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Abstract 

In the laser welding of thin Al/Cu sheets, proper 

penetration depth and wide interface bead width ensure 

stable joint strength and low electrical conductance. In 

this study,  we proposed deep learning models to predict 

the penetration depth. The inputs for the prediction 

models were 500 Hz-sampled low-cost charge-coupled 

device (CCD) camera images and 100 Hz-sampled 

spectral signals. The output was the penetration depth 

estimated from the keyhole depth measured coaxially 

using optical coherence tomography. A unisensor 

model using a CCD image and  multisensor model using 

a CCD image and the spectrometer signal were 

proposed in this study. The input and output of the data 

points were resampled at 100 Hz and 500 Hz, 

respectively. The 500 Hz models showed better 

performance than the 100 Hz models, and the 

multisensor models more accurately predicted the 

penetration depth than the unisensor models. The most 

accurate model had a coefficient of determination (R2) 

of 0.999985 and mean absolute error of 0.02035 mm in 

the model test. It was demonstrated that low-cost 

sensors can successfully predict the penetration depth 

during Al/Cu laser welding. 

Introduction 

Electric vehicles are gradually replacing 

conventional engine-based vehicles, and the importance 

of battery systems is increasing significantly in the 

automotive industry. Currently, lithium-ion batteries are 

the most commonly used automotive batteries, and 

aluminum and copper are employed as materials for 

electrodes, tabs, and bus bars to carry electric current  

[1]. Although dissimilar metal joining between Al and 

Cu is inevitable in battery manufacturing, its weldability 

is poor because of its high thermal conductivity, varying 

melting temperatures, high optical reflectivity, and 

brittle intermetallic compound (IMC) formation [2,3]. 

Laser welding and ultrasonic welding are industrially 

preferred to mechanical joining or conventional fusion 

welding technologies, such as arc and resistance spot 

welding, for minimizing the thermal effects and IMC 

formation [1,4,5]. Ultrasonic welding is a solid-state 

welding process that can eliminate metallurgical defects 

in fusion welding  processes; however, the 

characterization and monitoring of welding quality are 

relatively difficult compared with laser welding [6,7]. 

Moreover, laser welding has better electrical 

conductance [8,9] and productivity [1] than other 

welding processes. Failure at the welded joint can cause 

thermal runaway in automotive batteries [10,11], and 

the quality monitoring of laser welding is critical for 

manufacturers. 

In overlap-welded Al/Cu joints, the weld penetration 

depth into the lower sheet must be precisely controlled 

to guarantee mechanical load and electrical current-

carrying capacities because insufficient penetration 

depth reduces the joint area, and excessive penetration 

depth increases IMC formation [2,3,12]. Recently, deep 

learning models for penetration-depth prediction have 

been introduced for laser welding. In particular, laser 

welding for dissimilar material combinations of Al/Cu 

[13], various grades of steel [14], and Cu/stainless steel 

[15] have been investigated using neural network 

models in which the penetration depth was estimated 

from process parameters. 

Efficient sensors and sufficient datasets are 

prerequisites for developing a deep learning model to 

predict in situ penetration depth. Coaxial high imaging 

has been suggested for monitoring keyhole behavior and 

penetration modes; however, its application is limited to 

full penetration [16]. The molten pool and keyhole 

behavior in laser welding were monitored using a 

charge-coupled device (CCD) camera; however, related 

studies on penetration depth prediction have not been 

introduced in Al/Cu dissimilar material joints. In 

comparison, photodiode-based monitoring showed 

excellent performance based on various optical 

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.23

51
/7.

00
00

76
7

A
L

IA
™

 
T

H
E

 
L

A
S

E
R

 
IN

S
T

IT
U

T
E

 

Jo
u

rn
a

l o
f 

L
a

se
r 

A
p

p
lic

a
ti

o
n

s 
AC

C
EP

TE
D

 M
AN

U
SC

R
IP

T 



emissions of Al and Cu. The emission bands at 395 nm, 

485 nm, and 580 nm were used to estimate the 

penetration mode into the lower sheet [17-20]; however, 

photodiode-based research has not been extended to the 

quantitative prediction of the penetration depth. In this 

study, a low-cost CCD camera and spectrometer with a 

wide spectrum range were chosen as the input sensors. 

Welding penetration is usually measured in 

transverse and longitudinal cross-sections to collect 

more data from specimens [21]. However, the direct 

measurement of penetration depth from cross-sections 

has inherent limitations in increasing the number of 

datasets and synchronizing with other sensors. Recently, 

keyhole depth was  measured using optical coherence 

tomography (OCT) [22,23], and a previous study 

proved that the OCT signal is well correlated with the 

penetration depth in Al/Cu laser welding [19]. The OCT 

signal was chosen as the output, indicating the 

penetration depth owing to a high sampling rate and 

easy synchronization with the input sensor signals.  

In this study, convolutional neural network (CNN) 

models employed to predict the penetration depth were 

investigated. CCD images and spectrometer signals 

were recorded as input, and OCT signals were collected 

as the output. The input and output were resampled at 

100 Hz and 500 Hz, respectively. The performances of 

the unisensor deep learning models based on CCD 

images and the multisensor deep learning models 

considering additional spectrometer signals were 

compared after training. The penetration depth 

prediction models were verified by an experiment with 

varying laser power, which showed that the developed 

models can accurately predict the penetration depth. 

Experiments 

The base metals were Al 1050-H alloy with a 

thickness of 0.4 mm and C1100-1/2H copper alloy with 

a thickness of 1.0 mm. The chemical composition of the 

Al alloy is listed in Table 1. The chemical composition 

of the Cu alloy was 99.95% Cu and less than 10 ppm 

oxygen. The ultimate tensile strengths of the Al and Cu 

alloys were 158 MPa and 268 MPa, respectively. 

Table 1. Chemical composition of Al 1050 alloy (wt %) 

Al Si Fe Cu Mn Mg Zn Ti V 
99.59 0.068 0.286 0.003 0.001 0.001 0.002 0.023 0.016 

The Al and Cu specimens were machined as sheets 

with dimensions of 50 mm and 150 mm in width and 

length, respectively; an Al sheet was fully overlapped 

onto a Cu sheet for welding. The weld length was 100 

mm. A welding laser beam was generated using a fiber 

laser with a beam quality of 2 mm·mrad and maximum 

power of 6 kW, and delivered to a laser welding head 

via an optical fiber with a diameter of 200 µm. The laser 

welding head consisted of focusing optics, illumination 

laser optics, OCT sensors, CCD cameras, and 

spectrometers (Fig. 1). The focal length of the focusing 

optics was 200 mm, and the laser beam was focused on 

the top surface of the upper specimens with a beam 

diameter of 270 µm. The illumination laser had a 

wavelength of 980 nm, and the specimens were 

irradiated with a power of 100 W and an angle of 40° 

from the horizontal line. The OCT sensor monitored 

keyhole depth at a sampling frequency of 135 kHz. 

Because the OCT sensor measured the keyhole depth, 

the relationship between the keyhole depth and 

penetration depth was calibrated to estimate the 

penetration as an output of the models. The CCD 

camera images were captured at a frame rate of 500 Hz 

after band-pass filtering at a 980 ± 5 nm wavelength. 

The spectrometer had a sensing wavelength range of 

200–1100 nm, sampling rate of 100 Hz, and an optical 

resolution of 0.47 nm in full width at half maximum. 

The CCD camera and spectrometer sensor were 

connected to the laser head via a dichroic mirror.  

 
Fig 1. Laser head configuration 

The welding speed was set from 3 m/min to 7 m/min 

in increments of 1 m/min, and five laser powers were 

selected to vary the weld penetration depth for a 

particular welding speed. At each welding speed, the 

lowest laser power was set to melt only the upper plate, 

and the laser power was increased to create a stable 

interface between the upper and lower plates. The 

details of the welding parameters are presented in Table. 

2. 

Table 2. Welding parameters used in experiments  

Laser power (W) 700–1600 

Laser beam diameter (mm) 0.27 

Focal length (mm) 200 

The CCD images, OCT signal, and spectrometer 

signals were recorded at their own sampling rate, but in 
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synchronization. The signals, except 0.3 s of start and 

end of the welding, were used for modelling. 

In the verification test, the laser output power was 

increased from 600 W to 900 W along a welding length 

of 100 mm at a fixed welding speed of 5 m/min. The 

verification specimen was cut longitudinally, and the 

penetration depth was measured and compared with the 

penetration depth estimated by the developed models. 

Data preparation and Models 

Penetration depth calibration 

The weld penetration depth was estimated using OCT 

signals to measure the keyhole depth. The relationship 

between the penetration depth and OCT signals was 

calibrated by measuring two characteristics of the 

sample cases. The samples were prepared under 12 

welding conditions, as shown in Fig. 2. The penetration 

depth was measured on the cross sections of the three 

samples extracted from each specimen. The OCT 

signals and penetration depths were averaged under 

each welding condition. The measured characteristics 

showed a linear relationship, with a coefficient of 

determination of 0.9304 (Fig. 3). 

Data preprocessing 

 

Fig 2. Penetration depth measurement  

from cross-sections 

Two input signals and one output signal had different 

sampling frequencies. The input and output signals were 

resampled at frequencies of 100 Hz and 500 Hz, 

respectively. After deep learning training, 100 Hz 

sampled data-based prediction models were compared 

with 500 Hz resampled data-based prediction models. 

The details of resampling are presented below. 
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Fig 3. Relation between measured penetration depth and 

OCT signal 

Coaxial images of the welds, including a keyhole, 

molten pool, and solidified weld bead, were recorded 

with a resolution of 242 × 472 pixels, and a sampling 

rate of 500 Hz. In the 500 Hz prediction models, as-

received images were used as an input signal, and in the 

100 Hz prediction models, the images were resampled 

by averaging every five images. As shown in Fig. 4, the 

averaged image shows a clear and continuous edge of 

objects and less noise, despite slight blurring. 

 

Fig. 4 Example of CCD images. (a) Raw image and (b) 

resampled image (100 Hz) 

Spectrometer signals were collected at a sampling 

rate of 100 Hz, and used as inputs for the 100 Hz 

prediction models. In the 500 Hz predictions models, 

the raw spectrometer signal was up-sampled per 

wavelength using the Fourier method [24] (Fig. 5). In 

the spectrometer signal, relatively high peaks were 

observed by the reflection of the process laser (1070 

nm),  illumination laser (980 nm), and OCT reference 

laser (around 838 nm), as shown in Fig.6a, as well as 
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material emission signals, as shown in Fig. 6b. The 

wavelengths of the local peaks coincide with the copper 

emission wavelengths in the National Institute of 

Standards and Technology (NIST) database [25].  
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Fig. 5 Spectrometer signal and resampling at a 

wavelength of 490.83 nm 
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Fig. 6 Example of spectrometer signal. (a)  Signal 

profiles for the entire wavelength and (b) for local peak 

wavelength. 

The OCT signal sampled at 135 kHz was resampled 

at 100 Hz and 500 Hz by averaging every 1350 and 270 

signals, respectively. As shown in Fig. 7, the down-

sampled signals represented the original signals well, 

despite a slight attenuation of fluctuation. 
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Fig. 7 Raw OCT signals and resampled OCT signals at 

(a) 100 Hz and (b) 500 Hz 

Deep learning models 

Unisensor models and multisensory models were 

constructed to predict the weld penetration depth.  

The deep learning model for unisensor models is a 

typical CNN model [26]. Two unisensor models were 

trained using sampled inputs and outputs of 100 Hz and 

500 Hz. The input of the unisensor models was the CCD 

image of the in situ welding. A down-sampled image of 

100 Hz and sampled raw image of 500 Hz were 

considered as input. The unisensor model comprised 

two blocks of convolution, batch normalization, max 

pooling layers, and a fully connected network (FCN) 

with two dense layers (Fig. 8a).  
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In the multisensor models, a 2D-CNN and a 1D-CNN 

were concatenated, followed by an FCN (Fig. 8b). The 

input of the multisensor models was the CCD image and 

the spectrometer signal. The upper part of the 

multisensor model was identical to that of the unisensor 

model. At a particular time frame, the spectrometer 

signal was considered as 1-D series according to the 

wavelength and modeled by a 1-D CNN network. As in 

the unisensor models, two models with sampling 

frequencies of 100 Hz and 500 Hz were trained. 

A rectified linear unit (ReLU) was selected as an 

activation function for all hidden nodes, and an identical 

function was used as an activation function at the output 

node.  

Dataset and optimization method 

A total of 3,000 and 15,000 data points were prepared 

by data acquisition and preprocessing for the 100 Hz 

and 500 Hz models, respectively. Data points were 

randomly split into training, validation, and test datasets 

at rates of 70%, 15%, and 15%, respectively. 

The mean square error loss function and Adam 

optimizer were used during the training. The parameters 

for the Adam optimizer were learning rate = 10-3, β1 = 

0.9, β2 = 0.999, and ε = 10-8. The details of the Adam 

optimizer and its parameters are available in [27]. 

The models were trained for 1000 epochs in 

minibatches of 16 samples.  

Results and discussion 

 

Training and validation 

The training error of the models rapidly decreased in 

the early stage, and continuously decreased according to 

the epoch. The validation error converged after a 

maximum of 300 epochs, indicating that the models 

were not overfitted. In particular, the 500 Hz models 

were stabilized at a significantly early epoch compared 

with the 100 Hz models. 
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 Fig. 9 Model training results for (a) 100 Hz unisensor, 

(b) 100 Hz multisensor, (c) 500 Hz unisensor, and (d) 

500 Hz multisensor models 

 

 
a) unisensor model 

 
(b) multisensor model 

Fig. 8 Structure of deep learning models 
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