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Abstract This paper presents a study of generalized polyhedral convexity under basic operations on mul-

tifunctions. We address the preservation of generalized polyhedral convexity under sums and compositions

of multifunctions, the domains and ranges of generalized polyhedral convex multifunctions, and the direct

and inverse images of sets under such mappings. Then we explore the class of optimal value functions de-

fined by a generalized polyhedral convex objective function and a generalized polyhedral convex constrained

mapping. The new results provide a framework for representing the relative interior of the graph of a gen-

eralized polyhedral convex multifunction in terms of the relative interiors of its domain and mapping values

in locally convex topological vector spaces. Among the new results in this paper is a significant extension

of a result by Bonnans and Shapiro on the domain of generalized polyhedral convex multifunctions from

Banach spaces to locally convex topological vector spaces.

Keywords Locally convex Hausdorff topological vector space · generalized polyhedral convex set ·

generalized polyhedral convex multifunction · optimal value function · generalized interior

Mathematics Subject Classification (2000) 49J52 · 49J53 · 90C31

1 Introduction

The concept of polyhedral convex sets or convex polyhedra can be traced back to ancient Greece, where

Plato discussed the five regular polyhedra in his book “Timaeus.” However, it wasn’t until the 19th century

that the study of convex polyhedra gained significant interest due to their crucial role in the theory of
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linear programming and their connection to convex analysis and optimization. The notion of polyhedral

convex sets has since been used to define polyhedral convex functions and polyhedral convex multifunctions,

which require their epigraphs and graphs, respectively, to be polyhedral convex sets. Polyhedral convex

sets, functions, and multifunctions have many nice properties that can be used in convex analysis and

optimization, making them valuable in many applications; see, e.g., [7,16,17,18,23].

The important role of polyhedral convex sets in optimization and other areas has led to the develop-

ment of a more general concept called generalized polyhedral convex set in the framework of locally convex

Hausdorff topological vector spaces. This concept was introduced by Bonnans and Shapiro in their book

“Perturbation Analysis of Optimization Problems”, where they defined a generalized polyhedral convex set

as the intersection of a polyhedral convex set and a closed affine subspace [3, Definition 2.195]. These more

general sets allow for a broader range of applications in optimization and other fields, particularly in the

theories of generalized linear programming and quadratic programming [3, Sections 2.5.7 and 3.4.3].

It is well known that any infinite-dimensional normed space equipped with the weak topology is not

metrizable, but it is a locally convex Hausdorff topological vector space. Similarly, the dual space of any

infinite-dimensional normed space equipped with the weak∗ topology is not metrizable, but it is a locally

convex Hausdorff topological vector space. The just mentioned two models provide us with the most typ-

ical examples of locally convex Hausdorff topological vector spaces, whose topologies cannot be given by

norms. Therefore, it is necessary to study the generalized polyhedral convex set in locally convex Hausdorff

topological vector spaces.

A generalized polyhedral convex function and a generalized polyhedral convex multifunction can be

defined accordingly by requiring their epigraphs and graphs, respectively, to be generalized polyhedral

convex sets. So, the concept of generalized polyhedral convex set has proved to be very useful in many issues

of convex analysis and applications; see [1,2,5,6,8,9,10,12,15,20,21,22,24] and the references therein. The

paper of Luan, Yao, and Yen [14] can be seen as a comprehensive study on generalized polyhedral convex

sets, generalized polyhedral convex functions on locally convex Hausdorff topological vector spaces, and

the related constructions such as sum of sets, sum of functions, directional derivative, infimal convolution,

normal cone, conjugate function, subdifferential, sum rule. Some results of [14] can be considered as adequate

extensions of the corresponding classical results in [18, Section 19].

The present paper explores many properties of generalized polyhedral convex multifunctions with re-

finements to the case of polyhedral convex ones. We first examine the generalized polyhedral convexity of

the domains and ranges as well as the direct and inverse images of generalized polyhedral convex sets under

these mappings. Our new results include an answer to the question of whether the domain of a generalized

polyhedral convex multifunction is also a generalized polyhedral convex set in locally convex topological

vector spaces. This is an important extension of a related result by Bonnans and Shapiro in the Banach space

setting (see [3, Theorem 2.207]). Then we study the preservation of polyhedral convexity for multifunctions

under various operations. We provide our answers to another question asking if the sum or composition of

two generalized polyhedral convex multifunctions remains a generalized polyhedral convex multifunction.

The question has not been fully answered in the literature, even in the case of polyhedral convex mappings.

We also study the generalized polyhedral convexity of the optimal value function, which is important in

parametric optimization. The specific features of generalized polyhedral convex sets allow us to obtain a

representation for their generalized relative interiors, which we use to study the generalized relative inte-

riors of graphs of generalized polyhedral convex multifunctions in locally convex topological vector spaces.
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Our developments have great potential applications to the theory of generalized differentiation involving

generalized polyhedral convex sets, functions, multifunctions, and to optimization theory.

The paper is structured as follows. Section 2 introduces basic notions and results related to generalized

polyhedral convex sets and multifunctions. In Section 3, we discuss some properties of generalized polyhedral

convex multifunctions including their domains and ranges, as well as the direct and inverse images of

generalized polyhedral convex sets under such mappings. The stability of generalized polyhedral convexity

under basic operations is presented in Section 4. Section 5 is devoted to the study of generalized relative

interiors of generalized polyhedral convex sets. We obtain a representation for the relative interior of the

graph of a generalized polyhedral convex multifunction in locally convex topological vector spaces.

In the sequel, X, Y , and Z are assumed to be locally convex Hausdorff topological vector spaces. We use

the notation X∗ to denote the topological dual space of X, and 〈x∗, x〉 to represent the value of x∗ ∈ X∗ at

x ∈ X. For a subset Ω ⊂ X, we denote its topological closure and interior by Ω and intΩ, respectively. The

same notation is used for subsets of X∗. The cone (resp., the linear subspace) generated by a set Ω ⊂ X are

denoted by coneΩ (resp., spanΩ).

2 Preliminaries

This section recalls the definitions of generalized polyhedral convex sets, functions, and multifunctions, as

well as some basic notations and results that will be used throughout the paper. The readers are referred

to [3] for more details.

Let X0 ⊂ X be a closed linear subspace. Recall that the codimension of X0 is the dimension of the

quotient space X/X0 (see [19, p. 106]). In the lemma below, we present two well-known characterizations of

finite-codimensional linear subspaces and provide a detailed proof for the convenience of the readers.

Lemma 2.1 Let X0 ⊂ X be a closed linear subspace. Then the following statements are equivalent:

(a) X0 is finite-codimensional.

(b) There exists a finite-dimensional linear subspace X1 of X such that X0 +X1 = X and X0 ∩X1 = {0}.

(c) There exists a continuous linear mapping T from X to a locally convex Hausdorff topological vector space W

such that W is finite-dimensional and X0 = kerT .

Proof. (a) =⇒ (b) See the proof of [19, Lemma 4.21(b)].

(b) =⇒ (c) Let π0 : X → X/X0, x 7→ x + X0 for all x ∈ X, be the canonical projection from X onto the

quotient space X/X0. Consider further the linear operator Φ0 : X/X0 → X1 defined as follows. For any

x ∈ X, there is a unique representation x = x0 + x1, where x0 ∈ X0 and x1 ∈ X1. Then we set Φ0(x) = x1

and observe that Φ0 is bijective. On one hand, by [19, Theorem 1.41(a)], π0 is a continuous linear mapping.

On the other hand, Φ0 is a homeomorphism by [15, Lemma 2.5]. Thus, the operator T : X → X1 given

by T = Φ0 ◦ π0 is linear and continuous with kerT = X0. The proof of this implication is complete by

letting W = X1 and observing that W is a locally convex Hausdoff topological vector space that is finite-

dimensional.

(c) =⇒ (a) It is clear that the operator Φ : X/X0 → T (X), x + X0 7→ T (x) for all x ∈ X, is a bijective

linear mapping. Since T (X) is a linear subspace of the finite-dimensional space W , one has dimT (X) < ∞.

Therefore, X0 is finite-codimensional because dim(X/X0) = dimT (X) < ∞. ✷



4 Preliminaries

A subset D ⊂ X is said to be a generalized polyhedral convex set, or a generalized convex polyhedron, if there

exist x∗i ∈ X∗, αi ∈ R, i = 1,2, . . . ,m, and a closed affine subspace L ⊂ X such that

D =
{
x ∈ X

∣∣ x ∈ L, 〈x∗i , x〉 ≤ αi, i = 1, . . . ,m
}
. (2.1)

If D can be represented in the form (2.1) with L = X, then we say that it is a polyhedral convex set, or a

convex polyhedron.

Let D be given as in (2.1). By [3, Remark 2.196], there exists a continuous surjective linear mapping A

from X to a locally convex Hausdorff topological vector space Z and a vector z ∈ Z such that L =
{
x ∈ X |

A(x) = z
}
. Then D can be represented by

D =
{
x ∈ X

∣∣ A(x) = z, 〈x∗i , x〉 ≤ αi, i = 1, . . . ,m
}
.

If D is a polyhedral convex set in X, then one can choose Z = {0}, A ≡ 0, and z = 0.

It follows from the definition that every generalized polyhedral convex set is a closed set. If X is finite-

dimensional, a subset D ⊂ X is a generalized polyhedral convex set if and only if it is a polyhedral convex

set. In that case, we can represent a given affine subspace L ⊂ X as the solution set of a system of finitely

many linear inequalities.

The following representation theorem for generalized convex polyhedral sets in the spirit of [18] is crucial

for our subsequent proofs.

Theorem 2.2 (See [15, Theorem 2.7] and [14, Lemma 2.12]) Suppose that D is a nonempty subset of X.

The set D is generalized polyhedral convex (resp., polyhedral convex) if and only if there exist u1, . . . , uk ∈ X,

v1, . . . , vℓ ∈ X, and a closed linear subspace (resp., a closed linear subspace of finite codimension) X0 ⊂ X such

that

D =
{ k∑

i=1

λiui +
ℓ∑

j=1

µjvj
∣∣ λi ≥ 0, ∀i = 1, . . . , k,

k∑
i=1

λi = 1,

µj ≥ 0, ∀j = 1, . . . , ℓ
}
+X0.

Given a function f : X → R̄ = [−∞,∞], recall that the epigraph of f is defined by

epi f =
{
(x, λ) ∈ X × R

∣∣ f(x) ≤ λ
}
.

The function f is said to be a lower semicontinuous if epi f is a closed set in X × R. We also say that f is a

generalized polyhedral convex function (resp., a polyhedral convex function) if epi f is a generalized polyhedral

convex set (resp., a polyhedral convex set) in X × R.

Let F : X ⇒ Y be a multifunction. The domain, range, and graph of F are defined, respectively, by

domF = {x ∈ X | F (x) 6= ∅}, rgeF = {y ∈ Y | ∃x ∈ X such that y ∈ F (x)}

and

gphF =
{
(x, y) ∈ X × Y

∣∣ x ∈ domF, y ∈ F (x)
}
.

It is clear that domF = πX(gphF ), where πX : X × Y → X with πX(x, y) = x is the projection mapping

from X×Y onto X. Similarly, rgeF = πY (gphF ), where πY : X×Y → Y with πY (x, y) = y is the projection

mapping from X × Y onto Y . Observe that rgeF−1 = domF and rgeF = domF−1, where the inverse

multifunction F−1 : Y ⇒ X of F is given by F−1(y) = {x ∈ X | y ∈ F (x)}.
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A multifunction F : X ⇒ Y is said to be generalized polyhedral (resp., polyhedral) if gphF is a union

of finitely many generalized polyhedral convex sets (resp., polyhedral convex sets) in X × Y . If gphF is

generalized polyhedral convex (resp., polyhedral convex), then we say that F is generalized polyhedral convex

(resp., polyhedral convex).

Clearly, if F : X ⇒ Y is generalized polyhedral convex (resp., polyhedral convex), then F−1 is also

generalized polyhedral convex (resp., polyhedral convex).

Let F : X ⇒ Y be a generalized polyhedral convex multifunction. If A : X×Y → Z is a continuous linear

mapping, then the formula A1(x) = A(x,0) for x ∈ X (resp., the formula A2(y) = A(0, y) for y ∈ Y ) defines

a continuous linear mapping from X to Z (resp., a continuous linear mapping from Y to Z), and one has

A(x, y) = A1(x) +A2(y), (x, y) ∈ X × Y.

Note also that (X × Y )∗ = X∗ × Y ∗. Therefore, the graph of F can be given by the formula

gphF =
{
(x, y) ∈ X × Y

∣∣ A1(x) +A2(y) = z,

〈x∗i , x〉+ 〈y∗i , y〉 ≤ βi, i = 1, . . . ,m
}
,

(2.2)

where A1 (resp., A2) is a continuous linear mapping from X (resp., from Y ) to Z, z ∈ Z, x∗i ∈ X∗, y∗i ∈ Y ∗,

βi ∈ R, for i = 1, . . . ,m. Conversely, if the graph of a multifunction F : X ⇒ Y can be represented by (2.2),

then F is a generalized polyhedral convex multifunction. Note that if gphF is the emptyset, then by definition

F is a generalized polyhedral convex multifunction. Clearly, if F is a polyhedral convex multifunction, then

one can choose Z = {0}, A1 ≡ 0, A2 ≡ 0 and z = 0. If the graph of a multifunction F : X ⇒ Y can be

represented by (2.2), where Z = {0}, A1 ≡ 0, A2 ≡ 0 and z = 0, then F is a polyhedral convex multifunction.

We say that a continuous linear mapping A : Y → Z is closed under finite-codimensional subspaces if A(Y0)

is closed for every finite-codimensional closed linear subspace Y0 ⊂ Y . Clearly, if A is closed under finite-

codimensional subspaces, then A(Y ) is closed. The converse is true if both Y and Z are Fréchet spaces

(see Theorem 3.11 below). In particular, any continuous linear mapping between Banach spaces with a

closed range is closed under finite-codimensional subspaces. This fact has been established by one of the

two referees with direct proof.

3 Properties of Generalized Polyhedral Convex Multifunctions

In this section, we study the domains and ranges of generalized polyhedral convex multifunctions, as well

as the direct and inverse images of generalized polyhedral convex sets under such mappings. We will also

discuss refinements of the obtained results in the case of polyhedral convex sets and multifunctions.

First, we will extend a part of Theorem 2.207 in the book by Bonnans and Shapiro [3], which was given

in a Banach space setting, to the case of generalized polyhedral convex multifunctions in locally convex

Hausdorff topological vector spaces.

Theorem 3.1 If the graph of a multifunction F is described by (2.2) in which the mapping A2 is closed under

finite-codimensional subspaces, then domF is a generalized polyhedral convex set.

Proof. Without loss of generality we can assume that gphF is nonempty. Fix an element (x̄, ȳ) ∈ gphF .

We observe that gphF = (x̄, ȳ) +Q with

Q =
{
(x, y) ∈ X × Y

∣∣ A1(x) +A2(y) = 0,

〈x∗i , x〉+ 〈y∗i , y〉 ≤ β̄i, i = 1, . . . ,m
}
,
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where β̄i = βi − 〈x∗i , x̄〉 − 〈y∗i , ȳ〉 for i = 1, . . . ,m. Let

W =
{
(x, y) ∈ X × Y | A1(x) +A2(y) = 0

}
.

Since W0 =
{
(x, y) ∈ W | 〈x∗i , x〉+ 〈y∗i , y〉 = 0, i = 1, . . . ,m

}
is a closed linear subspace of finite codimension

in W , one can find a finite-dimensional linear subspace W1 of W such that W0+W1 = W and W0∩W1 = {0}

by Lemma 2.1. The subspace W1 is closed by [19, Theorem 1.21(b)]. Obviously,

Q1 =
{
(x, y) ∈ W1

∣∣ 〈x∗i , x〉+ 〈y∗i , y〉 ≤ β̄i, i = 1, . . . ,m
}

is a polyhedral convex set in W1. It is clear that W0 +Q1 ⊂ Q. The reverse inclusion is also true. Indeed,

for each (x, y) ∈ Q there exist (x0, y0) ∈ W0 and (x1, y1) ∈ W1 satisfying (x, y) = (x0, y0) + (x1, y1). Since

〈x∗i , x1〉+ 〈y∗i , y1〉 =[〈x∗i , x〉+ 〈y∗i , y〉]− [〈x∗i , x0〉+ 〈y∗i , y0〉] ≤ β̄i

for all i = 1, . . . , m, one has (x1, y1) ∈ Q1, so (x, y) ∈ W0 + Q1. We have thus proved that Q = W0 + Q1.

Since Q1 is a polyhedral convex set of the finite-dimensional space W1, invoking [18, Theorem 19.1], one

can find (x1, y1), . . . , (xk, yk) in Q1, (u1, v1), . . . , (uℓ, vℓ) in W1 such that

Q1 =
{ k∑

i=1

λi(xi, yi) +
ℓ∑

j=1

µj(uj , vj)
∣∣ λi ≥ 0, ∀i = 1, . . . , k,

k∑
i=1

λi = 1,

µj ≥ 0, ∀j = 1, . . . , ℓ
}
.

From what has already been said we obtain

gphF =(x̄, ȳ) +
{ k∑

i=1

λi(xi, yi) +
ℓ∑

j=1

µj(uj , vj)
∣∣ λi ≥ 0, ∀i = 1, . . . , k,

k∑
i=1

λi = 1,

µj ≥ 0, ∀j = 1, . . . , ℓ
}
+W0.

Consequently,

domF =
{ k∑

i=1

λi(x̄+ xi) +
ℓ∑

j=1

µjuj
∣∣ λi ≥ 0, ∀i = 1, . . . , k,

k∑
i=1

λi = 1,

µj ≥ 0, ∀j = 1, . . . , ℓ
}
+ πX(W0).

(3.1)

Let Ã1 : X → Z × R
m, Ã2 : Y → Z × R

m be continuous linear mappings defined, respectively, by

Ã1(x) =
(
A1(x), 〈x

∗

1, x〉, . . . , 〈x
∗

m, x〉
)
, Ã2(y) =

(
A2(y), 〈y

∗

1, y〉, . . . , 〈y
∗

m, y〉
)
.

It follows that

πX(W0) =
{
x ∈ X

∣∣ there exists y ∈ Y such that Ã1(x) + Ã2(y) = 0
}

=
{
x ∈ X

∣∣ Ã1(x) ∈ Ã2(Y )
}

= Ã−1
1 (Ã2(Y )).

(3.2)

Next, we will claim that the linear subspace Ã2(Y ) is closed in Z × R
m. Indeed, since

Y0 =
{
y ∈ Y | 〈y∗i , y〉 = 0 for all i = 1, . . . ,m

}

is a closed linear subspace of finite codimension in Y , one can find a finite-dimensional linear subspace Y1

of Y such that Y0 + Y1 = Y and Y0 ∩ Y1 = {0} by Lemma 2.1. The linear subspace Y1 is closed by [19,

Theorem 1.21(b)]. We have

Ã2(Y ) = Ã2(Y0 + Y1) = Ã2(Y0) + Ã2(Y1)

=
(
A2(Y0)× {0}

)
+ Ã2(Y1).
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Since the mapping A2 is closed under finite-codimensional subspaces, we see that A2(Y0) is closed in Z and

hence A2(Y0) × {0} is a closed linear subspace of Z × R
m. As Ã2(Y1) is a finite-dimensional subspace of

Z×R
m, by [19, Theorem 1.42] we can assert that

(
A2(Y0)×{0}

)
+ Ã2(Y1) is closed. Thus, Ã2(Y ) is a closed

linear subspace of Z × R
m.

Combining the result in the claim above with the continuity of the linear mapping Ã1, we can assert that

Ã−1
1 (Ã2(Y )) is closed. Therefore, the subspace πX(W0) is closed by formula (3.2). From (3.1), we conclude

that domF is a generalized polyhedral convex set by Theorem 2.2. ✷

To derive the following result, we use a similar argument as in the proof of Theorem 3.1.

Theorem 3.2 If the graph of a multifunction F is described by (2.2) in which the mapping A1 is closed under

finite-codimensional subspaces, then rgeF is a generalized polyhedral convex set.

We can explore an interesting question related to Theorem 3.1: Can the assumption that the mapping A2

is closed under finite-codimensional subspaces be removed from this theorem? To answer this question, let us

provide an example.

Example 3.3 Let X = Y = C[a, b], a < b, be the linear space of continuous real-valued functions on the

interval [a, b] with the norm defined by ‖x‖ = max
t∈[a,b]

|x(t)|. Let the continuous linear mappings A1 : X → X

and A2 : Y → X be defined, respectively, by A1(x) = x and
(
A2(y)

)
(t) =

∫ t

a

y(τ)dτ, where integral is

understood in the Riemannian sense. It is clear that

Ω =
{
(x, y) ∈ X × Y | A1(x) +A2(y) = 0

}
(3.3)

is a closed linear subspace of X×Y ; hence it is a generalized polyhedral convex set in X×Y . Let F : X ⇒ Y

be the generalized polyhedral convex multifunction with gphF = Ω. Then we have

domF = πX(gphF )

=
{
x ∈ X

∣∣ there exists y ∈ Y such that A1(x) +A2(y) = 0
}

=
{
x ∈ X

∣∣ A1(x) ∈ A2(Y )
}

=
{
x ∈ X

∣∣ x ∈ A2(Y )
}
= A2(Y ).

Since A2(Y ) =
{
x ∈ C[a, b]

∣∣ x is continuously differentiable on (a, b), x(a) = 0
}

is a non-closed linear

subspace of X (see [11, Example 2.1] for details), domF is not a generalized polyhedral convex set.

The following theorem addresses a special case of Theorem 3.1 in which F is a polyhedral convex

multifunction.

Theorem 3.4 If F is a polyhedral convex multifunction, then domF and rgeF are polyhedral convex sets.

Proof. We can assume that gphF is given by (2.2) with Z = {0}, A1 ≡ 0, A2 ≡ 0 and z = 0. Arguing

similarly as in the proof of Theorem 3.1, to prove that domF is a polyhedral convex set in X, we need only

to show that πX(W0) is a closed linear subspace of finite codimension of X. In the notation of the proof of

Theorem 3.1, observe that Ã2(Y ) is a linear subspace of the finite dimensional space {0} × R
m. Therefore,

Ã−1
1 (Ã2(Y )) is a closed linear subspace of finite codimension in X. Thus, from (3.2) it follows that πX (W0)

is a closed linear subspace of finite codimension in X.

The fact that rgeF a polyhedral convex set in Y is obtained from the above result by considering the

multifunction F−1, which is polyhedral convex by the assumption of the theorem, and applying the formula

rgeF = domF−1. ✷
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As a direct consequence of Theorem 3.4, we now present a property of the projection of a polyhedral

convex set in a product space onto each component of the latter.

Corollary 3.5 If P is a polyhedral convex set in X × Y , then πX(P ) is a polyhedral convex set in X and πY (P )

is a polyhedral convex set in Y .

Proof. Suppose that P ⊂ X × Y is a polyhedral convex set. Let G : X ⇒ Y be the multifunction defined by

G(x) =
{
y ∈ Y

∣∣ (x, y) ∈ P
}
, x ∈ X.

Since gphG = P , we see that G is a polyhedral convex multifunction. As πX(P ) = domG and πY (P ) = rgeG,

the desired properties follow from Theorem 3.4. ✷

The proposition below gives us a useful result concerning the generalized polyhedral convexity of the

function values of a generalized polyhedral convex multifunction.

Proposition 3.6 If F : X ⇒ Y is a generalized polyhedral convex multifunction, then F (x) is a generalized

polyhedral convex set in Y for every x ∈ X.

Proof. We can assume that the graph of F can be given by (2.2). Taking any element x̄ ∈ X, we have

F (x̄) =
{
y ∈ Y

∣∣ (x̄, y) ∈ gphF
}

=
{
y ∈ Y

∣∣ A1(x̄) +A2(y) = z, 〈x∗i , x̄〉+ 〈y∗i , y〉 ≤ βi, i = 1, . . . ,m
}

=
{
y ∈ Y

∣∣ A2(y) = z −A1(x̄), 〈y
∗

i , y〉 ≤ βi − 〈x∗i , x̄〉, i = 1, . . . ,m
}
.

This clearly implies that F (x̄) is a generalized polyhedral convex set in Y . ✷

We now show that the image of a generalized polyhedral convex set under a polyhedral convex multi-

function is a polyhedral convex set.

Proposition 3.7 Let F : X ⇒ Y be a polyhedral convex multifunction. If C ⊂ X is a generalized polyhedral

convex set in X, then F (C) is a polyhedral convex set in Y . In particular, if P ⊂ X is a polyhedral convex set

in X, then F (P ) is a polyhedral convex set in Y .

Proof. Without loss of generality, suppose that both sets gphF and C are nonempty. By the assumptions,

we can assume that

gphF =
{
(x, y) ∈ X × Y

∣∣ 〈x∗i , x〉+ 〈y∗i , y〉 ≤ αi, i = 1, . . . , p
}

and C =
{
x ∈ X

∣∣ A(x) = z, 〈u∗j , x〉 ≤ βj , j = 1, . . . , q
}
, where x∗i ∈ X∗, y∗i ∈ Y ∗, αi ∈ R for i = 1, . . . , p,

A : X → Z is a continuous linear mapping, z ∈ Z, u∗j ∈ X∗, βj ∈ R for j = 1, . . . , q. Set X0 = kerA,

Ω = gphF ∩ (C × Y ), and select a point x̄ ∈ C. Let

Ω0 =
{
(x0, y) ∈ X0 × Y

∣∣ 〈x∗0,i, x0〉+ 〈y∗i , y〉 ≤ α0,i, i = 1, . . . , p

〈u∗0,j , x0〉 ≤ β0,j , j = 1, . . . , q
}
,

(3.4)

where x∗0,i denotes the restriction of x∗i to X0, α0,i = αi−〈x∗i , x̄〉 for i = 1, . . . , p, u∗0,j denotes the restriction of

u∗j to X0, and β0,j = βj−〈u∗j , x̄〉 for j = 1, . . . , q. It is easily verified that Ω = (x̄, 0)+Ω0. Since F (C) = πY (Ω),

this implies that

F (C) = πY (x̄, 0) + πY (Ω0) = πY (Ω0). (3.5)

By (3.4), the set Ω0 is polyhedral convex in X0 × Y . According to Corollary 3.5, πY (Ω0) is a polyhedral

convex set in Y . Hence, from (3.5) it follows that F (C) is a polyhedral convex set in Y . ✷

The next example shows that both assertions of Proposition 3.7 are false if F is merely a generalized

polyhedral convex multifunction.



N. N. Luan, N. M. Nam, and N. D. Yen 9

Example 3.8 Let X,Y, and F be the same as in Example 3.3. Since F is a generalized polyhedral convex

multifunction, its inverse F−1 : Y ⇒ X is also a generalized polyhedral convex multifunction. Obviously, Y

is a polyhedral convex set in Y and

F−1(Y ) = rgeF−1 = domF.

Since domF is not a generalized polyhedral convex set, the image of Y via the generalized polyhedral convex

multifunction F−1 is not a generalized polyhedral convex set.

As a direct consequence of Proposition 3.7, the corollary below addresses the inverse image of a gener-

alized polyhedral convex set under a polyhedral convex multifunction.

Corollary 3.9 Let F : X ⇒ Y be a polyhedral convex multifunction. If D ⊂ Y is a generalized polyhedral convex

set, then F−1(D) is a polyhedral convex set in X. In particular, if Q ⊂ Y is a polyhedral convex set, then F−1(Q)

is a polyhedral convex set in X.

Proof. By the assumptions made, F−1 : Y ⇒ X is a polyhedral convex multifunction and D is a generalized

polyhedral convex set in Y . Then, by Proposition 3.7 we can assert that F−1(D) is a polyhedral convex set

in X. ✷

Example 3.8 has demonstrated that the conclusions of Proposition 3.7 do not hold if F is just assumed

to be a generalized polyhedral convex multifunction. Nevertheless, when F is a surjective continuous linear

mapping between Fréchet spaces (a specific type of generalized polyhedral convex multifunction), we have the

following intriguing result. Recall [19, p. 9] that a locally convex Hausdorff topological vector space is said

to be a Fréchet space if its topology τ is induced by a complete invariant metric d.

Theorem 3.10 Let X and Y be Fréchet spaces and T : X → Y a surjective continuous linear mapping. If D ⊂ X

a polyhedral convex set, then T (D) is a polyhedral convex set in Y .

Proof. We can assume that the polyhedral convex set D is nonempty. Then, according to Theorem 2.2,

there exist u1, . . . , uk ∈ X, v1, . . . , vℓ ∈ X, and a closed linear subspace of finite codimension X0 in X such

that

D =
{ k∑

i=1

λiui +
ℓ∑

j=1

µjvj
∣∣ λi ≥ 0, ∀i = 1, . . . , k,

k∑
i=1

λi = 1,

µj ≥ 0, ∀j = 1, . . . , ℓ
}
+X0.

Thus, by the linearity of T one has

T (D) =
{ k∑

i=1

λiT (ui) +
ℓ∑

j=1

µjT (vj)
∣∣ λi ≥ 0, ∀i = 1, . . . , k,

k∑
i=1

λi = 1,

µj ≥ 0, ∀j = 1, . . . , ℓ
}
+ T (X0).

(3.6)

Consider the quotient space X/ker T and the quotient mapping π : X → X/kerT (see, e.g., [19, pp. 30-31])

given by

π(x) = [x] = x+ kerT, x ∈ X.

According to [19, Theorem 1.41(a)], π is linear, continuous, and open.

Let the linear mapping T̃ : X/kerT → Y be defined by T̃ ([x]) = T (x) for x ∈ X. Since T is a surjective

continuous linear mapping, T̃ is a bijective continuous linear mapping. As X is a Fréchet space, by [19,

Theorem 1.41(d)] we know that X/ker T is also a Fréchet space. So, thanks to Corollary 2.12(b) in [19],
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T̃−1 : Y → X/kerT is a continuous linear mapping. Since kerT ⊂ X is a closed linear subspace and X0 ⊂ X

is a closed linear subspace of finite codimension, by [14, Lemma 2.15] we can infer that X0 + kerT is a

closed linear subspace of X. Then, by the openness of π, the set π
(
X \

(
X0 + kerT

))
is open in X/kerT .

Consequently, the obvious equality

π
(
X0 + kerT

)
= (X/kerT ) \ π

(
X \

(
X0 + kerT

))

shows that π
(
X0 + kerT

)
is a closed linear subspace of the quotient space. Since

T (X0) = (T̃−1)−1
(
π
(
X0 + kerT

))
,

the latter fact implies that T (X0) is a closed linear subspace of Y . As codimX0 < ∞ and T is a surjective

mapping, codim(T (X0)) < ∞. Hence T (X0) ⊂ Y is a closed linear subspace of finite codimension. Therefore,

by the representation (3.6) and Theorem 2.2 we can assert that T (D) is a polyhedral convex set in Y . ✷

The last theorem of this section establishes the relationship between the closedness under finite-codimen-

sional subspaces and the closed range property of a continuous linear mapping between Fréchet spaces.

Theorem 3.11 Let X and Y be Fréchet spaces and T : X → Y a continuous linear mapping. Then T is closed

under finite-codimensional subspaces if and only if T (X) is closed.

Proof. It suffices to prove that if T (X) is closed then T is closed under finite-codimensional subspaces because

the converse implication is obvious. Suppose that X0 is a finite-codimensional closed linear subspace of X.

Using Lemma 2.1, we have the representation X = X0 + X1, where X0 ∩ X1 = {0} and X1 is a finite-

dimensional subspace of X. By Theorem 2.2, the linear subspace X0 is a polyhedral convex set in X. Since

T (X) is closed, the continuous linear mapping T : X → T (X) is surjective between two Fréchet spaces. Thus,

it follows from Theorem 3.10 that T (X0) is a polyhedral convex set in T (X), so T (X0) is closed in T (X).

Since T (X) is closed in Y , we see that T (X0) is closed in Y . Therefore, T is closed under finite-codimensional

subspaces. ✷

Combining Theorem 3.11 with Theorem 3.1, we get the following result.

Corollary 3.12 If Y and Z are Fréchet spaces and the graph of a multifunction F is given by (2.2) in which the

mapping A2 has a closed range, then domF is a generalized polyhedral convex set.

4 Generalized Polyhedral Convexity under Basic Operations

In this section, we will examine the generalized polyhedral convex property in relation to basic operations

on multifunctions. Our goal is to study the preservation of the generalized polyhedral convexity under sums

and compositions of multifunctions. We will also study an important class of extended-real-valued functions

known as the optimal value function defined by a polyhedral convex objective function and a polyhedral

convex constrained multifunctions.

The theorem below establishes a framework in which the composition of two generalized polyhedral

convex multifunctions yields another generalized polyhedral convex multifunction.

Theorem 4.1 Let F : X ⇒ Y and G : Y ⇒ Z be generalized polyhedral convex multifunctions whose graphs are

given by

gphF =
{
(x, y) ∈ X × Y

∣∣ A1(x) +A2(y) = u,

〈x∗i , x〉+ 〈y∗1,i, y〉 ≤ αi, i = 1, . . . , p
}
,

(4.1)
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gphG =
{
(y, z) ∈ Y × Z

∣∣ B1(y) +B2(z) = v,

〈y∗2,j , y〉+ 〈z∗j , z〉 ≤ βj , j = 1, . . . , q
}
,

(4.2)

where A1 : X → U , A2 : Y → U , B1 : Y → V , B2 : Z → V are continuous linear mappings between locally

convex Hausdorff topological vector spaces, u ∈ U , v ∈ V , x∗i ∈ X∗, y∗1,i ∈ Y ∗, αi ∈ R for i = 1, . . . , p,

y∗2,j ∈ Y ∗, z∗j ∈ Z∗, βj ∈ R for j = 1, . . . , q. If the continuous linear mapping (A2, B1) : Y → U × V defined by

(A2, B1)(y) = (A2(y),B1(y)) for all y ∈ Y is closed under finite-codimensional subspaces, then the multifunction

G ◦ F : X ⇒ Z is generalized polyhedral convex.

Proof. Define the sets

Ω1 =
{
(x, z, y) ∈ X × Z × Y

∣∣ (x, y) ∈ gphF
}
,

Ω2 =
{
(x, z, y) ∈ X × Z × Y

∣∣ (y, z) ∈ gphG
}
.

We have

Ω1 ∩Ω2 =
{
(x, z, y) ∈ X × Z × Y

∣∣ A1(x) +A2(y) = u,B1(y) +B2(z) = v,

〈x∗i , x〉+ 〈y∗1,i, y〉 ≤ αi, i = 1, . . . , p,

〈y∗2,j , y〉+ 〈z∗j , z〉 ≤ βj , j = 1, . . . , q
}
.

Let W = X × Z, Ã1 : W → U × V , Ã2 : Y → U × V , ũ ∈ W , x̃∗i , z̃
∗

j ∈ W ∗ for i = 1, . . . , p and j = 1, . . . , q be

given by setting

Ã1(w) = Ã1

(
x

z

)
=

(
A1(x)

B2(z)

)
, Ã2(y) =

(
A2(y)

B1(y)

)
,

ũ =

(
u

v

)
, 〈x̃∗i ,

(
x

z

)
〉 = 〈x∗i , x〉, 〈z̃∗j ,

(
x

z

)
〉 = 〈z∗j , z〉

for all w = (x, z) ∈ X × Z and y ∈ Y . Then one has

Ω1 ∩Ω2 =
{
(w, y) ∈ W × Y

∣∣ Ã1(w) + Ã2(y) = ũ,

〈x̃∗i , w〉+ 〈y∗1,i, y〉 ≤ αi, i = 1, . . . , p,

〈y∗2,j , y〉+ 〈z̃∗j , w〉 ≤ βj , j = 1, . . . , q
}
.

(4.3)

Let πW : W × Y → W be the projection mapping from W × Y onto W . Then it holds that

gph(G ◦ F ) = πW (Ω1 ∩ Ω2).

In other words, gph(G ◦ F ) is the domain of the multifunction T : W ⇒ Y with

T (w) =
{
y | (w, y) ∈ Ω1 ∩Ω2

}
, w ∈ W.

Since Ã2 = (A2, B1), the continuous linear mapping Ã2 is closed under finite-codimensional subspaces by our

assumptions. Therefore, by Theorem 3.1 and formula (4.3) we can infer that πW (Ω1 ∩ Ω2) is a generalized

polyhedral convex set in W . Therefore, G ◦ F is a generalized polyhedral convex multifunction. ✷

The theorem below states that the composition of two polyhedral convex multifunctions is itself a

polyhedral convex multifunction.

Theorem 4.2 If F : X ⇒ Y and G : Y ⇒ Z are polyhedral convex multifunctions, then G ◦ F : X ⇒ Z is a

polyhedral convex multifunction.
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Proof. We can assume that gphF and gphG are given by (4.1) and (4.2) with U = V = {0}, A1 ≡ 0, A2 ≡ 0,

B1 ≡ 0, B2 ≡ 0 and u = v = 0. Arguing similarly to the proof of Theorem 4.1, we obtain (4.3) where Ã1 ≡ 0

and Ã2 ≡ 0. So, Ω1 ∩Ω2 is a polyhedral convex set in W ×Y . Then, applying Corollary 3.5 for Ω1 ∩Ω2, one

has πW (Ω1 ∩Ω2) is a polyhedral convex set in W . Since gph(G ◦ F ) = πW (Ω1 ∩Ω2), we can assert that the

multifunction G ◦ F : X ⇒ Z is polyhedral convex. ✷

To conclude this section, we show that the sum of two polyhedral convex multifunctions is a polyhe-

dral convex one and then follow up with an example showing that the conclusion no longer holds if the

multifunctions involved are just generalized polyhedral convex.

Theorem 4.3 If F1, F2 : X ⇒ Y are polyhedral convex multifunctions, then the multifunction F1 + F2 is also

polyhedral convex.

Proof. Consider the sets

Ω1 =
{
(x, y1, y2) ∈ X × Y × Y | y1 ∈ F1(x)

}
= (gphF1)× Y,

Ω2 = {(x, y1, y2) ∈ X × Y × Y | y2 ∈ F2(x)}.

Since F1 and F2 are polyhedral convex multifunctions, Ω1 and Ω2 are polyhedral convex sets in X ×Y × Y .

Hence, Ω1 ∩Ω2 is a polyhedral convex set in X × Y × Y .

Let the continuous linear mapping A : X × Y × Y → X × Y be given by

A(x, y1, y2) = (x, y1 + y2) for (x, y1, y2) ∈ X × Y × Y.

It is clear that gph(F1 + F2) = A(Ω1 ∩ Ω2). If Ω1 ∩ Ω2 = ∅, then gph (F1 + F2) = ∅; so the multifunction

F1 +F2 is polyhedral convex. To proceed further, let us suppose that Ω1 ∩Ω2 is nonempty. Since Ω1 ∩Ω2 is

a polyhedral convex set in X × Y × Y , there exist x∗i ∈ X∗, y∗1,i ∈ Y ∗, y∗2,i ∈ Y ∗, and αi ∈ R for i = 1, . . . ,m

such that

Ω1 ∩ Ω2 =
{
(x, y1, y2) ∈ X × Y × Y

∣∣ 〈x∗i , x〉+ 〈y∗1,i, y1〉+ 〈y∗2,i, y2〉 ≤ αi, i = 1, . . . ,m
}
.

Consider the sets

X0 = {x ∈ X | 〈x∗i , x〉 = 0, i = 1, . . . ,m},

Y1,0 = {y1 ∈ Y | 〈y∗1,i, y1〉 = 0, i = 1, . . . ,m},

Y2,0 = {y2 ∈ Y | 〈y∗2,i, y2〉 = 0, i = 1, . . . ,m}.

Because X0 ⊂ X, Y1,0 ⊂ Y , Y2,0 ⊂ Y are closed linear subspaces of finite codimension, one can find finite-

dimensional linear subspaces X1 ⊂ X, Y1,1 ⊂ Y , and Y2,1 ⊂ Y such that

X = X0 +X1, Y = Y1,0 + Y1,1, Y = Y2,0 + Y2,1,

X0 ∩X1 = {0}, Y1,0 ∩ Y1,1 = {0}, and Y2,0 ∩ Y2,1 = {0}. According to [19, Theorem 1.21(b)], the subspaces

X1, Y1,1, Y2,1 are closed. It is clear that

D1 =
{
(x, y1, y2) ∈ X1 × Y1,1 × Y2,1 | 〈x∗i , x〉+ 〈y∗1,i, y1〉+ 〈y∗2,i, y2〉 ≤ αi, i = 1, . . . ,m

}

is a polyhedral convex set in X1 × Y1,1 × Y2,1. Put D0 = X0 × Y1,0 × Y2,0. It is easy to verify that

D0 +D1 ⊂ Ω1 ∩Ω2.
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The reverse inclusion is also true. Indeed, for each (x, y1, y2) ∈ Ω1 ∩ Ω2 there exist x0 ∈ X0, x1 ∈ X1,

y1,0 ∈ Y1,0, y1,1 ∈ Y1,1, y2,0 ∈ Y2,0, y2,1 ∈ Y2,1 satisfying x = x0 + x1, y1 = y1,0 + y1,1, y2 = y2,0 + y2,1. Since

〈x∗i , x1〉+ 〈y∗1,i, y1,1〉+ 〈y∗2,i, y2,1〉 =
(
〈x∗i , x〉 − 〈x∗i , x0〉

)
+
(
〈y∗1,i, y1〉 − 〈y∗1,i, y1,0〉

)

+
(
〈y∗2,i, y2〉 − 〈y∗2,i, y2,0〉

)

= 〈x∗i , x〉+ 〈y∗1,i, y1〉+ 〈y∗2,i, y2〉 ≤ αi

for every i = 1, . . . ,m, it follows that (x1, y1,1, y2,1) ∈ D1; so

(x, y1, y2) = (x0, y1,0, y2,0) + (x1, y1,1, y2,1) ∈ D0 +D1.

We have thus proved that Ω1 ∩ Ω2 = D0 +D1. Hence

A(Ω1 ∩Ω2) = A(D0) +A(D1)

=
(
X0 × (Y1,0 + Y2,0)

)
+ A(D1).

Since D1 is a polyhedral convex set of the finite-dimensional space X1 × Y1,1 × Y2,1, invoking Theorem 19.1

in [18] one can represent D1 as

D1 =
{ k∑

i=1

λiui +
ℓ∑

j=1

µjvj
∣∣ λi ≥ 0, ∀i = 1, . . . , k,

k∑
i=1

λi = 1,

µj ≥ 0, ∀j = 1, . . . , ℓ
}
,

where ui ∈ D1 for i = 1, . . . , k, and vj ∈ X1 × Y1,1 × Y2,1 for j = 1, . . . , ℓ. Then we have

A(Ω1 ∩Ω2)=
{ k∑
i=1

λi(A(ui))+
ℓ∑

j=1

µj(A(vj))
∣∣ λi ≥ 0, ∀i = 1, . . . , k,

k∑
i=1

λi = 1,

µj ≥ 0, ∀j = 1, . . . , ℓ
}
+
(
X0 × (Y1,0 + Y2,0)

)
.

Since X0 ⊂ X, Y1,0 ⊂ Y , Y2,0 ⊂ Y are closed linear subspaces of finite codimension, X0 × (Y1,0 + Y2,0) is a

finite-codimensional closed linear subspace of X × Y × Y . Hence, Theorem 2.2 assures that A(Ω1 ∩Ω2) is a

polyhedral convex set in X × Y × Y . Since gph(F1 + F2) = A(Ω1 ∩Ω2), the set gph (F1 + F2) is polyhedral

convex. So, F1 + F2 is a polyhedral convex multifunction. ✷

One may ask whether the statement in Theorem 4.3 applies to the summation of generalized polyhedral

convex multifunctions. To clarify this, we now provide an example.

Example 4.4 Choose a suitable topological vector space X and closed linear subspaces X1, X2 of X sat-

isfying X1 +X2 = X and X1 + X2 6= X (see[14, Remark 2.12] for more details). Let F1, F2 : X ⇒ X be

given by F1(x) = X1, F2(x) = X2 for all x ∈ X. It is clear that F1 and F2 are generalized polyhedral convex

multifunctions. Since gph(F1 + F2) = X × (X1 +X2) is not closed in the product space X ×X, F1 + F2 is

not a generalized polyhedral convex multifunction.

Given a function ϕ : X × Y → R and a multifunction F : X ⇒ Y , define the optimal value function

µ : X → R̄ associated with ϕ and F by

µ(x) = inf
{
ϕ(x, y)

∣∣ y ∈ F (x)
}
, x ∈ X. (4.4)

Here we use the convention inf ∅ = ∞. The solution map M : X ⇒ Y of the optimization problem in (4.4) is

defined by

M(x) =
{
y ∈ F (x)

∣∣ µ(x) = ϕ(x, y)
}
, x ∈ X. (4.5)

The next result concerns the nonempty property of the solution set M(x) at a given parameter x ∈ X.



14 Generalized Polyhedral Convexity under Basic Operations

Proposition 4.5 Consider the optimal value function µ from (4.4) and the solution mapping from (4.5) in which

ϕ is a proper generalized polyhedral convex function and F is a generalized polyhedral convex multifunction. For

an element x ∈ X, if µ(x) is finite, then M(x) is a nonempty subset of Y .

Proof. Fix x ∈ X and assume that µ(x) is finite, i.e., µ(x) ∈ R. As F is a generalized polyhedral convex

multifunction, F (x) is a generalized polyhedral convex set in Y by Proposition 3.6. Since γ = µ(x) is finite,

we see that F (x) is nonempty, ϕ(x, y) ≥ γ for all y ∈ F (x), and there exists y ∈ F (x) such that ϕ(x, y) is

finite.

Let the function ϕx : Y → R be given by ϕx(y) = ϕ(x, y). Since ϕ is a proper function and ϕ(x, y) is finite,

the function ϕx is also proper. Next, we will claim that ϕx is a generalized polyhedral convex function. Since

ϕ is a proper generalized polyhedral convex function, the set epiϕ can be represented by

epiϕ =
{
(x, y, t) ∈ X × Y ×R

∣∣ B1(x) +B2(y) +B3(t) = z,

〈u∗j , x〉+ 〈v∗j , y〉+ 〈tj , t〉 ≤ αj , j = 1, . . . , k
}
,

where B1 (resp., B2, B3) is a continuous linear mapping from X (resp., from Y , from R) to Z, z ∈ Z,

u∗j ∈ X∗, v∗j ∈ Y ∗, tj ∈ R, αj ∈ R for j = 1, . . . , k. Then one has

epiϕx =
{
(y, t) ∈ Y ×R

∣∣ ϕx(y) ≤ t
}

=
{
(y, t) ∈ Y ×R

∣∣ ϕ(x, y) ≤ t
}

=
{
(y, t) ∈ Y ×R

∣∣ (x, y, t) ∈ epiϕ
}

=
{
(y, t) ∈ Y ×R

∣∣ B1(x) +B2(y) +B3(t) = z, 〈u∗j , x〉+ 〈v∗j , y〉+ 〈tj , t〉 ≤ αj , j = 1, . . . , k
}

=
{
(y, t) ∈ Y ×R

∣∣ B2(y) +B3(t) = z −B1(x), 〈v
∗

j , y〉+ 〈tj , t〉 ≤ αj − 〈u∗j , x〉, j = 1, . . . , k
}

It follows that ϕx is a proper generalized polyhedral convex function and domϕx ∩F (x) is nonempty. Since

ϕx(y) ≥ γ for all y ∈ F (x), applying [13, Theorem 3.1], one can assert that the problem

minimize ϕx(y)

subject to y ∈ F (x)

has an optimal solution. Therefore, M(x) is a nonempty set. ✷

The following proposition enables us to represent the epigraph of the optimal value function in terms of

the image of a generalized polyhedral convex set under a projection mapping.

Proposition 4.6 Consider the optimal value function µ from (4.4) and let

Ω1 = epiϕ and Ω2 = (gphF )× R. (4.6)

We have the representation

epiµ = πX,R(Ω1 ∩ Ω2), (4.7)

where πX,R : X×Y ×R → X×R is the projection mapping from X×Y ×R onto X×R. If we assume in addition

that ϕ is a proper generalized polyhedral convex function and F is a generalized polyhedral convex multifunction,

then the closure signs in (4.7) can be omitted, i.e.,

epiµ = πX,R(Ω1 ∩ Ω2). (4.8)
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Proof. Consider the set

epis µ =
{
(x, λ) ∈ X × R

∣∣ µ(x) < λ
}
.

We have

epis µ ⊂ πX,R(Ω1 ∩Ω2) ⊂ epiµ. (4.9)

Indeed, for any (x, λ) ∈ epis µ we have µ(x) < λ and thus there exists ȳ ∈ F (x) such that ϕ(x, ȳ) < λ.

Then we get (x, ȳ, λ) ∈ Ω1 ∩ Ω2, which implies that (x, λ) ∈ πX,R(Ω1 ∩Ω2). This justifies the first inclusion

in (4.9). To prove the second inclusion, take any (x, λ) ∈ πX,R(Ω1 ∩ Ω2). Then there is a point ȳ ∈ Y such

that (x, ȳ, λ) ∈ Ω1 ∩Ω2. It means that ϕ(x, ȳ) ≤ λ and ȳ ∈ F (x). Thus, µ(x) ≤ ϕ(x, ȳ) ≤ λ. This implies that

(x, λ) ∈ epiµ and completes the proof of (4.9). Finally, using (4.9) and the obvious equality epis µ = epiµ

gives us (4.7).

Now, assume that ϕ is a proper generalized polyhedral convex function and F is a generalized polyhedral

convex multifunction. The proof above gives us

πX,R(Ω1 ∩Ω2) ⊂ epiµ.

Thus, to justifies (4.8), it suffices to show that epiµ ⊂ πX,R(Ω1 ∩ Ω2). Take any (x, λ) ∈ epiµ and get

µ(x) ≤ λ. If µ(x) is finite, by Proposition 4.5, there exists y ∈ F (x) such that ϕ(x, y) = µ(x) ≤ λ. Now,

consider the case where µ(x) = −∞ < λ. In this case we can also choose y ∈ F (x) such that ϕ(x, y) < λ.

Thus, (x, y, λ) ∈ epiϕ and (x, y, λ) ∈ Ω2. It follows that (x, y, λ) ∈ Ω1∩Ω2. Therefore, (x, λ) ∈ πX,R(Ω1∩Ω2),

so (4.8) is valid. ✷

The next theorem characterizes the generalized polyhedral convex property of the optimal value func-

tion µ via its lower semicontinuity.

Theorem 4.7 Consider the optimal value function µ from (4.4) in which ϕ is a generalized polyhedral convex

function and F is a generalized polyhedral convex multifunction. The function µ is generalized polyhedral convex

if and only if µ is lower semicontinuous on X.

Proof. If µ is a generalized polyhedral convex function, then epiµ is a generalized polyhedral convex set

and hence epiµ is closed. Thus, µ is lower semicontinuous on X.

Now, suppose that µ is lower semicontinuous on X. Then epiµ is closed. Combining this fact with (4.7)

gives us the equality

epiµ = πX,R(Ω1 ∩ Ω2), (4.10)

where Ω1 and Ω2 are defined by (4.6). Since F is a generalized polyhedral convex multifunction and ϕ is a

generalized polyhedral convex function, the set Ω1 ∩Ω2 is generalized polyhedral convex. Applying Propo-

sition 2.10 in [14], we can conclude that πX,R(Ω1 ∩ Ω2) is a generalized polyhedral convex set. Therefore, by

equality (4.10) we can assert that epiµ is generalized polyhedral, so µ is a generalized convex function. ✷

Sufficient conditions for the polyhedral convex property of the optimal value function µ are given in the

following theorem.

Theorem 4.8 Consider the optimal value function µ from (4.4). If ϕ is a proper polyhedral convex function

and F is a polyhedral convex multifunction, then µ is a polyhedral convex function.
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Proof. The polyhedral convexity of F and ϕ guarantees that Ω1∩Ω2 is a polyhedral convex set in X×Y ×R.

Using Corollary 3.5, we can assert that πX,R(Ω1 ∩Ω2) is a polyhedral convex set in X ×R. Combining this

with (4.8), we conclude that µ is a polyhedral convex function. ✷

The conclusion of Theorem 4.8 may not hold if one of the assumptions is violated. The next example

shows that if ϕ is a proper polyhedral convex function and F is merely a generalized polyhedral convex

multifunction, then µ may not be a generalized polyhedral convex function.

Example 4.9 Let X,Y, and F be as in Example 3.3. Set

X1 =
{
x ∈ C[a, b]

∣∣ x is continuously differentiable on (a, b), x(a) = 0
}

and note that X1 is a non-closed linear subspace of X. Since gphF = Ω, where Ω is defined by (3.3), we

have F (x) = {−ẋ} for all x ∈ X1 with ẋ denoting the Fréchet derivative of x, and F (x) = ∅ for all x /∈ X1.

Consider the proper polyhedral convex function ϕ with ϕ(x, y) = 0 for all (x, y) ∈ X × Y . As µ(x) = 0 for

every x ∈ X1 and µ(x) = ∞ for any x /∈ X1, we see that epiµ = X1× [0,∞). Since the latter set is non-closed,

µ is not a generalized polyhedral convex function.

5 Generalized Relative Interiors of Generalized Polyhedral Convex Sets

The notion of relative interior has been known to be useful for the study of convex analysis in finite di-

mensions. Its importance has motivated the development of new notions of generalized relative interiors in

infinite dimensions. In this section, we show that several generalized relative interior concepts known in the

literature do coincide for generalized polyhedral convex sets in infinite dimensions. We also obtain represen-

tations of such generalized relative interiors for the graphs of generalized polyhedral convex multifunctions.

Recall (see, e.g., [16, Definition 2.168]) that the relative interior, the intrinsic relative interior, and the

quasi-relative interior of a subset Ω of X are defined respectively by

riΩ =
{
a ∈ Ω | ∃ a neighborhood V of the origin such that (a+ V ) ∩ affΩ ⊂ Ω

}
.

iriΩ =
{
a ∈ Ω | cone(Ω − a) is a linear subspace of X

}
,

qriΩ =
{
a ∈ Ω | cone(Ω − a) is a linear subspace of X

}
.

By [16, Theorem 2.174], the following inclusions hold

riΩ ⊂ iriΩ ⊂ qriΩ. (5.1)

The theorem below shows that these generalized relative interior notions coincide for generalized polyhe-

dral convex sets. It is a basis for obtaining the subsequent useful result about generalized polyhedral convex

multifunctions.

Theorem 5.1 Let X be a locally convex Hausdorff topological vector space. Consider the generalized polyhedral

convex set

P =
{
x ∈ X

∣∣ 〈x∗i , x〉 ≤ αi for all i = 1, . . . ,m
}
∩ L,

where x∗i ∈ X∗, αi ∈ R for all i = 1, . . . ,m, and L is a closed affine subspace of X. Suppose that P is nonempty.

Then riP is nonempty and we have the equalities

qriP = iriP = riP =
{
x ∈ P

∣∣ 〈x∗i , x〉 < αi for all i ∈ I
}
, (5.2)

where

I =
{
i = 1, . . . , m

∣∣ ∃x̂i ∈ P such that 〈x∗i , x̂i〉 < αi

}
.
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Proof. In the first part of the proof, we follow the proof of [3, Proposition 2.197], while providing more

details.

First, consider the case where I 6= ∅. Fix an element a ∈ P ⊂ L. Denote by N the unique linear subspace

parallel to affP . Let us show that

N =
{
x ∈ X

∣∣ 〈x∗i , x〉 = 0 for all i ∈ {1, . . . ,m} \ I
}
∩
(
L− a

)
. (5.3)

Recall that N = cone(P − P ) = span(P − a) and a+N = affP . One has

〈x∗i , a〉 ≤ αi for all i = 1, . . . ,m.

Observe that 〈x∗i , a〉 = αi if i /∈ I. The set on the right-hand side of (5.3), which is denoted by N1, is a closed

linear subspace. For any x ∈ P we have

〈x∗i , x〉 = αi whenever i /∈ I,

which implies that

〈x∗i , x− a〉 = αi − αi = 0 whenever i /∈ I.

In addition, it is clear that x − a ∈ (P − a) ⊂ (L − a). Thus, x − a ∈ N1 and hence P − a ⊂ N1. Then

N = span(P − a) ⊂ N1 because N1 is a linear subspace.

To prove the reverse inclusion in (5.3), take any x ∈ N1 and get 〈x∗i , x〉 = 0 for all i /∈ I. For every i ∈ I,

choose x̂i ∈ P such that 〈x∗i , x̂i〉 < αi. Denote by p be the number of elements of I and define

x̂ =
1

p

∑

i∈I

x̂i.

Then we have x̂ ∈ P and 〈x∗i , x̂〉 < αi for all i ∈ I. Fix any j ∈ I. Since x̂i ∈ P , we see that 〈x∗j , x̂i〉 ≤ αj if

i 6= j, and 〈x∗j , x̂j〉 < αj . Therefore,

〈x∗j , x̂〉 =
1

p

∑

i∈I

〈x∗j , x̂i〉 <
1

p
pαj = αj .

We have thus shown that 〈x∗j , x̂〉 < αj for all j ∈ I. Then, for a sufficiently small t > 0, we have

〈x∗i , x̂+ tx〉 < αi for all i ∈ I, and 〈x∗i , x̂+ tx〉 = 〈x∗i , x̂〉 ≤ αi for all i /∈ I.

In addition, since x ∈ L− a = L− x̂, one has x̂+ x ∈ L. Hence, x̂+ tx = (1− t)x̂+ t(x̂+ x) ∈ L as L is an

affine subspace. Thus, x̂+ tx ∈ P ; so x ∈ 1
t (P − x̂) ⊂ cone(P − P ) = N , which completes the proof of (5.3).

For convenience, let

C =
{
x ∈ P | 〈x∗i , x〉 < αi for all i ∈ I

}
. (5.4)

We will show that C = riP . Taking any x0 ∈ C, we have x0 ∈ P and

〈x∗i , x0〉 < αi for all i ∈ I.

By the continuity of x∗i for i ∈ I, we can find a neighborhood U of the origin such that

〈x∗i , x0 + u〉 ≤ αi for all u ∈ U and for all i ∈ I. (5.5)

Let us show that

(x0 + U) ∩ affP = (x0 + U) ∩ (x̂+N) ⊂ P. (5.6)
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Note that x̂ is chosen above and N is closed with x̂ + N = affP = affP ⊂ L by the definition of parallel

subspace. Hence, the equality in (5.6) is valid. To obtain the inclusion in (5.6), fix any x ∈ (x0+U)∩(x̂+N).

Then x = x0 + u for some u ∈ U , and x = x̂+ v ∈ L for some v ∈ N . For i ∈ I, from (5.5) it follows that

〈x∗i , x〉 = 〈x∗i , x0 + u〉 ≤ αi.

If i /∈ I, by (5.3) we have

〈x∗i , x〉 = 〈x∗i , x̂+ v〉 = 〈x∗i , x̂〉+ 〈x∗i , v〉 = 〈x∗i , x̂〉 ≤ αi.

It follows that x ∈ P , and so (5.6) holds. Then we get x0 ∈ riP , which justifies the inclusion C ⊂ riP .

Now we show that riP ⊂ C. Fix any x0 ∈ riP and find a neighborhood U of the origin such that

(x0 + U) ∩ affP ⊂ P. (5.7)

By contradiction, suppose that x0 /∈ C, and so there exists j ∈ I such that 〈x∗j , x0〉 ≥ αj , which implies

〈x∗j , x0〉 = αj . Since U is a neighborhood of the origin, we can find t > 0 sufficiently small such that

z = x0 + t(x0 − x̂j) ∈ x0 + U,

where 〈x∗j , x̂j〉 < αj . Obviously, z ∈ affP because z = −tx̂j + (1+ t)x0, x̂j ∈ P , and x0 ∈ P . So, by (5.7) one

has z ∈ P . This implies that 〈x∗j , z〉 ≤ αj . Then x0 = 1
1+tz +

t
1+t x̂j and thus

αj = 〈x∗j , x0〉 =
1

1 + t
〈x∗j , z〉+

t

1 + t
〈x∗j , x̂j〉 <

1

1 + t
αj +

t

1 + t
αj = αj ,

which is a contradiction. Therefore, x0 ∈ C, and so riP ⊂ C. We have thus proved that if I 6= ∅, then

riP = C.

Now, consider the case where I = ∅. In this case, we have

P =
{
x ∈ X

∣∣ 〈x∗i , x〉 = αi for all i = 1, . . . ,m
}
∩ L.

It follows that P = affP = affP . Therefore, riP = P . On the other hand, by (5.4) we get C = P . Thus, the

equality riP = C is also valid in the case where I 6= ∅.

The preceding proof shows that riP 6= ∅.

By (5.1), to obtain (5.2), it suffices to show that qriP ⊂ C = riP . If I = ∅, then C = riP = P ; hence

the latter is valid. Now, consider the case where I 6= ∅ and suppose on the contrary that there is a ∈ qriP

but a /∈ C. Then, by (5.4), there exists j ∈ I such that 〈x∗j , a〉 = αj . Choose x̂j ∈ P such that 〈x∗j , x̂j〉 < αj .

Obviously,

x̂j − a ∈ cone(P − a).

Since cone(P − a) is a linear subspace, we see that

a− x̂j ∈ cone(P − a)

For any x ∈ P , we have 〈x∗j , x−a〉 = 〈x∗j , x〉−〈x∗j , a〉 ≤ αj−αj = 0, and hence 〈x∗j , z〉 ≤ 0 for all z ∈ cone(P−a).

By the continuity of x∗j , we deduce that 〈x∗j , z〉 ≤ 0 for all z ∈ cone(P − a). Then

〈x∗j , a− x̂j〉 ≤ 0,

which yields αj = 〈x∗j , a〉 ≤ 〈x∗j , x̂j〉 < αj , a contradiction. This completes the proof. �
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Remark 5.2 The fact that the inequalities riP = iriP = qriP hold for any generalized polyhedral convex

set follows from the second assertion of Theorem 2.174 in [16] and Proposition 2.197 from [3].

To continue, we recall the following important properties of iriΩ and qriΩ for a convex set Ω (see [16,

Propositions 2.169 and 2.181] more details). Given x̄ ∈ Ω, we have

[x̄ ∈ iriΩ] ⇐⇒ [∀x ∈ Ω,∃x′ ∈ Ω such that x̄ ∈ (x, x′)],

[x̄ /∈ qriΩ] ⇐⇒ [{x̄} and Ω can be properly separated].

The next theorem allows us to obtain a representation of the relative interior of a generalized polyhedral

convex multifunction. This representation is based on Theorem 5.1 and the idea for proving Theorem 4.3

in [4]. The closed range assumption is essential for the validity of the conclusion.

Theorem 5.3 If the graph of a generalized polyhedral convex multifunction F : X ⇒ Y is described by (2.2) in

which the mapping A2 is closed under finite-codimensional subspaces, then

ri(gphF ) =
{
(x, y)

∣∣ x ∈ ri(domF ), y ∈ ri(F (x))
}
. (5.8)

Proof. Suppose that the graph of F is described by (2.2) in which the mapping A2 is closed under finite-

codimensional subspaces. Then domF is a generalized polyhedral convex set by Theorem 3.1. Now, take

any (x0, y0) ∈ ri(gphF ). First, let us show that x0 ∈ ri(domF ). For any x ∈ domF we can choose y ∈ F (x),

so (x, y) ∈ gphF . Since ri(gphF ) = iri(gphF ) by Theorem 5.1, we can choose (x′, y′) ∈ gphF and t ∈ (0,1)

such that

(x0, y0) = t(x, y) + (1− t)(x′, y′).

Then x0 ∈ (x, x′), where x′ ∈ domF . Since x ∈ domF can be chosen arbitrarily, it follows that

x0 ∈ iri (domF ).

So, applying Theorem 3.1 to the generalized polyhedral convex set domF yields x0 ∈ ri(domF ). Now, let

us show that y0 ∈ ri(F (x0)). Observe that F (x0) = gphF ∩
(
{x0} × Y

)
is a generalized polyhedral convex

set. Take any y ∈ F (x0) and get (x0, y) ∈ gphF and thus we can find (x1, y1) ∈ gphF and s ∈ (0,1) such

that

(x0, y0) = s(x0, y) + (1− s)(x1, y1).

Then x1 = x0 and y0 ∈ (y, y1), where y1 ∈ F (x0). Thus, y0 ∈ iri(F (x0)) = ri(F (x0)). This justifies the

inclusion ⊂ in (5.8).

We will now prove the inclusion ⊃ in (5.8). Take any x0 ∈ ri(domF ) and y0 ∈ ri(F (x0)). By contradiction,

suppose that (x0, y0) /∈ ri(gphF ) = qri(gphF ), where the last equality holds by Theorem 3.1. By the proper

separation mentioned prior to the formulation of this theorem, there exist x∗ ∈ X∗ and y∗ ∈ Y ∗ such that

〈x∗, x〉+ 〈y∗, y〉 ≤ 〈x∗, x0〉+ 〈y∗, y0〉 (5.9)

for all (x, y) ∈ gphF and there exists (x̂, ŷ) ∈ gphF such that

〈x∗, x̂〉+ 〈y∗, ŷ〉 < 〈x∗, x0〉+ 〈y∗, y0〉. (5.10)

Substituting (x, y) = (x0, y), where y ∈ F (x0), to (5.9) gives us 〈y∗, y〉 ≤ 〈y∗, y0〉 for all y ∈ F (x0). Since x̂ ∈

domF and x0 ∈ ri(domF ) = iri(domF ), we can find x2 ∈ domF and λ ∈ (0,1) such that x0 = λx̂+(1−λ)x2.

Choosing y2 ∈ F (x2) and letting y′ = λŷ + (1− λ)y2 give us

(x0, y
′) = λ(x̂, ŷ) + (1− λ)(x2, y2) ∈ gphF
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due to the convexity of gphF , so y′ ∈ F (x0). Using (5.9), we have

〈x∗, x2〉+ 〈x∗, y2〉 ≤ 〈x∗, x0〉+ 〈y∗, y0〉. (5.11)

Multiplying both sides of (5.10) with λ, multiplying (5.11) with (1−λ), and adding the resulting inequalities

give us

〈x∗, λx̂+ (1− λ)x2〉+ 〈y∗, λŷ + (1− λ)y2〉 < 〈x∗, x0〉+ 〈y∗, y0〉.

Then we get

〈x∗, x0〉+ 〈y∗, y′〉 < 〈x∗, x0〉+ 〈y∗, y0〉,

which implies that 〈y∗, y′〉 < 〈y∗, y0〉, where y′ ∈ F (x0). Remembering that 〈y∗, y〉 ≤ 〈y∗, y0〉 for all y ∈

F (x0), we see that {y0} and F (x0) can be properly separated, so y0 /∈ qri(F (x0)) = ri(F (x0)), which is a

contradiction. This completes the proof. �

Thanks to Theorem 3.1 and Theorem 5.1, we can obtain the following representations for the quasi-

relative interior and intrinsic relative interior of the graph of a generalized polyhedral convex multifunction

as a direct consequence of Theorems 5.8.

Corollary 5.4 If the graph of F is described by (2.2) in which the mapping A2 is closed under finite-codimensional

subspaces, then

qri(gphF ) = {(x, y) | x ∈ qri(domF ), y ∈ qri(F (x))},

iri(gphF ) = {(x, y) | x ∈ iri(domF ), y ∈ iri(F (x))}.

Regarding Theorem 5.3, an interesting question arises: Can the assumption that the mapping A2 is closed

under finite-codimensional subspaces be removed from the theorem? In order to answer this question in the

negative, let us consider an example.

Example 5.5 Let the spaces X,Y and the multifunction F be as in Example 3.3. Since gphF is a closed

linear subspace of X × Y , one has ri(gphF ) = gphF . Here

domF =
{
x ∈ C[a, b]

∣∣ x is continuously differentiable on (a, b), x(a) = 0
}

is a non-closed linear subspace, which is dense in X (see [11, Example 2.1] for details). Hence

ri(domF ) = int(domF ) = ∅.

Consequently, the equality (5.8) does hold for the generalized polyhedral convex multifunction F under our

consideration.
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