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A B S T R A C T

Although Regge finite element functions are not continuous, useful generalizations of nonlinear
derivatives like the curvature, can be defined using them. This paper is devoted to studying
the convergence of the finite element lifting of a generalized (distributional) Gauss curvature
defined using a metric tensor approximation in the Regge finite element space. Specifically, we
investigate the interplay between the polynomial degree of the curvature lifting by Lagrange
elements and the degree of the metric tensor in the Regge finite element space. Previously,
a superconvergence result, where convergence rate of one order higher than expected, was
obtained when the approximate metric is the canonical Regge interpolant of the exact metric.
In this work, we show that an even higher order can be obtained if the degree of the curvature
lifting is reduced by one polynomial degree and if at least linear Regge elements are used. These
improved convergence rates are confirmed by numerical examples.

. Introduction

Substantial progress has recently been made on computing high-order approximations of Gauss curvature on two-dimensional
iemannian manifolds using non-smooth metrics that are piecewise smooth with respect to a mesh [1–3]. Perhaps the most well-
nown example is that of a piecewise constant metric, where the angle defect at mesh vertices yields an approximation of Gauss
urvature. Being concentrated at vertices, this angle defect can naturally be lifted into a linear Lagrange finite element space that
as one basis function per vertex. Taking this as a point of departure by viewing a piecewise constant metric as a polynomial
f degree 𝑘 = 0 and the resulting Lagrange curvature lifting as a polynomial of degree 𝑘 + 1 = 1 within each element, we can
eneralize to higher degrees 𝑘. Namely, in [3], we showed that if a smooth metric is approximated using the canonical interpolant
f the Regge finite element space of degree 𝑘, then the error in a degree (𝑘 + 1)-Lagrange finite element approximation of the
auss curvature converges to zero in the 𝐻−1-norm at the rate (ℎ𝑘+1), where ℎ is the mesh-size. The present work is devoted to
nswering the following related question. What convergence rates can be expected if we decide to approximate curvature in an
ven higher degree Lagrange space—or for that matter, a lower degree Lagrange space—while keeping the metric in the degree 𝑘
egge space? Since the analysis in [3] used delicate orthogonality properties (such as the orthogonality of the error in Christoffel
ymbol approximations), the answer is not obvious. In fact, the answer we provide in this paper may even seem counterintuitive at
irst sight: reducing the degree of curvature approximation to degree 𝑘 increases the convergence rate, while increasing it to degree
+ 2 reduces the rate. Specifically, we observe that, under suitable assumptions, the following rates apply:
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Curvature approximation 𝐻−1 convergence Source
𝑘 + 2 𝑘 ≥ 0 (ℎ𝑘) Section 4 in this paper
𝑘 + 1 𝑘 ≥ 0 (ℎ𝑘+1) [3, Theorem 6.5]
𝑘 𝑘 ≥ 1 (ℎ𝑘+2) Theorems 3.1, 3.8 in this paper
𝑘 − 1 𝑘 ≥ 2 (ℎ𝑘+1) Section 4 in this paper

The remainder of this introduction places these and related prior results into perspective.
By Gauss’ Theorema Egregium, Gauss curvature 𝐾 is an intrinsic quantity. It can be computed considering solely the metric

tensor of the manifold, without reference to any embedding. Therefore, it is natural to ask for discrete versions of Gauss curvature
that arise when only approximations of the exact metric are given, and how well such discrete versions approximate the exact
curvature when the approximated metrics are close to the exact one.

We consider Regge finite elements for discretizing the metric tensor. They originate from Regge calculus, originally developed for
solving Einstein field equations in general relativity [4]. Following Regge we consider a simplicial triangulation of the manifold and
ssign positive numbers to each edge. These numbers are interpreted as squared lengths and determine a piecewise constant metric

tensor. Sorkin pointed out in [5, Section II.A] that this piecewise constant metric tensor possesses tangential–tangential continuity, or
𝑡-continuity (which we define precisely in Section 2.1 below) over element interfaces. Christiansen [6] popularized Regge calculus
n the study of finite element methods (FEM) much the same way as finite element exterior calculus (FEEC) popularized the use
f Whitney forms [7] in FEM. He defined in [8] the lowest-order Regge finite element space (the 𝑘 = 0 case of the space Reg𝑘ℎ
efined in (2.3) below) and showed that the linearization of the discretized Einstein–Hilbert action functional around the Euclidean

metric equals the distributional incompatibility operator applied to such functions. Further, he proved in [9,10] that the densitized
curvature of a sequence of mollified piecewise constant Regge metrics converges to the angle defect in the sense of measures. Li
extended the Regge space to arbitrary polynomial degrees 𝑘 and to higher-dimensional simplices [11], and Neunteufel defined
high-order Regge elements for quadrilaterals, hexahedra, and prisms [12].

Due to the non-smoothness of the approximated metric 𝑔ℎ ∈ Reg𝑘ℎ (which only has tangential–tangential continuity) and the
nonlinearity of curvature, a definition of consistent and convergent notion of discrete Gauss curvature is not obvious. We refer to
Sullivan [13, Section 4.1] for a historical discussion and to Strichartz [14, Corollary 3.1] for a definition of curvature as a measure
on singular surfaces, where the curvature quantities, being multiplied by the corresponding volume forms, are handled as densities.
n [2], Berchenko-Kogan and Gawlik defined a distributional version of the densitized Gauss curvature, namely 𝐾 𝜔, a generalization

of the product of Gauss curvature 𝐾 with the volume form 𝜔 (and we analyzed their curvature generalization further in [3]). In
their work, in addition to the elementwise Gauss curvature 𝐾|𝑇 = 𝐾(𝑔ℎ)|𝑇 , they consider the jump of the geodesic curvature 𝜅 over
dges and the angle defect at vertices as sources of Gauss curvature, i.e., for any 𝑢 in a space ̊(𝒯 ) based on a mesh 𝒯 defined
elow,

𝐾 𝜔(𝑔ℎ)(𝑢) =
∑

𝑇∈𝒯
∫𝑇

𝐾|𝑇 𝑢 𝜔𝑇 +
∑

𝐸∈ℰ
∫𝐸

[[𝜅]]𝐸 𝑢 𝜔𝐸 +
∑

𝑉 ∈𝒱
𝛩𝑉 𝑢(𝑉 ), (1.1)

where 𝜔𝑇 and 𝜔𝐸 denote the volume forms of the respective (sub-)domains. This allows for putting the well-established Gauss
urvature approximation by angle deficit 𝛩𝑉 (2𝜋 minus the sum of the interior angles of triangles attached to the vertex) into a
inite element context and to extend it to higher polynomial order. In fact, considering piecewise constant metrics, 𝑔ℎ ∈ Reg0ℎ, the
ngle deficit is recovered, since then 𝐾 𝜔(𝑔ℎ)(𝑢) =

∑

𝑉 ∈𝒱 𝛩𝑉 𝑢(𝑉 ). The distributional Gauss curvature (1.1) acts on piecewise smooth
and globally continuous 0-forms defined by

(𝒯 ) = {𝑢 ∈ 𝛬0(𝒯 ) ∶ 𝑢 is continuous},
̊𝛤 (𝒯 ) = {𝑢 ∈ (𝒯 ) ∶ 𝑢|𝛤 = 0}, ̊(𝒯 ) = ̊𝜕 𝛺(𝒯 ).

(1.2)

The meaning of ‘‘piecewise smooth’’ with respect to a ‘‘mesh’’ 𝒯 and definition of piecewise smooth 𝑘-form fields 𝛬𝑘(𝒯 ) appear in
ection 2.1 below. The standard degree 𝑘 Lagrange finite element subspaces of the spaces in (1.2) are denoted by 𝑘

ℎ , 𝑘
ℎ,𝛤 , and ̊𝑘

ℎ ,
respectively. Berchenko-Kogan and Gawlik proved [2] error estimates in the 𝐻−1-norm by using an integral representation of (1.1).
Indeed, let 𝛿 denote the Euclidean metric, whose coordinate components coincide with the classical Kronecker delta, [𝛿]𝑖𝑗 = 𝛿𝑖𝑗 (not
to be confused with the Dirac delta, which is never used in this work). Then there holds

𝐾 𝜔(𝑔)(𝑢) = 1
2 ∫

1

0
𝑏(𝛿 + 𝑡(𝑔 − 𝛿); 𝑔 − 𝛿 , 𝑢) 𝑑 𝑡, (1.3)

where the bilinear form 𝑏(𝑔; 𝜎 , 𝑢) is the covariant version of the Hellan–Herrmann–Johnson (HHJ) method [15–17] extending the
covariant differential operator div𝑔div𝑔(S𝑔𝜎) in the sense of distributions, where S𝑔𝜎 = 𝜎 − t r𝑔(𝜎)𝑔. Recently, Gawlik and Neunteufel
xtended the analysis to the 𝐻−2-norm for the Gauss curvature, see [1]. Further, they considered an integral representation for the

error
(

𝐾 𝜔(𝑔ℎ) −𝐾 𝜔(𝑔))(𝑢).
It is often useful (or even necessary) to consider Gauss curvature as a function instead of a functional or a distribution. In [18],

Gawlik computed a discrete Riesz representative 𝐾ℎ ∈ ̊𝑟
ℎ in the Lagrange finite element space ̊𝑟

ℎ as a lifting of the distributional
auss curvature (1.1) via

∫𝛺
𝐾ℎ 𝑢ℎ 𝜔ℎ = 𝐾 𝜔(𝑔ℎ)(𝑢ℎ) for all 𝑢ℎ ∈ ̊𝑟

ℎ,

where 𝜔 =
√

det 𝑔 𝑑 𝑥1 ∧ 𝑑 𝑥2 denotes the approximated volume form.
ℎ ℎ
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He proved error estimates of this lifting also for Sobolev norms under the assumption that 𝑔ℎ ∈ Reg𝑘ℎ is an optimal-order
pproximation of the exact metric 𝑔̄, with exact Gauss curvature 𝐾̄ = 𝐾(𝑔̄),

‖𝐾ℎ − 𝐾̄‖𝐻 𝑙
ℎ
≤ 𝐶 ℎ−𝑙+min{𝑘−1,𝑟+1}(

|𝑔̄|𝐻𝑘+1 + |𝐾̄|𝐻𝑟+1
)

, −1 ≤ 𝑙 ≤ 𝑟. (1.4)

Here, ‖ ⋅ ‖𝐻 𝑙
ℎ

denotes the elementwise 𝐻 𝑙-norm. In [3], we considered an alternative integral representation that relies on the
istributional covariant incompatibility operator, inc𝑔 = cur l𝑔 cur l𝑔 , which is related to the HHJ method by inc𝑔 𝜎 = −div𝑔div𝑔(S𝑔𝜎).
e showed an convergence rate increase (by one order) compared to (1.4) if 𝑔ℎ is the canonical Regge interpolant (defined by Li

in [11], reproduced in (3.1) below) of the exact metric 𝑔̄ and 𝐾ℎ is assumed to be in ̊𝑘+1
ℎ ,

‖𝐾ℎ − 𝐾̄‖𝐻 𝑙
ℎ
≤ 𝐶 ℎ−𝑙+𝑘(|𝑔̄|𝑊 𝑘+1,∞ + |𝐾̄|𝐻𝑘

)

, −1 ≤ 𝑙 ≤ 𝑘.

However, this convergence rate, when compared against the best approximation capabilities of the space, is not the theoretical
optimum; for 𝐾ℎ ∈ ̊𝑘+1

ℎ we obtain only 𝐿2-convergence of order 𝑘 instead of 𝑘 + 2.
In this paper we show that an increased, optimal convergence rate for the lifting of the distributional Gauss curvature 𝐾ℎ and

ts densitized version 𝐾ℎ𝜔ℎ is obtained when considering Lagrange elements ̊𝑘
ℎ of one polynomial degree less assuming at least

linear elements, 𝑘 ≥ 1, are used. Our analysis relies heavily on the properties of the canonical Regge interpolant [11] preserving
specific moments at edges and elements. Therefore, the results only hold for the canonical Regge interpolant. For more general
metric approximations in Reg𝑘ℎ, the estimate (1.4) cannot generally be improved. The technique of analysis in this work differs from
our earlier work [3] in that we use an integral representation directly for the difference between the curvatures of the exact and
the approximated metrics, instead of employing an interpolation from the Euclidean metric as in (1.3). This allows us to bypass a
delicate ‘‘Christoffel orthogonality property’’, which was a key step in our prior work (see [3, Lemma 6.10]). As in [3], our current
nalysis also relies on the distributional covariant incompatibility operator ĩnc𝑔 , but now we rely specifically on its distributional
2-like adjoint ̃r ot r ot𝑔 . The latter simplifies the curvature error analysis compared to [3] (even if it does not provide estimates for
ñc𝑔-approximation, which we did in [3]).

This paper is structured as follows. In the next section we quickly review differential geometry notions we use, distributional
ovariant derivatives, and the distributional Gauss curvature. Section 3 is devoted to the error analysis of the lifted (densitized) Gauss

curvature in the 𝐻−1- and stronger Sobolev norms. In Section 4 we present numerical examples confirming the proved convergence
rates.

2. Notation

Let 𝛺 ⊂ R2 be an open domain with a smooth metric tensor 𝑔̄ providing a Riemannian manifold structure (𝛺 , 𝑔̄). Consider a
riangulation 𝒯 of 𝛺 consisting of possibly curved triangles. Denote the set of all edges and vertices by ℰ and 𝒱 , respectively. We
plit ℰ into edges lying on the boundary 𝜕 𝛺, given by ℰ𝜕 , and inner ones ℰ̊ = ℰ ⧵ℰ𝜕 . Analogously we define 𝒱𝜕 and 𝒱 . We assume
o be given an approximation of 𝑔̄, denoted 𝑔ℎ, defined on the triangulation 𝒯 . The subscript ℎ indicates that 𝑔ℎ is defined with
espect to the triangulation 𝒯 , where ℎ can be related to the maximal element size. All quantities computed from the exact metric
̄ will be marked by an overline ‘‘ ⋅̄ ’’ throughout the paper.

2.1. Regge metric

Let X(𝑇 ), 𝛬𝑘(𝑇 ), and  𝑘
𝑙 (𝑇 ) denote the set of smooth vector fields, 𝑘-form fields, and (𝑘, 𝑙)-tensor fields on a submanifold 𝑇 of 𝛺,

espectively. Here, smoothness signifies infinite differentiability at interior points and continuous differentiability up to (including)
he boundary. In such symbols, replacement of the manifold 𝑇 by a collection of subdomains such as the triangulation 𝒯 , yields the

piecewise smooth analogue with respect to the collection. For example,  𝑘
𝑙 (𝒯 ) is the Cartesian product of  𝑘

𝑙 (𝑇 ) over an enumeration
of all 𝑇 ∈ 𝒯 . Analogously, 𝛬1(𝒯 ) =  1

0 (𝒯 ) and X(𝒯 ) =  0
1 (𝒯 ). Let (𝒯 ) = {𝜎 ∈  2

0 (𝒯 ) ∶ 𝜎(𝑋 , 𝑌 ) = 𝜎(𝑌 , 𝑋) for 𝑋 , 𝑌 ∈ X(𝒯 )}.
unctions in (𝒯 ) are symmetric covariant 2-tensors on 𝛺 with no continuity over element interfaces in general. We define +(𝒯 ) as
he subset of positive definite symmetric 2-tensors. For coordinate computations, we use coordinates 𝑥1, 𝑥2 and Einstein’s summation
onvention of repeated indices. Let the accompanying coordinate frame and coframe be denoted by 𝜕𝑖 and 𝑑 𝑥𝑖. We assume that these
oordinates preserve orientation, i.e., the orientation of 𝛺 is given by the ordering (𝜕1, 𝜕2). We use standard operations on 2-manifold
paces such as the exterior derivative 𝑑 ∶ 𝛬𝑘(𝛺) → 𝛬𝑘+1(𝛺) (see e.g. [19–21]).

Every 𝐸 ∈ ℰ̊ is of the form 𝐸 = 𝜕 𝑇+ ∩ 𝜕 𝑇− for two elements 𝑇± ∈ 𝒯 . We say that a 𝜎 ∈ (𝒯 ) has ‘‘tangential–tangential
ontinuity’’ or ‘‘𝑡𝑡-continuity’’ if 𝜎|𝑇+ (𝑋 , 𝑌 ) = 𝜎|𝑇− (𝑋 , 𝑌 ) for all tangential vector fields 𝑋 , 𝑌 ∈ X(𝐸) for every 𝐸 in ℰ̊ (i.e., 𝜎(𝑋 , 𝑌 ) is
ingle-valued on all 𝐸 ∈ ℰ̊). This leads to the definition of the (infinite-dimensional) Regge space

Reg(𝒯 ) = {𝜎 ∈ (𝒯 ) ∶ 𝜎 is 𝑡𝑡-continuous} (2.1)

and its subset of Regge metrics
Reg+(𝒯 ) = {𝜎 ∈ Reg(𝒯 ) ∶ 𝜎(𝑋 , 𝑋) > 0 for all 0 ≠ 𝑋 ∈ X(𝒯 )}.

The approximate metric 𝑔 is assumed to be in Reg+(𝒯 ).
ℎ
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2.2. Differential geometry

Let the unique Levi-Civita connection generated by 𝑔̄ be denoted by ∇̄. Note that it is standard to extend the Levi-Civita connection
∇̄ from vector fields to tensor fields (see e.g., [19, Lemma 4.6]) so that the Leibniz rule holds.

Following the sign convention of [19], recall that the Riemann curvature tensor ̄ ∈  4
0 (𝛺) of the manifold is defined by

̄(𝑋 , 𝑌 , 𝑍 , 𝑊 ) = 𝑔̄(∇̄𝑋∇̄𝑌𝑍 − ∇̄𝑌 ∇̄𝑋𝑍 − ∇̄[𝑋 ,𝑌 ]𝑍 , 𝑊 ), 𝑋 , 𝑌 , 𝑍 , 𝑊 ∈ X(𝛺).

Recall that the Gauss curvature of 𝛺 is given by

𝐾̄ ∶= 𝐾(𝑔̄) = ̄(𝑋 , 𝑌 , 𝑌 , 𝑋)
𝑔̄(𝑋 , 𝑋)𝑔̄(𝑌 , 𝑌 ) − 𝑔̄(𝑋 , 𝑌 )2 ,

where 𝑋 and 𝑌 are some linearly independent vector fields and the value 𝐾̄ is independent of their choice.
We will also require the geodesic curvature along a curve 𝛤 in the manifold (𝛺 , 𝑔̄). Let 𝜏 denote the 𝑔̄-normalized tangent vector

of 𝛤 and 𝜈̂ the 𝑔̄-orthonormal vector such that (𝜏 , ̂𝜈) builds a right-handed coordinate system. Then

𝜅̄ ∶= 𝜅(𝑔̄) = 𝑔̄(∇̄𝜏𝜏 , ̂𝜈) = −𝑔̄(∇̄𝜏 𝜈̂ , ̂𝜏)
gives the signed geodesic curvature of 𝛤 . The element volume 2-form 𝜔̄ and edge volume 1-form 𝜔̄𝐸 , 𝐸 ∈ ℰ , read in coordinates

𝜔̄ =
√

det 𝑔̄ 𝑑 𝑥1 ∧ 𝑑 𝑥2, 𝜔̄𝐸 =
√

𝑔̄(𝜏 , 𝜏) 𝑑 𝜏 , (2.2)

where 𝜏 ∈ X(𝐸) denotes the Euclidean normalized tangent vector at edge 𝐸 and 𝑑 𝜏 is the associated 1-form. We use also the
bbreviation of e.g. 𝑔̄𝜏 𝜏 ∶= 𝑔̄(𝜏 , 𝜏).

2.3. Finite element spaces

Let 𝑇̂ ⊂ R2 denote the reference triangle and define 𝑘(𝑇̂ ) as the set of polynomials of degree up to 𝑘 on 𝑇̂ . For 𝑇 ∈ 𝒯 let
𝛷𝑇 ∶ 𝑇̂ → 𝑇 ∈ 𝑘(𝑇̂ ,R2) denote the diffeomorphic mapping from the reference to the physical element.

We define the Regge finite element space as a subspace of Reg(𝒯 ) (2.1) by

Reg𝑘ℎ = {𝜎 ∈ Reg(𝒯 ) ∶ for all 𝑇 ∈ 𝒯 , 𝜎|𝑇 = 𝜎𝑖𝑗𝑑 𝑥𝑖 ⊗ 𝑑 𝑥𝑗 with 𝜎𝑖𝑗◦𝛷𝑇 ∈ 𝑘(𝑇̂ )}. (2.3)

Further, the Lagrange finite element space as a subspace of (𝒯 ) (1.2) is given by
𝑘
ℎ = {𝑢 ∈ (𝒯 ) ∶ for all 𝑇 ∈ 𝒯 , 𝑢|𝑇 ◦𝛷𝑇 ∈ 𝑘(𝑇̂ )},

̊𝑘
ℎ,𝛤 = {𝑢 ∈ 𝑘

ℎ ∶ 𝑢|𝛤 = 0}, and ̊𝑘
ℎ = ̊𝑘

ℎ,𝜕 𝛺 .

2.4. Lifted distributional Gauss curvature

For the reader’s convenience we derive the (lifted) distributional Gauss curvature following [2,3]. Since a 𝑔ℎ ∈ Reg+(𝒯 ) is
mooth within each element 𝑇 ∈ 𝒯 we can compute elementwise its Gauss curvature 𝐾(𝑔ℎ)|𝑇 . It is only one contributor of the

total distributional Gauss curvature as the jumps of 𝑔ℎ generate additional sources of curvature. Let for an edge 𝐸 ∈ ℰ̊ the unique
ℎ-normal vector that points inward to elements 𝑇± ∈ 𝒯 , such that 𝐸 = 𝜕 𝑇+ ∩ 𝜕 𝑇−, be denoted by 𝜈̂𝑇±𝐸 . As 𝑔ℎ is only 𝑡𝑡-continuous,
̂𝑇+𝐸 ≠ −𝜈̂𝑇−𝐸 in general. Thus, the jump of the geodesic curvature

[[𝜅]]𝐸 = 𝜅
𝜈̂𝑇+𝐸

+ 𝜅𝜈̂𝑇−𝐸
acts as a source of curvature at edges. If there is no chance of confusion we neglect the subscript and only write [[⋅]] for the jump
over edges.

Let 𝑉 ∈ 𝒱 be an interior vertex and 𝑇 ∈ 𝒯 a triangle containing 𝑉 . Then there are two edges 𝐸± ∈ ℰ̊ ∩ 𝜕 𝑇 such that
𝑉 = 𝜕 𝐸+ ∩ 𝜕 𝐸−. Denote 𝜏𝐸±

𝑉 the 𝑔ℎ-normalized tangent vectors starting at 𝑉 and pointing into 𝐸±. We define the following angle
function on 𝑉

∢𝑇
𝑉 = ar ccos(𝑔ℎ|𝑇 (𝜏𝐸+

𝑉 , ̂𝜏𝐸−
𝑉 ))

and the angle deficit at vertex 𝑉 ∈ 𝒱

𝛩𝑉 = 2𝜋 −
∑

𝑇∈𝒯𝑉

∢𝑇
𝑉 , 𝒯𝑉 = {𝑇 ∈ 𝒯 ∶ 𝑉 ∈ 𝑇 }. (2.4)

This function acts as a source of curvature on vertices. Note that for the smooth metric 𝑔̄ there holds 𝛩𝑉 = 0.

Definition 2.1. Let 𝑔ℎ ∈ Reg+(𝒯 ) be a Regge metric. The distributional densitized Gauss curvature 𝐾 𝜔(𝑔ℎ) ∶ ̊(𝒯 ) → R is defined for
ll 𝑢 ∈ ̊(𝒯 )

𝐾 𝜔(𝑔ℎ)(𝑢) =
∑

𝑇∈𝒯
∫𝑇

𝐾|𝑇 𝑢 𝜔𝑇 +
∑

𝐸∈ℰ̊
∫𝐸

[[𝜅]] 𝑢 𝜔𝐸 +
∑

𝑉 ∈𝒱

𝛩𝑉 𝑢(𝑉 ), (2.5)

where 𝐾|𝑇 , 𝜅, 𝜔𝑇 , 𝜔𝐸 , and 𝛩𝑉 are evaluated with respect to 𝑔ℎ.
4 
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Remark 2.2. Note, that this generalizes the densitized Gauss curvature 𝐾 𝜔 (see e.g., [9]), not solely 𝐾. One can interpret (2.5) as
a measure with support on triangles, edges, and vertices, cf. [14]. See Remark 3.3 for more on approximating just 𝐾.

We consider a discrete Riesz representative of the functional in (2.5), following Gawlik [18]. We also incorporate essential and
atural Dirichlet 𝛤𝐷 and Neumann 𝛤𝑁 boundary conditions, as discussed in [3]. To this end, extend the definition of the angle

deficit (2.4) and the jump of the geodesic curvature to boundary vertices and edges in the obvious manner: we define [[𝜅]]𝐸 = 𝜅 for
boundary edges 𝐸 ∈ ℰ𝜕 and 𝛩𝑉 for 𝑉 ∈ 𝒱𝜕 as in (2.4). Note that [[𝜅]]𝐸 and 𝛩𝑉 do not vanish for smooth metrics 𝑔 at 𝐸 ∈ ℰ𝜕 and
𝑉 ∈ 𝒱𝜕 in general. Instead, they are used to incorporate natural Neumann boundary conditions. We assume that on the Dirichlet
oundary, the Gauss curvature 𝐾̄𝐷 = 𝐾̄|𝛤𝐷 is prescribed. The Neumann boundary data is given by the functional 𝜅𝑁 ∶ (𝒯 ) → R

𝜅𝑁 (𝑢) = ∫𝛤𝑁
𝜅̄ 𝑢 𝜔̄𝛤𝑁 +

∑

𝑉 ∈𝒱 ∩𝛤𝑁

∢̄𝑁
𝑉 𝑢(𝑉 ),

where ∢̄𝑁
𝑉 denotes the exterior angle, which is 2𝜋 minus the interior angle, measured with respect to 𝑔̄ by the edges of 𝛤𝑁 at 𝑉 .

Definition 2.3. Let 𝑔ℎ ∈ Reg+(𝒯 ), 𝑘 ≥ 1 be an integer, and assume that the Dirichlet data 𝐾̄𝐷 is the trace of a Lagrange finite element
unction in 𝑘

ℎ . The finite element curvature approximation 𝐾ℎ ∶= 𝐾ℎ(𝑔ℎ) of degree 𝑘 is the unique function in 𝑘
ℎ determined by

equiring that 𝐾ℎ|𝛤𝐷 = 𝐾̄𝐷 on 𝛤𝐷 and for all 𝑢ℎ ∈ ̊𝑘
ℎ,𝛤𝐷

,

∫𝛺
𝐾ℎ 𝑢ℎ 𝜔ℎ = 𝐾 𝜔(𝑔ℎ)(𝑢ℎ) − 𝜅𝑁 (𝑢ℎ), (2.6)

where we denote the volume form of 𝑔ℎ by 𝜔ℎ ∶= 𝜔[𝑔ℎ](𝑔).

Note that the difference between Definition 2.3 and [3, Definition 3.1] is the decrease of degree of approximation space of 𝐾ℎ
rom 𝑘+1

ℎ to 𝑘
ℎ and the additional requirement of 𝑘 ≥ 1.

2.5. Distributional covariant differential operators

In this section we review the definition of distributional covariant differential operators based on Regge metrics 𝑔 ∈ Reg+(𝒯 ).
e focus on the incompatibility operator and its adjoint with their coordinate expressions. For an introduction and discussion we

efer to e.g. to [3, Section 4]. First, we focus on pointwise covariant differential operators for a given smooth metric 𝑔 ∈ +(𝛺).
For a 1-form 𝛼 ∈ 𝛬1(𝛺) and a (2,0)-tensor 𝜎 ∈  2

0 (𝛺) the covariant curl operators cur l𝑔 ∶ 𝛬1(𝛺) → 𝛬0(𝛺) and cur l𝑔 ∶  2
0 (𝛺) →

𝛬1(𝛺) read in coordinates [3]

cur l𝑔(𝛼) = 𝜀̂𝑖𝑗𝜕𝑖𝛼𝑗 ,

cur l𝑔(𝜎) = 𝜀̂𝑗 𝑘(𝜕𝑗𝜎𝑖𝑘 − 𝛤𝑚
𝑗 𝑖 𝜎𝑚𝑘)𝑑 𝑥𝑖,

where 𝜀̂𝑖𝑗 = 1
√

det 𝑔
𝜀𝑖𝑗 and 𝜀𝑖𝑗 denotes the permuting symbol being 1, -1, or 0 if (𝑖, 𝑗) is an even, odd, or no permutation of (1, 2),

respectively. The covariant incompatibility operator inc𝑔 = cur l𝑔 cur l𝑔 ∶  2
0 (𝛺) → 𝛬0(𝛺) reads in coordinates

inc𝑔(𝜎) = 𝜀̂𝑞 𝑖𝜀̂𝑗 𝑘
(

𝜕𝑗𝜕𝑞𝜎𝑖𝑘 − 𝜕𝑞(𝛤𝑚
𝑗 𝑖 𝜎𝑚𝑘) − 𝛤 𝑙

𝑙 𝑞(𝜕𝑗𝜎𝑖𝑘 − 𝛤𝑚
𝑗 𝑖 𝜎𝑚𝑘)

)

.

Next, we consider for 𝑓 ∈ 𝛬0(𝛺) and 𝑋 ∈ X(𝛺) the adjoint operators r ot𝑔 ∶ 𝛬0(𝛺) → X(𝛺), r ot𝑔 ∶ X(𝛺) →  0
2 (𝛺) and

 ot r ot𝑔 = r ot𝑔 r ot𝑔 ∶ 𝛬0(𝛺) →  0
2 (𝛺). They read in coordinates [3]

r ot𝑔 𝑓 = 𝜀̂𝑖𝑞𝜕𝑞𝑓 𝜕𝑖 =
[r ot 𝑓 ]𝑖
√

det 𝑔
𝜕𝑖, (2.7a)

r ot𝑔 𝑋 = 𝜀̂𝑗 𝑞(𝜕𝑞𝑋𝑖 + 𝛤 𝑖
𝑞 𝑘𝑋𝑘)𝜕𝑖 ⊗ 𝜕𝑗 =

[r ot [𝑋]]𝑖𝑗 + 𝜀𝑗 𝑞𝛤 𝑖
𝑞 𝑘𝑋𝑘

√

det 𝑔
𝜕𝑖 ⊗ 𝜕𝑗 , (2.7b)

r ot r ot𝑔 𝑓 = r ot𝑔(r ot𝑔 𝑓 )𝑖𝑗𝜕𝑖 ⊗ 𝜕𝑗 =
[r ot [r ot𝑔 𝑓 ]]𝑖𝑗 + 𝜀𝑗 𝑞𝛤 𝑖

𝑞 𝑘[r ot𝑔 𝑓 ]𝑘
√

det 𝑔
𝜕𝑖 ⊗ 𝜕𝑗

=
[r ot r ot 𝑓 ]𝑖𝑗 − [r ot 𝑓 ]𝑖𝜀𝑗 𝑞𝛤 𝑙

𝑙 𝑞 + 𝜀𝑗 𝑞𝛤 𝑖
𝑞 𝑘[r ot 𝑓 ]𝑘

det 𝑔
𝜕𝑖 ⊗ 𝜕𝑗 .

(2.7c)

In (2.7) we used so-called vector and matrix proxies [𝜎] ∈ R2×2 and [𝑋] ∈ R2 for 𝜎 ∈  0
2 (𝛺) and 𝑋 ∈ X(𝛺) [22]. These proxies

consist of coefficients in the coordinate basis expansions. For example, [𝜎] is the matrix, which (𝑖, 𝑗)th entry is 𝜎𝑖𝑗 = 𝜎(𝑑 𝑥𝑖, 𝑑 𝑥𝑗 ).
hen the standard two-dimensional Euclidean rotation operator applied to the vector [𝑋] is r ot [𝑋]𝑖𝑗 = 𝜀𝑗 𝑘𝜕 𝑋𝑖.
𝑘
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There holds the integration by parts formulas for 𝑓 ∈ 𝛬0(𝛺), 𝛼 ∈ 𝛬1(𝛺), 𝜎 ∈  2
0 (𝛺), and 𝑋 ∈ X(𝛺)

∫𝛺
⟨cur l𝑔 𝜎 , 𝑋⟩𝜔 = ∫𝛺

⟨𝜎 , r ot𝑔 𝑋⟩𝜔 + ∫𝜕 𝛺
𝜎(𝑋 , ̂𝜏)𝜔𝜕 𝛺 ,

∫𝛺
cur l𝑔 𝛼 𝑓 𝜔 = ∫𝛺

⟨𝛼 , r ot𝑔 𝑓 ⟩𝜔 + ∫𝜕 𝛺
⟨𝛼 , ̂𝜏⟩ 𝑓 𝜔𝜕 𝛺 ,

∫𝛺
inc𝑔 𝜎 𝑓 𝜔 = ∫𝛺

⟨cur l𝑔 𝜎 , r ot𝑔 𝑓 ⟩𝜔 + ∫𝜕 𝛺
⟨cur l𝑔 𝜎 , ̂𝜏⟩ 𝑓 𝜔𝜕 𝛺

= ∫𝛺
⟨𝜎 , r ot r ot𝑔 𝑓⟩𝜔 + ∫𝜕 𝛺

(

𝜎(r ot𝑔 𝑓 , ̂𝜏) + ⟨cur l𝑔 𝜎 , ̂𝜏⟩ 𝑓
)

𝜔𝜕 𝛺 ,

i.e., inc𝑔 and r ot r ot𝑔 are 𝐿2-adjoint with respect to the 𝑔-weighted 𝐿2 inner product.
Above, we used the 𝑔 inner product ⟨⋅, ⋅⟩ ∶= 𝑔(⋅, ⋅) extended from vector fields to arbitrary order tensors  𝑙

𝑘 (𝛺), e.g.

⟨cur l𝑔 𝜎 , 𝑋⟩ = (cur l𝑔 𝜎)(𝑋) for all 𝜎 ∈  2
0 (𝛺), 𝑋 ∈ X(𝛺).

The following definition of the distributional covariant incompatibility operator has been derived in [3, Proposition 4.6]. A
similar expression for the vertex contributions can be found in [8].

Definition 2.4. Let 𝑔 ∈ Reg+(𝒯 ) and 𝑢 ∈ (𝒯 ). The distributional incompatibility operator ĩnc𝑔 ∶ Reg(𝒯 ) → (𝒯 )′ is defined by

(ĩnc𝑔𝜎)(𝑢) =
∑

𝑇∈𝒯

[

∫𝑇
inc𝑔(𝜎) 𝑢 𝜔𝑇 − ∫𝜕 𝑇

𝑢 ⟨cur l𝑔 𝜎 + 𝑑(𝜎𝜈̂ ̂𝜏 ), ̂𝜏⟩𝜔𝜕 𝑇 +
∑

𝑉 ∈𝒱𝑇

[[𝜎𝜈̂ ̂𝜏 ]]𝑇𝑉 𝑢(𝑉 )
]

, (2.8)

where 𝒱𝑇 = {𝑉 ∈ 𝒱 ∶ 𝑉 ∈ 𝑇 } and, cf. e.g. [23],

[[𝜎𝜈̂ ̂𝜏 ]]𝑇𝑉 =
(

𝜎|𝑇 (𝜈̂𝑇𝐸+
, ̂𝜏𝐸+

𝑉 ) + 𝜎|𝑇 (𝜈̂𝑇𝐸−
, ̂𝜏𝐸−

𝑉 )
)

(𝑉 ).

The distributional covariant r ot r ot operator ̃r ot r ot𝑔 ∶ (𝒯 ) → Reg(𝒯 )′ is defined by

( ̃r ot r ot𝑔𝑢)(𝜎) =
∑

𝑇∈𝒯

[

∫𝑇
⟨r ot r ot𝑔 𝑢, 𝜎⟩𝜔𝑇 + ∫𝜕 𝑇

𝜎𝜏 ̂𝜏 ⟨∇𝑔𝑢, ̂𝜈⟩𝜔𝜕 𝑇
]

. (2.9)

Note that one of the boundary terms in (2.8) admits a representation using the geodesic curvature 𝜅𝜈̂ , namely

𝑑(𝜎𝜈̂ ̂𝜏 )(𝜏) = ∇𝜏
(

𝜎(𝜈̂ , ̂𝜏)) = (∇𝜏𝜎)(𝜈̂ , ̂𝜏) + (𝜎(𝜈̂ , ̂𝜈) − 𝜎(𝜏 , ̂𝜏)) 𝜅𝜈̂ .

Next we show that the (distributional) adjoint of inc𝑔 is r ot r ot𝑔 in the following sense.

Lemma 2.5. Let 𝜎 ∈ Reg(𝒯 ) and 𝑢 ∈ (𝒯 ). There holds
(ĩnc𝑔𝜎)(𝑢) = ( ̃r ot r ot𝑔𝑢)(𝜎).

Proof. This follows by integration by parts on each 𝑇 ∈ 𝒯 :

(ĩnc𝑔𝜎)(𝑢) =
∑

𝑇∈𝒯

[

∫𝑇
inc𝑔(𝜎) 𝑢 𝜔𝑇 − ∫𝜕 𝑇

𝑢 ⟨cur l𝑔 𝜎 + 𝑑(𝜎𝜈̂ ̂𝜏 ), ̂𝜏⟩𝜔𝜕 𝑇 +
∑

𝑉 ∈𝒱𝑇

[[𝜎𝜈̂ ̂𝜏 ]]𝑇𝑉 𝑢(𝑉 )
]

=
∑

𝑇∈𝒯

[

∫𝑇
inc𝑔(𝜎) 𝑢 𝜔𝑇 − ∫𝜕 𝑇

(

𝑢 ⟨cur l𝑔 𝜎 , ̂𝜏⟩ − 𝜎𝜈̂ ̂𝜏∇𝜏𝑢
)

𝜔𝜕 𝑇
]

=
∑

𝑇∈𝒯

[

∫𝑇
⟨cur l𝑔 𝜎 , r ot𝑔 𝑢⟩𝜔𝑇 + ∫𝜕 𝑇

𝜎𝜈̂ ̂𝜏∇𝜏𝑢 𝜔𝜕 𝑇
]

=
∑

𝑇∈𝒯

[

∫𝑇
⟨𝜎 , r ot r ot𝑔 𝑢⟩𝜔𝑇 + ∫𝜕 𝑇

(

𝜎(𝜏 , r ot𝑔 𝑢) + 𝜎𝜈̂ ̂𝜏∇𝜏𝑢
)

𝜔𝜕 𝑇
]

=
∑

𝑇∈𝒯

[

∫𝑇
⟨𝜎 , r ot r ot𝑔 𝑢⟩𝜔𝑇 + ∫𝜕 𝑇

𝜎𝜏 ̂𝜏∇𝜈̂𝑢 𝜔𝜕 𝑇
]

= ( ̃r ot r ot𝑔𝑢)(𝜎). □

In [3] we proved an integral representation of the densitized Gauss curvature using a parametrization starting from the Euclidean
metric 𝛿

̃ 1 1
̃
𝐾 𝜔(𝑔)(𝑢) = −

2 ∫0
𝑏(𝛿 + 𝑡(𝑔 − 𝛿); 𝑔 − 𝛿 , 𝑢) 𝑑 𝑡, with 𝑏(𝑔; 𝜎 , 𝑢) = (inc𝑔𝜎)(𝑢)

6 
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and used its integrand to derive convergence results. In this work, we follow the approach of [1,23,24] and consider directly the
integral representation of the error as follows. Let 𝑔(𝑡) = 𝑔̄+𝑡(𝑔ℎ−𝑔̄) and 𝜎 = 𝑔′(𝑡) = 𝑔ℎ−𝑔̄. Then there holds the integral representation
of the error

(

𝐾 𝜔(𝑔ℎ) − 𝐾̄ 𝜔̄)(𝑢) = −1
2 ∫

1

0
(ĩnc𝑔(𝑡)𝜎)(𝑢) 𝑑 𝑡. (2.10)

To derive error estimates, one important part will be analyzing the integrand of (2.10), or, more precisely, its adjoint (ĩnc𝑔(𝑡)𝜎)(𝑢) =
( ̃r ot r ot𝑔(𝑡)𝑢)(𝜎).

3. Error analysis

In this section we prove a priori error estimates for the lifted densitized Gauss curvature 𝐾ℎ𝜔ℎ and the Gauss curvature 𝐾ℎ. First,
we consider the 𝐻−1-norm as basis and then show estimates also for the stronger Sobolev norms 𝐿2 and 𝐻𝑟, 𝑟 ≥ 1. Let 𝛺 ⊂ R2 be
a domain with a given exact metric tensor 𝑔̄ and corresponding exact Gauss curvature 𝐾̄ = 𝐾(𝑔̄). For simplicity, we assume in this
section that homogeneous Dirichlet data 𝐾̄𝐷 = 0 is described on the whole boundary, 𝛤𝐷 = 𝜕 𝛺.

3.1. Statement of main theorem

We consider a sequence of quasiuniform (hence shape-regular) affine-equivalent triangulations {𝒯ℎ}ℎ>0 with maximal mesh-
size ℎ = max𝑇∈𝒯ℎ

ℎ𝑇 , where ℎ𝑇 = diam(𝑇 ). On the triangulations a sequence of Regge metrics {𝑔ℎ}ℎ>0 with 𝑔ℎ ∈ Reg𝑘ℎ, 𝑘 ≥ 0
defined in (2.3)) is given. To be precise, we assume that 𝑔ℎ is the canonical interpolant of 𝑔̄. This interpolant [11], denoted by
Reg,𝑘
ℎ ∶ 𝑊 𝑠,𝑝(𝛺 ,) → Reg𝑘ℎ, 𝑝 ∈ [1,∞], 𝑠 ∈ (1∕𝑝,∞], satisfies the following equations

∫𝐸
(Reg,𝑘

ℎ 𝜎)𝜏 𝜏 𝑞 dl = ∫𝐸
𝜎𝜏 𝜏 𝑞 dl for all 𝑞 ∈ 𝑘(𝐸) and edges 𝐸 of 𝜕 𝑇 , (3.1a)

∫𝑇
Reg,𝑘
ℎ 𝜎 ∶ 𝜌 da = ∫𝑇

𝜎 ∶ 𝜌 da for all 𝜌 ∈ 𝑘−1(𝑇 ,R2×2), 𝑇 ∈ 𝒯 . (3.1b)

Eqs. (3.1) can be interpreted as orthogonality requirements, preserving specific moments at edges and elements. Note that when 𝜌
s a skew-symmetric matrix, both sides of (3.1b) vanish, so (3.1b) is nontrivial only for symmetric 𝜌.

Throughout, we use standard Sobolev spaces 𝑊 𝑠,𝑝(𝛺) and their norms and seminorms for any 𝑠 ≥ 0 and 𝑝 ∈ [1,∞]. When
he domain is 𝛺, we omit it from the norm notation if there is no chance of confusion. We also use the elementwise norms
‖𝑢‖𝑝

𝑊 𝑠,𝑝
ℎ

=
∑

𝑇∈𝒯ℎ
‖𝑢‖𝑝𝑊 𝑠,𝑝(𝑇 ), with the usual adaption for 𝑝 = ∞. When 𝑝 = 2, we put ‖ ⋅ ‖𝐻𝑠

ℎ
= ‖ ⋅ ‖𝑊 𝑠,2

ℎ
. Let 𝐷 ⊂ 𝛺 and define

|||𝜎|||2,𝐷 = ‖𝜎‖𝐿2(𝐷) + ℎ‖𝜎‖𝐻1
ℎ (𝐷). (3.2)

If 𝐷 is the whole domain 𝛺, we neglect the subscript in (3.2).
We write 𝑎 ≲ 𝑏 if there exists a mesh-size independent constant 𝐶 > 0 which may depend on—unless otherwise stated—the

domain 𝛺, the polynomial degree 𝑘, the shape regularity constant 𝜎(𝒯ℎ) of 𝒯ℎ, the 𝑊 2,∞-norm of 𝑔̄, 𝐿∞-norm of 𝑔̄−1, and the
1-norm of 𝐾̄ i.e.

𝐶 = 𝐶(𝛺 , 𝑘, 𝜎(𝒯ℎ), ‖𝑔̄‖𝑊 2,∞ , ‖𝑔̄−1‖𝐿∞ , ‖𝐾̄‖𝐻1 ). (3.3)

We abbreviate the 𝐿2-inner product of two scalar functions and the 𝑔-weighted inner product by

(𝑢, 𝑣)𝐿2 ∶= ∫𝛺
𝑢𝑣 da, (𝑢, 𝑣)𝐿2 ,𝑔 ∶= ∫𝛺

𝑢𝑣
√

det 𝑔 da, 𝑢, 𝑣 ∈ 𝐿2(𝛺).

Our main theorem reads as follows:

Theorem 3.1. Let 𝑘 ≥ 1 be an integer, {𝒯ℎ}ℎ>0 a sequence of quasiuniform triangulations, {𝑔ℎ}ℎ>0 a sequence of metric approximations
ℎ = Reg,𝑘

ℎ 𝑔̄ with 𝑔̄ ∈ 𝑊 2,∞(𝛺 ,+), so that 𝐾̄ ∈ 𝐿2(𝛺), 𝜔ℎ = 𝜔(𝑔ℎ), and 𝐾ℎ ∈ ̊𝑘
ℎ the lifted distributional Gauss curvature from (2.6).

Suppose also that 𝐾̄ = 0 on the boundary 𝜕 𝛺. Then there exists an ℎ0 > 0 such that for all ℎ ≤ ℎ0

‖𝐾ℎ𝜔ℎ − 𝐾̄ 𝜔̄‖𝐻−1 ≤ 𝐶 ℎ(|||𝑔ℎ − 𝑔̄|||2 + inf
𝑣ℎ∈̊𝑘

ℎ

‖𝑣ℎ − 𝐾̄‖𝐿2 + ‖𝑔ℎ − 𝑔̄‖𝐿∞
)

,

where the constant 𝐶 depends on 𝛺, the shape regularity, polynomial degree 𝑘, ‖𝑔̄‖𝑊 2,∞ , and ‖𝑔̄−1‖𝐿∞ . If additionally for 0 ≤ 𝑙 ≤ 𝑘 + 1,
̄ ∈ 𝑊 𝑙 ,∞(𝛺 ,) and 𝐾̄ ∈ 𝐻 𝑙(𝛺), then

‖𝐾ℎ𝜔ℎ − 𝐾̄ 𝜔̄‖𝐻−1 ≤ 𝐶 ℎ𝑙+1(‖𝑔̄‖𝑊 𝑙 ,∞ + ‖𝐾̄‖𝐻 𝑙
)

.

Further convergence results in stronger Sobolev norms follow.
7 
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Corollary 3.2. Under the assumptions of Theorem 3.1, there holds for 0 ≤ 𝑙 ≤ 𝑘 + 1, 0 ≤ 𝑟 ≤ 𝑙

‖𝐾ℎ𝜔ℎ − 𝐾̄ 𝜔̄‖𝐻𝑟
ℎ
≤ 𝐶 ℎ−𝑟(‖𝑔ℎ − 𝑔̄‖𝐿∞ + |||𝑔ℎ − 𝑔̄|||2 + inf

𝑣ℎ∈̊𝑘
ℎ

‖𝑣ℎ − 𝐾̄‖𝐿2 + ℎ𝑙‖𝐾̄‖𝐻𝑙 + inf
𝑣ℎ∈̊𝑘

ℎ

‖𝑣ℎ − 𝐾̄ 𝜔̄‖𝐿2 + ℎ𝑙‖𝐾̄ 𝜔̄‖𝐻 𝑙
)

≤ 𝐶 ℎ𝑙−𝑟(‖𝑔̄‖𝑊 𝑙 ,∞ + ‖𝐾̄ 𝜔̄‖𝐻 𝑙 + ‖𝐾̄‖𝐻 𝑙
)

,

where the constant 𝐶 > 0 depends additionally on ‖𝐾̄‖𝐻1 .

Remark 3.3 (Convergence of Pure Gauss Curvature). In contrast to the densitized Gauss curvature, we refer to the 𝐾̄ (without
ultiplication by the volume form) as the ‘‘pure Gauss curvature’’. For the error in the pure Gauss curvature, ‖𝐾ℎ−𝐾̄‖𝐻𝑟

ℎ
, −1 ≤ 𝑟 ≤ 𝑘,

the same convergence rates as proved in Theorem 3.1 and Corollary 3.2 are obtained: see Theorem 3.8 and Corollary 3.9 in
Section 3.5.

Remark 3.4 (Optimal Convergence). If we insert 𝑙 = 𝑘 + 1 in Theorem 3.1, we obtain the convergence rate (ℎ𝑘+2), which is of one
rder higher than (ℎ𝑘+1) proved in [3, Theorem 6.5] and two orders higher compared to [18, Theorem 4.1]. Furthermore, using
= 𝑘 + 1 and 𝑟 = 0 in Corollary 3.2 yields an 𝐿2 convergence rate of (ℎ𝑘+1), which is the ‘‘optimal’’ in the sense that it is the rate

of convergence of the 𝐿2 best approximation from ̊𝑘
ℎ . The requirement of at least linear elements, 𝑘 ≥ 1, cannot be relaxed to 𝑘 = 0

as for 𝑔ℎ ∈ Reg0ℎ there is no (non-trivial) Lagrange finite element function in ̊0
ℎ . In [3] we observed that the pairing of the lowest

order elements 𝑔ℎ ∈ Reg0ℎ and 𝐾ℎ ∈ 1
ℎ does not lead to an improved 𝐿2-convergence rate of (ℎ). In fact, our numerical examples

in [3] showed that we may expect no convergence in the 𝐿2-norm in general in this case.

3.2. Basic estimates

We need a number of preliminary estimates to proceed with our analysis. The approximation properties of the Regge elements
re well understood. By the Bramble–Hilbert lemma, on any 𝑇 ∈ 𝒯 , see [11, Theorem 2.5],

‖(id − Reg,𝑘
ℎ )𝜌‖𝑊 𝑟,𝑝(𝑇 ) ≤ 𝐶 ℎ𝑙−𝑟|𝜌|𝑊 𝑙 ,𝑝(𝑇 ), (3.4)

for 𝑝 ∈ [1,∞], 𝑙 ∈ (1∕𝑝, 𝑘 + 1], 𝑟 ∈ [0, 𝑙], 𝜌 ∈ 𝑊 𝑙 ,𝑝(𝑇 ,), and 𝐶 depends on 𝑘, 𝑟, 𝑙, and the shape regularity 𝜎(𝑇 ) of 𝑇 . A similar
stimate holds for the elementwise 𝐿2(𝑇 )-projection into the space of polynomials of order 𝑘, which we denote by 𝛱𝑘

𝐿2 , see e.g. [25,
Theorem 4.4.4],

‖(id −𝛱𝑘
𝐿2 )𝑓‖𝐿𝑝(𝑇 )

≤ ℎ𝑙𝐶|𝑓 |𝑊 𝑙 ,𝑝(𝑇 )
for 𝑙 ∈ (1∕𝑝, 𝑘 + 1], 𝑓 ∈ 𝑊 𝑙 ,𝑝(𝑇 ), and 𝐶 depends on 𝑘, 𝑙, and the shape regularity 𝜎(𝑇 ) of 𝑇 . The same holds if we replace 𝑇 by an
edge 𝐸 ∈ ℰ and the edge-wise 𝐿2-projection denoted by 𝛱𝐸 ,𝑘

𝐿2 .
Let 𝐸 ⊂ 𝜕 𝑇 be an edge of 𝑇 . We also need the following well-known estimates that follow from scaling arguments: for all

∈ 𝐻1(𝑇 )

‖𝑢‖2
𝐿2(𝐸)

≲ ℎ−1‖𝑢‖2
𝐿2(𝑇 )

+ ℎ‖∇𝑢‖2
𝐿2(𝑇 )

(3.5)

and for all 𝑢 ∈ 𝑘(𝑇 ),

‖𝑢‖𝐿2(𝐸) ≲ ℎ−1∕2‖𝑢‖𝐿2(𝑇 ), |𝑢|𝐻 𝑙 (𝑇 ) ≲ ℎ−𝑙‖𝑢‖𝐿2(𝑇 ), 1 ≤ 𝑙 ≤ 𝑘. (3.6)

The 𝐿2-orthogonal projection with respect to 𝑔̄ into Lagrange elements 𝑃 𝑘
𝐿2 ∶ 𝐿2(𝛺) → ̊𝑘

ℎ is defined via its orthogonality property

∫𝛺

(

𝑃 𝑘
𝐿2𝑢 − 𝑢

)

𝑣ℎ 𝜔̄ = 0, for all 𝑣ℎ ∈ ̊𝑘
ℎ . (3.7)

It has the following well-known stability and approximation properties on quasiuniform meshes, see e.g. [26] or [18, Lemma 4.7],

‖𝑃 𝑘
𝐿2𝑢‖𝐿2 ≲ ‖𝑢‖𝐿2 , for all 𝑢 ∈ 𝐿2(𝛺), (3.8a)

‖𝑃 𝑘
𝐿2𝑢‖𝐻1 ≲ ‖𝑢‖𝐻1 , for all 𝑢 ∈ 𝐻1

0 (𝛺), (3.8b)

‖𝑃 𝑘
𝐿2𝑢 − 𝑢‖𝐿2 ≲ inf

𝑢ℎ∈̊𝑘
ℎ

‖𝑢ℎ − 𝑢‖𝐿2 ≲ ℎ ‖𝑢‖𝐻1 , for all 𝑢 ∈ 𝐻1
0 (𝛺). (3.8c)

Since 𝑔ℎ = Reg,𝑘
ℎ 𝑔̄ approaches 𝑔̄ as ℎ → 0, we tacitly assume throughout that ℎ has become sufficiently small (ℎ ≤ ℎ0) to

guarantee that the approximated metric 𝑔ℎ is positive definite throughout. Further, thanks to (3.4) (with 𝑝 = 𝑟 = 𝑙 = 2 and 𝑘 ≥ 1)
nd (3.3) we have that sup𝑇∈𝒯ℎ

‖𝑔ℎ‖𝑊 2,∞(𝑇 ) ≤ 𝐶. The following estimates are a consequence of [1,18,24]: for 𝑝 ∈ [1,∞], 𝑡 ∈ [0, 1],
𝑔(𝑡) = 𝑔̄ + 𝑡(𝑔ℎ − 𝑔̄), 𝑙 ∈ {0, 1, 2},

‖𝑔(𝑡) − 𝑔̄‖𝑊 𝑙 ,𝑝
ℎ

+ ‖𝑔−1(𝑡) − 𝑔̄−1‖𝑊 𝑙 ,𝑝
ℎ

+ ‖

√

det 𝑔(𝑡) −
√

det 𝑔̄‖𝑊 𝑙 ,𝑝
ℎ

≲ ‖𝑔ℎ − 𝑔̄‖𝑊 𝑙 ,𝑝
ℎ
, (3.9a)

‖𝑔(𝑡)‖ + ‖𝑔(𝑡)−1‖ + ‖

√

det 𝑔(𝑡)‖ + ‖

√

det 𝑔(𝑡)−1‖ ≲ 1. (3.9b)
𝑊 2,∞
ℎ

𝐿∞ 𝐿∞ 𝐿∞
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Further, for all 𝑥 in the interior of any element 𝑇 ∈ 𝒯 and for all 𝑢 ∈ R2, as well as for the 𝐿2 inner product there holds the
following equivalences

𝑢′𝑢 ≲ 𝑢′𝑔(𝑡)(𝑥)𝑢 ≲ 𝑢′𝑢, (⋅, ⋅)𝐿2 ≲ (⋅, ⋅)𝐿2 ,𝑔(𝑡) ≲ (⋅, ⋅)𝐿2 .

3.3. Analysis of distributional rot rot operator

In this section, we derive improved convergence rates of the distributional covariant r ot r ot𝑔 operator (2.9). The proof strategy
follows [3, Theorem 6.1, (6.3)], however, adapted from the distributional covariant cur l to the r ot r ot operator.

Proposition 3.5. Let 𝑘 ≥ 1 be an integer, 𝑔 ∈ Reg+(𝒯 ), 𝜌 ∈ 𝑊 𝑠,𝑝(𝛺 ,), 𝑝 ∈ [1,∞], 𝑠 ∈ (1∕𝑝,∞], 𝜌ℎ = Reg,𝑘
ℎ 𝜌, and 𝑢ℎ ∈ ̊𝑘

ℎ . Then there
holds

|( ̃r ot r ot𝑔𝑢ℎ)(𝜌 − 𝜌ℎ)| ≤ 𝐶 ℎ|||𝜌 − 𝜌ℎ|||2‖𝑢ℎ‖𝐻1 ,

where the constant 𝐶 > 0 depends on 𝛺, the mesh regularity, 𝑘, ‖𝑔‖𝑊 2,∞
ℎ
, and ‖𝑔−1‖𝐿∞ .

Proof. First, consider the element terms of (2.9). Comparing with coordinate expressions (2.2) and (2.7c) we can find smooth
functions

𝐹 (𝑔) = 1
√

det 𝑔
, [𝐺(𝑔)]𝑖𝑗𝑘 = 1

√

det 𝑔
𝜀𝑗 𝑞

(

𝛤 𝑖
𝑞 𝑘(𝑔) − 𝛤 𝑙

𝑙 𝑞(𝑔) 𝛿𝑖𝑘
)

,

such that

∫𝑇
⟨r ot r ot𝑔 𝑢ℎ, 𝜌 − 𝜌ℎ⟩𝜔𝑇 = ∫𝑇

[𝜌 − 𝜌ℎ]𝑖𝑗
(

𝐹 (𝑔)[r ot r ot 𝑢ℎ]𝑖𝑗 + [𝐺(𝑔)]𝑖𝑗𝑘 [r ot 𝑢ℎ]𝑘
)

da

= ∫𝑇
[𝜌 − 𝜌ℎ]𝑖𝑗 [r ot r ot 𝑢ℎ]𝑖𝑗

(

(𝛱1
𝐿2 +𝛱1,⟂

𝐿2 )𝐹 (𝑔)
)

+ [𝜌 − 𝜌ℎ]𝑖𝑗 [r ot 𝑢ℎ]𝑘
(

(𝛱0
𝐿2 +𝛱0,⟂

𝐿2 )[𝐺(𝑔)]𝑖𝑗𝑘
)

da

= ∫𝑇
[𝜌 − 𝜌ℎ]𝑖𝑗 [r ot r ot 𝑢ℎ]𝑖𝑗𝛱1,⟂

𝐿2 (𝐹 (𝑔)) + [𝜌 − 𝜌ℎ]𝑖𝑗 [r ot 𝑢ℎ]𝑘𝛱0,⟂
𝐿2

(

[𝐺(𝑔)]𝑖𝑗𝑘
)

da

≤ 𝐶 ℎ2𝑇 ‖𝜌 − 𝜌ℎ‖𝐿2(𝑇 )|𝑢ℎ|𝐻2(𝑇 ) + ℎ𝑇 ‖𝜌 − 𝜌ℎ‖𝐿2(𝑇 )‖𝑢ℎ‖𝐻1(𝑇 )

≤ 𝐶 ℎ𝑇 ‖𝜌 − 𝜌ℎ‖𝐿2(𝑇 )‖𝑢ℎ‖𝐻1(𝑇 ).

Above, we split the nonlinear terms using 𝐿2-projections 𝛱𝑘
𝐿2 and co-projections 𝛱𝑘,⟂

𝐿2 onto elementwise polynomials, and used their
approximation property. Further, we exploited that the first 𝑘 − 1 moments of 𝜌 − 𝜌ℎ are zero (3.1b) and used inverse inequality
3.6).

Next, we focus on the element-boundary terms of (2.9). With the coordinate expressions for the 𝑔-normalized tangent and normal
ector, see e.g. [3] with the Euclidean vectors (𝜏 , 𝜈) and the notation 𝑔𝜈 𝜈 = 𝑔𝑖𝑗𝜈𝑖𝜈𝑗

𝜏 𝑖 = 1
√

𝑔𝜏 𝜏
𝜏 𝑖, 𝜈̂𝑖 =

𝑔𝑖𝑗𝜈𝑗
√

𝑔𝜈 𝜈
we collect all terms depending on 𝑔 in the nonlinear function

[𝐻(𝑔)]𝑖 = 1
√

𝑔𝜏 𝜏 𝑔𝜈 𝜈
𝑔𝑖𝑗𝜈𝑗 .

We split 𝐻 with the edgewise 𝐿2-interpolant 𝛱𝐸 ,𝑘
𝐿2 . Then, we use Hölder inequality, as well as the trace inequalities (3.5) and (3.6)

to obtain

∫𝜕 𝑇
(𝜌 − 𝜌ℎ)(𝜏 , ̂𝜏)⟨∇𝑢ℎ, ̂𝜈⟩𝜔𝜕 𝑇 = ∫𝜕 𝑇

(𝜌 − 𝜌ℎ)(𝜏 , 𝜏)𝜕𝑖𝑢ℎ
(

(𝛱𝐸 ,1
𝐿2 +𝛱𝐸 ,1,⟂

𝐿2 )[𝐻(𝑔)]𝑖
)

dl

≤ 𝐶 ℎ2𝑇 ‖𝜌 − 𝜌ℎ‖𝐿2(𝜕 𝑇 )‖∇𝑢ℎ‖𝐿2(𝜕 𝑇 )‖𝑔‖𝑊 2,∞(𝜕 𝑇 )
≤ 𝐶 ℎ𝑇 |||𝜌 − 𝜌ℎ|||2,𝑇 ‖𝑢ℎ‖𝐻1(𝑇 ).

Summing over all elements 𝑇 ∈ 𝒯 finishes the proof. □

Due to Lemma 2.5 we obtain as a byproduct the convergence of the distributional covariant incompatibility operator.

Corollary 3.6. Under the assumptions of Proposition 3.5, there holds
|

|

|

|

(

ĩnc𝑔(𝜎 − 𝜎ℎ)
)

(𝑢ℎ)
|

|

|

|

≤ 𝐶 ℎ|||𝜎 − 𝜎ℎ|||2‖𝑢ℎ‖𝐻1 ,

where the constant 𝐶 > 0 depends on 𝛺, the mesh regularity, 𝑘, ‖𝑔‖𝑊 2,∞
ℎ
, and ‖𝑔−1‖𝐿∞ .
9 
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3.4. Proof of Theorem 3.1

We are now in position to prove our main theorem. The proof strategy is inspired by the proofs of [3, Theorem 6.5] and [18,
Theorem 4.1].

Proof of Theorem 3.1. We start with the definition of the 𝐻−1-norm noting that 𝐾ℎ𝜔ℎ and 𝐾̄ 𝜔̄ are square integrable

‖𝐾ℎ𝜔ℎ − 𝐾̄ 𝜔̄‖𝐻−1 = sup
𝑢∈𝐻1

0 (𝛺)

(𝐾ℎ𝜔ℎ − 𝐾̄ 𝜔̄, 𝑢)𝐿2

‖𝑢‖𝐻1
.

Next, we add and subtract the 𝐿2-orthogonal interpolant (3.7) 𝑢ℎ ∶= 𝑃 𝑘
𝐿2𝑢, 𝑃

𝑘
𝐿2 ∶ 𝐿2(𝛺) → ̊𝑘

ℎ , to split the error into three parts

(𝐾ℎ𝜔ℎ − 𝐾̄ 𝜔̄, 𝑢)𝐿2 = (𝐾ℎ𝜔ℎ − 𝐾̄ 𝜔̄, 𝑢ℎ)𝐿2 + (𝐾ℎ𝜔ℎ − 𝐾̄ 𝜔̄, 𝑢 − 𝑢ℎ)𝐿2

= (𝐾ℎ𝜔ℎ − 𝐾̄ 𝜔̄, 𝑢ℎ)𝐿2 + (𝐾ℎ − 𝐾̄ , 𝑢 − 𝑢ℎ)𝐿2 , ̄𝑔 + (𝐾ℎ(𝜔ℎ − 𝜔̄), 𝑢 − 𝑢ℎ)𝐿2

=∶ 𝑠1 + 𝑠2 + 𝑠3.

We use (2.6), the integral representation of the error (2.10) with 𝑔(𝑡) = 𝑔̄ + 𝑡(𝑔ℎ − 𝑔̄) and 𝜎 = 𝑔′(𝑡) = 𝑔ℎ − 𝑔̄, and the adjoint of the
istributional incompatibility operator Lemma 2.5

𝑠1 =
(

𝐾 𝜔(𝑔ℎ) − 𝐾̄ 𝜔̄
)

(𝑢ℎ) = −1
2 ∫

1

0

(

ĩnc𝑔(𝑡)𝜎
)

(𝑢ℎ) 𝑑 𝑡 = −1
2 ∫

1

0

(

̃r ot r ot𝑔(𝑡)𝑢ℎ
)

(𝜎) 𝑑 𝑡.

From Proposition 3.5 (setting 𝑔 = 𝑔(𝑡) and 𝜌 = −𝑔̄) we obtain together with the 𝐻1-stability (3.8b)

|𝑠1| ≲ ℎ|||𝜎|||2‖𝑢ℎ‖𝐻1 ≲ ℎ|||𝑔ℎ − 𝑔̄|||2‖𝑢‖𝐻1 . (3.10)

For 𝑠2 we use the definition of the 𝐿2-orthogonal interpolant (3.7) 𝑢ℎ = 𝑃 𝑘
𝐿2𝑢, Cauchy–Schwarz inequality, and the approximation

property (3.8c) of 𝑢ℎ. For arbitrary 𝑣ℎ ∈ ̊𝑘
ℎ there holds

(𝐾ℎ − 𝐾̄ , 𝑢 − 𝑢ℎ)𝐿2 , ̄𝑔 = (𝑣ℎ − 𝐾̄ , 𝑢 − 𝑢ℎ)𝐿2 , ̄𝑔 ≲ ‖𝑣ℎ − 𝐾̄‖𝐿2‖𝑢 − 𝑢ℎ‖𝐿2 ≲ ℎ‖𝑣ℎ − 𝐾̄‖𝐿2‖𝑢‖𝐻1

and thus,

|𝑠2| ≲ ℎ inf
𝑣ℎ∈̊𝑘

ℎ

‖𝑣ℎ − 𝐾̄‖𝐿2‖𝑢‖𝐻1 .

Before we turn to the third term 𝑠3 we show that the lifted Gauss curvature 𝐾ℎ is bounded in the 𝐿2-norm by using 𝐾ℎ ∈ ̊𝑘
ℎ

instead of 𝑢ℎ in estimate (3.10)

‖𝐾ℎ‖
2
𝐿2 ≲ (𝐾ℎ𝜔ℎ, 𝐾ℎ)𝐿2 = (𝐾ℎ𝜔ℎ − 𝐾̄ 𝜔̄, 𝐾ℎ)𝐿2 + (𝐾̄ , 𝐾ℎ)𝐿2 , ̄𝑔

≲ ℎ‖𝑔ℎ − 𝑔̄‖𝐿2‖𝐾ℎ‖𝐻1 + ‖𝐾̄‖𝐿2‖𝐾ℎ‖𝐿2

≲
(

‖𝑔ℎ − 𝑔̄‖𝐿2 + ‖𝐾̄‖𝐿2
)

‖𝐾ℎ‖𝐿2 .

For the last inequality we used the inverse estimate (3.6). Dividing by ‖𝐾ℎ‖𝐿2 yields the boundedness of 𝐾ℎ.
Using Hölder inequality, the approximation property (3.8c) of 𝑢ℎ, inequality (3.9a), and that ‖𝐾ℎ‖𝐿2 ≲ 1 yields the following

stimate for 𝑠3

|𝑠3| ≤ ‖𝐾ℎ‖𝐿2‖𝜔ℎ − 𝜔̄‖𝐿∞‖𝑢 − 𝑢ℎ‖𝐿2 ≲ ℎ‖𝑔ℎ − 𝑔̄‖𝐿∞‖𝑢‖𝐻1 .

Combining all results yields

‖𝐾ℎ𝜔ℎ − 𝐾̄ 𝜔̄‖𝐻−1 = sup
𝑢∈𝐻1

0 (𝛺)

(𝐾ℎ𝜔ℎ − 𝐾̄ 𝜔̄, 𝑢)𝐿2

‖𝑢‖𝐻1
≲ ℎ(|||𝑔ℎ − 𝑔̄|||2 + inf

𝑣ℎ∈̊𝑘
ℎ

‖𝑣ℎ − 𝐾̄‖𝐿2 + ‖𝑔ℎ − 𝑔̄‖𝐿∞ ).

Using standard interpolation techniques we obtain the desired convergence rate for 0 ≤ 𝑙 ≤ 𝑘 + 1
‖𝐾ℎ𝜔ℎ −𝐾 𝜔‖𝐻−1 ≲ ℎ𝑙+1 (‖𝑔̄‖𝑊 𝑙 ,∞ + ‖𝐾̄‖𝐻 𝑙

)

. □

3.5. Analysis of the lifting of pure Gauss curvature

To relate the error of the Gauss curvature with the densitized Gauss curvature we need the following result.

Lemma 3.7. Under the assumptions of Theorem 3.1, there holds for 0 ≤ 𝑙 ≤ 𝑘 + 1
‖𝐾ℎ(𝜔ℎ − 𝜔̄)‖𝐻−1 ≲ ℎ ‖𝑔ℎ − 𝑔̄‖𝐿∞‖𝐾ℎ‖𝐻1

ℎ

≲ ℎ𝑙+1‖𝑔̄‖𝑊 𝑙 ,∞‖𝐾ℎ‖𝐻1
ℎ
.
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Proof. By noting that 𝜔ℎ − 𝜔̄ = [𝑔ℎ − 𝑔̄]𝑖𝑗 [𝐹 (𝑔ℎ, 𝑔̄)]𝑖𝑗 with the smooth function

[𝐹 (𝑔ℎ, 𝑔̄)] = 1
√

det 𝑔ℎ +
√

det 𝑔̄

[

(𝑔ℎ)22
1
2 (𝑔̄ + 𝑔ℎ)12

1
2 (𝑔̄ + 𝑔ℎ)12 𝑔̄11

]

,

and using that for 𝑘 ≥ 1 the constant moment of the difference 𝑔ℎ − 𝑔̄ is zero due to (3.1b), we obtain

(𝐾ℎ(𝜔ℎ − 𝜔̄), 𝑢)𝐿2 = ∫𝛺
[𝑔ℎ − 𝑔̄]𝑖𝑗 [𝐹 (𝑔ℎ, 𝑔̄)]𝑖𝑗𝐾ℎ𝑢 da

= ∫𝛺
[𝑔ℎ − 𝑔̄]𝑖𝑗

(

(𝛱0
𝐿2 +𝛱0,⟂

𝐿2 )
(

[𝐹 (𝑔ℎ, 𝑔̄)]𝑖𝑗𝐾ℎ𝑢
)

)

da

= ∫𝛺
[𝑔ℎ − 𝑔̄]𝑖𝑗𝛱

0,⟂
𝐿2

(

[𝐹 (𝑔ℎ, 𝑔̄)]𝑖𝑗𝐾ℎ𝑢
)

da

≤ ‖𝑔ℎ − 𝑔̄‖𝐿∞‖𝛱0,⟂
𝐿2

(

𝐹 (𝑔ℎ, 𝑔̄)𝐾ℎ𝑢
)

‖𝐿1

≲ ℎ‖𝑔ℎ − 𝑔̄‖𝐿∞‖𝐾ℎ‖𝐻1
ℎ
‖𝑢‖𝐻1 ,

finishing the proof. □

By Lemma 3.7, inverse estimate (3.6), and boundedness of 𝐾ℎ in 𝐿2, ‖𝐾ℎ‖𝐻1
ℎ
≲ ℎ−1‖𝐾ℎ‖𝐿2 ≲ ℎ−1, we can deduce a suboptimal

onvergence rate of the error of the pure lifted Gauss curvature
‖𝐾ℎ − 𝐾̄‖𝐻−1 ≲ ‖𝐾ℎ𝜔̄ − 𝐾̄ 𝜔̄‖𝐻−1

≤ ‖𝐾ℎ𝜔ℎ − 𝐾̄ 𝜔̄‖𝐻−1 + ‖𝐾ℎ(𝜔̄ − 𝜔ℎ)‖𝐻−1

≲ ℎ(|||𝑔ℎ − 𝑔̄|||2 + inf
𝑣ℎ∈̊𝑘

ℎ

‖𝑣ℎ − 𝐾̄‖𝐿2 + ‖𝑔ℎ − 𝑔̄‖𝐿∞
)

+ ℎ ‖𝑔ℎ − 𝑔̄‖𝐿∞‖𝐾ℎ‖𝐻1
ℎ

≲ ℎ𝑙+1(‖𝑔̄‖𝑊 𝑙+1,∞ + ‖𝐾̄‖𝐻 𝑙
)

, 0 ≤ 𝑙 ≤ 𝑘 (not 𝑘 + 1).

(3.11)

To correct the convergence of the lifted Gauss curvature and to prove optimal rates for the (densitized) lifted Gauss curvature in
tronger Sobolev norms we consider a bootstrapping-like technique. First, we can easily adapt the proof of [18, p. 1818] and [3,

Corollary 6.6] to deduce for 0 ≤ 𝑙 ≤ 𝑘 and 0 ≤ 𝑟 ≤ 𝑙

‖𝐾ℎ − 𝐾̄‖𝐻𝑟
ℎ
≲ ℎ−𝑟(|||𝑔ℎ − 𝑔̄|||2 + ℎ−1‖𝑔ℎ − 𝑔̄‖𝐿∞ + inf

𝑣ℎ∈̊𝑘
ℎ

‖𝑣ℎ −𝐾‖𝐿2 + ℎ𝑙|𝐾̄|𝐻 𝑙
)

≲ ℎ𝑙−𝑟(‖𝑔̄‖𝑊 𝑙+1,∞ + ‖𝐾̄‖𝐻 𝑙
)

and therefore the boundedness in the elementwise 𝐻1-norm for 𝑙 = 𝑟 = 1 and 𝑘 ≥ 1,

‖𝐾ℎ‖𝐻1
ℎ
≤ ‖𝐾ℎ − 𝐾̄‖𝐻1

ℎ
+ ‖𝐾̄‖𝐻1 ≲ ‖𝑔̄‖𝑊 2,∞ + ‖𝑔̄‖𝐻1 + ‖𝐾̄‖𝐻1 ≲ 1.

Thus, instead of using the inverse inequality in (3.11) we directly obtain the improved convergence rate:

Theorem 3.8. Under the assumptions of Theorem 3.1, there holds for 0 ≤ 𝑙 ≤ 𝑘 + 1
‖𝐾ℎ − 𝐾̄‖𝐻−1 ≲ ℎ(|||𝑔ℎ − 𝑔̄|||2 + inf

𝑣ℎ∈̊𝑘
ℎ

‖𝑣ℎ − 𝐾̄‖𝐿2 + ‖𝑔ℎ − 𝑔̄‖𝐿∞
)

≲ ℎ𝑙+1(‖𝑔̄‖𝑊 𝑙 ,∞ + ‖𝐾̄‖𝐻 𝑙
)

.

This yields also improved rates in stronger norms for the lifted Gauss curvature:

Corollary 3.9. Under the assumptions of Theorem 3.1, there holds for all 0 ≤ 𝑙 ≤ 𝑘 + 1 and 0 ≤ 𝑟 ≤ 𝑙

‖𝐾ℎ − 𝐾̄‖𝐻𝑟
ℎ
≲ ℎ−𝑟(‖𝑔ℎ − 𝑔̄‖𝐿∞ + |||𝑔ℎ − 𝑔̄|||2 + inf

𝑣ℎ∈̊𝑘
ℎ

‖𝑣ℎ − 𝐾̄‖𝐿2 + ℎ𝑙|𝐾̄|𝐻 𝑙
)

≲ ℎ𝑙−𝑟(‖𝑔̄‖𝑊 𝑙 ,∞ + ‖𝐾̄‖𝐻 𝑙
)

.

Proof. Follows analogously to the proof of [3, Corrolary 6.6] and [18, p. 1818] as the error in stronger Sobolev norms is traced
back to the 𝐻−1-norm. See also the proof of Corollary 3.2 below. □

3.6. Proof of Corollary 3.2

To prove the desired rates for the densitized Gauss curvature we first note that for the 𝐿2-norm there directly holds with
Lemma 3.7, ‖𝐾ℎ‖𝐻1

ℎ
≲ 1, and Corollary 3.9 for 0 ≤ 𝑙 ≤ 𝑘 + 1

‖𝐾 𝜔 − 𝐾̄ 𝜔̄‖ ≲ ‖𝐾 (𝜔 − 𝜔̄)‖ + ‖𝐾 − 𝐾̄‖
ℎ ℎ 𝐿2 ℎ ℎ 𝐿2 ℎ 𝐿2

11 
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≲ ℎ‖𝑔ℎ − 𝑔̄‖𝐿∞ + ‖𝑔ℎ − 𝑔̄‖𝐿∞ + |||𝑔ℎ − 𝑔̄|||2 + inf
𝑣ℎ∈̊𝑘

ℎ

‖𝑣ℎ − 𝐾̄‖𝐿2 + ℎ𝑙|𝐾̄|𝐻 𝑙

≲ ℎ𝑙(‖𝑔̄‖𝑊 𝑙 ,∞ + ‖𝐾̄‖𝐻 𝑙
)

.

With the improved 𝐿2 error estimate at hand we can prove optimal convergence rates in stronger Sobolev spaces.

Proof of Corollary 3.2. Let 𝑢ℎ ∈ ̊𝑘
ℎ be the Scott–Zhang interpolant [27] of 𝐾̄ 𝜔̄. Then there holds, analogously to the proof of [18,

p. 1818],

|𝐾ℎ𝜔ℎ − 𝐾̄ 𝜔̄|𝐻𝑟
ℎ
≤ |𝐾ℎ𝜔ℎ − 𝑢ℎ|𝐻𝑟

ℎ
+ |𝑢ℎ − 𝐾̄ 𝜔̄|𝐻𝑟

ℎ

≲ ℎ−𝑟‖𝐾ℎ𝜔ℎ − 𝑢ℎ‖𝐿2 + ℎ𝑙−𝑟‖𝐾̄ 𝜔̄‖𝐻 𝑙

≤ ℎ−𝑟
(

‖𝐾ℎ𝜔ℎ − 𝐾̄ 𝜔̄‖𝐿2 + ‖𝐾̄ 𝜔̄ − 𝑢ℎ‖𝐿2 + ℎ𝑙‖𝐾̄ 𝜔̄‖𝐻 𝑙
)

≲ ℎ−𝑟(‖𝑔ℎ − 𝑔̄‖𝐿∞ + |||𝑔ℎ − 𝑔̄|||2 + inf
𝑣ℎ∈̊𝑘

ℎ

‖𝑣ℎ − 𝐾̄‖𝐿2 + ℎ𝑙‖𝐾̄‖𝐻 𝑙 + inf
𝑣ℎ∈̊𝑘

ℎ

‖𝑣ℎ − 𝐾̄ 𝜔̄‖𝐿2 + ℎ𝑙‖𝐾̄ 𝜔̄‖𝐻 𝑙
)

≲ ℎ𝑙−𝑟(‖𝑔̄‖𝑊 𝑙 ,∞ + ‖𝐾̄‖𝐻 𝑙 + ‖𝐾̄ 𝜔̄‖𝐻 𝑙
)

. □

4. Numerical examples

In this section we confirm, by numerical examples, that the theoretical convergence rates from Theorem 3.1, Corollary 3.2,
Theorem 3.8, and Corollary 3.9 are sharp. All experiments were performed in the open source finite element software NGSolve,1 [28,
29] where the Regge elements are available.

We consider the numerical example proposed in [18], where on the square 𝛺 = (−1, 1) × (−1, 1) the smooth Riemannian metric
tensor

𝑔̄(𝑥, 𝑦) =
(

1 + (𝜕𝑥𝑓 )2 𝜕𝑥𝑓 𝜕𝑦𝑓
𝜕𝑥𝑓 𝜕𝑦𝑓 1 + (𝜕𝑦𝑓 )2

)

with 𝑓 (𝑥, 𝑦) = 1
2 (𝑥

2+𝑦2) − 1
12 (𝑥

4+𝑦4) is defined. This metric corresponds to the surface induced by the embedding
(

𝑥, 𝑦) ↦ (

𝑥, 𝑦, 𝑓 (𝑥, 𝑦))
and its exact Gauss curvature is given by

𝐾̄(𝑥, 𝑦) = 81(1 − 𝑥2)(1 − 𝑦2)
(9 + 𝑥2(𝑥2 − 3)2 + 𝑦2(𝑦2 − 3)2)2 .

To test also the case of non-homogeneous Dirichlet and Neumann boundary conditions we follow [3] and consider only one
uarter 𝛺 = (0, 1) × (0, 1) and define the right and bottom boundaries as Dirichlet and the remaining parts as Neumann boundary.
e start with a structured mesh consisting of 22𝑙+1 triangles with maximal mesh-size ℎ = max𝑇 ℎ𝑇 =

√

2 2−𝑙 (and minimal edge
ength 2−𝑙) for 𝑙 = 0, 1,… . To avoid possible super-convergence properties due to a structured grid, we perturb all internal points of
he triangular mesh by a uniform distribution in the range [− ℎ

22.5 ,
ℎ

22.5 ]. The geodesic curvature on the left boundary is exactly zero,
hereas on the top boundary we have

𝜅̄|𝛤lef t = 0, 𝜅̄|𝛤t op =
−27(𝑥2 − 1)𝑦(𝑦2 − 3)

(𝑥2(𝑥2 − 3)2 + 9)3∕2
√

𝑥2(𝑥2 − 3)2 + 𝑦2(𝑦2 − 3)2 + 9
.

The vertex expressions ∢̄𝑁
𝑉 at the vertices of the Neumann boundary can directly be computed by measuring the angle

r ccos(𝑔̄(𝜏1𝑉 , ̂𝜏2𝑉 )).
To illustrate our theorems, we must use 𝑔ℎ = Reg,𝑘

ℎ 𝑔̄. In implementing the Regge interpolant, the moments on the edges have
o coincide exactly: see (3.1). To this end, we use a high enough integration rule for interpolating 𝑔̄ for minimizing the numerical

integration errors.
We compute and report the curvature error in the 𝐿2-norm, namely ‖𝐾̄−𝐾ℎ‖𝐿2 and ‖𝐾̄ 𝜔̄−𝐾ℎ𝜔ℎ‖𝐿2 . We also report the 𝐻−1-norm

f the errors. They can be computed by solving e.g. for 𝑤 ∈ 𝐻1
0 (𝛺) such that −𝛥𝑤 = 𝐾̄ −𝐾ℎ and observing that

‖𝐾̄ −𝐾ℎ‖𝐻−1 = ‖𝑤‖𝐻1 .

Of course the right-hand side can generally be computed only approximately. To avoid extraneous errors, we approximate 𝑤 using
Lagrange finite elements of two degrees more, i.e., 𝑤ℎ ∈ 𝑘+2

ℎ when 𝐾ℎ ∈ 𝑘
ℎ .

We start by approximating 𝑔̄ with linear Regge elements 𝑔ℎ ∈ Reg1ℎ. As shown in Fig. 1 (left), we obtain the stated quadratic
convergence in the 𝐿2-norm and cubic rate in the weaker 𝐻−1-norm, in agreement with Theorem 3.1. When increasing the
approximation order of Regge elements to quadratic and cubic polynomials we observe the appropriate increase of the convergence
ates: see Fig. 1 (middle and right), confirming that the results stated in Theorem 3.1 and Corollary 3.2 are sharp. For the error of

1 www.ngsolve.org
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Fig. 1. Convergence of lifted densitized Gauss curvature with respect to number of degrees of freedom (ndof) in different norms for Regge elements 𝑔ℎ ∈ Reg𝑘ℎ
of order 𝑘 = 1, 2, 3.

Fig. 2. Convergence of pure lifted Gauss curvature with respect to number of degrees of freedom (ndof) in different norms for Regge elements 𝑔ℎ ∈ Reg𝑘ℎ of
rder 𝑘 = 1, 2, 3.

the pure Gauss curvature we practically obtain the same behavior as stated by Theorem 3.8 and Corollary 3.9, cf. Fig. 2. Only in
he pre-asymptotic regime the error is smaller compared to the densitized Gauss curvature.

We conclude with a few additional remarks on the lifting degree. Attempting to increase the degree for the curvature
pproximation, say by placing 𝐾ℎ in 𝑘+1

ℎ or 𝑘+2
ℎ , while the metric 𝑔ℎ remains in Reg𝑘ℎ, need not generally produce additional

rders of convergence. This is because the orthogonality properties of the canonical Regge interpolant, namely (3.1a)–(3.1b), may
not be fulfilled in such cases. Indeed, we numerically observed loss of two orders of convergence when 𝐾ℎ is placed in 𝑘+2

ℎ instead
f 𝑘

ℎ . In [3], where we used 𝐾ℎ ∈ 𝑘+1
ℎ , one order less is obtained, again due to the orthogonality properties of the canonical Regge

nterpolant.
Finally, when reducing the polynomial degree of the curvature approximation from 𝑘

ℎ to 𝑘−1
ℎ , 𝑘 ≥ 2, while keeping the metric

n Reg𝑘ℎ, we observed that the convergence rates reduce by one order. Note that the orthogonality properties of the canonical Regge
nterpolant are still fulfilled. Nevertheless, the overall approximation ability of the space is reduced so that the convergence rate in
he 𝐻−1-norm decreases from (ℎ𝑘+2) to (ℎ𝑘+1).
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