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DISCRETE ELASTICITY EXACT SEQUENCES ON WORSEY–FARIN SPLITS

Sining Gong1,* , Jay Gopalakrishnan2 , Johnny Guzmán1 and
Michael Neilan3

Abstract. We construct conforming finite element elasticity complexes on Worsey–Farin splits in
three dimensions. Spaces for displacement, strain, stress, and the load are connected in the elasticity
complex through the differential operators representing deformation, incompatibility, and divergence.
For each of these component spaces, a corresponding finite element space on Worsey–Farin meshes
is exhibited. Unisolvent degrees of freedom are developed for these finite elements, which also yields
commuting (cochain) projections on smooth functions. A distinctive feature of the spaces in these
complexes is the lack of extrinsic supersmoothness at subsimplices of the mesh. Notably, the complex
yields the first (strongly) symmetric stress finite element with no vertex or edge degrees of freedom in
three dimensions. Moreover, the lowest order stress space uses only piecewise linear functions which is
the lowest feasible polynomial degree for the stress space.

Mathematics Subject Classification. 65N30, 58J10, 74S05.
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1. Introduction

The elasticity complex, also known as the Kröner complex, can be derived from simpler complexes by an
algebraic technique called the Bernstein–Gelfand–Gelfand (BGG) resolution [2,10,11,18]. The utility of the BGG
construction in developing and understanding stress elements for elasticity is now well appreciated [6]. However
even with this machinery, the construction of conforming, inf-sup stable stress elements on simplicial meshes is
still a notoriously challenging task [8]. It was not until 2002 that the first conforming elasticity elements were
successfully constructed on two-dimensional triangular meshes by Arnold and Winther [4]. There, they argued
that degrees of freedom (“dofs”) on vertices are necessary when using polynomial approximations on triangular
elements. They in fact constructed an entire discrete elasticity complex and showed how the last two spaces
there are relevant for discretizing the Hellinger–Reissner principle in elasticity.

Following the creation of the first two-dimensional (2D) conforming elasticity elements, the first three-
dimensional (3D) elasticity elements were constructed in [1, 7], which paved the way for many other similar
elements, as demonstrated in [24]. A natural question that arose was whether these elements could be seen as
part of an entire discrete elasticity complex, similar to what was done in 2D. Although the work in [7] laid
the foundation, the task of extending it to 3D was bogged down by complications. This is despite the clearly
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understood BGG procedure to arrive at an elasticity complex of smooth function spaces,

0 R 𝐶∞ ⊗ V 𝐶∞ ⊗ S 𝐶∞ ⊗ S 𝐶∞ ⊗ V 0.
⊂ 𝜀 inc div (1.1)

Here and throughout, V = R3, M = R3×3, R = {𝑎 + 𝑏 × 𝑥 : 𝑎, 𝑏 ∈ R3} denotes rigid displacements, inc =
curl ∘𝜏 ∘ curl with 𝜏 denoting the transpose, curl and divergence operators are applied row by row on matrix
fields, S = sym(M), and 𝜀 = sym ∘ grad denotes the deformation operator. The complex (1.1) is exact on a 3D
contractible domain. We assume throughout that our domain Ω is contractible. To give an indication of the
aforementioned complications, first note that the techniques leading up to those summarized in [2] showed how
the BGG construction can be extended beyond smooth complexes like (1.1). For example, applying the BGG
procedure to de Rham complexes of Sobolev spaces 𝐻𝑠 ≡ 𝐻𝑠(Ω), the authors of [2] arrived at the following
elasticity complex of Sobolev spaces:

R 𝐻𝑠 ⊗ V 𝐻𝑠−1 ⊗ S 𝐻𝑠−3 ⊗ S 𝐻𝑠−4 ⊗ V 0.
⊂ 𝜀 inc div (1.2)

However, one of the problems in constructing finite element subcomplexes of (1.2) is the increase of four orders
of smoothness from the last space (𝐻𝑠−4) to the first space (𝐻𝑠). A search for finite element subcomplexes of
elasticity complexes with different Sobolev spaces seemed to hold more promise [7].

It was not until 2020 that the first 3D discrete elasticity subcomplex was established in [15]. To understand
that work, it is useful to look at it from the perspective of applying the BGG procedure to a different sequence
of Sobolev spaces. Starting with a Stokes complex, lining up another de Rham complex with different gradations
of smoothness, and applying the BGG procedure, one gets

R 𝐻2 ⊗ V 𝐻1(inc) 𝐻(div, S) 𝐿2 ⊗ V 0,
⊂ 𝜀 inc div (1.3)

where 𝐻1(inc) = {𝑔 ∈ 𝐻1⊗S : inc 𝑔 ∈ 𝐿2⊗S}. The proof of exactness of (1.3) is described in more detail in [28],
p. 38–40. The key innovation in [15] was the construction of two sequences of finite element spaces on which this
BGG argument can be replicated at the discrete level, resulting in a fully discrete subcomplex of (1.3). These
new finite element sequences were inspired by the “smoother” discrete de Rham complexes (smoother than the
classical Nédélec spaces [29]) recently being produced in a variety of settings [13,14,19,22,23]. Specifically, the 3D
discrete sub-complex of (1.3) in [15] was built on meshes of Alfeld splits, a particular type of macro element. Soon
after the results of [15] were publicized, Chen and Huang [12] obtained another 3D discrete elasticity sequence
on general triangulations. There, they produced a finite element subcomplex of another exact sequence obtained
from (1.3) by replacing 𝐻2⊗V and 𝐻1(inc) with 𝐻1⊗V and 𝐻(inc) = {𝑔 ∈ 𝐿2⊗S : inc 𝑔 ∈ 𝐿2⊗S}, respectively.
A related work is [11], where several finite element elasticity complexes are constructed with various smoothness.
The BGG construction was also applied to obtain discrete tensor product spaces in [9].

In this paper, we apply the methodology presented in [15] to construct a new discrete elasticity sequence on
Worsey–Farin splits [30]. One of the expected benefits of using triangulations of macroelements is the potential
reduction of polynomial degree and the potential escape from the unavoidability [7] of vertex degrees of freedom
in stress elements. We will see that Worsey–Farin splits offer structures where these benefits can be reaped easier
than on Alfeld splits. Unlike Afleld splits, which divide each tetrahedron into four sub-tetrahedra, Worsey–Farin
triangulations split each tetrahedron into twelve sub-tetrahedra. Using the Worsey–Farin split, we are able to
reduce the polynomial degree. Previous works have used either quadratics [15] or quartics [12] as the lowest
polynomial order for the stress spaces. However, our approach results in stress spaces that are piecewise linear
stress elements, which is the lowest possible polynomial degree. Furthermore, it results in the first 3D symmetric
conforming stress finite element without edge and vertex dofs . This is comparable to the 2D elasticity element
without vertex dofs constructed in [5,21,25]. Note that discrete symmetric stress spaces without vertex or edge
dofs have also been constructed in [17] using a virtual element methodology. Moreover, following the work of
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Hu and Zhang [24], Gong et al. [20] gave an inf-sup stable elasticity solver without explicitly imposing vertex
continuity on the stress space. However, degrees of freedom are not provided for the stress space. One other
notable feature of our Worsey–Farin elements is the lack of extrinsic supersmoothness, i.e., our dofs do not
impose more smoothness than what is intrinsic to Worsey–Farin splits. In contrast, the dofs of the discrete
elements in [15] on Alfeld splits impose additional extrinsic supersmoothness.

Although we have the framework in [15] to guide the construction of the discrete complex on Worsey–Farin
splits, as we shall see, we face significant new difficulties peculiar to Worsey–Farin splits. The most troublesome
of these arises in the construction of dofs and corresponding commuting projections. Unlike Alfeld splits,
Worsey–Farin triangulations induce a Clough–Tocher split on each face of the original, unrefined triangulation.
As a result, discrete 2D elasticity complexes with respect to Clough–Tocher splits play an essential role in our
construction and proofs. These 2D complexes are more complicated than their analogues on Alfeld splits (where
the faces are not split). The resulting difficulties are most evident in the design of dofs for the space before the
stress space (named 𝑈1

𝑟 later) in the complex, as we shall see in Lemma 5.8.
The paper is organized as follows. In the next section, we present the main framework to construct the

elasticity sequence, define the construction of Worsey–Farin splits, and state the definitions and notation used
throughout the paper. Section 3 gives useful de Rham sequences and elasticity sequences on Clough–Tocher
splits. Section 4 gives the construction of the discrete elasticity sequence locally on Worsey–Farin splits with
the dimensions of each spaces involved. This leads to our main contribution in Section 5 where we present the
degrees of freedom of the discrete spaces in the elasticity sequence with commuting projections. We finish the
paper with the analogous global discrete elasticity sequence in Section 7 and state some conclusions and future
directions in Section 8.

2. Preliminaries

2.1. A derived complex from two complexes

Our strategy to obtain an elasticity sequence uses the framework in [2] and utilizes two auxiliary de Rham
complexes. In particular, we will use a simplified version of their results found in [15].

Suppose 𝐴𝑖, 𝐵𝑖 are Banach spaces, 𝑟𝑖 : 𝐴𝑖 → 𝐴𝑖+1, 𝑡𝑖 : 𝐵𝑖 → 𝐵𝑖+1, and 𝑠𝑖 : 𝐵𝑖 → 𝐴𝑖+1 are bounded linear
operators such that the following diagram commutes:

𝐴0 𝐴1 𝐴2 𝐴3

𝐵0 𝐵1 𝐵2 𝐵3.

𝑟0 𝑟1 𝑟2

𝑡0

𝑠0

𝑡1

𝑠1

𝑡2

𝑠2
(2.1)

The following recipe for a derived complex, borrowed from Proposition 2.3 of [15], guides the gathering of
ingredients for our construction of the elasticity complex on Worsey–Farin splits.

Proposition 2.1. Suppose 𝑠1 : 𝐵1 → 𝐴2 is a bijection.
(1) If 𝐴𝑖 and 𝐵𝑖 are exact sequences and the diagram (2.1) commutes, then the following is an exact sequence:[︂

𝐴0

𝐵0

]︂
[ 𝑟0 𝑠0 ]−−−−→ 𝐴1

𝑡1∘𝑠−1
1 ∘𝑟1−−−−−−→ 𝐵2

[ 𝑠2
𝑡2 ]
−−−→

[︂
𝐴3

𝐵3

]︂
. (2.2)

Here the operators [𝑟0 𝑠0] :
[︂
𝐴0

𝐵0

]︂
→ 𝐴1 and

[︂
𝑠2

𝑡2

]︂
: 𝐵2 →

[︂
𝐴3

𝐵3

]︂
are defined, respectively, as

[𝑟0 𝑧0]
[︂
𝑎
𝑏

]︂
= 𝑟0𝑎 + 𝑧0𝑏,

[︂
𝑠2

𝑡2

]︂
𝑏 =

[︂
𝑠2𝑏
𝑡2𝑏

]︂
.

(2) For the surjectivity of the last map in (2.2), namely [ 𝑠2
𝑡2 ], it is sufficient that 𝑟2 and 𝑡2 are surjective,

𝑡1 ∘ 𝑡2 = 0, and 𝑠2𝑡1 = 𝑟2𝑠1.
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2.2. Construction of Worsey–Farin splits

For a set of simplices 𝒮, we use ∆𝑠(𝒮) to denote the set of 𝑠-dimensional simplices (𝑠-simplices for short) in
𝒮. If 𝒮 is a simplicial triangulation of a domain 𝐷 with boundary, then ∆𝐼

𝑠(𝒮) denotes the subset of ∆𝑠(𝒮) that
does not belong to the boundary of the domain. If 𝑆 is a simplex, then we use the convention ∆𝑠(𝑆) = ∆𝑠({𝑆}).
For a non-negative integer 𝑟, we use 𝒫𝑟(𝑆) to denote the space of polynomials of degree ≤ 𝑟 on 𝑆, and we define

𝒫𝑟(𝒮) =
∏︁
𝑆∈𝒮

𝒫𝑟(𝑆), 𝐿2
0(𝐷) :=

{︂
𝑞 ∈ 𝐿2(𝐷) :

ˆ
𝐷

𝑞 d𝑥 = 0
}︂

.

Let Ω ⊂ R3 be a contractible polyhedral domain, and let {𝒯ℎ} be a family of shape-regular and simplicial
triangulations of Ω. The Worsey–Farin refinement of 𝒯ℎ, denoted by 𝒯 𝑤𝑓

ℎ , is obtained by splitting each 𝑇 ∈ 𝒯ℎ

by the following two steps (cf. [23], Sect. 2 and Fig. 1):

(1) Connect the incenter 𝑧𝑇 of 𝑇 to its (four) vertices.
(2) For each face 𝐹 of 𝑇 choose 𝑚𝐹 ∈ int(𝐹 ). We then connect 𝑚𝐹 to the three vertices of 𝐹 and to the incenter

𝑧𝑇 .

Note that the first step is an Alfeld-type refinement of 𝑇 with respect to the incenter [15]. We denote the
local mesh of the Alfeld-type refinement by 𝑇 𝑎, which consists of four tetrahedra. The choice of the point
𝑚𝐹 in the second step needs to follow specific rules: for each interior face 𝐹 = 𝑇1 ∩ 𝑇2 with 𝑇1, 𝑇2 ∈ 𝒯ℎ, let
𝑚𝐹 = 𝐿 ∩ 𝐹 where 𝐿 = [𝑧𝑇1 , 𝑧𝑇2 ], the line segment connecting the incenters of 𝑇1 and 𝑇2; for a boundary face
𝐹 with 𝐹 = 𝑇 ∩ 𝜕Ω with 𝑇 ∈ 𝒯ℎ, let 𝑚𝐹 be the barycenter of 𝐹 . The fact that such a 𝑚𝐹 exists is established
in Lemma 16.24 of [26].

For 𝑇 ∈ 𝒯ℎ, we denote by 𝑇𝑤𝑓 the local Worsey–Farin mesh induced by the global refinement 𝒯 𝑤𝑓
ℎ , i.e.,

𝑇𝑤𝑓 =
{︁

𝐾 ∈ 𝒯 𝑤𝑓
ℎ : �̄� ⊂ 𝑇

}︁
.

For any face 𝐹 ∈ ∆2(𝒯ℎ), the refinement 𝒯 𝑤𝑓
ℎ induces a Clough–Tocher triangulation of 𝐹 , i.e., a two-

dimensional triangulation consisting of three triangles, each having the common vertex 𝑚𝐹 ; we denote this
set of three triangles by 𝐹 𝑐𝑡; see Figure 1a. We then define

ℰ
(︁
𝒯 𝑤𝑓

ℎ

)︁
=

{︀
𝑒 ∈ ∆𝐼

1

(︀
𝐹 𝑐𝑡

)︀
: for all 𝐹 ∈ ∆𝐼

2(𝒯ℎ)
}︀

to be the set of all interior edges of the Clough–Tocher refinements in the global mesh.
For a tetrahedron 𝑇 ∈ 𝒯ℎ and face 𝐹 ∈ ∆2(𝑇 ), we denote by 𝑛𝐹 := 𝑛|𝐹 the outward unit normal of

𝜕𝑇 restricted to 𝐹 . Consider the triangulation 𝐹 ct of 𝐹 with three triangles labeled as 𝑄𝑖, 𝑖 = 1, 2, 3. Let
𝑒 = 𝜕𝑄1 ∩ 𝜕𝑄2 and 𝑡𝑒 be the unit vector tangent to 𝑒 pointing away from 𝑚𝐹 . Then the jump of 𝑝 ∈ 𝒫𝑟(𝑇𝑤𝑓 )
across 𝑒 is defined as

[[𝑝]]𝑒 = (𝑝|𝑄1 − 𝑝|𝑄2)𝑠𝑒,

where 𝑠𝑒 = 𝑛𝐹 × 𝑡𝑒 is a unit vector orthogonal to 𝑡𝑒 and 𝑛𝐹 . In addition, let 𝑓 be the internal face of 𝑇𝑤𝑓 that
has 𝑒 as an edge. Now let 𝑛𝑓 be a unit-normal to 𝑓 and set 𝑡𝑠 = 𝑛𝑓 × 𝑡𝑒 to be a tangential unit vector on the
internal face 𝑓 .

Let 𝑇1 and 𝑇2 be two adjacent tetrahedra in 𝒯ℎ that share a face 𝐹 , and let 𝑄𝑖, 𝑖 = 1, 2, 3 denote three
triangles in the set 𝐹 ct . Let 𝑒 = 𝜕𝑄1 ∩ 𝜕𝑄2, and for a piecewise smooth function defined on 𝑇1 ∪ 𝑇2, we define

𝜃𝑒(𝑝) = 𝑝|𝜕𝑇1∩𝑄1 − 𝑝|𝜕𝑇1∩𝑄2 + 𝑝|𝜕𝑇2∩𝑄2 − 𝑝|𝜕𝑇2∩𝑄1 , on 𝑒. (2.3)

Note that 𝜃𝑒(𝑝) = 0 if and only if [[𝑝|𝑇1 ]]𝑒 = [[𝑝|𝑇2 ]]𝑒.
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Figure 1. The Worsey–Farin splits. (a) A representation of 𝐹 𝑐𝑡 and ∆𝐼
1(𝐹 𝑐𝑡) (indicated in

blue). (b) Alfeld refinement and Worsey–Farin refinement (local) indicated in red. (c) Worsey–
Farin refinement (global).

2.3. Differential identities involving matrix and vector fields

We adopt the notation used in [15]. Let 𝐹 ∈ ∆2(𝑇 ), and recall 𝑛𝐹 is the unit normal vector pointing out of 𝑇 .
Fix two tangent vectors 𝑡1, 𝑡2 such that the ordered set (𝑏1, 𝑏2, 𝑏3) = (𝑡1, 𝑡2, 𝑛𝐹 ) is an orthonormal right-handed
basis of R3. Any matrix field 𝑢 : 𝑇 → R3×3 can be written as

∑︀3
𝑖,𝑗=1 𝑢𝑖𝑗𝑏𝑖𝑏

′
𝑗 with scalar components 𝑢𝑖𝑗 : 𝑇 → R.

Let 𝑢𝑛𝑛 = 𝑛′𝐹 𝑢𝑛𝐹 and tr𝐹 𝑢 =
∑︀2

𝑖=1 𝑡′𝑖𝑢𝑡𝑖. With 𝑠 ∈ R3, let

𝑢𝐹𝐹 =
2∑︁

𝑖,𝑗=1

𝑢𝑖𝑗𝑡𝑖𝑡
′
𝑗 , 𝑢𝐹𝑠 =

2∑︁
𝑖=1

(𝑠′𝑢𝑡𝑖)𝑡′𝑖, 𝑢𝑠𝐹 =
2∑︁

𝑖=1

(𝑡′𝑖𝑢𝑠)𝑡𝑖. (2.4)

Equivalently, 𝑢𝐹𝐹 = 𝑄𝑢𝑄, 𝑢𝐹𝑠 = 𝑠′𝑢𝑄, and 𝑢𝑠𝐹 = 𝑄𝑢𝑠, where 𝑃 = 𝑛𝐹 𝑛′𝐹 and 𝑄 = 𝐼 − 𝑃 . Next, for scalar-
valued (component) functions 𝜑, 𝑤𝑖, 𝑞𝑖 and 𝑢𝑖𝑗 , we write the standard surface operators as

grad𝐹 𝜑 = (𝜕𝑡1𝜑)𝑡1 + (𝜕𝑡2𝜑)𝑡2, grad𝐹 (𝑤1𝑡1 + 𝑤2𝑡2) = 𝑡1(grad𝐹 𝑤1)′ + 𝑡2(grad𝐹 𝑤2)′,

rot𝐹 𝜑 = (𝜕𝑡2𝜑)𝑡1 − (𝜕𝑡1𝜑)𝑡2, rot𝐹 (𝑞1𝑡
′
1 + 𝑞2𝑡

′
2) = 𝑡1(rot𝐹 𝑞1)′ + 𝑡2(rot𝐹 𝑞2)′,

curl𝐹 (𝑤1𝑡1 + 𝑤2𝑡2) = 𝜕𝑡1𝑤2 − 𝜕𝑡2𝑤1, curl𝐹 𝑢𝐹𝐹 = 𝑡′1 curl𝐹 (𝑢𝐹𝑡1)′ + 𝑡′2 curl𝐹 (𝑢𝐹𝑡2)′,

div𝐹 (𝑤1𝑡1 + 𝑤2𝑡2) = 𝜕𝑡1𝑤1 + 𝜕𝑡2𝑤2, div𝐹 𝑢𝐹𝐹 = 𝑡′1 div𝐹 (𝑢𝐹𝑡1)′ + 𝑡′2 div𝐹 (𝑢𝐹𝑡2)′.

These operators are defined such that they are consistent with the conventions in [15]. In particular, we define
rot𝐹 , such that the resulting operator airy𝐹 mimics the three-dimensional operator, inc . For a vector function
𝑣, denote 𝑣𝐹 = 𝑄𝑣 = 𝑛𝐹 × (𝑣 × 𝑛𝐹 ). It is easy to see that

𝑛𝐹 · curl 𝑣 = curl 𝐹 𝑣𝐹 , (grad 𝑣)𝐹𝐹 = grad𝐹 𝑣𝐹 ,

𝑛𝐹 × rot𝐹 𝜑 = grad𝐹 𝜑, div 𝑣𝐹 = div𝐹 𝑣𝐹 .
(2.5)

Definition 2.2. For a tangential vector function 𝑣 on the face 𝐹 ∈ ∆2(𝑇 ), write 𝑣 =
∑︀2

𝑖=1 𝑣𝑖𝑡𝑖 with 𝑣𝑖 = 𝑣 · 𝑡𝑖.
We define the orthogonal complement of 𝑣 as

𝑣⊥ = 𝑣2𝑡1 − 𝑣1𝑡2.
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Using this definition and the standard surface operators introduced above, it is easy to see the following identities:

div𝐹 𝑣⊥ = curl𝐹 𝑣, 𝑣⊥ · 𝑡𝑒 = 𝑣 · 𝑠𝑒, 𝑣⊥ = 𝑣 × 𝑛𝐹 . (2.6)

We also define the space of rigid body displacements within R3 and the face 𝐹 :

R =
{︀
𝑎 + 𝑏× 𝑥 : 𝑎, 𝑏 ∈ R3

}︀
(2.7)

R(𝐹 ) = {𝑎𝑡1 + 𝑏𝑡2 + 𝑐((𝑥 · 𝑡1)𝑡2 − (𝑥 · 𝑡2)𝑡1) : 𝑎, 𝑏, 𝑐 ∈ R}. (2.8)

Definition 2.3. Set V = R3, and M𝑘×𝑘 = R𝑘×𝑘.

(1) The skew-symmetric operator skw : M𝑘×𝑘 → M𝑘×𝑘 and the symmetric operator sym : M𝑘×𝑘 → M𝑘×𝑘 are
defined as follows: for any 𝑀 ∈ M𝑘×𝑘,

skw(𝑀) =
1
2

(𝑀 −𝑀 ′); sym(𝑀) =
1
2

(𝑀 + 𝑀 ′).

Denote the range of skw and sym as K𝑘 = skw(M𝑘×𝑘) and S𝑘 = sym(M𝑘×𝑘), respectively.
(2) Define the operator Ξ : M3×3 → M3×3 by Ξ𝑀 = 𝑀 ′ − tr(𝑀)I, where I is the 3× 3 identity matrix.
(3) The three-dimensional symmetric gradient and incompatibility operators are given, respectively, by:

𝜀 = sym grad, inc = curl(curl)′.

(4) The operators mskw : V → K3 and vskw : M3×3 → V are given by

mskw

⎛⎝𝑣1

𝑣2

𝑣3

⎞⎠ =

⎛⎝ 0 −𝑣3 𝑣2

𝑣3 0 −𝑣1

−𝑣2 𝑣1 0

⎞⎠, vskw := mskw−1 ∘ skw.

(5) The two-dimensional surface differential operators on a face 𝐹 are given by

𝜀𝐹 = sym grad𝐹 , airy𝐹 = rot𝐹 (rot𝐹 )′, inc𝐹 := curl𝐹 (curl𝐹 )′.

(6) The two-dimensional skew operator defined on either a scalar or matrix-valued function is defined, respec-
tively, as

skew 𝑢 =
[︂

0 𝑢
−𝑢 0

]︂
; skew

[︂
𝑢11 𝑢12

𝑢21 𝑢22

]︂
= 𝑢21 − 𝑢12.

(7) The transpose operator 𝜏 is defined as: 𝜏 𝑢 = 𝑢′.

It is simple to see that Ξ is invertible with Ξ−1𝑀 = 𝑀 ′ − 1
2 tr(𝑀)I. Furthermore, the following identities

hold:

div Ξ = 2 vskw curl, (2.9a)
Ξ grad = −curl mskw, (2.9b)
curl Ξ−1curl mskw = −curl Ξ−1 Ξ grad = −curl grad = 0, (2.9c)
2 vskw curl Ξ−1curl = div Ξ Ξ−1 curl = div curl = 0, (2.9d)
tr(curl sym) = 0, curl Ξ−1curl sym = curl(curl sym)′ = inc sym. (2.9e)

On a two-dimensional face 𝐹 , there also holds

div𝐹 airy𝐹 = div𝐹 rot𝐹 𝜏 (rot𝐹 ) = 0, (2.10a)
inc𝐹 sym = inc𝐹 , inc𝐹 𝜀𝐹 = curl𝐹 𝜏 curl𝐹 grad𝐹 = 0, (2.10b)
curl𝐹 skew = 𝜏 grad𝐹 . (2.10c)

The following lemma states additional identities used throughout the paper. Its proof is found in Lemma 5.7
from [15].
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Lemma 2.4. For a sufficiently smooth matrix-valued function 𝑢,

𝑠′ (curl 𝑢) 𝑛𝐹 = curl𝐹 (𝑢𝐹𝑠)′, for any 𝑠 ∈ R3, (2.11a)
[(curl 𝑢)′]𝐹𝑛 = curl𝐹 𝑢𝐹𝐹 . (2.11b)

If in addition 𝑢 is symmetric, then

(inc 𝑢)𝑛𝑛 = inc𝐹 𝑢𝐹𝐹 , (2.11c)
(inc 𝑢)𝐹𝑛 = curl𝐹 [(curl 𝑢)′]𝐹𝐹 , (2.11d)

tr𝐹 curl 𝑢 = − curl𝐹 (𝑢𝐹𝑛)′. (2.11e)

For a sufficiently smooth vector-valued function 𝑣,

2(curl 𝜀(𝑣))′ = grad curl 𝑣, (2.11f)
2[(curl 𝜀(𝑣))′]𝐹𝐹 = grad𝐹 (curl 𝑣)𝐹 , (2.11g)

curl 𝑣 = 𝑛𝐹 (curl𝐹 𝑣𝐹 ) + rot𝐹 (𝑣 · 𝑛𝐹 ) + 𝑛𝐹 × 𝜕𝑛𝑣, (2.11h)

2[𝜀(𝑣)]𝑛𝐹 = 2[𝜀(𝑣)𝐹𝑛]′ = grad𝐹 (𝑣 · 𝑛𝐹 ) + 𝜕𝑛𝑣𝐹 , (2.11i)
tr𝐹 (rot𝐹 𝑣′𝐹 ) = curl 𝐹 𝑣𝐹 . (2.11j)

2.4. Hilbert spaces

We summarize the definitions of Hilbert spaces which we use to define the discrete spaces. For any 𝑇 ∈ 𝒯ℎ,
we commonly use (̊·) to denote the corresponding spaces with vanishing traces; see the following two examples:

𝐻(div, 𝑇 ) := {𝑣 ∈ 𝐻(div, 𝑇 ) : 𝑣 · 𝑛|𝜕𝑇 = 0}, 𝐻(curl, 𝑇 ) := {𝑣 ∈ 𝐻(curl, 𝑇 ) : 𝑣 × 𝑛|𝜕𝑇 = 0}.

In addition, for any face 𝐹 ∈ ∆2(𝑇 ) with 𝑇 ∈ 𝒯ℎ, we define the following spaces by using surface operators in
Section 2.3:

𝐻(div𝐹 , 𝐹 ) :=
{︁

𝑣 ∈
[︀
𝐿2(𝐹 )

]︀2
: div𝐹 𝑣 ∈ 𝐿2(𝐹 )

}︁
, 𝐻(div𝐹 , 𝐹 ) := {𝑣 ∈ 𝐻(div𝐹 , 𝐹 ) : 𝑣 · 𝑠|𝜕𝐹 = 0},

𝐻(curl𝐹 , 𝐹 ) :=
{︁

𝑣 ∈
[︀
𝐿2(𝐹 )

]︀2
: curl𝐹 𝑣 ∈ 𝐿2(𝐹 )

}︁
, 𝐻(curl𝐹 , 𝐹 ) := {𝑣 ∈ 𝐻(curl𝐹 , 𝐹 ) : 𝑣 · 𝑡|𝜕𝐹 = 0},

𝐻(grad𝐹 , 𝐹 ) :=
{︀
𝑣 ∈ 𝐿2(𝐹 ) : grad𝐹 𝑣 ∈ 𝐿2(𝐹 )

}︀
, 𝐻(grad𝐹 , 𝐹 ) := {𝑣 ∈ 𝐻(grad𝐹 , 𝐹 ) : 𝑣|𝜕𝐹 = 0},

where 𝑠 denotes the outward unit normal of 𝜕𝐹 and 𝑡 denotes the unit tangential of 𝜕𝐹 .

3. Discrete complexes on Clough–Tocher splits

Recall a Worsey–Farin split of a tetrahedron induces a Clough–Tocher split on each of its faces. As a result,
to construct degrees of freedom and commuting projections for discrete three-dimensional elasticity complexes
on Worsey–Farin splits, we first derive two-dimensional discrete elasticity complexes on Clough–Tocher splits.
Throughout this section, 𝐹 ∈ ∆2(𝒯ℎ) is a face of the (unrefined) triangulation 𝒯ℎ, and 𝐹 𝑐𝑡 denotes its Clough–
Tocher refinement with respect to the split point 𝑚𝐹 (arising from the Worsey–Farin refinement of 𝒯ℎ).

3.1. de Rham complexes

As an intermediate step to derive elasticity complexes on 𝐹 𝑐𝑡, we first state several discrete de Rham complexes
with various levels of smoothness. First, we define the Nédélec spaces (without and with boundary conditions)
on the Clough–Tocher split:

𝑉 1
div,𝑟

(︀
𝐹 ct

)︀
:=

{︁
𝑣 ∈ 𝐻(div𝐹 , 𝐹 ) : 𝑣|𝑄 ∈ [𝒫𝑟(𝜏)]2, 𝜏 ∈ 𝐹 ct

}︁
, 𝑉 1

div,𝑟

(︀
𝐹 ct

)︀
:= 𝑉 1

div,𝑟

(︀
𝐹 ct

)︀
∩𝐻(div𝐹 , 𝐹 )
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𝑉 1
curl,𝑟

(︀
𝐹 ct

)︀
:=

{︁
𝑣 ∈ 𝐻(curl𝐹 , 𝐹 ) : 𝑣|𝜏 ∈ [𝒫𝑟(𝜏)]2, 𝜏 ∈ 𝐹 ct

}︁
, 𝑉 1

curl,𝑟

(︀
𝐹 ct

)︀
:= 𝑉 1

curl,r

(︀
𝐹 ct

)︀
∩𝐻(curl𝐹 , 𝐹 ),

𝑉 2
𝑟

(︀
𝐹 ct

)︀
:=

{︀
𝑣 ∈ 𝐿2(𝐹 ) : 𝑣|𝜏 ∈ 𝒫𝑟(𝜏), 𝜏 ∈ 𝐹 ct

}︀
, 𝑉 2

𝑟

(︀
𝐹 ct

)︀
:= 𝑉 2

𝑟

(︀
𝐹 ct

)︀
∩ 𝐿2

0(𝐹 ),

and the Lagrange spaces,

X0
𝑟

(︀
𝐹 ct

)︀
:= 𝑉 2

𝑟

(︀
𝐹 ct

)︀
∩𝐻(grad𝐹 , 𝐹 ), X̊0

𝑟

(︀
𝐹 ct

)︀
:= X0

𝑟

(︀
𝐹 ct

)︀
∩𝐻(grad𝐹 , 𝐹 ),

X1
𝑟

(︀
𝐹 ct

)︀
:=

[︀
X0

𝑟

(︀
𝐹 ct

)︀]︀2
, X̊1

𝑟

(︀
𝐹 ct

)︀
:=

[︁
X̊0

𝑟

(︀
𝐹 ct

)︀]︁2

,

X2
𝑟

(︀
𝐹 ct

)︀
:= X0

𝑟

(︀
𝐹 ct

)︀
, X̊2

𝑟

(︀
𝐹 ct

)︀
:= X̊0

𝑟

(︀
𝐹 ct

)︀
∩ 𝐿2

0(𝐹 ).

Note that superscripts in the notation for the spaces refer to the order of the corresponding differential forms.
Finally, we define the (smooth) piecewise polynomial subspaces with 𝐶1 continuity.

𝑆0
𝑟

(︀
𝐹 ct

)︀
:=

{︀
𝑣 ∈ X0

𝑟

(︀
𝐹 ct

)︀
: grad𝐹 𝑣 ∈ X1

𝑟−1

(︀
𝐹 ct

)︀}︀
,

𝑆0
𝑟

(︀
𝐹 ct

)︀
:=

{︁
𝑣 ∈ X̊0

𝑟

(︀
𝐹 ct

)︀
: grad𝐹 𝑣 ∈ X̊1

𝑟−1

(︀
𝐹 ct

)︀}︁
,

ℛ0
𝑟

(︀
𝐹 ct

)︀
:=

{︀
𝑣 ∈ 𝑆0

𝑟

(︀
𝐹 ct

)︀
: 𝑣|𝜕𝐹 = 0

}︀
.

The first space 𝑆0
𝑟 (𝐹 ct ) is the so-called Hsieh–Clough–Tocher 𝐶1 finite element space [16]. Several combinations

of these spaces form exact sequences, as summarized in the following theorem.

Theorem 3.1. Let 𝑟 ≥ 3. The following sequences are exact [3, 19].

R −−→ X0
𝑟

(︀
𝐹 ct

)︀ grad𝐹

−−→ 𝑉 1
curl,𝑟−1

(︀
𝐹 ct

)︀ curl𝐹
−−→ 𝑉 2

𝑟−2

(︀
𝐹 ct

)︀
−−→ 0, (3.1a)

R −−→ 𝑆0
𝑟

(︀
𝐹 ct

)︀ grad𝐹

−−→ X1
𝑟−1

(︀
𝐹 ct

)︀ curl𝐹
−−→ 𝑉 2

𝑟−2

(︀
𝐹 ct

)︀
−−→ 0, (3.1b)

0 −−→ X̊0
𝑟

(︀
𝐹 ct

)︀ grad𝐹

−−→ 𝑉 1
curl,𝑟−1

(︀
𝐹 ct

)︀ curl𝐹
−−→ 𝑉 2

𝑟−2

(︀
𝐹 ct

)︀
−−→ 0, (3.1c)

0 −−→ 𝑆0
𝑟

(︀
𝐹 ct

)︀ grad𝐹

−−→ X̊1
𝑟−1

(︀
𝐹 ct

)︀ curl𝐹
−−→ 𝑉 2

𝑟−2

(︀
𝐹 ct

)︀
−−→ 0. (3.1d)

Theorem 3.1 has an alternate form that follows from a rotation of the coordinate axes, where the operators
grad𝐹 and curl𝐹 are replaced by rot𝐹 and div𝐹 , respectively.

Corollary 3.2. Let 𝑟 ≥ 3. The following sequences are exact [3, 19].

R −−→ X0
𝑟

(︀
𝐹 ct

)︀ rot𝐹

−−→ 𝑉 1
div,𝑟−1

(︀
𝐹 ct

)︀ div𝐹

−−→ 𝑉 2
𝑟−2

(︀
𝐹 ct

)︀
−−→ 0, (3.2a)

R −−→ 𝑆0
𝑟

(︀
𝐹 ct

)︀ rot𝐹

−−→ X1
𝑟−1

(︀
𝐹 ct

)︀ div𝐹

−−→ 𝑉 2
𝑟−2

(︀
𝐹 ct

)︀
−−→ 0, (3.2b)

0 −−→ X̊0
𝑟

(︀
𝐹 ct

)︀ rot𝐹

−−→ 𝑉 1
div ,𝑟−1

(︀
𝐹 ct

)︀ div𝐹

−−→ 𝑉 2
𝑟−2

(︀
𝐹 ct

)︀
−−→ 0, (3.2c)

0 −−→ 𝑆0
𝑟

(︀
𝐹 ct

)︀ rot𝐹

−−→ X̊1
𝑟−1

(︀
𝐹 ct

)︀ div𝐹

−−→ 𝑉 2
𝑟−2

(︀
𝐹 ct

)︀
−−→ 0. (3.2d)

3.2. Elasticity complexes

In order to construct elasticity sequences in three dimensions, we need some elasticity complexes on the
two-dimensional Clough–Tocher splits. The main results of this section are very similar to the ones found [14]
(with spaces slightly different) and can be proved with the techniques there. However, to be self-contained, we
provide the proof of the main result, Theorem 3.4 in an appendix. Let V2 denote the plane 𝑛⊥ where 𝑛 is a unit
normal to 𝐹 ct ; clearly V2 is isomorphic to R2. Then the two-dimensional elasticity complexes utilize these:

𝑄1
inc,𝑟

(︀
𝐹 ct

)︀
:=

{︁
𝑣 ∈ X̊1

𝑟

(︀
𝐹 ct

)︀
⊗ V2 : curl𝐹 𝑣 ∈ 𝑉 1

curl,𝑟−1

(︀
𝐹 ct

)︀}︁
, (3.3a)
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Table 1. Dimension counts of the canonical (two–dimensional) Nédélec, Lagrange, and smooth
spaces with respect to the Clough–Tocher split. Here, dim 𝑉 1

div,𝑟(𝐹 ct ) = dim 𝑉 1
curl,𝑟(𝐹 ct ) =:

dim 𝑉 1
𝑟 (𝐹 ct ).

𝑘 = 0 𝑘 = 1 𝑘 = 2

dim 𝑉 𝑘
𝑟

(︀
𝐹 ct
)︀

– 3(𝑟 + 1)2 3
2
(𝑟 + 1)(𝑟 + 2)

dim 𝑉 𝑘
𝑟

(︀
𝐹 ct
)︀

– 3𝑟(𝑟 + 1) 3
2
(𝑟 + 1)(𝑟 + 2)− 1

dim X𝑘
𝑟

(︀
𝐹 ct
)︀

1
2
(3𝑟2 + 3𝑟 + 2) 3𝑟2 + 3𝑟 + 2 1

2
(3𝑟2 + 3𝑟 + 2)

dim X̊𝑘
𝑟

(︀
𝐹 ct
)︀

1
2
(3𝑟2 − 3𝑟 + 2) 3𝑟2 − 3𝑟 + 2 3

2
𝑟(𝑟 − 1)

dim 𝑆𝑘
𝑟

(︀
𝐹 ct
)︀

3
2
(𝑟2 − 𝑟 + 2) – –

dimℛ𝑘
𝑟

(︀
𝐹 ct
)︀

3
2
(𝑟 − 1)(𝑟 − 2) [27] – –

dim 𝑄𝑘
𝑟

(︀
𝐹 ct
)︀

– 3
2
(3𝑟2 + 5𝑟 + 2) –

𝑄1,𝑠
inc,𝑟

(︀
𝐹 ct

)︀
:=

{︁
sym(𝑢) : 𝑢 ∈ 𝑄1

inc,𝑟

(︀
𝐹 ct

)︀}︁
, (3.3b)

𝑄1
𝑟

(︀
𝐹 ct

)︀
:=

{︀
𝑢 ∈ 𝑉 1

div,𝑟

(︀
𝐹 ct

)︀
⊗ V2 : skew(𝑢) = 0

}︀
, (3.3c)

�̃�1
𝑟

(︀
𝐹 ct

)︀
:=

{︀
𝑢 ∈ X1

𝑟

(︀
𝐹 ct

)︀
⊗ V2 : skew(𝑢) = 0

}︀
⊂ 𝑄1

𝑟

(︀
𝐹 ct

)︀
, (3.3d)

𝑄2
𝑟

(︀
𝐹 ct

)︀
:=

{︀
𝑢 ∈ 𝑉 2

𝑟

(︀
𝐹 ct

)︀
: 𝑢 ⊥ 𝒫1(𝐹 )

}︀
. (3.3e)

We further let 𝑄⊥𝑟 be the subspace of 𝑄1
𝑟(𝐹 ct ) that is 𝐿2(𝐹 )-orthogonal to �̃�1

𝑟(𝐹 ct ). We then have 𝑄1
𝑟(𝐹 ct ) =

𝑄⊥𝑟 ⊕ �̃�1
𝑟(𝐹 ct ), and

dim 𝑄⊥𝑟 = dim 𝑄1
𝑟

(︀
𝐹 ct

)︀
− dim �̃�1

𝑟

(︀
𝐹 ct

)︀
. (3.4)

Lemma 3.3 (Lem. 5.8 in [15]). Let 𝑢 be a sufficiently smooth matrix-valued function, and let 𝜑 be a smooth
scalar-valued function. Then there holds the following integration-by-parts identity:

ˆ
𝐹

(inc𝐹 𝑢) 𝜑 =
ˆ

𝐹

𝑢 : airy𝐹 (𝜑) +
ˆ

𝜕𝐹

(curl𝐹 𝑢)𝑡 𝜑 d𝑠 +
ˆ

𝜕𝐹

𝑢𝑡 · (rot𝐹 𝜑)′. (3.5)

Consequently, if 𝑢 ∈ 𝑄1
inc,𝑟−1(𝐹 ct ) is symmetric and 𝜑 ∈ 𝒫1(𝐹 ), then

´
𝐹

(inc𝐹 𝑢) 𝜑 = 0.

The next theorem is the main result of this section, where exact local discrete elasticity complexes are
presented on Clough–Tocher splits. Its proof is given in Appendix A.

Theorem 3.4. Let 𝑟 ≥ 3. The following elasticity sequences are exact.

0 −−→ 𝑆0
𝑟+1

(︀
𝐹 ct

)︀
⊗ V2

𝜀𝐹

−−→ 𝑄1,𝑠
inc,𝑟

(︀
𝐹 ct

)︀ inc𝐹

−−→ 𝑄2
𝑟−2

(︀
𝐹 ct

)︀
−−→ 0, (3.6)

𝒫1(𝐹 )
⊂

−−→ 𝑆0
𝑟

(︀
𝐹 ct

)︀ airy𝐹

−−→ 𝑄1
𝑟−2

(︀
𝐹 ct

)︀ div𝐹

−−→ 𝑉 2
𝑟−3

(︀
𝐹 ct

)︀
⊗ V2 −−→ 0. (3.7)

3.3. Dimension counts

We summarize the dimension counts of the discrete spaces on the Clough–Tocher split in Table 1 which will
be used in the construction elasticity complex in three dimensions. These dimensions are mostly found in [23]
and follow from Theorem 3.1 and the rank-nullity theorem. Likewise, the dimension of 𝑄1

𝑟(𝐹 𝑐𝑡) follows from
Theorem 3.4.
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4. Local discrete sequences on Worsey–Farin splits

4.1. de Rham complexes

Similar to the two-dimensional setting in Section 3, the starting point to construct discrete 3D elasticity
complexes are the de Rham complexes consisting of piecewise polynomial spaces. The Nédélec spaces with
respect to the local Worsey–Farin split 𝑇𝑤𝑓 are given as

𝑉 1
𝑟

(︀
𝑇𝑤𝑓

)︀
:=

[︀
𝒫𝑟

(︀
𝑇𝑤𝑓

)︀]︀3 ∩𝐻(curl, 𝑇 ), 𝑉 1
𝑟

(︀
𝑇𝑤𝑓

)︀
:= 𝑉 1

𝑟

(︀
𝑇𝑤𝑓

)︀
∩𝐻(curl, 𝑇 ),

𝑉 2
𝑟

(︀
𝑇𝑤𝑓

)︀
:=

[︀
𝒫𝑟

(︀
𝑇𝑤𝑓

)︀]︀3 ∩𝐻(div, 𝑇 ), 𝑉 2
𝑟

(︀
𝑇𝑤𝑓

)︀
:= 𝑉 2

𝑟

(︀
𝑇𝑤𝑓

)︀
∩𝐻(div, 𝑇 ),

𝑉 3
𝑟

(︀
𝑇𝑤𝑓

)︀
:= 𝒫𝑟

(︀
𝑇𝑤𝑓

)︀
, 𝑉 3

𝑟

(︀
𝑇𝑤𝑓

)︀
:= 𝑉 3

𝑟

(︀
𝑇𝑤𝑓

)︀
∩ 𝐿2

0(𝑇 ).

The Lagrange spaces on 𝑇𝑤𝑓 are defined by

X0
𝑟

(︀
𝑇𝑤𝑓

)︀
:= 𝒫𝑟

(︀
𝑇𝑤𝑓

)︀
∩𝐻1(𝑇 ), X̊0

𝑟

(︀
𝑇𝑤𝑓

)︀
:= X0

𝑟

(︀
𝑇𝑤𝑓

)︀
∩𝐻1(𝑇 ),

X1
𝑟

(︀
𝑇𝑤𝑓

)︀
:=

[︀
X0

𝑟

(︀
𝑇𝑤𝑓

)︀]︀3
, X̊1

𝑟

(︀
𝑇𝑤𝑓

)︀
:=

[︁
X̊0

𝑟

(︀
𝑇𝑤𝑓

)︀]︁3

,

X2
𝑟

(︀
𝑇𝑤𝑓

)︀
:= X1

𝑟

(︀
𝑇𝑤𝑓

)︀
, X̊2

𝑟

(︀
𝑇𝑤𝑓

)︀
:= X̊1

𝑟

(︀
𝑇𝑤𝑓

)︀
,

and the discrete spaces with additional smoothness are

𝑆0
𝑟

(︀
𝑇𝑤𝑓

)︀
:=

{︀
𝑢 ∈ X0

𝑟

(︀
𝑇𝑤𝑓

)︀
: grad 𝑢 ∈ X1

𝑟−1

(︀
𝑇𝑤𝑓

)︀}︀
,

𝑆0
𝑟

(︀
𝑇𝑤𝑓

)︀
:=

{︁
𝑢 ∈ X̊0

𝑟

(︀
𝑇𝑤𝑓

)︀
: grad 𝑢 ∈ X̊1

𝑟−1

(︀
𝑇𝑤𝑓

)︀}︁
,

𝑆1
𝑟

(︀
𝑇𝑤𝑓

)︀
:=

{︀
𝑢 ∈ X1

𝑟

(︀
𝑇𝑤𝑓

)︀
: curl 𝑢 ∈ X1

𝑟−1

(︀
𝑇𝑤𝑓

)︀}︀
,

𝑆1
𝑟

(︀
𝑇𝑤𝑓

)︀
:=

{︁
𝑢 ∈ X̊1

𝑟

(︀
𝑇𝑤𝑓

)︀
: curl 𝑢 ∈ X̊1

𝑟−1

(︀
𝑇𝑤𝑓

)︀}︁
.

We also define the intermediate spaces

𝒱2
𝑟

(︀
𝑇𝑤𝑓

)︀
:=

{︀
𝑣 ∈ 𝑉 2

𝑟

(︀
𝑇𝑤𝑓

)︀
: 𝑣 × 𝑛|𝐹 is continuous on each 𝐹 ∈ ∆2(𝑇 )

}︀
,

𝒱2
𝑟

(︀
𝑇𝑤𝑓

)︀
:=

{︀
𝑣 ∈ 𝒱2

𝑟

(︀
𝑇𝑤𝑓

)︀
: 𝑣 · 𝑛|𝐹 = 0 on each 𝐹 ∈ ∆2(𝑇 )

}︀
,

𝒱3
𝑟

(︀
𝑇𝑤𝑓

)︀
:=

{︀
𝑞 ∈ 𝑉 3

𝑟

(︀
𝑇𝑤𝑓

)︀
: 𝑞|𝐹 is continuous on each 𝐹 ∈ ∆2(𝑇 )

}︀
,

𝒱3
𝑟 := 𝒱3

𝑟

(︀
𝑇𝑤𝑓

)︀
∩ 𝐿2

0(𝑇 ).

and note that

𝑆0
𝑟

(︀
𝑇𝑤𝑓

)︀
⊂ X0

𝑟

(︀
𝑇𝑤𝑓

)︀
, 𝑆1

𝑟

(︀
𝑇𝑤𝑓

)︀
⊂ X1

𝑟

(︀
𝑇𝑤𝑓

)︀
⊂ 𝑉 1

𝑟

(︀
𝑇𝑤𝑓

)︀
,

X2
𝑟

(︀
𝑇𝑤𝑓

)︀
⊂ 𝒱2

𝑟

(︀
𝑇𝑤𝑓

)︀
⊂ 𝑉 2

𝑟

(︀
𝑇𝑤𝑓

)︀
, 𝒱3

𝑟

(︀
𝑇𝑤𝑓

)︀
⊂ 𝑉 3

𝑟

(︀
𝑇𝑤𝑓

)︀
,

with similar inclusions holding for the analogous spaces with boundary conditions.
The next lemma summarizes the exactness properties of several (local) complexes using these spaces. Its

proof is found in Theorems 3.1 and 3.2 from [23].

Lemma 4.1. The following sequences are exact for any 𝑟 ≥ 3.

R ⊂−→ X0
𝑟

(︀
𝑇𝑤𝑓

)︀ grad−−−→ 𝑉 1
𝑟−1

(︀
𝑇𝑤𝑓

)︀ curl−−→ 𝑉 2
𝑟−2

(︀
𝑇𝑤𝑓

)︀ div−−→ 𝑉 3
𝑟−3

(︀
𝑇𝑤𝑓

)︀
→ 0, (4.1a)

0 → X̊0
𝑟

(︀
𝑇𝑤𝑓

)︀ grad−−−→ 𝑉 1
𝑟−1

(︀
𝑇𝑤𝑓

)︀ curl−−→ 𝑉 2
𝑟−2

(︀
𝑇𝑤𝑓

)︀ div−−→ 𝑉 3
𝑟−3

(︀
𝑇𝑤𝑓

)︀
→ 0, (4.1b)

R ⊂−→ 𝑆0
𝑟

(︀
𝑇𝑤𝑓

)︀ grad−−−→ X1
𝑟−1

(︀
𝑇𝑤𝑓

)︀ curl−−→ 𝑉 2
𝑟−2

(︀
𝑇𝑤𝑓

)︀ div−−→ 𝑉 3
𝑟−3

(︀
𝑇𝑤𝑓

)︀
→ 0, (4.1c)
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Table 2. Dimension counts of the canonical Nédélec, Lagrange spaces and smoother spaces on
a WF split. Here 𝑎+ = max(𝑎, 0).

𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3

𝑉 𝑘
𝑟

(︀
𝑇 𝑤𝑓
)︀

(2𝑟 + 1)(𝑟2 + 𝑟 + 1) 2(𝑟 + 1)(3𝑟2 + 6𝑟 + 4) 3(𝑟 + 1)(𝑟 + 2)(2𝑟 + 3) 2(𝑟 + 1)(𝑟 + 2)(𝑟 + 3)

𝑉 𝑘
𝑟

(︀
𝑇 𝑤𝑓
)︀

(2𝑟 − 1)(𝑟2 − 𝑟 + 1) 2(𝑟 + 1)(3𝑟2 + 1) 3(𝑟 + 1)(𝑟 + 2)(2𝑟 + 1) 2𝑟3 + 12𝑟2 + 22𝑟 + 11

X𝑘
𝑟

(︀
𝑇 𝑤𝑓
)︀

(2𝑟 + 1)(𝑟2 + 𝑟 + 1) 3(2𝑟 + 1)(𝑟2 + 𝑟 + 1) 3(2𝑟 + 1)(𝑟2 + 𝑟 + 1) (2𝑟 + 1)(𝑟2 + 𝑟 + 1)

X̊𝑘
𝑟

(︀
𝑇 𝑤𝑓
)︀

(2𝑟 − 1)(𝑟2 − 𝑟 + 1) 3(2𝑟 − 1)(𝑟2 − 𝑟 + 1) 3(2𝑟 − 1)(𝑟2 − 𝑟 + 1) (𝑟 − 1)(2𝑟2 − 𝑟 + 2)

𝒱𝑘
𝑟

(︀
𝑇 𝑤𝑓
)︀

– – 6𝑟3 + 21𝑟2 + 9𝑟 + 2 2𝑟3 + 12𝑟2 + 10𝑟 + 3

𝑆𝑘
𝑟

(︀
𝑇 𝑤𝑓
)︀

2𝑟3 − 6𝑟2 + 10𝑟 − 2 3𝑟(2𝑟2 − 3𝑟 + 5) 6𝑟3 + 8𝑟 + 2 (2𝑟 + 1)(𝑟2 + 𝑟 + 1)

𝑆0
𝑟

(︀
𝑇 𝑤𝑓
)︀ (︀

2(𝑟 − 2)(𝑟 − 3)(𝑟 − 4)
)︀+ (︀

3(2𝑟 − 3)(𝑟 − 2)(𝑟 − 3)
)︀+ (︀

2(𝑟 − 2)(3𝑟2 − 6𝑟 + 4)
)︀+

(𝑟 − 1)(2𝑟2 − 𝑟 + 2)

0 → 𝑆0
𝑟

(︀
𝑇𝑤𝑓

)︀ grad−−−→ X̊1
𝑟−1

(︀
𝑇𝑤𝑓

)︀ curl−−→ 𝒱2
𝑟−2

(︀
𝑇𝑤𝑓

)︀ div−−→ 𝑉 3
𝑟−3

(︀
𝑇𝑤𝑓

)︀
→ 0. (4.1d)

R ⊂−→ 𝑆0
𝑟

(︀
𝑇𝑤𝑓

)︀ grad−−−→ 𝑆1
𝑟−1

(︀
𝑇𝑤𝑓

)︀ curl−−→ X2
𝑟−2

(︀
𝑇𝑤𝑓

)︀ div−−→ 𝑉 3
𝑟−3

(︀
𝑇𝑤𝑓

)︀
→ 0. (4.1e)

0 → 𝑆0
𝑟

(︀
𝑇𝑤𝑓

)︀ grad−−−→ 𝑆1
𝑟−1

(︀
𝑇𝑤𝑓

)︀ curl−−→ X̊2
𝑟−2

(︀
𝑇𝑤𝑓

)︀ div−−→ 𝒱3
𝑟−3

(︀
𝑇𝑤𝑓

)︀
→ 0. (4.1f)

4.2. Dimension counts

The dimensions of the spaces in Section 4.1 are summarized in Table 2. These counts essentially from
Lemma 4.1 and the rank-nullity theorem; see [23] for details.

4.3. Elasticity complex for stresses with weakly imposed symmetry

In this section we will apply Proposition 2.1 to the de-Rham sequences on Worsey–Farin splits. This gives rise
to a derived complex useful for analyzing mixed methods for elasticity with weakly imposed stress symmetry.
From this intermediate step, an elasticity sequence with strong symmetry will readily follow. We start with the
following definition and lemma.

Definition 4.2. Let 𝜇 ∈ X̊0
1(𝑇𝑤𝑓 ) be the unique continuous, piecewise linear polynomial that vanishes on 𝜕𝑇

and takes the value 1 at the incenter of 𝑇 .

Lemma 4.3.

(1) The map Ξ : X1
𝑟(𝑇𝑤𝑓 )⊗ V → X2

𝑟(𝑇𝑤𝑓 )⊗ V is a bijection.
(2) The following inclusions hold vskw (𝑉 2

𝑟−2(𝑇𝑤𝑓 ) ⊗ V) ⊂ 𝑉 3
𝑟−2(𝑇𝑤𝑓 ) ⊗ V and vskw (𝒱2

𝑟−2(𝑇𝑤𝑓 ) ⊗ V) ⊂
𝒱3

𝑟−2(𝑇𝑤𝑓 )⊗ V, for any 𝑟 ≥ 3.
(3) The mappings vskw : 𝑉 2

𝑟−2(𝑇𝑤𝑓 ) ⊗ V → 𝑉 3
𝑟−2(𝑇𝑤𝑓 ) ⊗ V and vskw : 𝒱2

𝑟−2(𝑇𝑤𝑓 ) ⊗ V → 𝒱3
𝑟−2(𝑇𝑤𝑓 ) ⊗ V are

both surjective, for any 𝑟 ≥ 3.

Proof. Both (1) and (2) are trivial to verify and hence we only prove (3). For any 𝑟 ≥ 3, let 𝑣 ∈ 𝑉 3
𝑟−2(𝑇𝑤𝑓 )⊗V.

By the exactness of (4.1e), there exists a function 𝑧 ∈ X2
𝑟−2(𝑇𝑤𝑓 ) ⊗ V such that div 𝑧 = 𝑣. Since Ξ is a

bijection from X1
𝑟−2(𝑇𝑤𝑓 ) ⊗ V to X2

𝑟−2(𝑇𝑤𝑓 ) ⊗ V, we have 𝑞 = Ξ−1𝑧 ∈ X1
𝑟−2(𝑇𝑤𝑓 ) ⊗ V. Thus, by setting

𝑤 = curl 𝑞 ∈ 𝑉 2
𝑟−2(𝑇𝑤𝑓 )⊗ V we obtain

2 vskw(𝑤) = 2 vskw curl (𝑞) = 2 vskw curl
(︀
Ξ−1𝑧

)︀
= div Ξ

(︀
Ξ−1𝑧

)︀
= 𝑣,

where we used (2.9a). We conclude vskw : 𝑉 2
𝑟−2(𝑇𝑤𝑓 )⊗ V → 𝑉 3

𝑟−2(𝑇𝑤𝑓 )⊗ V is a surjection.
We now prove the analogous result with boundary condition. Let 𝑣 ∈ 𝒱3

𝑟−2(𝑇𝑤𝑓 )⊗V, and let 𝑀 ∈ M3×3 be
a constant matrix such that

´
𝑇

2 vskw 𝑀 = 1´
𝑇

𝜇

´
𝑇

𝑣. Then, by taking �̃� = 𝜇𝑀 , we have �̃� ∈ 𝒱2
1 (𝑇𝑤𝑓 )⊗V with
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´
𝑇

2 vskw �̃� =
´

𝑇
𝑣. Therefore, we have 𝑣 − 2 vskw(�̃�) ∈ 𝒱3

𝑟−2(𝑇𝑤𝑓 ) ⊗ V and the exactness of (4.1f) yields the
existence of 𝑧 ∈ X̊2

𝑟−1(𝑇𝑤𝑓 ) ⊗ V, such that div 𝑧 = 𝑣 − 2 vskw(�̃�). Let 𝑞 = Ξ−1𝑧 ∈ X̊1
𝑟−1(𝑇𝑤𝑓 ) ⊗ V, and from

(4.1d), we have 𝑤 := curl (𝑞) + �̃� ∈ 𝒱2
𝑟−2(𝑇𝑤𝑓 )⊗ V. Finally, using (2.9a)

2 vskw(𝑤) = 2 vskw curl
(︀
Ξ−1𝑧

)︀
+ 2 vskw(�̃�) = div 𝑧 + 2 vskw(�̃�) = 𝑣.

This shows the surjectivity of vskw : 𝒱2
𝑟−2(𝑇𝑤𝑓 )⊗ V → 𝒱3

𝑟−2(𝑇𝑤𝑓 )⊗ V, thus completing the proof. �

Using the complexes (4.1c)–(4.1f) and the two identities (2.9a) and (2.9b), we construct the following com-
muting diagrams:

𝑆0
𝑟+1

(︀
𝑇𝑤𝑓

)︀
⊗V 𝑆1

𝑟

(︀
𝑇𝑤𝑓

)︀
⊗V X2

𝑟−1

(︀
𝑇𝑤𝑓

)︀
⊗V 𝑉 3

𝑟−2

(︀
𝑇𝑤𝑓

)︀
⊗V 0

𝑆0
𝑟

(︀
𝑇𝑤𝑓

)︀
⊗V X1

𝑟−1

(︀
𝑇𝑤𝑓

)︀
⊗V 𝑉 2

𝑟−2

(︀
𝑇𝑤𝑓

)︀
⊗V 𝑉 3

𝑟−3

(︀
𝑇𝑤𝑓

)︀
⊗V 0,

grad curl div

grad

−mskw

curl

Ξ

div

2 vskw
(4.2)

𝑆0
𝑟+1

(︀
𝑇𝑤𝑓

)︀
⊗V 𝑆1

𝑟

(︀
𝑇𝑤𝑓

)︀
⊗V X̊2

𝑟−1

(︀
𝑇𝑤𝑓

)︀
⊗V 𝒱3

𝑟−2

(︀
𝑇𝑤𝑓

)︀
⊗V R

𝑆0
𝑟

(︀
𝑇𝑤𝑓

)︀
⊗V X̊1

𝑟−1

(︀
𝑇𝑤𝑓

)︀
⊗V 𝒱2

𝑟−2

(︀
𝑇𝑤𝑓

)︀
⊗V 𝑉 3

𝑟−3

(︀
𝑇𝑤𝑓

)︀
⊗V 0.

grad curl div
´

grad

−mskw

curl

Ξ

div

2 vskw
(4.3)

Note that the top sequence of (4.3) is slightly different from (4.1f), as the mean-value constraint is not imposed on
𝒱𝑟−2(𝑇𝑤𝑓 )⊗V. This is due to the surjective property of the mapping vskw : (𝒱2

𝑟−2(𝑇𝑤𝑓 )⊗V) → 𝒱3
𝑟−2(𝑇𝑤𝑓 )⊗V

established in Lemma 4.3.

Theorem 4.4. The following sequences are exact for any 𝑟 ≥ 3:[︃
𝑆0

𝑟+1

(︀
𝑇𝑤𝑓

)︀
⊗V

𝑆0
𝑟 (𝑇𝑤𝑓⊗V)

]︃
[grad,−mskw]−−−−−−−−−→ 𝑆1

𝑟

(︀
𝑇𝑤𝑓

)︀
⊗V curl Ξ−1curl−−−−−−−−→ 𝑉 2

𝑟−2

(︀
𝑇𝑤𝑓

)︀
⊗V

[︁
2 vskw
div

]︁

−−−−−−→

[︃
𝑉 3

𝑟−2

(︀
𝑇𝑤𝑓

)︀
⊗V

𝑉 3
𝑟−3

(︀
𝑇𝑤𝑓

)︀
⊗V

]︃
. (4.4)[︃

𝑆0
𝑟+1

(︀
𝑇𝑤𝑓

)︀
⊗ V

𝑆0
𝑟 (𝑇𝑤𝑓 ⊗ V)

]︃
[grad,−mskw]−−−−−−−−−→ 𝑆1

𝑟

(︀
𝑇𝑤𝑓

)︀
⊗ V curl Ξ−1curl−−−−−−−−→ 𝒱2

𝑟−2

(︀
𝑇𝑤𝑓

)︀
⊗ V

[︁
2 vskw
div

]︁

−−−−−−→

[︃
𝒱3

𝑟−2

(︀
𝑇𝑤𝑓

)︀
⊗ V

𝑉 3
𝑟−3

(︀
𝑇𝑤𝑓

)︀
⊗ V

]︃
. (4.5)

Moreover, the last operator in (4.4) is surjective.

Proof. Lemma 4.3 tells us that Ξ : X1
𝑟−1(𝑇𝑤𝑓 ) ⊗ V → X2

𝑟−1(𝑇𝑤𝑓 ) ⊗ V is a bijection. With the exactness of
(4.1c)–(4.1f) for 𝑟 ≥ 3 and Proposition 2.1, we see that these two sequences are exact. The surjectivity of the
last map is guaranteed by Proposition 2.1 and Lemma 4.3. �

4.4. Elasticity sequence

Now we are ready to describe the local discrete elasticity sequence on Worsey–Farin splits. The discrete
elasticity complexes with strong symmetry are formed by the following spaces:

𝑈0
𝑟+1

(︀
𝑇𝑤𝑓

)︀
= 𝑆0

𝑟+1

(︀
𝑇𝑤𝑓

)︀
⊗ V, 𝑈0

𝑟+1

(︀
𝑇𝑤𝑓

)︀
= 𝑆0

𝑟+1

(︀
𝑇𝑤𝑓

)︀
⊗ V,

𝑈1
𝑟

(︀
𝑇𝑤𝑓

)︀
=

{︀
sym(𝑢) : 𝑢 ∈ 𝑆1

𝑟

(︀
𝑇𝑤𝑓

)︀
⊗ V

}︀
, 𝑈1

𝑟

(︀
𝑇𝑤𝑓

)︀
= {sym(𝑢) : 𝑢 ∈ 𝑆1

𝑟

(︀
𝑇𝑤𝑓

)︀
⊗ V},

𝑈2
𝑟−2

(︀
𝑇𝑤𝑓

)︀
=

{︀
𝑢 ∈ 𝑉 2

𝑟−2

(︀
𝑇𝑤𝑓

)︀
⊗ V : skw 𝑢 = 0

}︀
, 𝑈2

𝑟−2

(︀
𝑇𝑤𝑓

)︀
= {𝑢 ∈ 𝒱2

𝑟−2

(︀
𝑇𝑤𝑓

)︀
⊗ V : skw 𝑢 = 0},

𝑈3
𝑟−3

(︀
𝑇𝑤𝑓

)︀
= 𝑉 3

𝑟−3

(︀
𝑇𝑤𝑓

)︀
⊗ V, 𝑈3

𝑟−3

(︀
𝑇𝑤𝑓

)︀
=

{︀
𝑢 ∈ 𝑉 3

𝑟−3

(︀
𝑇𝑤𝑓

)︀
⊗ V : 𝑢 ⊥ R

}︀
,

where we recall R, defined in (2.7), is the space of rigid body displacements.
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Theorem 4.5. The following two sequences are discrete elasticity complexes and are exact for 𝑟 ≥ 3:

R → 𝑈0
𝑟+1

(︀
𝑇𝑤𝑓

)︀ 𝜀−→ 𝑈1
𝑟

(︀
𝑇𝑤𝑓

)︀ inc−−→ 𝑈2
𝑟−2

(︀
𝑇𝑤𝑓

)︀ div−−→ 𝑈3
𝑟−3

(︀
𝑇𝑤𝑓

)︀
→ 0, (4.6)

and
0 → 𝑈0

𝑟+1

(︀
𝑇𝑤𝑓

)︀ 𝜀−→ 𝑈1
𝑟

(︀
𝑇𝑤𝑓

)︀ inc−−→ 𝑈2
𝑟−2

(︀
𝑇𝑤𝑓

)︀ div−−→ 𝑈3
𝑟−3

(︀
𝑇𝑤𝑓

)︀
→ 0. (4.7)

Proof. We first show that (4.6) is a complex. In order to do this, it suffices to show the operators map the space
they are acting on into the subsequent space. To this end, let 𝑢 ∈ 𝑈0

𝑟+1(𝑇𝑤𝑓 ), then by (4.1e) we have grad (𝑢) ∈
𝑆1

𝑟 (𝑇𝑤𝑓 )⊗V. Hence, 𝜀(𝑢) = sym grad (𝑢) ∈ 𝑈1
𝑟 (𝑇𝑤𝑓 ). Now let 𝑢 ∈ 𝑈1

𝑟 (𝑇𝑤𝑓 ) which implies that 𝑢 = sym(𝑤) with
𝑤 ∈ 𝑆1

𝑟 (𝑇𝑤𝑓 )⊗V. Thus by (2.9c) we have curl Ξ−1curl 𝑢 = curl Ξ−1curl 𝑤 ∈ 𝑉 2
𝑟−2(𝑇𝑤𝑓 )⊗V and skw(𝑢) = 0 due

to (2.9d). Therefore, there holds curl Ξ−1curl (𝑢) ∈ 𝑈2
𝑟−2(𝑇𝑤𝑓 ). Finally, for any 𝑢 ∈ 𝑈2

𝑟−2(𝑇𝑤𝑓 ) ⊂ 𝑉 2
𝑟−2(𝑇𝑤𝑓 )⊗V,

div 𝑢 ∈ 𝑉 3
𝑟−3(𝑇𝑤𝑓 )⊗ V.

Next, we prove exactness of the complex (4.6). Let 𝑤 ∈ 𝑈3
𝑟−3(𝑇𝑤𝑓 ) and consider (0, 𝑤) ∈ [𝑉 3

𝑟−2(𝑇𝑤𝑓 )⊗V]×
[𝑉 3

𝑟−3(𝑇𝑤𝑓 ) ⊗ V]. Due to the exactness of (4.4) in Theorem 4.4, there exists 𝑣 ∈ 𝑉 2
𝑟−2(𝑇𝑤𝑓 ) ⊗ V such that

div 𝑣 = 𝑤 and 2 vskw(𝑣) = 0. Thus, 𝑣 ∈ 𝑈2
𝑟−2(𝑇𝑤𝑓 ).

Now let 𝑤 ∈ 𝑈2
𝑟−2(𝑇𝑤𝑓 ) with div 𝑤 = 0. Then by the exactness of (4.4), we have the existence of 𝑣 ∈

𝑆1
𝑟 (𝑇𝑤𝑓 )⊗ V such that curl Ξ−1curl 𝑣 = 𝑤. Setting 𝑢 = sym(𝑣) ∈ 𝑈1

𝑟 (𝑇𝑤𝑓 ) yields inc 𝑢 = 𝑤 by (2.9c).
Finally, let 𝑤 ∈ 𝑈1

𝑟 (𝑇𝑤𝑓 ) with inc 𝑤 = 0. Then 𝑤 = sym(𝑣) for some 𝑣 ∈ 𝑆1
𝑟 (𝑇𝑤𝑓 ) ⊗ V and with (2.9c),

curl Ξ−1curl 𝑣 = curl Ξ−1curl 𝑤 = 0. Due to the exactness of (4.4), we could find (𝑢, 𝑧) ∈ [𝑆0
𝑟+1(𝑇𝑤𝑓 ) ⊗ V] ×

[𝑆0
𝑟 (𝑇𝑤𝑓 )⊗ V] such that 𝑣 = grad 𝑢−mskw (𝑧). Therefore, 𝜀(𝑢) = sym(𝑣) = 𝑤.
We can prove that (4.7) is a complex and it is exact very similar to above. The main difference is the

surjectivity of the last map which we prove now. Let 𝑤 ∈ 𝑈3
𝑟−3(𝑇𝑤𝑓 ) ⊂ 𝑉 3

𝑟−3 ⊗ V. Then by the exactness of
(4.1d), there exists 𝑣 ∈ 𝒱2

𝑟−2(𝑇𝑤𝑓 )⊗V such that div 𝑣 = 𝑤. For any 𝑐 ∈ R3 we have grad (𝑐× 𝑥) = mskw 𝑐 and
hence, using integration by parts

ˆ
𝑇

2 vskw 𝑣 · 𝑐 =
ˆ

𝑇

𝑣 : mskw 𝑐 =
ˆ

𝑇

𝑣 : grad (𝑐× 𝑥) = −
ˆ

𝑇

div 𝑣 · (𝑐× 𝑥) = −
ˆ

𝑇

𝑤 · (𝑐× 𝑥) = 0,

where the last equality uses the fact 𝑤 ⊥ R. Therefore, vskw 𝑣 ∈ 𝒱3
𝑟−2(𝑇𝑤𝑓 )⊗V and by the exactness of (4.1f),

we have an 𝑚 ∈ X̊2
𝑟−1(𝑇𝑤𝑓 )⊗V such that div 𝑚 = 2 vskw 𝑣. Let 𝑢 = 𝑣 − curl (Ξ−1𝑚) ∈ 𝒱2

𝑟−2(𝑇𝑤𝑓 )⊗V and we
see that 2 vskw 𝑢 = 2 vskw 𝑣 − 2 vskw curl (Ξ−1𝑚) = 0 by (2.9a). Hence, 𝑢 ∈ 𝑈2

𝑟−2(𝑇𝑤𝑓 ) and div 𝑢 = 𝑤. �

When 𝑟 ≥ 4, there holds R ⊂ 𝑈3
𝑟−3(𝑇𝑤𝑓 ), so it is clear that

𝑈3
𝑟−3

(︀
𝑇𝑤𝑓

)︀
= R⊕ 𝑈3

𝑟−3

(︀
𝑇𝑤𝑓

)︀
for 𝑟 ≥ 4. (4.8)

On the other hand, when 𝑟 = 3, we need the following lemma for the calculation of dimensions of 𝑈3
𝑟−3(𝑇𝑤𝑓 ).

Let 𝑃𝑈 be the 𝐿2-orthogonal projection onto 𝑈3
0 (𝑇𝑤𝑓 ) and let 𝑃𝑈R := {𝑃𝑈𝑢 : 𝑢 ∈ R}. The proof of the

following lemma is provided in the appendix.

Lemma 4.6. It holds,
𝑈3

0

(︀
𝑇𝑤𝑓

)︀
= 𝑃𝑈R⊕ 𝑈3

0

(︀
𝑇𝑤𝑓

)︀
, (4.9)

and dim 𝑃𝑈R = dim R = 6.

Using the exactness of the complexes (4.6) and (4.7) along with Table 2, we calculate the dimensions of the
spaces in the next lemma.

Lemma 4.7. When 𝑟 ≥ 3, we have:

dim 𝑈0
𝑟+1

(︀
𝑇𝑤𝑓

)︀
= 6𝑟3 + 12𝑟 + 12, dim 𝑈0

𝑟+1

(︀
𝑇𝑤𝑓

)︀
= 6𝑟3 − 36𝑟2 + 66𝑟 − 36, (4.10)
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dim 𝑈1
𝑟

(︀
𝑇𝑤𝑓

)︀
= 12𝑟3 − 9𝑟2 + 15𝑟 + 6, dim 𝑈1

𝑟

(︀
𝑇𝑤𝑓

)︀
= 12𝑟3 − 63𝑟2 + 87𝑟 − 18, (4.11)

dim 𝑈2
𝑟−2

(︀
𝑇𝑤𝑓

)︀
= 12𝑟3 − 27𝑟2 + 15𝑟, dim 𝑈2

𝑟−2

(︀
𝑇𝑤𝑓

)︀
= 12𝑟3 − 45𝑟2 + 33𝑟 + 12, (4.12)

dim 𝑈3
𝑟−3

(︀
𝑇𝑤𝑓

)︀
= 6𝑟3 − 18𝑟2 + 12𝑟, dim 𝑈3

𝑟−3

(︀
𝑇𝑤𝑓

)︀
= 6𝑟3 − 18𝑟2 + 12𝑟 − 6. (4.13)

Proof. By Lemma 4.3 and the rank-nullity theorem, we have

dim 𝑈2
𝑟−2

(︀
𝑇𝑤𝑓

)︀
= dim ker(𝑉 2

𝑟−2

(︀
𝑇𝑤𝑓

)︀
⊗ V, vskw) = dim 𝑉 2

𝑟−2

(︀
𝑇𝑤𝑓

)︀
⊗ V− dim 𝑉 3

𝑟−2

(︀
𝑇𝑤𝑓

)︀
⊗ V

=
(︀
6𝑟3 − 9𝑟2 + 3𝑟

)︀
× 3− 2𝑟(𝑟 + 1)(𝑟 − 1)× 3 = 12𝑟3 − 27𝑟2 + 15𝑟,

dim 𝑈2
𝑟−2

(︀
𝑇𝑤𝑓

)︀
= dim ker

(︁
𝒱2

𝑟−2

(︀
𝑇𝑤𝑓

)︀
⊗ V, vskw

)︁
= dim𝒱2

𝑟−2

(︀
𝑇𝑤𝑓

)︀
⊗ V− dim𝒱3

𝑟−2

(︀
𝑇𝑤𝑓

)︀
⊗ V

=
(︀
6(𝑟 − 2)3 + 21(𝑟 − 2)2 + 9(𝑟 − 2) + 2

)︀
× 3

− 2
(︀
(𝑟 − 2)3 + 6(𝑟 − 2)2 + 5(𝑟 − 2) + 2

)︀
× 3

= 18𝑟3 − 45𝑟2 − 9𝑟 + 60−
(︀
6𝑟3 − 42𝑟 + 48

)︀
= 12𝑟3 − 45𝑟2 + 33𝑟 + 12.

The dimensions of 𝑈0
𝑟+1(𝑇𝑤𝑓 ), 𝑈0

𝑟+1(𝑇𝑤𝑓 ) and 𝑈3
𝑟−3(𝑇𝑤𝑓 ) are computed similarly using the dimensions of

𝑆0
𝑟+1(𝑇𝑤𝑓 ), 𝑆0

𝑟+1(𝑇𝑤𝑓 ) and 𝑉 3
𝑟−3(𝑇𝑤𝑓 ). Also, using Lemma 4.6 when 𝑟 = 3 or (4.8) when 𝑟 ≥ 4, we obtain

dim 𝑈3
𝑟−3

(︀
𝑇𝑤𝑓

)︀
= dim 𝑈3

𝑟−3

(︀
𝑇𝑤𝑓

)︀
− 6.

Using the exactness of the sequences (4.6) and (4.7) in Theorem 4.5, with the rank-nullity theorem, we have

dim 𝑈1
𝑟

(︀
𝑇𝑤𝑓

)︀
= dim 𝑈0

𝑟+1

(︀
𝑇𝑤𝑓

)︀
+ dim 𝑈2

𝑟−2

(︀
𝑇𝑤𝑓

)︀
− dim 𝑈3

𝑟−3

(︀
𝑇𝑤𝑓

)︀
− dim R

= 12𝑟3 − 9𝑟2 + 15𝑟 + 6,

dim 𝑈1
𝑟

(︀
𝑇𝑤𝑓

)︀
= dim 𝑈0

𝑟+1

(︀
𝑇𝑤𝑓

)︀
+ dim 𝑈2

𝑟−2

(︀
𝑇𝑤𝑓

)︀
− dim 𝑈3

𝑟−3

(︀
𝑇𝑤𝑓

)︀
= 12𝑟3 − 63𝑟2 + 87𝑟 − 18.

�

4.5. An equivalent characterization of 𝑈1
𝑟 (𝑇

𝑤𝑓) and 𝑈1
𝑟 (𝑇

𝑤𝑓)

We will now show that 𝑈1
𝑟 (𝑇𝑤𝑓 ) admits a characterization as a conforming subspace of the Sobolev space

𝐻1(inc) appearing in (1.3). The next result will also help us find the local degrees of freedom of 𝑈1
𝑟 (𝑇𝑤𝑓 ) and

𝑈1
𝑟 (𝑇𝑤𝑓 ).

Theorem 4.8. We have the following equivalent definitions of 𝑈1
𝑟 (𝑇𝑤𝑓 ) and 𝑈1

𝑟 (𝑇𝑤𝑓 ):

𝑈1
𝑟

(︀
𝑇𝑤𝑓

)︀
=

{︀
𝑢 ∈ 𝐻1(𝑇 ; S) : 𝑢 ∈ 𝒫𝑟(𝑇𝑤𝑓 ; S), (curl 𝑢)′ ∈ 𝑉 1

𝑟−1

(︀
𝑇𝑤𝑓

)︀
⊗ V

}︀
, (4.14)

𝑈1
𝑟

(︀
𝑇𝑤𝑓

)︀
=

{︁
𝑢 ∈ 𝐻1(𝑇 ; S) : 𝑢 ∈ 𝒫𝑟(𝑇𝑤𝑓 ; S), (curl 𝑢)′ ∈ 𝑉 1

𝑟−1

(︀
𝑇𝑤𝑓

)︀
⊗ V, (4.15)

inc(𝑢) ∈ 𝒱2
𝑟−2

(︀
𝑇𝑤𝑓

)︀
⊗ V

}︁
.

Proof. Let the right-hand side of (4.14) and (4.15) be denoted by 𝑀𝑟 and 𝑀𝑟, respectively. If 𝑢 ∈ 𝑈1
𝑟 (𝑇𝑤𝑓 ),

then 𝑢 = sym(𝑧) for some 𝑧 ∈ 𝑆1
𝑟 (𝑇𝑤𝑓 )⊗ V, so (2.9e), (2.9b) and Definition 2.3 give

(curl 𝑢)′ = Ξ−1curl 𝑢 = Ξ−1curl 𝑧 + grad vskw(𝑧), (4.16)

from which we conclude (curl 𝑢)′ ∈ 𝑉 1
𝑟−1(𝑇𝑤𝑓 )⊗ V. This proves the inclusion

𝑈1
𝑟

(︀
𝑇𝑤𝑓

)︀
⊂ 𝑀𝑟. (4.17)
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Similarly, if 𝑢 ∈ 𝑈1
𝑟 (𝑇𝑤𝑓 ), then (4.16) for 𝑧 ∈ 𝑆1

𝑟 (𝑇𝑤𝑓 )⊗V, hence we have (curl 𝑢)′ ∈ 𝑉 1
𝑟−1(𝑇𝑤𝑓 )⊗V. Moreover,

using (2.9c) and the exact sequence (4.1d), we obtain

inc(𝑢) = curl Ξ−1curl (𝑢) = curl Ξ−1curl (𝑧) ∈ curl
(︁
X̊1

𝑟−1

(︀
𝑇𝑤𝑓

)︀
⊗ V

)︁
⊂ 𝒱2

𝑟−2

(︀
𝑇𝑤𝑓

)︀
⊗ V.

This proves

𝑈1
𝑟

(︀
𝑇𝑤𝑓

)︀
⊂ 𝑀𝑟. (4.18)

We continue to prove the reverse inclusion of (4.14). For any 𝑚 ∈ 𝑀𝑟, let 𝜎 = curl (curl 𝑚)′ which immediately
implies that div 𝜎 = 0. Moreover, by (2.9e) 𝜎 = curl Ξ−1curl (𝑚) and by (2.9d) vskw(𝜎) = 0. Hence, we have
𝜎 ∈ 𝑉 2

𝑟−2(𝑇𝑤𝑓 )⊗V, and by the exact sequence (4.4) there exists 𝑤 ∈ 𝑆1
𝑟 (𝑇𝑤𝑓 )⊗V such that curl Ξ−1curl (𝑤) = 𝜎.

Therefore, 𝑤−𝑚 ∈ 𝑉 1
𝑟 (𝑇𝑤𝑓 )⊗V with curl Ξ−1curl (𝑤−𝑚) = 0 and hence, by the exact sequence (4.1a), there

exists 𝑣 ∈ X0
𝑟(𝑇𝑤𝑓 )⊗V such that grad 𝑣 = Ξ−1curl (𝑤−𝑚). Setting 𝑧 = 𝑚 + vskw(𝑣) gives sym(𝑧) = 𝑚 and by

(2.9b),

curl 𝑧 = curl 𝑚 + curl mskw 𝑣 = curl 𝑚− Ξ grad 𝑣 = curl 𝑤 ∈ X1
𝑟−1

(︀
𝑇𝑤𝑓

)︀
⊗ V.

We conclude

𝑀𝑟 ⊂ 𝑈1
𝑟

(︀
𝑇𝑤𝑓

)︀
. (4.19)

The reverse inclusion to prove (4.15) follows similar arguments, using the exact sequence (4.5) and (4.1b) in
place of (4.4) and (4.1a), respectively. �

5. Local degrees of freedom for the elasticity complex on Worsey–Farin
splits

In this section we present degrees of freedom for the discrete spaces arising in the elasticity complex. We
first need to introduce some notation as follows. Recall that 𝑇 𝑎 is the set of four tetrahedra obtained by
connecting the vertices of 𝑇 with its incenter. For each 𝐾 ∈ 𝑇 𝑎, we denote the local Worsey–Farin splits of 𝐾 as
𝐾𝑤𝑓 , i.e.,

𝐾𝑤𝑓 =
{︀
𝑆 ∈ 𝑇𝑤𝑓 : 𝑆 ⊂ �̄�

}︀
.

Then, similar to the discrete functions spaces on 𝑇𝑤𝑓 defined in Section 4.1, we define spaces on 𝐾𝑤𝑓 by taking
their restriction:

X0
𝑟

(︀
𝐾𝑤𝑓

)︀
:=

{︀
𝑢|𝐾 : 𝑢 ∈ X0

𝑟

(︀
𝑇𝑤𝑓

)︀}︀
; 𝑆0

𝑟

(︀
𝐾𝑤𝑓

)︀
:=

{︀
𝑢|𝐾 : 𝑢 ∈ 𝑆0

𝑟

(︀
𝑇𝑤𝑓

)︀}︀
.

Lemma 5.1. Let 𝑇 ∈ 𝒯ℎ, and let 𝐹 ∈ ∆2(𝑇 ). If 𝑝 ∈ X0
𝑟(𝑇𝑤𝑓 ) with 𝑝 = 0 on 𝐹 , then grad 𝑝 is continuous on

𝐹 . In particular, the normal derivative 𝜕𝑛𝑝 is continuous on 𝐹 . In addition, if 𝑝 ∈ 𝑆0
𝑟 (𝑇𝑤𝑓 ) with 𝑝 = 0 on 𝐹 ,

then grad 𝑝|𝐹 ∈ 𝑆0
𝑟−1(𝐹 𝑐𝑡)⊗ V and in particular, 𝜕𝑛𝑝|𝐹 ∈ 𝑆0

𝑟−1(𝐹 ct ).

Proof. Let 𝐾 ∈ 𝑇 𝑎 such that 𝐹 ∈ ∆2(𝐾). Then, since 𝑝 vanishes on 𝐹 , we have that 𝑝 = 𝜇𝑞 on 𝐾 where
𝑞 ∈ X0

𝑟−1(𝐾𝑤𝑓 ) and 𝜇 is the piecewise linear polynomial in Definition 4.2. We write grad 𝑝 = 𝜇 grad 𝑞 + 𝑞 grad 𝜇,
and since 𝜇 vanishes on 𝐹 and grad 𝜇 is constant on 𝐹 , we have grad 𝑝 is continuous on 𝐹 .

Furthermore, if 𝑝 ∈ 𝑆0
𝑟 (𝑇𝑤𝑓 ), then 𝑝 = 𝜇𝑞 on 𝐾 where 𝑞 ∈ 𝑆0

𝑟−1(𝐾𝑤𝑓 ) because 𝜇 is a strictly positive
polynomial on 𝐾. Hence by the same reasoning as the previous case, grad 𝑝|𝐹 ∈ 𝑆0

𝑟−1(𝐹 𝑐𝑡)⊗ V. �



3388 S. GONG ET AL.

5.1. Dofs of 𝑈0 space

Lemma 5.2. A function 𝑢 ∈ 𝑈0
𝑟+1(𝑇𝑤𝑓 ), with 𝑟 ≥ 3, is fully determined by the following dofs :

𝑢(𝑎), 𝑎 ∈ ∆0(𝑇 ), 12 dofs, (5.1a)
grad 𝑢(𝑎), 𝑎 ∈ ∆0(𝑇 ), 36 dofs, (5.1b)ˆ

𝑒

𝑢 · 𝜅, 𝜅 ∈ [𝒫𝑟−3(𝑒)]3, 𝑒 ∈ ∆1(𝑇 ), 18(𝑟 − 2) dofs, (5.1c)
ˆ

𝑒

𝜕𝑢

𝜕𝑛±𝑒
· 𝜅, 𝜅 ∈ [𝒫𝑟−2(𝑒)]3, 𝑒 ∈ ∆1(𝑇 ), 36(𝑟 − 1) dofs, (5.1d)

ˆ
𝐹

𝜀𝐹 (𝑢𝐹 ) : 𝜀𝐹 (𝜅), 𝜅 ∈ [𝑆0
𝑟+1(𝐹 𝑐𝑡)]2, 𝐹 ∈ ∆2(𝑇 ) 12𝑟

2 − 36𝑟 + 24 dofs, (5.1e)
ˆ

𝐹

[𝜀(𝑢)]𝐹𝑛 · 𝜅, 𝜅 ∈ grad𝐹 𝑆0
𝑟+1

(︀
𝐹 𝑐𝑡

)︀
, 𝐹 ∈ ∆2(𝑇 ) 6𝑟

2 − 18𝑟 + 12 dofs, (5.1f)
ˆ

𝐹

𝜕𝑛(𝑢 · 𝑛𝐹 )𝜅, 𝜅 ∈ ℛ0
𝑟

(︀
𝐹 𝑐𝑡

)︀
, 𝐹 ∈ ∆2(𝑇 ) 6𝑟

2 − 18𝑟 + 12 dofs, (5.1g)
ˆ

𝐹

𝜕𝑛𝑢𝐹 · 𝜅, 𝜅 ∈
[︀
ℛ0

𝑟

(︀
𝐹 𝑐𝑡

)︀]︀2
, 𝐹 ∈ ∆2(𝑇 ) 12𝑟

2 − 36𝑟 + 24 dofs, (5.1h)
ˆ

𝑇

𝜀(𝑢) : 𝜀(𝜅), 𝜅 ∈ 𝑈0
𝑟+1

(︀
𝑇𝑤𝑓

)︀
, 6(𝑟 − 1)(𝑟 − 2)(𝑟 − 3) dofs, (5.1i)

where 𝜕
𝜕𝑛±𝑒

represents two normal derivatives to edge 𝑒 and {𝑛+
𝑒 , 𝑛−𝑒 , 𝑡𝑒} forms an edge-based orthonormal basis

of R3.

Proof. The dimension of 𝑈0
𝑟+1(𝑇𝑤𝑓 ) is 6𝑟3 + 12𝑟 + 12, which is equal to the sum of the given dofs .

Let 𝑢 ∈ 𝑈0
𝑟+1(𝑇𝑤𝑓 ) such that it vanishes on the dofs (5.1). On each edge 𝑒 ∈ ∆1(𝑇 ), 𝑢|𝑒 = 0 by (5.1a)–(5.1c).

Furthermore, grad 𝑢|𝑒 = 0 by (5.1b) and (5.1d). Hence on any face 𝐹 ∈ ∆2(𝑇 ), we have 𝑢𝐹 ∈ [𝑆0
𝑟+1(𝐹 𝑐𝑡)]2.

Then with dofs (5.1e), 𝑢𝐹 = 0 on 𝐹 . Now with Lemma 5.1 applied to 𝑢𝐹 ∈ 𝑆0
𝑟+1(𝑇𝑤𝑓 )⊗ V2, we have 𝜕𝑛𝑢𝐹 ∈

𝑆0
𝑟 (𝐹 𝑐𝑡) ⊗ V2. In addition, since grad 𝑢𝐹 |𝜕𝐹 = 0, it follows that 𝜕𝑛𝑢𝐹 ∈ [ℛ0

𝑟(𝐹 𝑐𝑡)]2 and with (5.1h), we have
𝜕𝑛𝑢𝐹 = 0.

Using the identity (2.11i), we have 2[𝜀(𝑢)]𝐹𝑛 = 𝜕𝑛𝑢𝐹 +grad𝐹 (𝑢·𝑛𝐹 ) = grad𝐹 (𝑢·𝑛𝐹 ). With 𝑢·𝑛𝐹 ∈ 𝑆0
𝑟+1(𝐹 𝑐𝑡),

we have in (5.1f), [𝜀(𝑢)]𝐹𝑛 = 0 and thus 𝑢 · 𝑛𝐹 = 0 on 𝐹 . Now similar to 𝑢𝐹 , with Lemma 5.1 applied to 𝑢 · 𝑛𝐹 ,
we have 𝜕𝑛(𝑢 · 𝑛𝐹 ) ∈ ℛ0

𝑟(𝐹 𝑐𝑡) and with (5.1g), we have 𝜕𝑛(𝑢 · 𝑛𝐹 ) = 0.
Since 𝑢|𝜕𝑇 = 0, all the tangential derivatives of 𝑢 vanish. With 𝜕𝑛(𝑢 · 𝑛𝐹 ) = 0 and 𝜕𝑛𝑢𝐹 = 0, we conclude

that grad 𝑢|𝜕𝑇 = 0. Thus 𝑢 ∈ 𝑈0
𝑟+1(𝑇𝑤𝑓 ), and (5.1i) shows that 𝑢 vanishes. �

5.2. Dofs of 𝑈1 space

Before giving the dofs of the space 𝑈1 we need preliminary results to see the continuity of the functions
involved. In the following lemmas, we use the jump operator [[·]] and the set of internal edges of a split face
∆𝐼

1(𝐹 𝑐𝑡) given in Section 2.2. The proofs of the next four results are found in the appendix.

Lemma 5.3. Let 𝜎 ∈ 𝑉 2
𝑟 (𝑇𝑤𝑓 )⊗V with skw(𝜎) = 0. If 𝑛′𝐹 𝜎ℓ = 0 on 𝜕𝑇 for some ℓ ∈ R3, then 𝜎𝐹ℓ ∈ 𝑉 1

div,𝑟(𝐹 𝑐𝑡)
on each 𝐹 ∈ ∆2(𝑇 ).

Lemma 5.4. Let 𝑤 ∈ 𝑉 1
𝑟−1(𝑇𝑤𝑓 )⊗V such that 𝑤′ ∈ 𝑉 2

𝑟−1(𝑇𝑤𝑓 )⊗V. If 𝑤𝐹𝑛 = 0 on some 𝐹 ∈ ∆2(𝑇 ), then we
have

[[𝑡′𝑠𝑤𝑛𝑓 ]]𝑒 = 0; [[𝑠′𝑒𝑤𝑠𝑒]]𝑒 = 0, for all 𝑒 ∈ ∆𝐼
1(𝐹 𝑐𝑡). (5.2)

On the other hand, if 𝑤𝐹𝐹 = 0 on 𝐹 , then we have

[[𝑡′𝑒𝑤𝑛𝑓 ]]𝑒 = 0; [[𝑡′𝑒𝑤𝑛𝐹 ]]𝑒 = 0, for all 𝑒 ∈ ∆𝐼
1(𝐹 𝑐𝑡). (5.3)
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Lemma 5.5. Let 𝑇 be a tetrahedron, and let ℓ, 𝑚 be two tangent vectors to a face 𝐹 ∈ ∆2(𝑇 ) such that ℓ ·𝑚 = 0
and ℓ×𝑚 = 𝑛𝐹 . Let 𝑢 ∈ X1

𝑟(𝑇𝑤𝑓 )⊗ V for some 𝑟 ≥ 0. If 𝑢𝐹𝐹 = 0 on some 𝐹 ∈ ∆2(𝑇 ), then

[[ℓ′(curl 𝑢)𝑚]]𝑒 = −[[grad𝐹 (𝑢𝐹𝑛 · ℓ) · ℓ]]𝑒, for all 𝑒 ∈ ∆𝐼
1

(︀
𝐹 𝑐𝑡

)︀
, (5.4)

[[ℓ′(curl 𝑢)ℓ]]𝑒 = −[[grad𝐹 (𝑢𝐹𝑛 · ℓ) ·𝑚]]𝑒, for all 𝑒 ∈ ∆𝐼
1(𝐹 𝑐𝑡). (5.5)

On the other hand, if 𝑢𝑛𝐹 = 0 on 𝐹 , then

[[𝑛′𝐹 (curl 𝑢)ℓ]]𝑒 = [[(grad𝐹 𝑢𝑛𝑛) ·𝑚]]𝑒, for all 𝑒 ∈ ∆𝐼
1

(︀
𝐹 𝑐𝑡

)︀
. (5.6)

Lemma 5.6. Suppose 𝑢 ∈ 𝑈1
𝑟 (𝑇𝑤𝑓 ) and 𝑤 = (curl 𝑢)′ are such that 𝑢𝐹𝐹 and 𝑤𝐹𝑛 vanish on a face 𝐹 ∈ ∆2(𝑇 ).

Then 𝑤𝐹𝐹−grad𝐹 𝑢⊥𝑛𝐹 is continuous on 𝐹 . Furthermore, if 𝑢 = 𝜀(𝑣) for some 𝑣 ∈ 𝑈0
𝑟+1(𝑇𝑤𝑓 ), then the following

identity holds:
𝑤𝐹𝐹 =

[︀
(curl 𝜀(𝑣))′

]︀
𝐹𝐹

= grad𝐹 𝑢⊥𝑛𝐹 + grad𝐹 (𝜕𝑛𝑣𝐹 × 𝑛𝐹 ). (5.7)

In addition to (3.5) in Lemma 3.3, we need another identity to proceed with our construction. The following
result is shown in Lemma 5.8 from [15].

Lemma 5.7. Let 𝑢 be a symmetric matrix-valued function with [(curl 𝑢)′]𝐹𝐹 𝑡|𝜕𝐹 = 0, 𝑢|𝜕𝐹 = 0. Let 𝑞 ∈ R(𝐹 )
be defined in (2.8). Then there holds ˆ

𝐹

(inc 𝑢)𝐹𝑛 · 𝑞 = 0. (5.8)

Lemma 5.8. A function 𝑢 ∈ 𝑈1
𝑟 (𝑇𝑤𝑓 ), with 𝑟 ≥ 3, is fully determined by the following vertex degrees of freedom

𝑢(𝑎), 𝑎 ∈ ∆0(𝑇 ), 24 dofs (5.9a)

the following edge dofs on all 𝑒 ∈ ∆1(𝑇 ),

ˆ
𝑒

𝑢 : 𝜅, 𝜅 ∈ sym[𝒫𝑟−2(𝑒)]3×3
, 36(𝑟 − 1) dofs (5.9b)

ˆ
𝑒

(curl 𝑢)′𝑡𝑒 · 𝜅, 𝜅 ∈ [𝒫𝑟−1(𝑒)]3, 18𝑟 dofs (5.9c)

the following face dofs on all 𝐹 ∈ ∆2(𝑇 ),

ˆ
𝐹

(inc 𝑢)𝐹𝐹 : 𝜅, 𝜅 ∈ 𝑄⊥𝑟−2, 12(𝑟 − 2) dofs (5.9d)
ˆ

𝐹

(inc 𝑢)𝑛𝑛𝜅, 𝜅 ∈ 𝑄2
𝑟−2

(︀
𝐹 ct

)︀
, 6𝑟

2 − 6𝑟 − 12 dofs (5.9e)
ˆ

𝐹

(inc 𝑢)𝐹𝑛 · 𝜅, 𝜅 ∈ 𝑉 1
div,𝑟−2

(︀
𝐹 𝑐𝑡

)︀
/R(𝐹 ), 12𝑟

2 − 24𝑟 dofs (5.9f)
ˆ

𝐹

𝑢𝐹𝐹 : 𝜅, 𝜅 ∈ 𝜀𝐹

(︂[︁
𝑆0

𝑟+1

(︀
𝐹 𝑐𝑡

)︀]︁2
)︂

, 12
(︁

𝑟
2 − 3𝑟 + 2

)︁
dofs (5.9g)

ˆ
𝐹

(︀
[(curl 𝑢)′]𝐹𝐹 − grad𝐹

(︀
𝑢⊥𝑛𝐹

)︀)︀
: 𝜅, 𝜅 ∈ grad𝐹

[︁
(ℛ𝑟)0

(︀
𝐹 𝑐𝑡

)︀]︁2

, 12
(︁

𝑟
2 − 3𝑟 + 2

)︁
dofs (5.9h)

ˆ
𝐹

𝑢𝐹𝑛 · 𝜅, 𝜅 ∈ grad𝐹

(︁[︁
𝑆𝑟+1

(︀
𝐹 𝑐𝑡

)︀]︁)︁
, 6(𝑟

2 − 3𝑟 + 2) dofs (5.9i)
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ˆ
𝐹

𝑢𝑛𝑛𝜅, 𝜅 ∈ ℛ0
𝑟

(︀
𝐹 𝑐𝑡

)︀
, 6

(︁
𝑟
2 − 3𝑟 + 2

)︁
dofs (5.9j)

and the following interior dofs ,

ˆ
𝑇

inc(𝑢) : inc(𝜅), 𝜅 ∈ 𝑈1
𝑟

(︀
𝑇𝑤𝑓

)︀
, 6𝑟

3 − 27𝑟
2 + 21𝑟 + 18 dofs (5.9k)

ˆ
𝑇

𝑢 : 𝜀(𝜅), 𝜅 ∈ 𝑈0
𝑟+1

(︀
𝑇𝑤𝑓

)︀
, 6(𝑟 − 1)(𝑟 − 2)(𝑟 − 3) dofs. (5.9l)

Proof. The dimension of 𝑈1
𝑟 (𝑇𝑤𝑓 ) is 12𝑟3− 9𝑟2 + 15𝑟 + 6, which is equal to the sum of the given dofs . Suppose

that all dofs (5.9) vanish for a 𝑢 ∈ 𝑈1
𝑟 (𝑇𝑤𝑓 ).

Step 0. Using the dofs (5.9a)–(5.9c), we conclude

𝑢|𝑒 = 0, (curl 𝑢)′𝑡|𝑒 = 0, for 𝑒 ∈ ∆1(𝑇 ). (5.10)

Step 1. We show inc 𝑢 ∈ 𝒱2
𝑟−2(𝑇𝑤𝑓 )⊗ V.

By (2.11b) and (5.10), we have

0 = 𝑛′𝐹 (curl 𝑢)′𝑡 = (curl𝐹 𝑢𝐹𝐹 )𝑡 on 𝜕𝐹 for each 𝐹 ∈ ∆2(𝑇 ).

Since 𝑢 is symmetric and continuous, by (2.11c), we see that (inc 𝑢)𝑛𝑛 = inc𝐹 𝑢𝐹𝐹 with 𝑢𝐹𝐹 ∈ 𝑄1,𝑠
inc,𝑟(𝐹 ct ) ⊂

𝑄1
inc,𝑟(𝐹 ct ). Thus, the complex (3.6) in Theorem 3.4 and the dofs (5.9e) yield

(inc 𝑢)𝑛𝑛 = 0 on each 𝐹 ∈ ∆2(𝑇 ). (5.11)

Next, Lemma 5.3 (with ℓ = 𝑛𝐹 and 𝜎 = inc 𝑢) shows (inc 𝑢)𝐹𝑛 ∈ 𝑉 1
div,𝑟−2(𝐹 𝑐𝑡). Therefore using the dofs

(5.9f) and (5.8) in Lemma 5.7, we conclude (inc 𝑢)𝐹𝑛 = 0.
The identities (inc 𝑢)𝑛𝑛 = 0 and (inc 𝑢)𝐹𝑛 = 0 yield (inc 𝑢)𝑛𝐹 = 0. So, by Lemma 5.3 (with ℓ = 𝑡1, 𝑡2), we
see that (inc 𝑢)𝐹𝐹 ∈ 𝑉 1

div,𝑟−2(𝐹 𝑐𝑡)⊗V2. In particular, since (inc 𝑢)𝐹𝐹 is symmetric, there holds (inc 𝑢)𝐹𝐹 ∈
𝑄1

𝑟−2(𝐹 𝑐𝑡) (cf. (3.3c)). Thus by the dofs (5.9d) and the definition of 𝑄⊥𝑟−2(𝐹 𝑐𝑡) in Section 3, we have
(inc 𝑢)𝐹𝐹 ∈ 𝐿1

𝑟(𝐹 ct )⊗ V2. Therefore, we conclude inc 𝑢 ∈ 𝒱2
𝑟−2(𝑇𝑤𝑓 )⊗ V.

Step 2. We show (curl 𝑢)′ ∈ 𝑉 1
𝑟−1(𝑇𝑤𝑓 )⊗ V.

Using (5.11) and (2.11c), we have 0 = (inc 𝑢)𝑛𝑛 = inc𝐹 𝑢𝐹𝐹 . Thus by the exact sequence (3.6) in Theorem 3.4,
there holds 𝑢𝐹𝐹 = 𝜀𝐹 (𝜅) for some 𝜅 ∈ 𝑆0

𝑟+1(𝐹 𝑐𝑡)⊗V2. We then conclude from the dofs (5.9g) that 𝑢𝐹𝐹 = 0
on each 𝐹 ∈ ∆2(𝐹 ). Furthermore by (2.11b), [(curl 𝑢)′]𝐹𝑛 = curl𝐹 𝑢𝐹𝐹 = 0.
Since (curl 𝑢)′ ∈ 𝑉 1

𝑟−1(𝑇𝑤𝑓 )⊗ V by Theorem 4.8 and from (5.10)

[(curl 𝑢)′]𝐹𝐹 𝑡𝑒|𝑒 = (curl 𝑢)′𝑡𝑒|𝑒 = 0, for all 𝑒 ∈ ∆1(𝑇 ),

we have [(curl 𝑢)′]𝐹𝐹 ∈ 𝑉 1
curl,𝑟−1(𝐹 𝑐𝑡) ⊗ V2 on 𝐹 ∈ ∆2(𝑇 ). In addition, by the identity (inc 𝑢)𝐹𝑛 =

curl𝐹 [(curl 𝑢)′]𝐹𝐹 (cf. (2.11d)) and (inc 𝑢)𝐹𝑛 = 0 derived in Step 1, there exists 𝜑 ∈ X̊0
𝑟(𝐹 ct ) ⊗ V2 such

that grad𝐹 𝜑 = [(curl 𝑢)′]𝐹𝐹 . With Lemma 5.6, we further have 𝜑− 𝑢⊥𝑛𝐹 ∈ [ℛ0
𝑟(𝐹 ct )]2. Therefore, using the

dofs (5.9h) we conclude
[(curl 𝑢)′]𝐹𝐹 = grad𝐹 𝑢⊥𝑛𝐹 . (5.12)

Since with (2.11e), we have

− curl𝐹 (𝑢𝐹𝑛)′ = tr𝐹 curl 𝑢 = tr𝐹 (curl 𝑢)′ = tr𝐹 (curl 𝑢)′𝐹𝐹 .
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With (5.12) and (2.6), we have

− curl𝐹 (𝑢𝐹𝑛)′ = tr𝐹 (curl 𝑢)′𝐹𝐹 = div𝐹 𝑢⊥𝑛𝐹 = curl𝐹 (𝑢𝑛𝐹 ) = curl𝐹 (𝑢𝐹𝑛)′,

and this implies that curl𝐹 (𝑢𝐹𝑛)′ = 0. Since 𝑢𝐹𝑛 ∈ X̊1
𝑟(𝐹 ct ), the exact sequence (3.1d) yields 𝑢𝐹𝑛 ∈

grad𝐹 ([𝑆𝑟+1(𝐹 𝑐𝑡)]). Therefore by (5.9i), we have 𝑢𝐹𝑛 = 0. Now with (5.12) and 𝑢𝐹𝑛 = 0, we have
[(curl 𝑢)′]𝐹𝐹 = 0 and so (curl 𝑢)′ ∈ 𝑉 1

𝑟−1(𝑇𝑤𝑓 )⊗ V.
Step 3. We show 𝑢 ∈ 𝐻1(𝑇 ; S).

From Step 2, we already see that 𝑢𝐹𝐹 = 0 and 𝑢𝐹𝑛 = 0, so we only need to show 𝑢𝑛𝑛 = 0. Since (curl 𝑢)′ ∈
𝑉 1

𝑟−1(𝑇𝑤𝑓 )⊗ V with curl 𝑢 ∈ 𝑉 2
𝑟−1(𝑇𝑤𝑓 )⊗ V and [(curl 𝑢)′]𝐹𝐹 = 0 on 𝐹 , then by (5.3), we have

[[𝑡′𝑒(curl 𝑢)′𝑛𝐹 ]]𝑒 = 0, for all 𝑒 ∈ ∆𝐼
1(𝐹 ct ). (5.13)

We know that 𝑢 ∈ X1
𝑟(𝑇𝑤𝑓 ), 𝑢𝐹𝑛 = 0 and by (5.6) in Lemma 5.5 with ℓ = 𝑡𝑒, 𝑚 = 𝑠𝑒,

0 = [[𝑡′𝑒(curl 𝑢)′𝑛𝐹 ]]𝑒 = [[𝑛′𝐹 (curl 𝑢)𝑡𝑒]]𝑒 = [[(grad𝐹 𝑢𝑛𝑛) · 𝑠𝑒]].

Therefore, we have 𝑢𝑛𝑛 ∈ ℛ0
𝑟(𝐹 𝑐𝑡) and (5.9j) implies 𝑢𝑛𝑛 = 0 on 𝐹 . Thus 𝑢|𝜕𝑇 = 0.

Step 4. Using the second characterization of Theorem 4.8, 𝑢 ∈ 𝑈1
𝑟 (𝑇𝑤𝑓 ). Hence (5.9k) implies inc 𝑢 = 0 on 𝑇

and using the exactness of the sequence (4.7) and the dofs of (5.9l), we see that 𝑢 = 0 on 𝑇 .

�

5.3. Dofs of the 𝑈2 and 𝑈3 spaces

Lemma 5.9. A function 𝑢 ∈ 𝑈2
𝑟−2(𝑇𝑤𝑓 ), with 𝑟 ≥ 3, is fully determined by the following dofs :

ˆ
𝐹

𝑢𝐹𝐹 : 𝜅, 𝜅 ∈ 𝑄⊥𝑟−2, 𝐹 ∈ ∆2(𝑇 ), 12(𝑟 − 2) dofs, (5.14a)
ˆ

𝐹

𝑢𝑛𝑛𝜅, 𝜅 ∈ 𝑉 2
𝑟−2(𝐹 𝑐𝑡), 𝐹 ∈ ∆2(𝑇 ), 6𝑟

2 − 6𝑟 dofs, (5.14b)
ˆ

𝐹

𝑢𝑛𝐹 · 𝜅, 𝜅 ∈ 𝑉 1
div,𝑟−2(𝐹 𝑐𝑡), 𝐹 ∈ ∆2(𝑇 ), 12𝑟

2 − 24𝑟 + 12 dofs, (5.14c)
ˆ

𝑇

div 𝑢 · 𝜅, 𝜅 ∈ 𝑈3
𝑟−3(𝑇𝑤𝑓 ), 6𝑟

3 − 18𝑟
2 + 12𝑟 − 6 dofs, (5.14d)

ˆ
𝑇

𝑢 : 𝜅, 𝜅 ∈ inc 𝑈1
𝑟 (𝑇𝑤𝑓 ), 6𝑟

3 − 27𝑟
2 + 21𝑟 + 18 dofs. (5.14e)

Proof. The dimension of 𝑈2
𝑟−2(𝑇𝑤𝑓 ) is 12𝑟3 − 27𝑟2 + 15𝑟, which is equal to the sum of the given dofs .

Let 𝑢 ∈ 𝑈2
𝑟−2(𝑇𝑤𝑓 ) such that 𝑢 vanishes on the dofs (5.14). By dofs (5.14b), we have 𝑢𝑛𝑛 = 0 on each

𝐹 ∈ ∆2(𝑇 ). By Lemma 5.3 and dofs (5.14c), we have 𝑢𝑛𝐹 = 0 on each 𝐹 ∈ ∆2(𝑇 ). Then, 𝑢 ∈ 𝑉 2
𝑟−2(𝑇𝑤𝑓 )⊗ V.

With the definition of 𝑄⊥𝑟−2 in Section 3 and (5.14a), we have 𝑢 ∈ 𝒱2
𝑟 (𝑇𝑤𝑓 ) ⊗ V and thus 𝑢 ∈ 𝑈2

𝑟−2(𝑇𝑤𝑓 ). In
addition, since div 𝑢 ∈ div (𝑈2

𝑟−2(𝑇𝑤𝑓 )) ⊂ 𝑈3
𝑟−3(𝑇𝑤𝑓 ), we have div 𝑢 = 0 by dofs (5.14d). Using the exactness

of (4.7), there exist 𝜅 ∈ 𝑈1
𝑟 (𝑇𝑤𝑓 ) such that inc 𝜅 = 𝑢. With dofs (5.14e), we have 𝑢 = 0, which is the desired

result. �

A pictorial depiction of the lowest-order space 𝑈2
1 (𝑇𝑤𝑓 ) is given in Figure 2. We only show the dofs associated

to one face of the macro tetrahedron in the figure. These are the only dofs that couple adjacent elements.

Lemma 5.10. A function 𝑢 ∈ 𝑈3
𝑟−3(𝑇𝑤𝑓 ), with 𝑟 ≥ 3, is fully determined by the following dofs :

ˆ
𝑇

𝑢 · 𝜅, 𝜅 ∈ R, 6 dofs, (5.15a)
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Figure 2. An illustration of coupling dofs of 𝑈2
1 (𝑇𝑤𝑓 ). Here, 𝐹𝐹 -moments, 𝑛𝑛-moments and

𝑛𝐹 -moments are associated with the dofs (5.14a), (5.14b), and (5.14c), respectively. Note the
absence of vertex or edge dofs .

ˆ
𝑇

𝑢 · 𝜅, 𝜅 ∈ 𝑈3
𝑟−3(𝑇𝑤𝑓 ), 6𝑟

3 − 18𝑟
2 + 12𝑟 − 6 dofs. (5.15b)

Remark 5.11. Note that (5.15a) is equivalent to
ˆ

𝑇

𝑢 · 𝜅, 𝜅 ∈ 𝑃𝑈R,

since by the definition of 𝐿2-projection, for any 𝜅 ∈ R,
ˆ

𝑇

𝑢 · 𝜅 =
ˆ

𝑇

𝑢 · 𝑃𝑈𝜅, 𝑢 ∈ 𝑈3
𝑟−3

(︀
𝑇𝑤𝑓

)︀
.

6. Commuting projections

In this section, we show that the degrees of freedom constructed in the previous sections induce projections
which satisfy commuting properties.

Theorem 6.1. Let 𝑟 ≥ 3. Let Π0
𝑟+1 : 𝐶∞(𝑇 ) ⊗ V → 𝑈0

𝑟+1(𝑇𝑤𝑓 ) be the projection defined in Lemma 5.2, let
Π1

𝑟 : 𝐶∞(𝑇 ) ⊗ V → 𝑈1
𝑟 (𝑇𝑤𝑓 ) be the projection defined in Lemma 5.8, let Π2

𝑟−2 : 𝐶∞(𝑇 ) ⊗ V → 𝑈2
𝑟−2(𝑇𝑤𝑓 )

be the projection defined in Lemma 5.9, and let Π3
𝑟−3 : 𝐶∞(𝑇 ) ⊗ V → 𝑈3

𝑟−3(𝑇𝑤𝑓 ) be the projection defined in
Lemma 5.9. Then the following commuting properties are satisfied.

𝜀
(︀
Π0

𝑟+1𝑢
)︀

= Π1
𝑟𝜀(𝑢), 𝑢 ∈ 𝐶∞

(︀
𝑇

)︀
⊗ V (6.1a)

inc Π1
𝑟𝑣 = Π2

𝑟−2inc 𝑣, 𝑣 ∈ 𝐶∞
(︀
𝑇

)︀
⊗ S (6.1b)

div Π2
𝑟−2𝑤 = Π3

𝑟−3div 𝑤, 𝑤 ∈ 𝐶∞
(︀
𝑇

)︀
⊗ S. (6.1c)

Proof. (i) Proof of (6.1a): given 𝑢 ∈ 𝐶∞(𝑇 ) ⊗ V, let 𝜌 = 𝜀
(︀
Π0

𝑟+1𝑢
)︀
− Π1

𝑟𝜀(𝑢) ∈ 𝑈1
𝑟 (𝑇𝑤𝑓 ). To prove that

(6.1a) holds, it suffices to show that 𝜌 vanishes on the dofs (5.9) in Lemma 5.8. Since inc ∘ 𝜀 = 0, we
have dofs of (5.9d), (5.9e), (5.9f) and (5.9k) applied to 𝜌 vanish. Next, with (5.1b), (5.1e), (5.1f), (5.1g),
(5.1i) applied to 𝑢, and with (5.9a), (5.9g), (5.9i), (5.9j), (5.9l) applied to 𝜀(𝑢), each term respectively imply
that (5.9a), (5.9g), (5.9i), (5.9j), (5.9l) applied to 𝜌 vanish. By the identity (5.7) in Lemma 5.6, for any
𝜅 ∈ grad𝐹 [(ℛ0

𝑟(𝐹 𝑐𝑡)]2, for all 𝐹 ∈ ∆2(𝑇 ), we have:
ˆ

𝐹

(︀
[(curl 𝜌)′]𝐹𝐹 − grad𝐹

(︀
𝜌⊥𝐹𝑛

)︀)︀
: 𝜅 =

ˆ
𝐹

grad𝐹

(︀
𝜕𝑛

(︀
Π0

𝑟+1𝑢
)︀
𝐹
− 𝜕𝑛𝑢𝐹

)︀
: 𝜅 = 0,
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where the last equality holds with (5.1h) applied to 𝑢. Thus, the dofs (5.9h) applied to 𝜌 vanish. It only
remains to prove that the dofs of (5.9b), (5.9c) applied to 𝜌 vanish. To show this, we need to employ the edge-
based orthonormal basis {𝑛+

𝑒 , 𝑛−𝑒 , 𝑡𝑒} and write 𝜅 ∈ sym[𝒫𝑟−2(𝑒)]3×3 as 𝜅 = 𝜅11𝑛
+
𝑒 (𝑛+

𝑒 )′ + 𝜅12(𝑛+
𝑒 (𝑛−𝑒 )′ +

𝑛−𝑒 (𝑛+
𝑒 )′)+𝜅13(𝑛+

𝑒 𝑡′𝑒 +𝑡𝑒(𝑛+
𝑒 )′)+𝜅22𝑛

−
𝑒 (𝑛−𝑒 )′+𝜅23(𝑛+

𝑒 (𝑛−𝑒 )′+𝑛−𝑒 (𝑛+
𝑒 )′)+𝜅33𝑡𝑒𝑡

′
𝑒 where 𝜅𝑖𝑗 ∈ 𝒫𝑟−2(𝑒). Then,

ˆ
𝑒

𝜌 : 𝜅 =
ˆ

𝑒

[︀
𝜀
(︀
Π0

𝑟+1𝑢
)︀
−Π1

𝑟𝜀(𝑢)
]︀

: 𝜅 =
ˆ

𝑒

𝜀
(︀
Π0

𝑟+1𝑢− 𝑢
)︀

: 𝜅 by (5.9b)

=
ˆ

𝑒

grad
(︀
Π0

𝑟+1𝑢− 𝑢
)︀

: 𝜅

=
ˆ

𝑒

grad
(︀
Π0

𝑟+1𝑢− 𝑢
)︀
𝑡𝑒 ·

(︀
𝜅13𝑛

+
𝑒 + 𝜅33𝑡𝑒

)︀
by (5.1d)

=
ˆ

𝑒

(︀
Π0

𝑟+1𝑢− 𝑢
)︀
· 𝜕

𝜕𝑡𝑒

(︀
𝜅13𝑛

+
𝑒 + 𝜅33𝑡𝑒

)︀
integration by parts

= 0 by (5.1a) and (5.1c).

Thus the dofs of (5.9b) applied to 𝜌 vanish. Next, letting 𝜅 ∈ [𝒫𝑟−1(𝑒)]3, we note that
ˆ

𝑒

(curl 𝜌)′𝑡𝑒 · 𝜅 =
ˆ

𝑒

[︀
curl 𝜀

(︀
Π0

𝑟+1𝑢− 𝑢
)︀]︀′

𝑡𝑒 · 𝜅 by (5.9c)

=
1
2

ˆ
𝑒

[︀
grad curl(Π0

𝑟+1𝑢− 𝑢)
]︀
𝑡𝑒 · 𝜅 by (2.11f)

= −1
2

ˆ
𝑒

curl(Π0
𝑟+1𝑢− 𝑢) · 𝜕𝑡𝜅 by (5.1a) and (5.1b)

where in the last step, we have integrated by parts, and put 𝜕𝑡𝜅 = (grad 𝜅)𝑡𝑒. The curl in the integrand
above can be decomposed into terms involving 𝜕𝑡(Π0

𝑟+1𝑢 − 𝑢) and those involving 𝜕𝑛±𝑒
(Π0

𝑟+1𝑢 − 𝑢). The
former terms can be integrated by parts yet again, which after using (5.1a)–(5.1c), vanish. The latter terms
also vanish by (5.1d), noting that 𝜕𝑡𝜅 is of degree at most 𝑟 − 2.

(ii) Proof of (6.1b): given 𝑣 ∈ 𝐶∞(𝑇 )⊗S, let 𝜌 = inc Π1
𝑟𝑣−Π2

𝑟−2inc 𝑣 ∈ 𝑈2
𝑟−2(𝑇𝑤𝑓 ). To prove that (6.1b) holds,

we need to show that 𝜌 vanishes on the dofs (5.14) in Lemma 5.9. By using (5.14b) on inc 𝑣, we have
ˆ

𝐹

𝜌𝑛𝑛𝜅 =
ˆ

𝐹

[︀
inc

(︀
Π1

𝑟𝑣 − 𝑣
)︀]︀

𝑛𝑛
𝜅, for all 𝜅 ∈ 𝑉 2

𝑟−2

(︀
𝐹 𝑐𝑡

)︀
. (6.2)

From (5.9e), we have that the right-hand side of (6.2) vanishes for 𝜅 ∈ 𝑉 2
𝑟−2(𝐹 𝑐𝑡)/𝒫1(𝐹 ). With (3.5) of

Lemma 3.3, we have for any 𝜅1 ∈ 𝒫1(𝐹 ),
ˆ

𝐹

𝜌𝑛𝑛𝜅1 =
ˆ

𝜕𝐹

(︀
curl𝐹

(︀
Π1

𝑟𝑣 − 𝑣
)︀
𝐹𝐹

)︀
𝑡𝜅1 +

ˆ
𝜕𝐹

(︀
Π1

𝑟𝑣 − 𝑣
)︀
𝐹𝐹

𝑡 · (rot𝐹 𝜅1)′. (6.3)

By (2.11b), curl𝐹 (Π1
𝑟𝑣− 𝑣)𝐹𝐹 𝑡 𝜅1 = [curl(Π1

𝑟𝑣− 𝑣)′]𝐹𝑛𝑡 𝜅1 = curl(Π1
𝑟𝑣− 𝑣)′ : 𝜅1𝑛𝑡′, so the first term on the

right-hand side of (6.3) vanishes by (5.9c). The last term in (6.3) also vanishes because
ˆ

𝜕𝐹

(︀
Π1

𝑟𝑣 − 𝑣
)︀
𝐹𝐹

𝑡 · (rot𝐹 𝜅1)′ =
ˆ

𝜕𝐹

𝑄
(︀
Π1

𝑟𝑣 − 𝑣
)︀
𝑄𝑡 · (rot𝐹 𝜅1)′ =

ˆ
𝜕𝐹

(︀
Π1

𝑟𝑣 − 𝑣
)︀
𝑄𝑡 ·𝑄(rot𝐹 𝜅1)′

=
ˆ

𝜕𝐹

(︀
Π1

𝑟𝑣 − 𝑣
)︀

: sym
(︀
𝑄(rot𝐹 𝜅1)′𝑡

)︀
= 0,

where we used (5.9b) in the last equality. Thus, the right-hand side of (6.3) vanishes, and therefore the
right-hand side of (6.2) vanishes, i.e., the dofs (5.14b) vanish for 𝜌.
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Next using (5.14c) we have
ˆ

𝐹

𝜌𝑛𝐹 · 𝜅 =
ˆ

𝐹

[︀
inc

(︀
Π1

𝑟𝑣 − 𝑣
)︀]︀

𝑛𝐹
· 𝜅, for all 𝜅 ∈ 𝑉 1

div,𝑟−2

(︀
𝐹 𝑐𝑡

)︀
. (6.4)

The dofs (5.9f) imply the right-hand side of (6.4) vanishes for all 𝜅 ∈ 𝑉 1
div,𝑟−2(𝐹 𝑐𝑡)/R(𝐹 ). Considering

𝜅 ∈ R(𝐹 ) in (6.4), we may conduct a similar argument as above, but now using (5.8) of Lemma 5.7, to
conclude the right-hand side of (6.4) vanishes. Thus, we conclude that (5.14c) vanishes for 𝜌.
In addition, note that (5.9d) and (5.14a) imply that the dofs (5.14a) vanish for 𝜌. Finally, the remaining
dofs of (5.14d) and (5.14e) applied to 𝜌 also vanish, thus leading to (6.1b).

(iii) Proof of (6.1c): given 𝑤 ∈ 𝐶∞(𝑇 )⊗ S, let 𝜌 = div Π2
𝑟−2𝑤 − Π3

𝑟−3div 𝑤 ∈ 𝑈3
𝑟−3(𝑇𝑤𝑓 ). To prove that (6.1c)

holds, we will show that 𝜌 vanishes on the dofs (5.15) in Lemma 5.10. Using (5.14d) and (5.15b), we have
for any 𝜅 ∈ 𝑈3

𝑟−3(𝑇𝑤𝑓 ),
ˆ

𝑇

𝜌 · 𝜅 =
ˆ

𝑇

(︀
div Π2

𝑟−2𝑤 − div 𝑤
)︀
· 𝜅 =

ˆ
𝑇

(div 𝑤 − div 𝑤) · 𝜅 = 0.

For 𝜅 ∈ R, we find
ˆ

𝑇

𝜌 · 𝜅 =
ˆ

𝑇

(︀
div Π2

𝑟−2𝑤 − div 𝑤
)︀
· 𝜅 by (5.15a)

=
ˆ

𝜕𝑇

(︀
Π2

𝑟−2𝑤 − 𝑤
)︀
𝑛𝐹 · 𝜅

=
∑︁

𝐹∈Δ2(𝑇 )

ˆ
𝜕𝐹

(︀
Π2

𝑟−2𝑤 − 𝑤
)︀
𝑛𝑛

(𝜅 · 𝑛𝐹 )−
ˆ

𝜕𝐹

(︀
Π2

𝑟−2𝑤 − 𝑤
)︀
𝑛𝐹
· 𝜅

= 0 by (5.14b) and (5.14c).

Thus, 𝜌 = 0, and so the commuting property (6.1c) is satisfied.

�

7. Global complexes

In this section, we construct the discrete elasticity complex globally by putting the local spaces together.
Recall that Ω ⊂ R3 is a contractible polyhedral domain, and 𝒯 𝑤𝑓

ℎ is the Worsey–Farin refinement of the mesh
𝒯ℎ on Ω.

We first present below the global exact de Rham complexes on Worsey–Farin splits which are needed to
construct elasticity complexes; for more details, see Section 6 from [23]:

0 → 𝒮0
𝑟

(︁
𝒯 𝑤𝑓

ℎ

)︁
grad−−−→ ℒ1

𝑟−1

(︁
𝒯 𝑤𝑓

ℎ

)︁
curl−−→ V 2

𝑟−2

(︁
𝒯 𝑤𝑓

ℎ

)︁
div−−→ 𝑉 3

𝑟−3

(︁
𝒯 𝑤𝑓

ℎ

)︁
→ 0, (7.1a)

0 → 𝒮0
𝑟

(︁
𝒯 𝑤𝑓

ℎ

)︁
grad−−−→ 𝒮1

𝑟−1

(︁
𝒯 𝑤𝑓

ℎ

)︁
curl−−→ ℒ2

𝑟−2

(︁
𝒯 𝑤𝑓

ℎ

)︁
div−−→ V 3

𝑟−3

(︁
𝒯 𝑤𝑓

ℎ

)︁
→ 0, (7.1b)

where the spaces involved are defined as follows:

𝒮0
𝑟

(︁
𝒯 𝑤𝑓

ℎ

)︁
=

{︀
𝑞 ∈ 𝐶1(Ω) : 𝑞|𝑇 ∈ 𝑆0

𝑟

(︀
𝑇𝑤𝑓

)︀
, for all 𝑇 ∈ 𝒯ℎ

}︀
,

𝒮1
𝑟−1

(︁
𝒯 𝑤𝑓

ℎ

)︁
=

{︀
𝑣 ∈ [𝐶(Ω)]3 : curl 𝑣 ∈ [𝐶(Ω)]3, 𝑣|𝑇 ∈ 𝑆1

𝑟−1

(︀
𝑇𝑤𝑓

)︀
for all 𝑇 ∈ 𝒯ℎ

}︀
,

ℒ1
𝑟−1

(︁
𝒯 𝑤𝑓

ℎ

)︁
=

{︀
𝑣 ∈ [𝐶(Ω)]3 : 𝑣|𝑇 ∈ X1

𝑟−1

(︀
𝑇𝑤𝑓

)︀
, for all 𝑇 ∈ 𝒯ℎ

}︀
,
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ℒ2
𝑟−2

(︁
𝒯 𝑤𝑓

ℎ

)︁
=

{︀
𝑤 ∈ [𝐶(Ω)]3 : 𝑤|𝑇 ∈ X2

𝑟−2

(︀
𝑇𝑤𝑓

)︀
, for all 𝑇 ∈ 𝒯ℎ

}︀
,

V 2
𝑟−2

(︁
𝒯 𝑤𝑓

ℎ

)︁
=

{︁
𝑤 ∈ 𝐻(div; Ω) : 𝑤|𝑇 ∈ 𝑉 2

𝑟−2

(︀
𝑇𝑤𝑓

)︀
, for all 𝑇 ∈ 𝒯ℎ, 𝜃𝑒(𝑤 · 𝑡) = 0, for all 𝑒 ∈ ℰ

(︁
𝒯 𝑤𝑓

ℎ

)︁}︁
,

V 3
𝑟−3

(︁
𝒯 𝑤𝑓

ℎ

)︁
=

{︁
𝑝 ∈ 𝐿2(Ω) : 𝑝|𝑇 ∈ 𝑉 3

𝑟−3

(︀
𝑇𝑤𝑓

)︀
, for all 𝑇 ∈ 𝒯ℎ, 𝜃𝑒(𝑝) = 0 and 𝑒 ∈ ℰ

(︁
𝒯 𝑤𝑓

ℎ

)︁}︁
,

𝑉 3
𝑟−3

(︁
𝒯 𝑤𝑓

ℎ

)︁
= 𝒫𝑟−3

(︁
𝒯 𝑤𝑓

ℎ

)︁
,

and we recall 𝜃𝑒(·) is defined in (2.3). Above, these spaces are defined through their continuity requirements.
They can also be defined using their local dofs given in Sections 5.1 and 5.3 from [23]. The two definitions are
proven to be equivalent in Lemmas 6.6 and 6.7 from [23]. We will follow a similar approach for the elasticity
complex and define the global spaces in the elasticity complex in terms of their continuity requirements and
show that the spaces are the same as those given through local dofs . With the global spaces defined, the global
analogue of Theorem 4.4 is now given.

Theorem 7.1. The following sequence is exact for any 𝑟 ≥ 3:⎡⎣𝒮0
𝑟+1

(︁
𝒯 𝑤𝑓

ℎ

)︁
⊗ V

𝒮0
𝑟

(︁
𝒯 𝑤𝑓

ℎ ⊗ V
)︁

⎤⎦ [grad,−mskw]−−−−−−−−−→ 𝒮1
𝑟

(︁
𝒯 𝑤𝑓

ℎ

)︁
⊗ V curl Ξ−1curl−−−−−−−−→ V 2

𝑟−2

(︁
𝒯 𝑤𝑓

ℎ

)︁
⊗ V

[︁
2 vskw
div

]︁

−−−−−−→

⎡⎣V 3
𝑟−2

(︁
𝒯 𝑤𝑓

ℎ

)︁
⊗V

𝑉 3
𝑟−3

(︁
𝒯 𝑤𝑓

ℎ

)︁
⊗ V

⎤⎦.

Moreover, the kernel of the first operator is isomorphic to R and the last operator is surjective.

Proof. The result follows from the exactness of the complexes (7.1a), (7.1b), Proposition 2.1, and the exact
same arguments in the proof of Theorem 4.4. �

Similar to the local spaces defined in Section 4.4, the global spaces involved in the elasticity complex are
derived as follows:

𝑈0
𝑟+1

(︁
𝒯 𝑤𝑓

ℎ

)︁
= 𝒮0

𝑟+1

(︁
𝒯 𝑤𝑓

ℎ

)︁
⊗ V 𝑈1

𝑟

(︁
𝒯 𝑤𝑓

ℎ

)︁
=

{︁
sym(𝑢) : 𝑢 ∈ 𝒮1

𝑟

(︁
𝒯 𝑤𝑓

ℎ

)︁
⊗ V

}︁
,

𝑈2
𝑟−2

(︁
𝒯 𝑤𝑓

ℎ

)︁
=

{︁
𝑢 ∈ V 2

𝑟−2

(︁
𝒯 𝑤𝑓

ℎ

)︁
⊗ V : skw 𝑢 = 0

}︁
, 𝑈3

𝑟−3

(︁
𝒯 𝑤𝑓

ℎ

)︁
= 𝑉 3

𝑟−3

(︁
𝒯 𝑤𝑓

ℎ

)︁
⊗ V.

(7.2)

Theorem 7.2. We have the following equivalent characterization of 𝑈1
𝑟 (𝒯 𝑤𝑓

ℎ ):

𝑈1
𝑟

(︁
𝒯 𝑤𝑓

ℎ

)︁
=

{︁
𝑢 ∈ 𝐻1(Ω; S) :𝑢|𝑇 ∈ 𝑈1

𝑟

(︀
𝑇𝑤𝑓

)︀
, for all 𝑇 ∈ 𝒯ℎ,

(curl 𝑢)′ ∈ 𝑉 1
𝑟−1

(︁
𝒯 𝑤𝑓

ℎ

)︁
⊗ V, inc(𝑢) ∈ V 2

𝑟−2

(︁
𝒯 𝑤𝑓

ℎ

)︁
⊗ V

}︁
.

Proof. This is proved similarly as the proof of Theorem 4.8 using Theorem 7.1 in place of Theorem 4.4. �

Now, we show that the global spaces defined in (7.2) are equivalent to those induced by the local dofs
presented in Section 5. To be more precise, we denote the global spaces induced by the local dofs in Lem-
mas 5.2, 5.8, 5.14 and 5.15 as �̃�0

𝑟+1(𝒯 𝑤𝑓
ℎ ), �̃�1

𝑟 (𝒯 𝑤𝑓
ℎ ), �̃�2

𝑟−2(𝒯 𝑤𝑓
ℎ ) and �̃�3

𝑟−3(𝒯 𝑤𝑓
ℎ ), respectively. For example,

�̃�0
𝑟+1

(︁
𝒯 𝑤𝑓

ℎ

)︁
:=

{︁
𝑢 : 𝑢|𝑇 ∈ 𝑈0

𝑟+1

(︀
𝑇𝑤𝑓

)︀
, for all 𝑇 ∈ 𝒯 𝑤𝑓

ℎ , such that

the dofs (5.1a)–(5.1h) applied to 𝑢 from adjacent elements coincide
}︁

.

The next lemma shows that such spaces are the same as those in (7.2). Its proof is similar to Lemma 6.7 of [23],
so we will be brief.
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Lemma 7.3. The global spaces �̃�0
𝑟+1(𝒯 𝑤𝑓

ℎ ), �̃�1
𝑟 (𝒯 𝑤𝑓

ℎ ), �̃�2
𝑟−2(𝒯 𝑤𝑓

ℎ ) and �̃�3
𝑟−3(𝒯 𝑤𝑓

ℎ ) are the same as the spaces
𝑈0

𝑟+1(𝒯 𝑤𝑓
ℎ ), 𝑈1

𝑟 (𝒯 𝑤𝑓
ℎ ), 𝑈2

𝑟−2(𝒯 𝑤𝑓
ℎ ) and 𝑈3

𝑟−3(𝒯 𝑤𝑓
ℎ ), respectively.

Proof. We only show the proof for 𝑈1
𝑟 (𝒯 𝑤𝑓

ℎ ) as the remaining cases follow by the same reasoning. To prove that
�̃�1

𝑟 (𝒯 𝑤𝑓
ℎ ) = 𝑈1

𝑟 (𝒯 𝑤𝑓
ℎ ), we use the characterization of 𝑈1

𝑟 (𝒯 𝑤𝑓
ℎ ) in Theorem 7.2. Clearly, 𝑈1

𝑟 (𝒯 𝑤𝑓
ℎ ) ⊂ �̃�1

𝑟 (𝒯 𝑤𝑓
ℎ )

since the continuity conditions in the characterization of Theorem 7.2 imply that the dofs (5.9) applied to any
𝑢 in 𝑈1

𝑟 (𝒯 𝑤𝑓
ℎ ) are single valued.

For the other direction, let function 𝜒(𝑆) denote the characteristic function of a simplex 𝑆. Let 𝑇1 and 𝑇2

be adjacent tetrahedra in 𝒯ℎ that share a face 𝐹 . Let 𝐾1 and 𝐾2 be two tetrahedra in the Alfeld splits 𝑇 𝑎
1 and

𝑇 𝑎
2 , respectively, such that 𝐾1 and 𝐾2 share the face 𝐹 . Let 𝐾𝑤𝑓

𝑖 be the triangulation of 𝐾𝑖 in 𝒯 𝑤𝑓
ℎ , where

1 ≤ 𝑖 ≤ 2. Let 𝑢1 ∈ 𝑈1
𝑟 (𝑇𝑤𝑓

1 ) and 𝑢2 ∈ 𝑈1
𝑟 (𝑇𝑤𝑓

2 ) such that 𝑢1 and 𝑢2 have the same dof values (5.9a)–(5.9j)
associated with the common vertices, common edges and the triangulation 𝐹 ct. Note that the natural extension
of 𝑢1 (resp., 𝑢2) from 𝐾𝑤𝑓

1 (resp., 𝐾𝑤𝑓
2 ) to all of 𝐾𝑤𝑓

1 ∪ 𝐾𝑤𝑓
2 maintains its original smoothness properties

across the interior faces of 𝐾𝑤𝑓
2 (resp., 𝐾𝑤𝑓

1 ). Thus, by applying the unisolvency argument in the proof of
Lemma 5.8 verbatim to 𝑤 := 𝑢1 − 𝑢2, we conclude that 𝑤 = 0, (curl 𝑤)′𝐹𝐹 = 0, (curl 𝑤)′𝐹𝑛 = 0, (inc 𝑤)𝑛𝐹 = 0
and (inc 𝑤)𝐹𝐹 = 0 on 𝐹 . Therefore, 𝑢 := 𝑢1𝜒(𝑇1) + 𝑢2𝜒(𝑇2) ∈ 𝑈1

𝑟 (𝑇𝑤𝑓
1 ∪ 𝑇𝑤𝑓

2 ), and we conclude the reverse
inclusion �̃�1

𝑟 (𝒯 𝑤𝑓
ℎ ) ⊂ 𝑈1

𝑟 (𝒯 𝑤𝑓
ℎ ). �

Then we have the global complex summarized in the following theorem. Its proof follows along the same lines
as Theorem 4.5, with Theorem 7.1 in place of Theorem 4.4.

Theorem 7.4. The following sequence of global finite element spaces

0 → R
⊂−→ 𝑈0

𝑟+1

(︁
𝒯 𝑤𝑓

ℎ

)︁
𝜀−→ 𝑈1

𝑟

(︁
𝒯 𝑤𝑓

ℎ

)︁
inc−−→ 𝑈2

𝑟−2

(︁
𝒯 𝑤𝑓

ℎ

)︁
div−−→ 𝑈3

𝑟−3

(︁
𝒯 𝑤𝑓

ℎ

)︁
→ 0 (7.3)

is a discrete elasticity complex and is exact for 𝑟 ≥ 3.

8. Conclusions

This paper constructed both local and global finite element elasticity complexes with respect to three-
dimensional Worsey–Farin splits. A notable feature of the discrete spaces is the lack of extrinsic supersmoothess
and accompanying dofs at vertices in the triangulation. For example, the 𝐻(div, S)-conforming space does
not involve vertex or edge dofs and is therefore conducive for hybridization. The efficient implementation of
these elements with hybridization, with an emphasis on the lowest-order pair, is a subject of future work.
Our results suggest that the last two pairs in the sequence (7.3) are suitable to construct mixed finite ele-
ment methods for three-dimensional elasticity. However, due to the assumed regularity in Theorem 6.1, the
result does not automatically yield an inf-sup stable pair. Further study of commuting projections for the pair
𝑈2

𝑟−2(𝒯 𝑤𝑓
ℎ )× 𝑈3

𝑟−3(𝒯 𝑤𝑓
ℎ ) is required to prove inf-sup stability.

Appendix A. Proof of Theorem 3.4

We require a few intermediate results to prove Theorem 3.4. First, we state a corollary of Theorem 3.1.

Corollary A.1. Let 𝑟 ≥ 1. The following sequence is exact.

0 −−→ 𝑆0
𝑟

(︀
𝐹 ct

)︀
⊗ V2

grad𝐹

−−→ 𝑄1
inc,𝑟−1

(︀
𝐹 ct

)︀ curl𝐹
−−→ 𝑉 1

curl,𝑟−2

(︀
𝐹 ct

)︀
∩

(︀
𝑉 2

𝑟−2

(︀
𝐹 ct

)︀
⊗ V2

)︀
−−→ 0. (A.1)

Proof. This directly follows from the exactness of the sequence (3.1d). �
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Lemma A.2. The following sequences are exact for 𝑟 ≥ 2:

[︃
𝑆0

𝑟+1(𝐹 ct )⊗ V2

X̊0
𝑟(𝐹 ct )

]︃ [︁
grad𝐹 skew

]︁

−−−−−−−−−−→ 𝑄1
inc,𝑟

(︀
𝐹 ct

)︀
⊗ V2

inc𝐹−−−→ 𝑉 2
𝑟−2

(︀
𝐹 ct

)︀
⎡

⎢⎣

´ ⊥
𝐹´
𝐹

⎤

⎥⎦

−−−−→
[︂
V2

R

]︂
, (A.2)

[︂
R
V2

]︂ [︁
⊂ 𝑥⊥·

]︁

−−−−−−→ 𝑆0
𝑟+1

(︀
𝐹 ct

)︀ airy𝐹−−−→ 𝑉 1
div,𝑟−1

(︀
𝐹 ct

)︀
⊗ V2

[︃
skew
div𝐹

]︃

−−−−−→

[︃
𝑉 2

𝑟−1(𝐹 ct )

𝑉 2
𝑟−2(𝐹 ct )⊗ V2

]︃
. (A.3)

Here,
´ ⊥

𝐹
𝑢 :=

´
𝐹

𝑥⊥𝑢 d𝑥 with 𝑥⊥ defined in Definition 2.2.

Proof. Using (2.10c) and the identity
´ ⊥

𝐹
curl𝐹 𝑢 =

´
𝐹

𝜏 𝑢 for any 𝑢 ∈ 𝑉 1
curl,𝑟−1(𝐹 ct ), we find that the following

sequence commutes:

𝑆0
𝑟+1(𝐹 ct )⊗ V2 𝑄1

inc,𝑟(𝐹 ct )⊗ V2 𝑉 1
curl,𝑟−1(𝐹 ct ) V2

X̊0
𝑟(𝐹 ct ) 𝑉 1

curl,𝑟−1(𝐹 ct ) 𝑉 2
𝑟−2(𝐹 ct ) R.

grad𝐹 curl𝐹
´
𝐹

grad𝐹

skew

curl𝐹

𝜏

´
𝐹

´⊥
𝐹 (A.4)

Moreover, the transpose operator 𝜏 from 𝑉 1
curl,𝑟−1(𝐹 ct ) to 𝑉 1

curl,𝑟−1(𝐹 ct ) is a bijection, and the top and
bottom sequences in (A.4) are exact by Corollary A.1 and Theorem 3.1, respectively. Using the identity
inc𝐹 = curl𝐹 𝜏 curl𝐹 and Proposition 2.1, we conclude that (A.2) is exact.

Likewise, using the identity div𝐹 𝜏 𝑢 = skew rot𝐹 𝑢 for any 𝑢 ∈ (X0
𝑟(𝐹 ct )⊗V2) and rot𝐹 𝑥⊥ = 𝜏 , we find that

the following sequence commutes:

R 𝑆0
𝑟+1(𝐹 ct ) X1

𝑟(𝐹 ct ) 𝑉 2
𝑟−1(𝐹 ct )

V2 X0
𝑟(𝐹 ct )⊗ V2 𝑉 1

div,𝑟−1(𝐹 ct )⊗ V2 𝑉 2
𝑟−2(𝐹 ct )⊗ V2.

⊂ rot𝐹 div𝐹

⊂

𝑥⊥·

rot𝐹

𝜏

div𝐹

skew (A.5)

The top and bottom sequences in (A.5) are exact by Corollary 3.2. We then find that (A.3) is exact by Propo-
sition 2.1, using the identity airy𝐹 = rot𝐹 𝜏rot𝐹 . �

Now we are ready to prove Theorem 3.4:

Proof. (i) Proof of (3.6): from the definitions of the discrete spaces and operators, we see that (3.6) is a complex,
so we only need to show exactness.
Let 𝑣 ∈ 𝑄2

𝑟−2(𝐹 ct ). Then since 𝑣 ⊥ 𝒫1(𝐹 ), we have
´

𝐹
𝑣 = 0 and

´ ⊥
𝐹

𝑣 = 0. By the exactness of (A.2), there
exists 𝑢 ∈ 𝑄1

inc,𝑟(𝐹 ct ) such that inc𝐹 𝑢 = 𝑣. But by (2.10b), we have inc𝐹 sym 𝑢 = inc𝐹 𝑢 = 𝑣. Thus we
found a function 𝑤 = sym 𝑢 ∈ 𝑄1,𝑠

inc,𝑟(𝐹 ct ) such that inc𝐹 𝑤 = 𝑣.
Next, let 𝑢 ∈ 𝑄1,𝑠

inc,𝑟(𝐹 ct ) with inc𝐹 𝑢 = 0. Then 𝑢 = sym(𝑧) for some 𝑧 ∈ 𝑄1
inc,𝑟(𝐹 ct ) and inc𝐹 𝑧 = 0 due to

(2.10b). By exactness of (A.2), we have 𝑧 = grad𝐹 𝑤 +skew 𝑠 for some 𝑤 ∈ 𝑆0
𝑟+1(𝐹 ct )⊗V2 and 𝑠 ∈ X̊0

𝑟(𝐹 ct ).
Then 𝑢 = sym(𝑧) = 𝜀𝐹 (𝑤)− sym(skew 𝑠) = 𝜀𝐹 (𝑤).
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(ii) Proof of (3.7): again, it is easy to see that (3.7) is a complex, so we only need to show exactness.
Let 𝑣 ∈ 𝑉 2

𝑟−3(𝐹 ct )⊗V2. Then by the exactness of (A.3), we have 𝑢 ∈ 𝑉 1
div,𝑟−2(𝐹 ct )⊗V2 such that div𝐹 𝑢 = 𝑣

and skew 𝑢 = 0 and thus making 𝑢 ∈ 𝑄1
𝑟−2(𝐹 ct ).

Next, let 𝑢 ∈ 𝑄1
𝑟−2(𝐹 ct ) with div𝐹 𝑢 = 0. Then again using (A.3) and skew 𝑢 = 0, there exists 𝑧 ∈ 𝑆0

𝑟 (𝐹 ct )
such that airy𝐹 𝑧 = 𝑢.
Finally, for any 𝑢 ∈ 𝑆0

𝑟 (𝐹 ct ) with airy𝐹 𝑢 = 0, we have 𝑢 = 𝑤 + 𝑥⊥ · 𝑠 for some 𝑤 ∈ R, 𝑠 ∈ V2, and 𝑥 a
point on the face 𝐹 . Therefore, 𝑢 ∈ 𝒫1(𝐹 ).

�

Appendix B. Proof of Lemma 4.6

Proof. We first show that dim 𝑃𝑈R = dim R = 6. This follows if we show that the kernel of 𝑃𝑈 is empty. Let
𝑣 ∈ R and assume that 𝑃𝑈𝑣 = 0. Then, by the definition of 𝑃𝑈 and the fact that 𝑣 is a linear function, we
must have that 𝑣 vanishes on the barycenter of each 𝐾 ∈ 𝑇𝑤𝑓 . This implies that 𝑣 ≡ 0 if there are three such
barycenters that are not collinear. To see that there are such barycenters, recall that the barycenter of 𝐾 ∈ 𝑇𝑤𝑓

is the average of the four vertices of 𝐾. Hence the line connecting barycenters of two adjacent 𝐾± ∈ 𝑇𝑤𝑓 is
parallel to the line connecting the two vertices opposite to the common face 𝐹 = 𝜕𝐾+ ∩ 𝜕𝐾−. Thus taking,
for example, three subtetrahedra in 𝑇𝑤𝑓 with a face contained in a common 𝐹 ∈ ∆2(𝒯ℎ), we see that their
barycenters cannot be collinear, since no three of their vertices are collinear.

We now prove (4.9). Since dim R = 6 and by the definition of 𝑈3
0 (𝑇𝑤𝑓 ), we have

dim 𝑈3
0

(︀
𝑇𝑤𝑓

)︀
≥ dim 𝑈3

0

(︀
𝑇𝑤𝑓

)︀
− dim R = 36− 6 = 30.

We use that
𝑈3

0

(︀
𝑇𝑤𝑓

)︀
= 𝑈3

0

(︀
𝑇𝑤𝑓

)︀
⊕

[︁
𝑈3

0

(︀
𝑇𝑤𝑓

)︀]︁⊥
,

and obtain dim[𝑈3
0 (𝑇𝑤𝑓 )]⊥ ≤ 6. However, one can easily show that 𝑃𝑈R ⊂ [𝑈3

0 (𝑇𝑤𝑓 )]⊥ which implies
dim[𝑈3

0 (𝑇𝑤𝑓 )]⊥ = 6 and 𝑃𝑈R = [𝑈3
0 (𝑇𝑤𝑓 )]⊥. �

Appendix C. Proof of Lemma 5.3

Proof. Fix 𝐹 ∈ ∆2(𝑇 ), and let 𝑒 ∈ ∆𝐼
1(𝐹 𝑐𝑡) be an internal edge in the induced Clough–Tocher split of 𝐹 . Let

𝑓 be the corresponding internal face of 𝑇𝑤𝑓 with 𝑒 as an edge, and let 𝑛𝑓 is a unit-normal to 𝑓 . We further set
𝑡𝑒 to be a unit tangent vector to 𝑒 and 𝑠𝑒 = 𝑛𝐹 × 𝑡𝑒 to be a unit tangent vector of 𝐹 orthogonal to 𝑡𝑒.

Since 𝑛𝑓 · 𝑡𝑒 = 0, we have 𝑛𝑓 = (𝑛𝑓 ·𝑛𝐹 )𝑛𝐹 +(𝑛𝑓 ·𝑠𝑒)𝑠𝑒. Since 𝜎 ∈ 𝑉 2
𝑟 (𝑇𝑤𝑓 )⊗V, we have 𝜎𝑛𝑓 is single-valued

on 𝑒 and hence, by symmetry of 𝜎, (𝜎ℓ) · 𝑛𝑓 is single-valued on 𝑒. Therefore, on 𝑒, with (𝜎ℓ) · 𝑛𝐹 = 𝑛′𝐹 𝜎ℓ = 0,
we have (𝜎ℓ) · 𝑛𝑓 = (𝑛𝑓 · 𝑠𝑒)(𝜎ℓ) · 𝑠𝑒 and so [[𝜎𝐹ℓ · 𝑠𝑒]]𝑒 = [[(𝜎ℓ) · 𝑠𝑒]]𝑒 = 0 for any 𝑒 ∈ ∆𝐼

1(𝐹 𝑐𝑡). Therefore,
𝜎𝐹ℓ ∈ 𝑉 1

div,𝑟(𝐹 ct ) on each 𝐹 ∈ ∆2(𝑇 ). �

Appendix D. Proof of Lemma 5.4

Proof. Since 𝑤 ∈ 𝑉 1
𝑟−1(𝑇𝑤𝑓 )⊗V and 𝑤′ ∈ 𝑉 2

𝑟−1(𝑇𝑤𝑓 )⊗V, then 𝑛′𝑓𝑤, 𝑤𝑡𝑒 and 𝑤𝑡𝑠 are continuous cross 𝑒 on 𝐹 :

[[𝑛′𝑓𝑤]]𝑒 = 0, [[𝑤𝑡𝑒]]𝑒 = 0, [[𝑤𝑡𝑠]]𝑒 = 0. (D.1)

Let 𝑠𝑒 = 𝛼1𝑛𝑓 + 𝛽1𝑡𝑠, 𝑛𝐹 = 𝛼2𝑛𝑓 + 𝛽2𝑡𝑠, and note 𝛼1 ̸= 0 and 𝛽2 ̸= 0.
Since 𝑛′𝐹 𝑤𝑄|𝐹 = 0, for any 𝑒 ∈ ∆𝐼

1(𝐹 𝑐𝑡),

0 = [[𝑛′𝐹 𝑤𝑠𝑒]]𝑒 = [[(𝛼2𝑛
′
𝑓 + 𝛽2𝑡

′
𝑠)𝑤(𝛼1𝑛𝑓 + 𝛽1𝑡𝑠)]]𝑒

= 𝛼1𝛼2[[𝑛′𝑓𝑤𝑛𝑓 ]]𝑒 + 𝛼2𝛽1[[𝑛′𝑓𝑤𝑡𝑠]]𝑒 + 𝛼1𝛽2[[𝑡′𝑠𝑤𝑛𝑓 ]]𝑒 + 𝛽2𝛽1[[𝑡′𝑠𝑤𝑡𝑠]]𝑒
= 𝛼1𝛽2[[𝑡′𝑠𝑤𝑛𝑓 ]]𝑒.
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Thus, we have
[[𝑡′𝑠𝑤𝑛𝑓 ]]𝑒 = 0,

and therefore
[[𝑠′𝑒𝑤𝑠𝑒]]𝑒 = 𝛼2

1[[𝑛′𝑓𝑤𝑛𝑓 ]]𝑒 + 𝛼1𝛽1[[𝑛′𝑓𝑤𝑡𝑠]]𝑒 + 𝛼1𝛽1[[𝑡′𝑠𝑤𝑛𝑓 ]]𝑒 + 𝛽2
1 [[𝑡′𝑠𝑤𝑡𝑠]]𝑒 = 0.

We have [[𝑡′𝑒𝑤𝑛𝑓 ]]𝑒 = 0 since 𝑤𝐹𝐹 = 0 and

0 = [[𝑡′𝑒𝑤𝑠𝑒]]𝑒 = [[𝑡′𝑒𝑤(𝛼1𝑛𝑓 + 𝛽1𝑡𝑠)]]𝑒 = 𝛼1[[𝑡′𝑒𝑤𝑛𝑓 ]]𝑒 + 𝛽1[[𝑡′𝑒𝑤𝑡𝑠]]𝑒= 𝛼1[[𝑡′𝑒𝑤𝑛𝑓 ]]𝑒,

where we use (D.1). This implies that
[[𝑡′𝑒𝑤𝑛𝐹 ]]𝑒 = 0

since
[[𝑡′𝑒𝑤𝑛𝐹 ]]𝑒 = [[𝑡′𝑒𝑤(𝛼2𝑛𝑓 + 𝛽2𝑡𝑠)]]𝑒 = 0.

�

Appendix E. Proof of Lemma 5.5

Proof. Write ℓ = 𝑎1𝑡1 + 𝑎2𝑡2, 𝑚 = 𝑎1𝑡2 − 𝑎2𝑡1, where 𝑡1, 𝑡2 are tangential basis defined in Section 2.3. We also
set 𝑡3 = 𝑛𝐹 , and write 𝑢 =

∑︀3
𝑖,𝑗=1 𝑢𝑖𝑗𝑡𝑖𝑡

′
𝑗 . We then have the following identities for the components of curl 𝑢

(𝑠 ∈ {1, 2, 3}):

𝑡′𝑠(curl 𝑢)𝑡1 = 𝜕𝑡2𝑢𝑠3 − 𝜕𝑡3𝑢𝑠2,

𝑡′𝑠(curl 𝑢)𝑡2 = 𝜕𝑡3𝑢𝑠1 − 𝜕𝑡1𝑢𝑠3,

𝑡′𝑠(curl 𝑢)𝑡3 = 𝜕𝑡1𝑢𝑠2 − 𝜕𝑡2𝑢𝑠1.

(E.1)

We then compute

ℓ′(curl 𝑢)𝑚 = (𝑎1𝑡1 + 𝑎2𝑡2)′(curl 𝑢)(𝑎1𝑡2 − 𝑎2𝑡1)

= (𝑎1)2(𝜕𝑡3𝑢11 − 𝜕𝑡1𝑢13)− (𝑎2)2(𝜕𝑡2𝑢23 − 𝜕𝑡3𝑢22)
+ 𝑎1𝑎2(𝜕𝑡3𝑢21 − 𝜕𝑡1𝑢23 − 𝜕𝑡2𝑢13 + 𝜕𝑡3𝑢12)

= 𝜕𝑡3

(︁
(𝑎1)2𝑢11 + (𝑎2)2𝑢22 + 𝑎1𝑎2(𝑢21 + 𝑢12)

)︁
− 𝑎1(𝑎2𝜕𝑡2𝑢13 + 𝑎1𝜕𝑡1𝑢13)− 𝑎2(𝑎1𝜕𝑡1𝑢23 + 𝑎2𝜕𝑡2𝑢23)

= 𝜕𝑡3(ℓ′𝑢𝐹𝐹 ℓ)− 𝑎1𝜕ℓ𝑢13 − 𝑎2𝜕ℓ𝑢23

= 𝜕𝑛(ℓ′𝑢𝐹𝐹 ℓ)− 𝜕𝑙(𝑢𝐹𝑛 · ℓ) = 𝜕𝑛(ℓ′𝑢𝐹𝐹 ℓ)− grad𝐹 (𝑢𝐹𝑛 · ℓ) · ℓ.

(E.2)

Similarly, by using (E.1), we have

ℓ′(curl 𝑢)ℓ = (𝑎1𝑡1 + 𝑎2𝑡2)′(curl 𝑢)(𝑎1𝑡1 + 𝑎2𝑡2)
= (𝑎1)2(𝜕𝑡2𝑢13 − 𝜕𝑡3𝑢12) + (𝑎2)2(𝜕𝑡3𝑢21 − 𝜕𝑡1𝑢23)

+ 𝑎1𝑎2(𝜕𝑡2𝑢23 − 𝜕𝑡3𝑢22 + 𝜕𝑡3𝑢11 − 𝜕𝑡1𝑢13)
= 𝜕𝑡3

(︀
−(𝑎1)2𝑢12 + (𝑎2)2𝑢21 + 𝑎1𝑎2(𝑢11 − 𝑢22)

)︀
− 𝑎1(−𝑎1𝜕𝑡2𝑢13 + 𝑎2𝜕𝑡1𝑢13) + 𝑎2(𝑎1𝜕𝑡2𝑢23 − 𝑎2𝜕𝑡1𝑢23)

= −𝜕𝑡3(𝑚′𝑢𝐹𝐹 ℓ) + 𝑎1𝜕𝑚𝑢13 + 𝑎2𝜕𝑚𝑢23

= −𝜕𝑛(𝑚′𝑢𝐹𝐹 ℓ) + 𝜕𝑚(𝑢𝐹𝑛 · ℓ) = −𝜕𝑛(𝑚′𝑢𝐹𝐹 ℓ) + grad𝐹 (𝑢𝐹𝑛 · ℓ) ·𝑚.

(E.3)



3400 S. GONG ET AL.

Finally, again by using (E.1), we have

𝑛′𝐹 (curl 𝑢)ℓ = 𝑡′3(curl 𝑢)(𝑎1𝑡1 + 𝑎2𝑡2)
= (𝑎1𝜕𝑡2𝑢33 − 𝑎2𝜕𝑡1𝑢33) + 𝜕𝑡3(𝑎2𝑢31 − 𝑎1𝑎32)
= 𝜕𝑚𝑢33 − 𝜕𝑛(𝑢𝑛𝐹 ·𝑚) = (grad𝐹 𝑢33) ·𝑚− 𝜕𝑛(𝑢𝑛𝐹 ·𝑚).

(E.4)

Lemma 5.5 now follows from (E.2)–(E.4) and the first case in Lemma 5.1. �

Appendix F. Proof of Lemma 5.6

Proof. (i) Continuity: we show the continuity of 𝑤𝐹𝐹 − grad𝐹 𝑢⊥𝑛𝐹 . Recall the notation from Section 2.2. Since
𝑤 ∈ 𝑉 1

𝑟−1(𝑇𝑤𝑓 ) ⊗ V (by Thm. 4.8), for any 𝑒 ∈ ∆𝐼
1(𝐹 𝑐𝑡) we have [[𝑤𝐹𝐹 𝑡𝑒]]𝑒 = 0 due to [[𝑤𝑡𝑒]]𝑒 = 0.

Consequently, because 𝑢 is continuous, we have

[[
(︀
𝑤𝐹𝐹 − grad𝐹 𝑢⊥𝑛𝐹

)︀
𝑡𝑒]]𝑒 = 0. (F.1)

Now to prove the continuity of 𝑤𝐹𝐹 − grad𝐹 𝑢⊥𝑛𝐹 on 𝐹 , it suffices to prove [[(𝑤𝐹𝐹 − grad𝐹 𝑢⊥𝑛𝐹 )𝑠𝑒]]𝑒 = 0 for
all 𝑒 ∈ ∆𝐼

1(𝐹 𝑐𝑡). Using 𝑤′ ∈ 𝑉 2
𝑟−1(𝑇𝑤𝑓 )⊗ V and 𝑤𝐹𝑛 = 0, by Lemma 5.4 we have

[[𝑠′𝑒𝑤𝐹𝐹 𝑠𝑒]]𝑒 = [[𝑠′𝑒𝑤𝑠𝑒]]𝑒 = 0. (F.2)

Next we show that [[𝑠′𝑒grad𝐹 (𝑢⊥𝑛𝐹 )𝑠𝑒]]𝑒 = 0 and [[𝑡′𝑒(𝑤𝐹𝐹 − 𝑢⊥𝑛𝐹 )𝑠𝑒]]𝑒 = 0. Since 𝑢 ∈ X1
𝑟(𝑇𝑤𝑓 )⊗V and 𝑢𝐹𝐹 = 0

on 𝐹 , we have

[[𝑠′𝑒grad𝐹

(︀
𝑢⊥𝑛𝐹

)︀
𝑠𝑒]]𝑒 = [[grad𝐹

(︀
𝑢⊥𝑛𝐹 · 𝑠𝑒

)︀
· 𝑠𝑒]]𝑒 = [[grad𝐹

(︀
𝑢⊥𝐹𝑛 · 𝑠𝑒

)︀
· 𝑠𝑒]]𝑒

= [[grad𝐹 (𝑢𝐹𝑛 · 𝑡𝑒) · 𝑠𝑒]]𝑒 = −[[𝑡′𝑒(curl 𝑢)′𝑡𝑒]]𝑒 = 0, (F.3)

where the third equality comes from (2.6) and the fourth equality uses (5.5) in Lemma 5.5 with ℓ = 𝑡𝑒 and
𝑚 = 𝑠𝑒. Similarly by (5.4) in Lemma 5.5 with ℓ = 𝑠𝑒, 𝑚 = −𝑡𝑒 and (2.6), we have [[𝑡′𝑒grad𝐹 (𝑢⊥𝑛𝐹 )𝑠𝑒]]𝑒 =
[[𝑡′𝑒(curl 𝑢)′𝑠𝑒]]𝑒. Therefore, we have

[[𝑡′𝑒
(︀
𝑤𝐹𝐹 − grad𝐹 𝑢⊥𝑛𝐹

)︀
𝑠𝑒]]𝑒 = [[𝑡′𝑒[(curl 𝑢)′]𝐹𝐹 𝑠𝑒]]𝑒 − [[𝑡′𝑒(curl 𝑢)′𝑠𝑒]]𝑒 = 0. (F.4)

Combining (F.1)–(F.4), we conclude that 𝑤𝐹𝐹 − grad𝐹 𝑢⊥𝑛𝐹 is continuous on 𝐹 .

(ii) Proof of (5.7): with (2.11g), (2.11h) and (2.5), we have

2 𝑤𝐹𝐹 = grad𝐹 (grad𝐹 (𝑣 · 𝑛𝐹 )× 𝑛𝐹 − (𝜕𝑛𝑣𝐹 )× 𝑛𝐹 ).

Then with (2.11i), (2.11j) and (2.6), we obtain

2 grad𝐹 𝑢⊥𝑛𝐹 = 2 grad𝐹 [(𝜀(𝑣))𝑛𝐹 ]⊥ = grad𝐹 (grad𝐹 (𝑣 · 𝑛𝐹 )× 𝑛𝐹 + (𝜕𝑛𝑣𝐹 )× 𝑛𝐹 ).

Therefore, by computing the difference of the above two equations, we conclude that 𝑤𝐹𝐹 − grad𝐹 𝑢⊥𝑛𝐹 =
grad𝐹 (𝜕𝑛𝑣𝐹 × 𝑛𝐹 ).

�
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