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Maximum entropy and constraints in composite systems

John D. Ramshaw
Department of Physics, Portland State University, Portland, Oregon 97207, USA

(Received 9 January 2022; accepted 14 February 2022; published 24 February 2022)

The principle of maximum entropy (PME), as expounded by Jaynes, is based on the maximization of the
Boltzmann-Gibbs-Shannon (BGS) entropy subject to linear constraints. The resulting probability distributions
are of canonical (exponential) form. However, the rationale for linear constraints is nebulous, and probability
distributions are not always canonical. Here we show that the correct noncanonical distribution for a system in
equilibrium with a finite heat bath is implied by the unconstrained maximization of the total BGS entropy of
the system and bath together. This procedure is shown to be equivalent to maximizing the BGS entropy of the
system alone subject to a contrived nonlinear constraint which reduces to (a) the usual linear constraint for an
infinite heat bath, and (b) a previously enigmatic logarithmic constraint which implies a power-law distribution
for a large but finite heat bath. This procedure eliminates the uncertainty as to the proper constraints, and easily
generalizes to arbitrary composite systems, for which it provides a simpler alternative to the Jaynes PME.

DOI: 10.1103/PhysRevE.105.024138

The principle of maximum entropy (PME) [1–7] is a
powerful and general method of statistical inference with
numerous applications in a wide variety of disciplines, in-
cluding information theory, probability theory, data analysis,
linguistics, and most if not all of the physical and biological
sciences. The versatility and continued vitality of the PME
are amply attested by the published proceedings of the annual
International Workshops on Bayesian Inference and Maxi-
mum Entropy Methods in Science and Engineering, the 41st
of which is scheduled to be held in Paris in July 2022. Those
volumes often bear the abbreviated title Maximum Entropy
and Bayesian Methods.

The standard version of the PME is based on maximizing
the well-known Boltzmann-Gibbs-Shannon (BGS) entropy

S = −
∑

i

pi log pi, (1)

where pi is the probability that the system occupies state i. The
maximization is performed subject to constraint conditions
that represent known or hypothetical information about the
system, typically expressed as mean or expectation values of
the form Ā = ∑

i piAi. The resulting probability distribution
pi can then be used to predictively compute whatever statis-
tical averages are of interest. The PME has a strong intuitive
appeal, but there is no a priori assurance that its predictions
will be accurate. However, inaccurate predictions do not nec-
essarily imply that the PME itself has failed, as its detractors
sometimes claim, but merely that the constraints imposed are
inappropriate or insufficient and that different or additional
constraints may be required [1]. Unfortunately, the form of
those constraints is unlikely to be obvious, for if it were they
would presumably have been imposed at the outset.

Thus the most conspicuous limitation of the PME is that
the appropriate constraints to be imposed in any particular
application are not always obvious. Our purpose here is to

critically explore this issue within the context of statistical
thermodynamics, to which the PME was first applied in two
classic papers by Jaynes [8,9]. Those papers have been highly
influential, and are widely regarded as providing a simple
and elegant alternative derivation of the canonical and grand
canonical probability distributions. For present purposes it
suffices to restrict attention to the canonical distribution

pi = exp(−βEi )

Zc(β )
, (2)

where Ei is the energy of the system in state i and Zc(β ) =∑
j exp(−βEj ) is the canonical partition function. As is well

known, Eq. (2) describes a system in thermal equilibrium with
an infinite heat bath at temperature T = 1/β (in energy units).
Jaynes showed that Eq. (2) is an immediate consequence of
maximizing S subject to the constraint

∑
j

p jE j = Ē , (3)

where Ē = − (∂/∂β ) log Zc(β ). This constraint simply spec-
ifies the mean energy of the system, which intuitively seems
very natural, especially since the thermodynamic state of the
system is uniquely defined and determined by its mass, vol-
ume, and energy. On further reflection, however, a clear and
compelling justification for Eq. (3) is not obvious [10,11].
In the absence of such a justification, the PME derivation of
Eq. (2) can hardly be regarded as satisfactory, nor would it
likely have been widely accepted as such if the validity of
Eq. (2) had not previously been established on other grounds.

Equation (3), or at least its generality, is further called into
question by the fact that the probability distribution pi is no
longer canonical when the heat bath is large but finite. In that
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case pi assumes the more general form [12–14]

pi = qi ≡ Wb(E0 − Ei )∑
j Wb(E0 − Ej )

= Wi

W0
, (4)

where E0 is the total energy of the system and bath together,
Wb(E ) is the number of equally probable bath states with en-
ergies in the interval (E , E + �E ), �E is a macroscopically
negligible but finite energy tolerance, Wi ≡ Wb(E0 − Ei ), and
W0 ≡ ∑

j Wj is the total number of states in the system-bath
composite system consistent with E0. In order for the PME to
remain valid in such systems, it would evidently be necessary
to replace Eq. (3) by a different constraint, but neither the form
of such a constraint nor its justification is apparent.

In the special case of ideal heat baths, Wb(E ) is typically
proportional to Eα , where α � 1 is of the order of the num-
ber of particles or degrees of freedom of the bath [12–14].
Equation (4) then reduces to [15]

pi = (1 − βEi/α)α∑
j (1 − βEj/α)α

, (5)

where β ≡ α/E0. It was subsequently shown [16] that Eq. (5)
is not restricted to ideal heat baths but is more generally valid
as an asymptotic approximation to Eq. (4) for arbitrary Wb(E ).
Equation (5) reduces to Eq. (2) in the limit E0 = α/β → ∞,
but for finite E0 it is of power-law rather than exponential
form. Power-law probability distributions are commonplace
[17], but they do not seem to emerge from the PME in a
natural way. They can, however, be obtained by maximizing S
subject to logarithmic constraints (e.g., Refs. [16,18–24]), but
such constraints seem artificial and often lack a clear physical
interpretation or justification. More elaborate constraints to
the same end have also been proposed (e.g., Ref. [25]).

A curious aspect of the Jaynes formulation of the PME, as
applied to thermodynamic systems, is that it is based on maxi-
mizing the entropy S of the system of interest alone, exclusive
of the entropy of the heat bath with which the system inter-
acts and exchanges energy. In this respect it differs from the
analogous thermodynamic extremum principle, which states
that the total thermodynamic entropy of a composite system
is a maximum at equilibrium [26]. Moreover, the statistical
equilibrium between two macroscopic systems is similarly
characterized by the maximum value of their total statistical
entropy [7,27]. The system and heat bath together can be
conceptually regarded as a single composite system, so the
preceding observations suggest that it may be of interest to
explore the consequences of maximizing the total entropy S0

of the system and heat bath together, rather than the entropy S
of the system alone as was done by Jaynes. Such an analysis
was previously performed by Lee and Pressé [28,29], but with
the limited objective of showing how the Jaynes PME and
Eq. (3) emerge from the maximization of S0. In what follows,
the further implications of maximizing S0 are explored in
greater depth, detail, and generality.

To forestall confusion, a word about constraints is in order.
The system-bath composite system is presumed to be isolated,
so its energy E0 is constant. This condition is intrinsic to
isolated systems, so we do not regard or treat it as a constraint
per se. In contrast, the normalization condition

∑
i pi = 1

must be enforced as a constraint, even though it is merely

a mathematical requirement that all probability distributions
must satisfy by definition. It therefore has an entirely different
character from physical constraints, so it will henceforth be
understood that “unconstrained” is an abbreviation for “un-
constrained except for normalization.”

Of course, the system and heat bath are not statistically
independent, so their separate BGS entropies are not sim-
ply additive, but their total entropy S0 is nevertheless given
by [30]

S0 = S +
∑

i

pi Sb
i , (6)

where Sb
i is the conditional BGS entropy of the heat bath when

the system of interest is in state i. The energy of the heat bath
is then simply E0 − Ei, and the number of bath states with
that energy is Wb(E0 − Ei ). Those states are presumed equally
probable, so Sb

i reduces to the Boltzmann-Planck entropy

Sb
i = logWb(E0 − Ei ) = logWi. (7)

Combining Eqs. (1), (4), (6), and (7), we obtain

S0 =
∑

i

pi log
qi

pi
+ logW0. (8)

The well-known inequality log x � x − 1 [5,7] implies that∑
i

pi log
qi

pi
� 0, (9)

which combines with Eq. (8) to imply that S0 � logW0.
Equation (8) further shows that the probability distribution
pi for which S0 attains its maximum value logW0 is sim-
ply pi = qi, which is precisely the known correct probability
distribution given by Eq. (4). Thus the unconstrained maxi-
mization of the total entropy S0 implies the correct pi for a
system in equilibrium with a finite heat bath with an arbitrary
density of states. The maximization of S0 rather than S is
much simpler than the Jaynes PME, as it eliminates the need
to impose an associated constraint condition, such as Eq. (3)
or some uncertain or unknown generalization thereof. Indeed,
that maximization has now already been performed in advance
for an arbitrary Wb(E ), with the general result pi = qi, so the
need to repeat it for different choices of Wb(E ) has also been
eliminated.

Nevertheless, the question naturally arises as to whether
a general constraint exists and can be determined such that
the constrained maximization of S alone produces the same
result as the unconstrained maximization of S0. To this end,
we observe that if the mean bath entropy

∑
i piSb

i in Eq. (6)
were held constant, the maximization of S0 would reduce to
the maximization of S. Maximizing S subject to the constraint∑

i

pi Sb
i =

∑
i

pi logWi = σ (10)

should therefore be equivalent to the unconstrained maximiza-
tion of S0, provided the value of the constant σ is properly
chosen. This constraint was previously inferred by Pressé
et al. [29] via a different argument. Its validity is easily con-
firmed by the method of Lagrange multipliers, in which the
maximization of S subject to the constraints of Eq. (10) and
normalization is accomplished by maximizing the auxiliary
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quantity

Ŝ ≡ −
∑

j

p j log p j + λ
∑

j

p j + μ
∑

j

p j logWj, (11)

where the values of the Lagrange multipliers λ and μ are
implicitly determined by the constraints. Setting ∂ Ŝ/∂ pi = 0
and imposing the normalization constraint, we obtain, after a
little algebra,

pi = W μ
i

Z (μ)
, (12)

where

Z (μ) ≡
∑

j

W μ
j (13)

is a generalized partition function. It then follows from
Eqs. (10), (12), and (13) that

∂

∂μ
log Z (μ) = σ, (14)

which determines the functional relation between σ and μ.
Comparison of Eqs. (12) and (13) with Eq. (4) shows that in
order for pi to reduce to the correct probability distribution qi,
the value of σ must be chosen so that μ = 1. When μ �= 1,
however, it is noteworthy that Eqs. (4) and (12) combine to
imply that pi = qi(μ), where

qi(μ) ≡ qμ
i∑
j qμ

j

(15)

is just the escort distribution [31] of order μ associated with
the correct probability distribution qi. Maximization of the
BGS entropy S subject to the constraint of Eq. (10) therefore
constitutes a variational principle for generating those escort
distributions.

It is straightforward to verify that the generalized constraint
of Eq. (10) properly reduces to the linear and logarithmic
constraints which are known to imply Eqs. (2) and (5),
respectively. Inspection of Eqs. (2) and (4) shows that the ap-
proximation to Wi which implies Eq. (2) is Wi

∼= A exp(−βEi ),
where A is a constant. Thus logWi

∼= log A − βEi, whereupon
Eq. (10) reduces to a constraint on

∑
i piEi. Similarly, the

approximation to Wi which transforms Eq. (4) into Eq. (5)
is Wi

∼= A(E0 − Ei )α . Thus logWi
∼= log A + α log(E0 − Ei ),

whereupon Eq. (10) reduces to a constraint on
∑

i pi log(E0 −
Ei ) as previously observed [16]. Both those constraints are
therefore explained and uniquely implied by Eq. (10), and
no longer appear arbitrary or inscrutable. Note that in these
two special cases, violating the condition μ = 1 would simply
rescale the value of β by a factor of μ, while preserving the
mathematical form of Eqs. (2) and (5). Of course, 1/β would
then no longer represent the temperature of the heat bath.

The preceding analysis shows that the correct noncanonical
probability distribution pi = qi for a thermodynamic system
in equilibrium with a finite heat bath can indeed be obtained
by the constrained maximization of the BGS entropy S of the
system alone. This result confirms the validity of such a pro-
cedure, but it should not be misinterpreted as an endorsement
thereof, because the required constraint of Eq. (10) seems
artificial and unnatural, and obviously lacks the simplicity

and intuitive appeal of Eq. (3). Nor in retrospect should such
simplicity have been expected, since Eq. (10) is in essence a
mere mathematical artifice designed to reproduce the correct
result by maximizing only a portion of the total entropy. The
essential point is that in spite of its validity, there is no need or
reason to actually make use of Eq. (10) [or Eq. (3) for that mat-
ter], as the unconstrained maximization of the total entropy S0

is evidently simpler, more general, and more fundamental.
In the present context, the conventional linear constraint of

Eq. (3), and the more general constraint of Eq. (10), essen-
tially represent the influence of the heat bath on the system
of interest. Thus it is hardly surprising that such constraints
are no longer needed when the system and heat bath together
are regarded, and consistently treated, as a single composite
system. The total BGS entropy of that composite system then
automatically accounts for the interactions between its con-
stituent subsystems. However, these features are not specific
to thermodynamic systems. This observation suggests that
the preceding development may provide a useful paradigm
for a more general treatment of composite systems in which
constraints are eliminated by maximizing the total BGS en-
tropy. It is hoped that the resulting description may sometimes
be simpler than the use of complicated constraints such as
Eq. (10) or those of Ref. [25]. We therefore proceed to for-
mulate such an approach in more general terms.

Consider a composite system consisting of two interacting
subsystems A and B, the states of which are labeled by in-
dices i and j, respectively. Let pi j denote the joint probability
that system A occupies state i and system B simultaneously
occupies state j. The marginal probability that system A oc-
cupies state i regardless of the state j of system B is simply
pi = ∑

j pi j , and the conditional probability that system B
occupies state j when system A is known or constrained to
occupy state i is p( j|i) ≡ pi j/pi. The total BGS entropy of
the composite system AB is therefore given by

SAB = −
∑

i j

pi j log pi j = SA +
∑

i

piS
B
i , (16)

where SA ≡ − ∑
i pi log pi, and

SB
i ≡ −

∑
j

p( j|i) log p( j|i) (17)

is the conditional entropy of system B when system A is in
state i [30]. Let

qi ≡ 1

ZB
exp SB

i , (18)

where ZB ≡ ∑
i exp SB

i . Equations (16) and (18) combine to
imply

SAB =
∑

i

pi log
qi

pi
+ log ZB. (19)

As before, the inequality log x � x − 1 then implies that
SAB � log ZB, so that SAB attains its unconstrained maximum
value log ZB when

pi = qi = 1

ZB
exp SB

i . (20)
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The unconstrained maximization of SAB may be regarded
as an alternative PME for composite systems. In contrast
to the Jaynes PME, however, that maximization need not
be repeated in each particular case of interest, because it
has already been performed in general, with Eq. (20) as
the general result. In particular, Eq. (4) is merely the spe-
cial case of Eq. (20) that results when SB

i = logWb(E0 − Ei ).
Equation (20) bears a strong family resemblance and re-
lationship to the well-known Einstein fluctuation formulas
[7,12,32,33], which are not restricted to thermodynamic fluc-
tuations [7]. Once again, the same pi could evidently be
obtained by maximizing SA alone subject to a contrived con-
straint on the quantity

∑
i piSB

i , but such a procedure seems
ad hoc and pointless. Of course, Eq. (20) is useful only if SB

i
is either already known or can be plausibly approximated or
postulated. However, the peculiarity of Eq. (10) suggests that
devising a useful approximation to SB

i may well be simpler,
easier, or more intuitive than attempting to devise an appro-
priate constraint on the maximization of SA alone. On the
other hand, if the external agents or interactions that influence
system A are hidden, unknown, or so poorly understood that
one has no rational basis for determining or postulating SB

i ,
then one can simply revert back to maximizing SA alone sub-
ject to postulated or conjectured constraints. Nevertheless, the
essential point remains that in its most fundamental form the
PME strictly applies only to isolated systems, so the proper
entropy to maximize is SAB rather than SA.

The preceding development easily generalizes to compos-
ite systems of three or more subsystems. Consider a ternary
composite system ABC consisting of a subsystem A of pri-
mary interest and two additional subsystems B and C. The
states of these subsystems are respectively labeled by i, j, and
k; the joint probability that subsystems A, B, and C simul-
taneously occupy states i, j, and k is pi jk ; and the marginal
probability distribution of subsystem A is pi = ∑

jk pi jk . The
total BGS entropy of the composite system ABC is simply

SABC = −
∑
i jk

pi jk log pi jk . (21)

But subsystems B and C can be conceptually regarded as a
single composite subsystem BC with states labeled by jk, to
which the preceding development can be immediately applied
by means of the replacements B → BC and j → jk. The
unconstrained maximization of SABC therefore yields

pi = 1

ZBC
exp SBC

i , (22)

where ZBC ≡ ∑
i exp SBC

i ,

SBC
i ≡ −

∑
jk

p( jk|i) log p( jk|i) (23)

and p( jk|i) = pi jk/pi.
However, the composite system ABC can equally well be

regarded as the result of combining a binary composite system
AB with a third subsystem C. The marginal probability that
subsystem AB occupies state i j is then pi j = ∑

k pi jk , and
the conditional probability that subsystem C occupies state k
when subsystem AB occupies state i j is p(k|i j) = pi jk/pi j .

Thus

SABC = SAB +
∑

i j

pi jS
C
i j, (24)

where SAB ≡ − ∑
i j pi j log pi j and

SC
i j ≡ −

∑
k

p(k|i j) log p(k|i j). (25)

Of course, SAB is no longer the total entropy, but Eqs. (16)–
(19) nevertheless remain valid for an arbitrary pi j , regardless
of its origin. We may therefore combine Eqs. (19) and (24) to
obtain

SABC =
∑

i

pi log
qi

pi
+

∑
i j

pi jS
C
i j + log ZB, (26)

where qi is still given by Eqs. (17) and (18). Equation (26)
is algebraically equivalent to Eq. (21), so its unconstrained
maximization must still imply Eq. (22). However, inspection
of Eq. (26) shows that the same pi would be obtained by maxi-
mizing the relative entropy

∑
i pi log(qi/pi ) alone subject to a

constraint on the quantity
∑

i piQi, where Qi ≡ ∑
j p( j|i)SC

i j .
This observation provides an interesting new interpretation of
the “method of maximum relative entropy” [34] as it applies
to composite systems.

The inability of the Jaynes PME with linear constraints
to produce noncanonical probability distributions has been
interpreted by some authors as justification for defining gen-
eralized entropies. For example, it is well known that the
power-law distribution of Eq. (5) can be derived by maximiz-
ing the Rényi or Tsallis entropy subject to the linear constraint
of Eq. (3). However, the BGS entropy S is clearly more
fundamental than the constraints, so it seems incongruous to
modify S rather than the constraints. Moreover, the BGS form
of S is uniquely determined by certain intuitively desirable
properties and consistency conditions [5,30,31,35], at least
one of which must be sacrificed if S is replaced by any of
its proposed generalizations. Fortunately, the present analysis
confirms the many previous observations (e.g., Refs. [16,18–
24]) that no such replacement is necessary to obtain power-
law or other noncanonical probability distributions. For this
purpose it suffices to retain the BGS entropy S and either
(a) replace Eq. (3) by an appropriate nonlinear constraint, or
preferably (b) maximize S0 or SAB rather than S or SA. The
limitations of the Jaynes PME in its usual form are therefore
simply artifacts of the linear constraints, and do not imply any
deficiency in the BGS entropy itself.

Generalized entropies have become quite fashionable in
recent decades [36,37] to the point where their proliferation
has been likened to an infestation [23]. One is reminded of
the old adage that a man with one watch knows what time it
is. It has often been suggested that such generalizations are
needed to describe self-similarity and scaling laws, which are
ubiquitous in nonlinear and complex systems [31,38,39]. The
popular Rényi and Tsallis entropies [40,41] are simple func-
tions of Q(μ) ≡ ∑

j pμ
j , and the analysis of scaling behavior

is indeed facilitated by defining the escort distributions [31]
pi(μ) ≡ pμ

i /Q(μ). However, the utility of escort distributions
does not imply a deficiency in the BGS entropy or a need to
introduce alternative entropies. The BGS entropy of the escort
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distribution of order μ is simply

S(μ) = −
∑

i

pi(μ) log pi(μ) (27)

and one easily verifies that

S(μ) = −μ
∂

∂μ
log Q(μ) + log Q(μ)

= −μ2 ∂

∂μ

[
1

μ
log Q(μ)

]
. (28)

Thus S(μ) is determined by Q(μ), and vice versa,
so it evidently contains and represents precisely
the same information as the Rényi and Tsallis
entropies.

I am grateful to the anonymous referees for thoughtful
and constructive comments and suggestions which resulted in
significant improvements.

[1] The Maximum Entropy Formalism, edited by R. D. Levine and
M. Tribus (MIT Press, Cambridge, MA, 1979).

[2] E. T. Jaynes: Papers on Probability, Statistics and Statistical
Physics, edited by R. D. Rosenkrantz (Reidel, Dordrecht, 1983).

[3] S. Guiasu and A. Shenitzer, Math. Intell. 7, 42 (1985).
[4] Maximum Entropy in Action, edited by B. Buck and V. A.

Macaulay (Oxford University Press, Oxford, 1991).
[5] E. T. Jaynes, Probability Theory: The Logic of Science (Cam-

bridge University Press, Cambridge, UK, 2003).
[6] J. N. Kapur, Maximum-Entropy Models in Science and En-

gineering (Wiley, New York, 1993; New Age, New Delhi,
2009).

[7] J. D. Ramshaw, The Statistical Foundations of Entropy (World
Scientific, Singapore, 2018).

[8] E. T. Jaynes, Phys. Rev. 106, 620 (1957).
[9] E. T. Jaynes, Phys. Rev. 108, 171 (1957).

[10] J. Uffink, Stud. Hist. Philos. Mod. Phys. 27, 47 (1996).
[11] I. J. Ford, Phys. Rev. E 92, 052142 (2015).
[12] R. Becker, Theory of Heat, 2nd ed. (Springer-Verlag, New York,

1967).
[13] R. Kubo, Statistical Mechanics: An Advanced Course with Prob-

lems and Solutions (North-Holland, Amsterdam, 1971).
[14] R. P. Feynman, Statistical Mechanics: A Set of Lectures (Ben-

jamin/Cummings, Reading, MA, 1972).
[15] A. R. Plastino and A. Plastino, Phys. Lett. A 193, 140 (1994).
[16] J. D. Ramshaw, Phys. Rev. E 98, 020103(R) (2018).
[17] M. E. J. Newman, Contemp. Phys. 46, 323 (2005).
[18] E. W. Montroll and M. F. Shlesinger, J. Stat. Phys. 32, 209

(1983).
[19] J. T. Bendler, J. J. Fontanella, and M. F. Shlesinger, Physica D

193, 67 (2004).
[20] D. H. Zanette and M. A. Montemurro, Phys. Lett. A 324, 383

(2004).
[21] V. Nieves, J. Wang, R. L. Bras, and E. Wood., Phys. Rev. Lett.

105, 118701 (2010).

[22] J. Peterson, P. D. Dixit, and K. A. Dill, Proc. Natl. Acad. Sci.
USA 110, 20380 (2013).

[23] M. Visser, New J. Phys. 15, 043021 (2013).
[24] Á. Corral and M. García del Muro, Entropy 22, 179

(2020).
[25] J.-F. Bercher, Phys. Lett. A 372, 5657 (2008).
[26] H. B. Callen, Thermodynamics and an Introduction to Thermo-

statistics, 2nd ed. (Wiley, New York, 1985).
[27] K. Huang, Statistical Mechanics, 2nd ed. (Wiley, New York,

1987).
[28] J. Lee and S. Pressé, Phys. Rev. E 86, 041126 (2012).
[29] S. Pressé, K. Ghosh, J. Lee, and K. A. Dill, Rev. Mod. Phys. 85,

1115 (2013).
[30] A. I. Khinchin, Mathematical Foundations of Information The-

ory (Dover, New York, 1957).
[31] C. Beck and F. Schlögl, Thermodynamics of Chaotic Systems:

An Introduction (Cambridge University Press, Cambridge, UK,
1993).

[32] L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd ed.,
Part 1 (Pergamon, Oxford, 1980).

[33] Y. Mishin, Ann. Phys. (NY) 363, 48 (2015).
[34] A. Caticha, Entropy 23, 895 (2021).
[35] J. E. Shore and R. W. Johnson, IEEE Trans. Inf. Theory 26, 26

(1980).
[36] J. M. Amigo, S. G. Balogh, and S. Hernández, Entropy 20, 813

(2018).
[37] S. G. Balogh, G. Palla, P. Pollner, and D. Czégel, Sci. Rep. 10,

15516 (2020).
[38] M. Schroeder, Fractals, Chaos, Power Laws (Freeman, New

York, 1991).
[39] G. I. Barenblatt, Scaling (Cambridge University Press, Cam-

bridge, UK, 2003).
[40] A. Rényi, Probability Theory (North-Holland, Amsterdam,

1970; Probability Theory Dover, New York, 2007).
[41] C. Tsallis, J. Stat. Phys. 52, 479 (1988).

024138-5

https://doi.org/10.1007/BF03023004
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRev.108.171
https://doi.org/10.1016/1355-2198(95)00022-4
https://doi.org/10.1103/PhysRevE.92.052142
https://doi.org/10.1016/0375-9601(94)90948-2
https://doi.org/10.1103/PhysRevE.98.020103
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1007/BF01012708
https://doi.org/10.1016/j.physd.2004.01.009
https://doi.org/10.1016/j.physleta.2004.03.024
https://doi.org/10.1103/PhysRevLett.105.118701
https://doi.org/10.1073/pnas.1320578110
https://doi.org/10.1088/1367-2630/15/4/043021
https://doi.org/10.3390/e22020179
https://doi.org/10.1016/j.physleta.2008.06.088
https://doi.org/10.1103/PhysRevE.86.041126
https://doi.org/10.1103/RevModPhys.85.1115
https://doi.org/10.1016/j.aop.2015.09.015
https://doi.org/10.3390/e23070895
https://doi.org/10.1109/TIT.1980.1056144
https://doi.org/10.3390/e20110813
https://doi.org/10.1038/s41598-020-72422-8
https://doi.org/10.1007/BF01016429

	Maximum Entropy and Constraints in Composite Systems
	Let us know how access to this document benefits you.
	Citation Details

	Maximum entropy and constraints in composite systems

