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Altruistic Punishment Can Help Resolve Tragedy of
the Commons Social Dilemmas

Garrison W. Greenwood
Department of Electrical & Computer Engineering

Portland State University
Portland, OR 97207–0751 USA

Email: greenwd@pdx.edu

Abstract—Social dilemmas force individuals to choose between
cooperation, which benefits a group, and defection which ben-
efits the individual. The unfortunate outcome in most social
dilemmas is mutual defection where nobody benefits. Researchers
frequently use mathematical games such as public goods games to
help identify circumstances that might improve cooperation levels
within a population. Altruistic punishment has shown promise
in these games. Many real-world social dilemmas are expressed
via a tragedy of the commons metaphor. This paper describes an
investigation designed to see if altruistic punishment might work
in tragedy of the commons social dilemmas. Simulation results
indicate not only does it help resolve a tragedy of the commons
but it also effectively deals with the associated first-order and
second-order free rider problems.

I. INTRODUCTION

Social dilemmas arise whenever individuals must choose
between self-interests and collective interests. The study of
social dilemmas has dramatically increased over recent years
because they describe many real-world pressing problems such
as overfishing, use of public lands and energy consumption.
In such social dilemmas individuals can choose to “cooperate”
by putting their self-interests aside for the collective good or
“defect” by putting their self-interests first even if it means
the collective benefits are reduced. Social dilemmas have
two conflicting characteristics: (1) individuals who defect get
higher rewards regardless of what others decide, but (2) mutual
cooperation yields greater returns for all individuals than if
everyone defects. The unfortunate outcome of most social
dilemmas is everyone defects and the group suffers.

Mathematical games provide an ideal framework for study-
ing social dilemmas. These N -player games (N > 2) start with
a random allocation of individuals in a population choosing to
cooperate or defect and then observing how those population
choices evolve over time. The objective is to gain insight
into why humans make particular choices. The most widely
studied such game is a Public Goods Game (PGG). Another
less studied game (but the author would argue a more realistic
social dilemma model) is the Tragedy of the Commons (TOC).
The difference between these two social dilemmas will be
discussed in the next section.

Nowak [1] posited five rules that could promote cooperation
in populations: direct reciprocity, indirect reciprocity, network
reciprocity, kin selection, and group selection. These rules
possibly explain the emergence of cooperation in pairwise

interactions but they are practically too simplistic to explain
it in large groups. A more holistic approach is needed. For
example, indirect reciprocity, which is based on reputation,
probably has little effect after 2 or 3 interaction rounds. Direct
reciprocity, where individuals make decisions in reaction to
other players’ previous interactions, are unlikely to explain
how an individual makes decisions in a group where say half of
the other individuals cooperated while the other half defected.
Moreover, Nowak’s rules only deal with personal perspectives.
In other words, they are responses to past decisions other play-
ers made; they do not consider deliberate actions players might
take to influence the future choices other players make. One
such deliberate action is altruistic punishment where players
punish others who did not cooperate in previous rounds, while
incurring a personal cost to inflict this punishment.

Altruistic punishment has been studied in PGGs, but little
work has explored how it affects TOC social dilemmas. TOC
is fundamentally different than a PGG so it is interesting to
see how altruistic punishment might help resolve a TOC. This
issue was investigated and our results are reported in this
paper. These results indicate that altruistic punishment can help
resolve a TOC.

The paper is organized as follows, In Section II the differ-
ence between a PGG and TOC are explained and some past
work on altruistic punishment in PGGs is presented. Section
III describes our model while Section IV presents experimental
results. Section V discusses how altruistic punishment should
be implemented to help resolve TOC social dilemmas and
provides recommendations for future work.

II. BACKGROUND

Altruistic punishment has been applied to PGGs but not in
a TOC. These two social dilemmas have a prisoner’s dilemma
schema, but they are not the same so it is important to explain
the difference. The evolution of player strategies in a finite
population is governed by discrete replicator equations which
are also described in this section.

A. PGG and TOC

In each round of a PGG N players independently decide
whether to cooperate by contributing a fixed amount y to a
common pool or defect by contributing nothing. An external
benefactor multiplies the pool by a factor r < N and



then equally distributes this increased amount to every player
whether or not they contributed. Defectors are therefore free
riders because they benefit from the contributions of others.

In each round of a TOC N players use or consume a fixed
resource. This resource is periodically renewed. Cooperators
limit their consumption to help preserve the resource whereas
defectors maximize their consumption regardless of how the
resource is affected. But by limiting their consumption coop-
erators make more of the resource available for the defectors.
Thus defectors free-ride by exploiting the goodwill of others.
A TOC is considered “resolved” if the resource remains
viable—i.e., it is preserved for future use. A population of
all cooperators resolves a TOC.

Definition 1. A good is non-excludable if everyone can use
it.

An example of non-excludability is national defense. Ev-
eryone benefits from national defense whether or not they pay
the taxes needed to finance it. Cooperators pay taxes whereas
defectors are free riders who pay little or no taxes.

Definition 2. Diminishable goods are finite and can be com-
pletely depleted unless replenished.

One characteristic of diminishable goods is use by one
individual denies use by another individual. A good example
is fisherman in the Tasman Sea. The amount of fish is finite so
any fish caught by one fisherman cannot by caught by another
fisherman. Cooperators voluntarily limit the amount they catch
to keep the fish population viable. Defectors are free riders
because they exploit the benevolence of cooperators because
there are now more fish available to take.

The inevitable outcome for a PGG or a TOC is everybody
defects. Both a PGG and a TOC are non-excludable because
everyone is allowed to participate. However, a PGG is not
diminishable because regardless of the number of rounds and
regardless of the amount contributed, it is assumed the external
benefactor always has sufficient funds to increase the pool
amount and distribute it. Conversely, in a TOC the resource
is diminishable because it is finite and, unless replenished,
will eventually become depleted. That difference may appear
subtle, but the distinction is important: players are rivals only
in the TOC. In a PGG a payoff given to one player does
not reduce the payoff to another player because the pool is
distributed equally. However, in a TOC the shared resource is
finite so any amount consumed by one player is not available
to another player. TOC is thus a zero-sum game while a PGG
is not.

B. Altruistic Punishment

Diminishable goods and the associated rivalry are important
distinctions between a PGG and a TOC social dilemma. Those
distinctions lead to different motivations for punishment.

Definition 3. Altruistic punishment is punishment inflicted
on free riders even if costly to the punisher and even if the
punisher receives no material benefits from it.

The motivation behind punishing defectors is to convince
them it is better to cooperate. In a PGG the motivation is purely
self-serving: the more others cooperate the larger the pool and
the higher the payoff to existing cooperators. Conversely, the
motivation for punishment in a TOC is for the collective good:
the more others cooperate the higher the likelihood the public
good will be preserved. This raises an important question.
If the motivation behind the punishment is different in the
two social dilemmas, will punishment have a similar affect on
cooperation levels in both social dilemmas?

Altruistic punishment is easily added to a PGG. There
are now three strategies: cooperators (C) who contribute an
amount y to a common pool; defectors (D) who contribute
nothing; and punishers (P ) who also contribute y but, at some
small cost α > 0 to impose a fine on defectors. Let π(z) be
the return to a player z ∈ {C,D,P}. Then with a population
size N and multiplication factor r the payoffs each round are

π(z) =


rky/N −mβ defector
rky/N cooperator
rky/N − α punisher

(1)

where k is the number of cooperators, m is the number
of punishers, β is the imposed punishment (e.g., a fine)
per punisher and α is the fixed cost paid for inflicting a
punishment.. Notice the punisher acts like a cooperator, but
receives a slighter lower return because of the cost paid to
inflict punishment on the defectors. The returns are identical
if there are no defectors in the population because the cost is
incurred if and only if punishment is administered.

There are a number possible PGG variations. For example,
in Eq. (1) the punishment for a defector depends on the
number of punishers but the cost α to the punisher is the
same regardless of how many defectors are punished. This
cost could be changed to say `α where ` is the number of
defectors. Also, punishment could be added to cooperators to
address the so-called 2nd order free rider problem with an
associated additional cost to the punisher. (These additional
punishment forms and costs are incorporated into our TOC
experiments.)

Human experiments have shown altruistic punishment has
a positive affect on cooperation levels in PGGs. Fehr and
Gächter [2] had 240 university students participate in two
sets of 6-round PGGs: one set with punishment and one set
without. They found that 72% of above average contributors
punished below average contributors. They found cooperation
levels were considerably higher (≈ 40%) with punishment re-
gardless of whether the set of games with punishment preceded
the set without punishment or vice versa. Furthermore, they
found contribution levels either remained constant or slightly
increased over time with punishment but tended to decrease
over time with no punishment1.

1Fehr and Gächter also believed Nowak’s 5 rules were too simplistic to
explain group behavior.



Fig. 1. A 2-simplex showing two trajectories representing the evolution of an
infinite population of three strategies. The green trajectory starts at point A and
terminates a fixed point on the x1–x2 boundary. The final population mixture
contains only type 1 and type 2 strategies with more type 2 strategies. The red
trajectory starts at point B and ends at the x3 vertex. This final population
has been taken over by type 3 strategies.

C. Replicator Equations

How do we represent the evolution of the population over
time? A convenient representation is a simplex, Figure 1 shows
a 2-D simplex, which is suitable for three strategies. Let
xi ∈ [0, 1] be the frequency of strategy i where

∑
i xi = 1.0.

Each point in the simplex represents a mixture of three
strategies in an infinite size population—i.e., every point has
coordinates [x1 x2 x3]. Trajectories in the simplex reflect how
the population evolves over time. This evolution is governed
by replicator equations which are 1st-order differential equa-
tions of the form

ẋi = xi

(
Fi − F̄

)
(2)

where Fi is the fitness of strategy i and F̄ is the mean fitness
of the population. If the term in parenthesis is positive, then
strategy i increases; if negative it decreases; and if zero it does
not change. The population size is infinite so a trajectory can
pass through any point in the simplex.

Figure 1 shows two trajectories. Trajectories are smooth
because their path is described by a differential equation. The
green trajectory begins at point A and terminates on the x1–
x2 boundary. This is a fixed point where the final population
consists of (mostly) x2 strategies but some x1 strategies. The
red trajectory begins at point B and terminates at the x3 vertex.
That final population consists solely of x3 strategies.

Human populations, however, are always finite. Let ki, i ∈
{C,P,D} be the number of players choosing strategy i. In a
finite population of size N the frequency of strategy i at time
t is pt

i = ki/N . Then the population evolution over time is
now given by the discrete replicator equation

pt+1
i = pt

i

(
πt

i

π̄t

)
(3)

Fig. 2. A 2-simplex for a finite population with N = 20. Only the points
shown represent an integer number of strategies where

P
i ki = N . A

trajectory can only move between these points.

where where πt
i is the return for strategy i at time t. The term

inside the parenthesis is the ratio of the return of strategy i to
the average population return π̄t. If the term is greater than
1.0 then strategy i grows in the population; if equal to 1.0 it
remains the same; and if less than 1.0 it decreases.

But there is a problem. Eq. (3) can be rewritten (after
multiplying both sides by N ) as

kt+1
i = kt

i

(
πt

i

π̄t

)
(4)

The problem is there is no guarantee the term in parenthesis
is an integer which means the left hand side of Eq. (4) may
not be an integer. Clearly k1 + k2 + k3 = N is required.
To overcome this problem the quantization algorithm below
(from [3]) was used. The algorithm takes {pt+1

i } and N and
returns k′

i where
∑

k′
i = N .

1) Compute

k′
i =

⌊
Npi + 1

2

⌋
, N ′ =

∑
i

k′
i

2) Let d = N ′−N . If d = 0, then go to step 4. Otherwise,
compute the errors δi = k′

i −Npi.
3) If d > 0, decrement the d k′

i’s with the largest δi values.
If d < 0, increment the |d| k′

i’s with the smallest δi

values.
4) Return [k′

1 k′
2 k′

3] and exit.

For this investigation we use a 2-D simplex to represent the
population evolution. But in finite populations only certain
points are valid because there are only a finite number of
points where

∑
i ki = N . Figure 2 shows a 2-D simplex for

a finite population with N = 20. The trajectories showing the
population evolution are piecewise linear since only transitions
between these points are allowed.

III. THE TOC MODEL

The model has N = 20 players. We adopt the same notion
used in the previous section where ki is the number of players



in the population using strategy i ∈ {C,P,D} and pt
i = ki/N

is the corresponding frequency at time t. (For convenience the
t will be dropped when there is no ambiguity.) Each round
each player consumes an amount of a finite resource, which is
assumed to have an initial capacity 50000 “units” (an arbitrary
unit of measure). C and D players consume 40 units while
D players consume 50 units. The slight higher consumption
rate for D players reflects a greedier, self-serving approach.
After 10 rounds the remaining resource capacity is increase by
20%. If the population is composed entirely of C or P players
the total consumption over 10 rounds would be 20 · 10 · 40 =
8000 units. A 20% increase boosts the capacity to slightly
over 50000 before starting the next 10 rounds. This slight
increase over 50000 keeps the resource capacity viable even
if a small number of defectors are present. The game continues
for a fixed number of rounds or until the resource is depleted,
whichever comes first.

The return is 39 units per round for C or P players and
82 units per round for D players. There is a strong incentive
to consume more since the return for defecting is more than
twice that of not defecting.

IV. EXPERIMENTAL RESULTS

All simulations were conducted with N = 20. The rewards
for each strategy i were

π(i) =


82− k2β defectors
39 cooperators
39− ck3α punishers

(5)

where β is the defector’s punishment and α = 1.0 is the
cost a punishers pays. The constant c equals 1 if there are
defectors in the population or 0 otherwise. This constant
ensures punishers pay costs only when defectors are present.
Notice punishments and costs are additive since each punisher
imposes a punishment β on a defector and pays a cost α for
every defector punished.

The returns in Eq. (5) are slightly different from Eq. (1)
because the former is for a TOC game and the latter for
a PGG. The returns in a PGG are based on a contribution
amount y, a multiplication factor r and the frequency of
cooperators. In the TOC the constants 82 and 39 represent
player consumption rates which only depend on the strategy
played. The punishment for defection is the same in both
games. Eq. (5) has an additional penalty for cooperator free
riding and a corresponding additional cost for the punisher.

Figure 3 shows the population evolution for an initial strat-
egy distribution of [p1 p2 p3] = [0.35 0.35 0.30] corresponding
to k1 = k2 = 7 and k3 = 6. The replicator equations show
for low β values the punishment isn’t high enough to prevent
defectors from taking over the population. The punishment
becomes high enough to coerce defectors to switch strategy
as β approaches 7. The trajectory with β = 7.1 terminates
at an interior fixed point. (Fixed points are discussed in the
next section.) The trajectory with β = 10.0 terminates at
the p1–p2 boundary which means there are no defectors left

Fig. 3. Evolution of a finite populations (N = 20) for various punishment
values (β). Punisher cost is α = 1. Initial distribution for all trajectories is
[p1 p2 p3] = [0.35 0.35 0.30] which corresponds to k1 = k2 = 7 and
k3 = 6. Payoffs are 39, 39 and 82 for C, P and D players respectively. For
β ≈ 7 or less defectors eventually take over the population.

in the population. Consequently, c = 0 yielding the same
payoffs for a punisher and a cooperator. In that case there
is no distinction between the two players and the TOC was
completely resolved.

Figure 4 shows just two trajectories from Figure 3. The
black dashed line is parallel to the p2–p3 boundary. Every
point on this dashed line has p1 = 0.35 (k1 = 7). Similarly
the red dashed line is parallel to the p1–p3 boundary and every
point on it has p2 = 0.35. Notice the trajectory with β = 7.1
exactly overlaps the red dashed line. This means the number of
punishers did not change from the initial value of k2 = 7. Thus
all defectors who switched strategies became cooperators. The
trajectory with β = 10.0 intersects the p1–p2 boundary to the
right of where the dashed black line intersects that boundary
indicating the cooperator frequency increased. But it intersects
to the left of where the red dashed line intersects indicating
the punisher frequency also increased. Thus in this case some
defectors switched to cooperators while others switched to
punishers2.

There are actually two ways of inflicting more punishment
on defectors: fix k2 and increase β or fix β and increase
k2. To explore this latter case more thoroughly we conducted
an experiment with various initial values of k2 while fixing
the initial value of k3 at 7. For all runs β = 6.9 which
Figure 3 indicates was too small to prevent the population
from being taken over by defectors. Figure 5 shows 7 and
even 8 punishers were not enough to prevent the take over
by defectors. However, for k2 ≥ 9 the population contains
enough punishers to coerce defectors to switch strategies.

2The initial population had k1 = 7, k2 = 7 and k3 = 6 whereas the final
population had k1 = 11, k2 = 9 and k3 = 0.



Fig. 4. Evolution of a finite populations (N = 20) for β = 7.1 and
10.0. Dashed lines represent constant strategy frequencies for p1 (black) and
p2 (red). The initial distribution is [p1 p2 p3] = [0.35 0.35 0.30]. These
trajectories are the same as those in Figure 3.

Fig. 5. Effect of varying the frequency of punishers with fixed punishment
β = 6.9 and k3 = 6 (cf., Figure 3). Numbers indicate the initial number of
punishers. Punisher cost is α = 2.

V. DISCUSSION

The 2-D simplex was used for trajectories showing how
strategies evolve in the population. These trajectories were
generated from the discrete replicator equations. Strategy
frequencies will not change any further if the trajectory hits
a fixed point. This simplex contains several fixed points. For
instance, it is easy to prove every vertex is a fixed point. All
interior fixed points are caused by the quantization process.
Consider the red trajectory in Fig 3. That trajectory hits a
fixed point at pi = [0.528 0.341 0.131] which corresponds to
k1 = 10, k2 = 7 and k3 = 3. Plugging those pi values into the
quantization algorithm returns the same population mixture.
The location of these interior fixed points will change as N
increases and completely disappear as N → ∞. However,
there are some natural fixed points on one simplex boundary

(other than at the vertices) which do not disappear and the
exact number grows with N . For infinite population sizes every
point on this boundary is a fixed point.

Theorem. Every point on the p1–p2 boundary of the 2-D
simplex is a fixed point.

Proof. Suppose at time τ a trajectory intersects a point on the
p1–p2 boundary. Then k3 = 0 and by Eq. (4) remains so for all
t ≥ τ . This makes c = 0 in Eq. (5) so the return to a punisher
or a cooperator is the same. The proof follows because with
identical returns there is no incentive to change strategies.

Referring back to Figure 3, the initial population mixture
was [p1 p2 p3] = [0.35 0.35 0.30]. β = 6.9 wasn’t a sufficient
punishment to prevent defectors from eventually taking over
the population. This poses an interesting question: if the
punishment were subsequently increased would this induce
defectors to switch strategies?

To investigate this issue further an experiment was con-
ducted where punishers doubled the punishment if p3 exceeded
0.35. The results are shown in Figure 6. The replicators
equations predict after an initial decrease in defectors their
number increased again until they take over the population
(green trajectory). A second experiment (red trajectory) in-
vestigated what would happen if the punishers immediately
doubled the punishment if there was any increase in defector
frequency. In this case, after an initial increase in defectors,
they rapidly decreased until a fixed point was reached. This
suggests if punishers want to prevent defectors from taking
over a population, then they shouldn’t wait too long before
increasing the punishment.

In this last experiment β was doubled to stop the growth
of defectors. That may seem excessive since Figure 3 shows
β = 6.9 wasn’t sufficient to stop defector growth but β = 7.1
was sufficient. Notice the trajectories where defectors prevail
move towards the p2–p3 simplex boundary and then up to
the p3 vertex. In other words, the number of punishers is
decreasing. Consequently, the punishment per punisher must
increase sharply to stop defector growth because there are
fewer punishers in the population.

Cooperators limit their consumption of the shared resource
for the good of the group. This allows the resource to replenish
itself, thereby keeping it viable. Defectors are free riders.
They may consume more of the shared resource by free
riding on cooperators who want to preserve the resource. The
experimental results show punishment can effectively reduce
the number of defectors in a finite population, but if and only
if the punishment is sufficiently large enough. This can be
achieved two ways: either keep the same number of punishers
in the population and increase the punishment level or keep
the punishment level the same but increase the number of
punishers. In both cases the defectors are reduced.

But there is another type of free rider. Altruistic punishment
comes with a cost to the punisher, which reduces his return.
Cooperators who do not punish free ride on punishers. That
is, they reap the benefits of fewer defectors in the population,



Fig. 6. Effect of adapting β. The dashed trajectory is the same trajectory
for β = 6.9 from Figure 3 included for reference. Initial distribution is
[p1 p2 p3] = [0.35 0.35 0.30]. β is doubled when p3 ≥ 0.35 (green
trajectory) or p3 > 0.30 (red trajectory).

but they let punishers pay the associated cost. This is referred
to as the second-order free rider problem.

Punishment effectively handles the first-order free rider
problem—i.e., defector free riding—so it is reasonable to as-
sume it would also handle the second-order free rider problem.
Now cooperators are punished for not punishing defectors.
Each punisher pays a cost η to reduce a cooperator’s return
by γ. The new returns for a strategy i are

π(i) =


82− k2β defectors
39− ck2γ cooperators
39− c[(k3α) + (k1η)] punishers

(6)

The punishments and costs can be summarized as follows:
1) defectors get punished β by each punisher
2) cooperators get punished by γ by each punisher
3) punishers pay a cost α for each defector punished plus

a cost η for each cooperator punished.
4) if there are no defectors c = 0 to remove all costs and

punishments
Figure 7 shows how punishing cooperators who don’t pun-

ish defectors helps resolve the second-order free rider problem.
The defector punishment was β = 6.9 with a cost α = 1.0.
The green trajectory has γ = 0.0 so there is no cooperator
punishment. (This is the same as the green trajectory depicted
in Figure 3). The red trajectory shows a cooperator punishment
of γ = 2.2, with a cost to the punisher of η = 0.1 The
defectors are rapidly switching to punishers who eventually
take over the population—i.e., p2 = 1.0 and p1 = p3 = 0.0.
But a population of all punishers has the same affect on the
shared resource as does a population of all cooperators; no
defectors, no punishment costs so the returns are identical.
Punishing defectors resolves the first-order free rider problem
and punishing cooperators who don’t punish resolves the

Fig. 7. Effect of punishing cooperators with punisher cost η = 0.1. γ
is punishment to cooperator. Defector punishment is β = 6.9). γ = 0.0
trajectory is same trajectory as the green trajectory from Figure 3.

second-order free rider problem. More importantly, this dual
punishment approach resolves the TOC at the same time.

In finite populations discrete replicator equations predict
strategy evolution but some form of quantization is necessary.
Quantization can produce fixed points in the simplex interior.
Interior fixed points always have k3 ≥ 1. The TOC is only
partially resolved in this case, which can prove problematic.
The defectors that remain will continue to over-consume the
shared resource and, unless the replenishment rate (20% after
10 rounds in these experiments) is sufficient, the resource
will eventually become depleted. Under those circumstances β
should be increased to force a complete resolving. An example
is shown in Figure 3. β = 7.1 resulted in the population
reaching an interior fixed point whereas β = 10.0 completely
purged defectors from the population.

Defectors always do better in social dilemmas regardless
of what others do. The simulation results show altruistic
punishment can help resolve a TOC. These results are consis-
tent with previous studies where it was shown punishment is
most effective in iterated scenarios where group memberships
don’t change [4]. But there still is an open question: why do
individuals choose particular strategies in a TOC? Defectors
may be motivated purely by self interest. Other individuals
may choose cooperation because they feel morally obligated to
preserve a finite resource. But why would individuals choose
to be a punisher, especially if punishment is costly?

Unfortunately replicator dynamics will probably not be
very helpful in getting an answer. Replicator equations only
describe how strategies in a population evolve over time. There
is no mutation involved so new strategies cannot emerge and
lost strategies cannot reappear. Evolution is dictated strictly
in terms of fitness relative to the average population fitness.
Put another way, replicator equations only provide proximate
causes, not underlying reasons. For instance, Figure 7 shows



punisher growth. But to get this growth punishers had to
address both the first-order and the second-order free rider
problem and with high enough punishment levels. Punisher
growth occurs if and only if the cost incurred is less than
the punishment inflicted—i.e., β/α > 1 and γ/η > 1. Note
these punishment-to-cost ratios are necessary but not sufficient
conditions. Recall the punishment inflicted depends on the
number of available punishers (see Figure 5). Natural selection
will still favor defectors or cooperators if punishers are rare.
Replicator equations also do not explain why an individual
decided to be a punisher in the first place.

The human experiments conducted by Fehr and Gächter [2]
may provide some proximate explanations. Subjects partic-
ipated in a PGG and afterwards recorded their anger and
annoyance at free riders. They found subjects who contributed
more were far more likely to be angry at free riders. They were
also more likely to retaliate by inflicting punishment. Selp et
al. [5] found that just witnessing non-cooperative behaviors
provided the “extra fuel” needed for people to engage in costly
punishment. Prior work by this author [6] showed that both
anger and guilt are present in TOC social dilemmas.

These results regarding the role emotions play in social
dilemmas have profound implications. In the past researchers
have focused on Nowak’s five rules as the genesis of coop-
erative behavior—e.g., kin selection or reciprocity are essen-
tial mechanisms. Those mechanisms may provide insight for
pairwise interactions, but not group dynamics. For example,
directory reciprocity is the underlying mechanism in the tit-
for-tat strategy in a 2-player iterated prisoner’s dilemma game.
But now consider a 5-player PGG where 2 players cooperate
and the other 2 defect. It is not obvious in this case how direct
reciprocity helps the 5th player develop an effective strategy
for the next round.

Rational individuals weigh the costs and benefits of new
strategies before making any change but emotions are the
triggering events that cause individuals to reassess their current
strategy. Under what circumstances would a cooperator decide
to become a punisher? A cooperator who is merely irritated
by defectors may decide no strategy change is warranted; an
outraged cooperator may decide differently. Emotions may
also provide some insight into how high punishment levels are
set and what costs punishers are willing to pay. Future efforts
should focus on explaining the origins of altruistic punishment
rather than mechanisms.
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