the following, we discuss further the empirical uncertainty associated with the Z-coordinate. 

As others have noted [45,46], reconstructions result in point-spread functions (PSFs) (or volume-

spread functions in XYZ). Without any post-processing, PSFs cause microbes to appear with a larger 

thickness in z than the cell thickness would indicate. For example, Vibrio cells are ~2 µm in length 

with ~0.5 µm thickness. PSFs can cause the length or thickness to appear much longer resulting in 

apparent lengths/thicknesses of ~4–6 µm (Figure 4). Reconstructing at smaller Z intervals does not 

resolve this issue. Post-processing, such as deconvolution, can resolve ambiguity of cell position but 

can result in lost cell shape information due to thresholding and may be computationally intensive. In 

addition, although it is routine in fluorescence microscopy, deconvolution remains difficult in DHM, 

with only a few reports published [47,48] and no implantation in standard image processing software 

packages. This effect can be quantified by examining changes in X, Y, and Z displacements. In the 

case of the Shewanella cell, X and Y displacements range from 0 to 5 µm with an associated 

uncertainty of 0.13 µm. In contrast, Z displacements range from 0 to 6 µm with an associated 

uncertainty of 2 µm. For a fast-swimming microbe, changes in Z are greater and therefore cause 

associated 𝑣𝑧 speeds to be subject to even more uncertainty. 
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Figure 4. PSFs in XZ vs. XY. Top: simulated maximum projections for a 1µm sphere with 

no noise and optimal reconstruction parameters. Bottom: real data showing Shewanella 

cells maximum projected in XZ and XY.  

Motility analysis is also highly dependent on framerate. Ideally, higher framerates are desirable 

for capturing precise movement. However, in practice, high framerates result in large datasets that are 

made even larger after the reconstruction process. Acquisition rates vary between DHM set-ups. In the 

datasets used in this study, one was acquired at a near constant framerate of 15 fps while the other had 

dropped frames resulting in an acquisition rate of approximately 7 fps. When comparing the 

differences in 2D and 3D tracking, the impact of the framerate at which the data were acquired cannot 

be neglected from both quantitative and qualitative perspectives. We have shown above how the frame 

rate influenced instantaneous and average speeds. Framerate also impacts qualitative explanations of 

microbial behavior. This can be seen from the course traces in Figure 1. Figure 1a-b show sharp 

changes trajectory while Figure 1c-d, in contrast, show smooth swimming trajectories. Different 

studies have coped with lower framerates by introducing smoothing functions [45], however, since 

bacterial movement can be impacted by a variety of environmental factors, these smoothing methods 

must be treated with caution. In this study, the higher framerate ultimately resulted in large 

uncertainties in 𝑣𝑧  compared to 𝑣𝑥  and 𝑣𝑦 . This finding could suggest that lower framerates are 

desirable as larger changes in time blunt the impact on 𝑣𝑧. However, this should also be treated with 

caution. For instance, consider the physical and mechanical properties of the microbe. Microbes with 

a single polar flagellum such as microbes in this study, can execute the “run-reverse” or “run-reverse-

flick” phenotype. If a microbe is moving fast enough, this behavior might go completely unobserved 

with a low framerate. 

3.2. Importance of relative positions in Z–surface behavior 

3D tracking of cells allows visualization of dynamic cell behavior by surfaces. At best, a 2D 

projection provides motility behavior either on a surface or at a set distance from the surface but does 
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not show dynamic motility changes as a cell approaches a surface. Theoretical models predict cell 

motility to change as cells approach a surface, namely that speeds would decrease, and trajectories 

may shift from straight swimming to circular swimming as cells are subject to surface forces [49,50]. 

In some cases, cell flagella can adhere to surfaces resulting in fast-moving tight circles [51]. Figure 5 

shows both phenomena as we observed using DHM. Although we were unable to resolve flagella in 

this study, the presence of the flagella can be inferred based on the movement [52] and the flagella 

length is within known values of Vibrio flagellar length [53].  

 

Figure 5. Vibrio cell traces on a surface showing tight circles (left) and a wide circle (right). 

The left cell trace shows a cartoon cell overlaid to further illustrate the behavior. 

In this work, we tracked a Vibrio and Shewanella cell (Figure 6 a and c) moving in an 

unconstrained volume to a surface. Resolving the precise location of a surface in Z for a surface using 

DHM remains challenging. In this study, the surface plane was approximated using a few metrics. 

Analysis of XYZT hyperstacks shows microbes coming into and out of focus while scrolling through 

Z (Refer again to Supplementary Video 1 and 2). However, once the field of view passes through the 

surface, microbes no longer come into and out of focus, rather the cell Airy rings continue to enlarge. 

Taking this information together provides a rough estimate of the surface location. A second metric is 

the presence of either non-motile cells or cells exhibiting the circular phenotypes (pictured in Figure 5) 

or moving slower. This allowed an estimate of the surface location within ~2 µm. Molaei et al. [54] 

also reported a confidence within 2µm, for their work. This distance is subject to error based on the 

reconstruction distance as stated previously. Interestingly, the reduction in motility due to surface 

effects can result in organisms remaining within the field of view for longer residence times. The 

microbe shown in Figure 6a was in the field of view and able to be tracked for ninety seconds. Figures 6b, 

d show instantaneous speeds with the color map showing how the instantaneous speeds visually 

correlate with position. The shaded boxes correspond to surface regions. It is important to note that 

recording 𝑣𝑥𝑦𝑧 provides important information regarding the cell phenotype. Figures 6b, d shows how 

𝑣𝑥𝑦 and  𝑣𝑥𝑦𝑧 overlap as expected when 𝑣𝑧 = 0. Since there is no change in Z along the surface, this 

is to be expected. However, at distances away from the surface, 𝑣𝑧 is much higher. In fact, in 6d, 

𝑣𝑥𝑦𝑧 >  𝑣𝑥𝑦 even considering the uncertainty introduced by the Z reconstruction distance.  
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Figure 6. (a-b) Vibrio cell trace approaching/leaving a surface with (b) changes in 

instantaneous speeds over time. Error bars not included for ease of reading. (c) Shewanella 

cell trace approaching a surface with (d) changes in instantaneous speeds over time. The 

shaded region marks the velocities corresponding to surface swimming.  

These results show that calculating and including 𝑣𝑧 in 𝑣𝑥𝑦𝑧 is important for quantifying surface 

behavior. Goto et al. [49] and Bianchi et al. [55] showed a correlation between speed and position from 

the surface. To understand these behaviors in greater detail, a precise understanding of how speeds of 

microbes dynamically change as they approach a surface is needed along with a thorough 

understanding of the uncertainty of these speeds when matching these behaviors with theoretical 

models. For instance, Goto et al. [49] predicted that for mono-flagellated species, swimming speed by 

a surface is influenced by flagellar length. To categorize the difference in these speeds, researchers 

should consider what resolution and framerate are necessary to study these behaviors to minimize 

localization uncertainty. Additionally, our results show that when considering overall average speeds, 

instantaneous speeds calculated while cells are ~10 µm of the surface should be removed from 

unconstrained volume free-swimming statistics.  

Quantifying microbial behavior next to surfaces has been approached in different ways. An early 

method of studying surface behavior used a microscope with a moving chamber to record positions of 

microbes but with a limited field of view and difficulty in remaining fixed on microbes of interest [56,57]. 

Bianchi et al. [58] has approached the difficulty of quantifying surface behavior in E. coli by using an 

in DHM set-up with multiple wavelengths to obtain volumetric information. To control for known 

distance of cells from the surface, they used optical tweezers to place cells within 10 µm of the surface. 



395 

AIMS Biophysics  Volume 8, Issue 4, 385–399. 

The released cells were then caught by the surface and exhibited circular swimming. In this way, they 

were able to measure the pitch of the cell against the surface. While our experimental set-up does not 

have this level of precision, holograms and in turn their reconstructions, provide a comprehensive 

picture of the qualitative behavior of many cells with both a large field of view and depth of field.  

Microbes exhibit different phenotypes depending on their environment such as: an unconstrained 

volume [45], a narrow channel such as a microfluidics device [59,60], along solid surfaces [49,61], or 

non-solid sufaces [55,62]. Depending on the cell type and number of flagella, cells can exhibit “run 

and tumble,” “run-reverse” or “run-reverse-flick” in unconstrained volumes [63]. Cells that move from 

an unconstrained volume to swim along a solid surface may be captured by surface forces. If they are 

unable to break away from the surface, they may eventually transition to a sessile or non-motile state. 

If free-swimming cells sense these non-motile cells through chemotaxis or quorum sensing, they might 

join these cells to form biofilm [60,64]. Biofilm is often associated with increased virulence and 

pathogenicity. Accounting for Z movement could shed more light on mechanisms for biofilm 

formation. 

Interestingly, surface behavior itself can refer to many different phenotypes. In this study, we 

have shown the behavior of microbes in an unconstrained volume approaching a solid surface. 

However, microbes have also been shown to move along solid surfaces, such as agar plates. In these 

instances, cells grow lateral flagella or pili and “crawl” along the surface either by swarming, gliding 

or twitching [65,66]. While these phenomena are important to study as well, by tracking colony 

movement along plates, these studies circumvent the immense difficulty associated with 3D tracking. 

4. Conclusions 

In our work, we have used DHM to show the importance of the Z coordinate. Many motility 

studies have used 2D tracking to report average speeds at various temperatures and changes in speed 

due to environmental factors such as chemoattractants. Although 𝑣𝑥𝑦𝑧 is generally either equal to or 

greater than 𝑣𝑥𝑦 , we have demonstrated overall average speeds cell speeds are generally within 

empirical uncertainties. Fast moving cells (cells moving faster than > 90 µm/s) generate more 

uncertainty based on the Z resolution computationally available. However, there are specific cases 

where 2D tracking is not sufficient, one of those being in the study of dynamic surface behavior. 

Surface behavior lowers speeds making any averages that include these speeds artificially low. Finally, 

it is important to consider and carefully account for framerate when recording motility information.  
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