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RESEARCH Open Access

Joint effects of ethnic enclave residence
and ambient volatile organic compounds
exposure on risk of gestational diabetes
mellitus among Asian/Pacific Islander
women in the United States
Andrew D. Williams1* , Sandie Ha2, Edmond Shenassa3, Lynne C. Messer4, Jenna Kanner5 and Pauline Mendola5

Abstract

Background: Asian/Pacific Islander (API) communities in the United States often reside in metropolitan areas with
distinct social and environmental attributes. Residence in an ethnic enclave, a socially distinct area, is associated
with lower gestational diabetes mellitus (GDM) risk, yet exposure to high levels of air pollution, including volatile
organic compounds (VOCS), is associated with increased GDM risk. We examined the joint effects of ethnic enclaves
and VOCs to better understand GDM risk among API women, the group with the highest prevalence of GDM.

Methods: We examined 9069 API births in the Consortium on Safe Labor (19 hospitals, 2002–2008). API ethnic
enclaves were defined as areas ≥66th percentile for percent API residents, dissimilarity (geographic dispersal of API
and White residents), and isolation (degree that API individuals interact with another API individual). High levels of
14 volatile organic compounds (VOC) were defined as ≥75th percentile. Four joint categories were created for each
VOC: Low VOC/Enclave (reference group), Low VOC/No Enclave, High VOC/Enclave, High VOC/No Enclave. GDM
was reported in medical records. Hierarchical logistic regression estimated odds ratios (OR) and 95% confidence
intervals (95%CI) between joint exposures and GDM, adjusted for maternal factors and area-level poverty. Risk was
estimated for 3-months preconception and first trimester exposures.

Results: Enclave residence was associated with lower GDM risk regardless of VOC exposure. Preconception benzene
exposure was associated with increased risk when women resided outside enclaves [High VOC/No Enclave (OR:3.45,
95%CI:1.77,6.72)], and the effect was somewhat mitigated within enclaves, [High VOC/Enclave (OR:2.07, 95%:1.09,
3.94)]. Risks were similar for 12 of 14 VOCs during preconception and 10 of 14 during the first trimester.
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Conclusions: API residence in non-enclave areas is associated with higher GDM risk, regardless of VOC level. Ethnic
enclave residence may mitigate effects of VOC exposure, perhaps due to lower stress levels. The potential benefit of
ethnic enclaves warrants further study.

Keywords: Air pollution, Asian/Pacific Islanders, Gestational Diabetes Mellitus, Pregnancy, Volatile Organic
Compounds, Ethnic enclave, Stress, Joint exposure

In the United States (U.S.), the Asian/Pacific Islander
(API) population increased 72% between 2000 and 2015,
more than any other racial/ethnic group [1]. Approxi-
mately 95% of the U.S. API population is concentrated
in metropolitan areas [2], contributing to distinct social
and environmental attributes of these areas [3–8]. Des-
pite the concentration of API communities in metropol-
itan areas, these populations are underrepresented in the
environmental health literature, in part due to the
‘model minority’ myth, which due to high average socio-
economic status, suggests API populations have better
health outcomes compared to other racial/ethnic groups
[6, 9, 10]. The purpose of this study is to build on previ-
ous investigations of contextual health determinants [11,
12] among pregnant API women to provide additional
data to better understand the health implications of joint
social and environmental exposures among U.S. API
communities.
Ethnic enclaves are socially and geographically distinct

areas with relatively high concentrations of residents of a
similar racial/ethnic ancestry within a metropolitan area
[3–5]. Evidence suggests that residence in an ethnic en-
clave may contribute to better health outcomes among
members of the prominent group in that area. Com-
pared to API residents of non-enclave areas, API resi-
dents of ethnic enclaves live longer [13] and have lower
cancer risk [14]. Evidence among pregnant API women
is limited, yet initial findings suggest API women resid-
ing in ethnic enclaves seek prenatal care earlier [15] and
smoke and use alcohol at lower rates [11, 15, 16]. How-
ever, the potentially healthy effect of residence in an eth-
nic enclave may not be uniform, and may differ by
ancestry of the API population. For example, among API
populations in the United Kingdom-based Millennium
Cohort, ethnic enclave residence increased risk of low
birth weight birth among Bangladeshi and Indian
mothers, yet was associated with reduced risk of low
birth weight among Pakistani mothers [17]. The poten-
tial effect of ethnic enclaves among API populations is
unclear regarding preterm birth and gestational diabetes
mellitus [11, 17, 18]. The potentially healthy effect ob-
served among residents of ethnic enclaves, compared to
residents in non-enclave areas is hypothesized to be due
to low exposure to discrimination [19, 20] and stress
[19], which are among the key determinants of health

[21–23]. The reduced exposure to discrimination and
stress among ethnic enclave residents is likely due to
residents’ high levels of political representation and civic
participation, as well as greater access to culturally-
relevant goods and services that maintains the resident
population’s connection to their cultural identity [3–5,
15, 24].
Compared to white communities, communities of

color are overburdened with air pollution exposure in
the U.S. [6–8, 25] On average, API communities are ex-
posed to similarly high levels of air pollution in compari-
son to Black and Hispanic communities [6–8, 25].
Additionally, pregnant API women are nearly three
times as likely to live in areas with high levels of air pol-
lution compared to pregnant white women [25]. Expos-
ure to high levels of various types of air pollution is
associated with systemic inflammation and oxidative
stress, which may contribute to poor health outcomes
[26–31]. Evidence from animal studies suggest VOCs
also induce systemic inflammation and oxidative stress.
For instance, among rats, increasing exposure to ben-
zene, a volatile organic compound (VOC), has a linear
association with oxidative stress, pancreatic β-cell dys-
function, and greater insulin resistance [32]. High levels
of oxidative stress have been linked with pancreatic β-
cell dysfunction and insulin resistance among humans
[30, 31]. Furthermore, API populations have a higher
prevalence of genetic variations associated with pancre-
atic β-cell dysfunction and insulin resistance than other
racial/ethnic groups [33, 34]. While the air pollution-
oxidative stress pathway is not specific to API popula-
tions, the observed genetic variations may make API
populations more susceptible to high levels of air pollu-
tion exposure. Thus, the potential interaction between
air pollution exposure and social context merits further
attention given the potential genetic susceptibility for
adverse metabolic outcomes among API populations.
As high exposure to psychosocial stress is associated

with immune system dysfunction [35], low exposure to
stress among residents of ethnic enclaves suggests more
normative immune function. As part of the normative
immune response, cells exposed to an insulting agent re-
lease pro-inflammatory cytokines and become inflamed
in order to isolate damage and protect healthy cells and
tissue; as the insult is eliminated, anti-inflammatory
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cytokines are released and inflammation is contained,
thus mitigating development of disease [36]. In contrast,
air pollution exposure signals an inflammatory response
[27, 32, 37–40], and among those with a compromised
immune system, an excessive inflammatory response to
air pollution may increase risk for metabolic disease [41,
42]. Considering joint social and environmental expo-
sures among API communities in the U.S. will provide
new insights into health outcomes among these under-
studied populations [43]. To the best of our knowledge,
joint exposure to residence in ethnic enclaves and air
pollution has not yet been examined in pregnant
women. Given evidence suggesting residence in ethnic
enclaves may be less stressful residential contexts than
other areas [19, 20], residents of ethnic enclaves more
normative immune function may better mitigate the
negative health consequences associated with exposure
to air pollution compared to those residing elsewhere.
Gestational diabetes mellitus (GDM) presents a unique

opportunity to examine joint exposures to ethnic en-
claves and air pollution among U.S. API women. In the
U.S., API women have the highest prevalence of GDM
compared to other racial/ethnic groups [12, 44–52].
GDM is associated with an increased risk of maternal,
fetal and neonatal complications, including an increased
risk of developing type 2 diabetes mellitus among
mothers, and increased risk of obesity and diabetes
among offspring [53]. Within the Consortium on Safe
Labor (CSL), we observed API women had higher preva-
lence of GDM (9.9%) compared to white (4.5%), Black
(4.3%), and Hispanic (6.4%) women [12]. Furthermore,
in separate studies among the CSL, API women residing
in ethnic enclaves had lower risk of GDM compared to
API women residing in non-enclave areas [11] and that
exposure to high levels of VOCs early in pregnancy was
associated with a greater increase in risk of GDM among
API women than among women of other racial/ethnic
groups [12]. Thus, we hypothesized that pregnant API
women residing in an ethnic enclaves were less suscep-
tible to negative consequences of air pollution than
pregnant API women residing elsewhere.

Methods
Data and participants
The Consortium on Safe Labor (CSL) was a national,
electronic medical record-based retrospective cohort
study from 2002 to 2008 which included 19 hospitals (8
university teaching hospitals, 9 community teaching hos-
pitals, 2 community hospitals) in 15 Hospital Referral
Regions (HRR), catchment areas for tertiary care hospi-
tals [54]. Hospitals were selected based on availability of
electronic medical records, and for representation of the
9 American College of Obstetricians and Gynecologists
districts [55]. Data were extracted for deliveries ≥23

weeks gestation and include maternal sociodemographic
characteristics; medical, reproductive and prenatal his-
tory; labor and delivery, and newborn data. A total of
228,438 deliveries were included in the CSL. We ex-
cluded multifetal pregnancies (n = 5053; 2.21%), mothers
with pre-existing diabetes (n = 3309; 1.44%), and those
with missing air pollution exposure information (n = 10;
.004%). Including only API mothers resulted in an ana-
lytic sample of 9069 births to 8350 mothers. Institutional
Review Boards at all sites approved the CSL, and data
are anonymous.

Outcome variable
GDM was drawn from medical record data or in dis-
charge summaries using ICD-9 code 648.8. During the
CSL study period (2002–2008), the American Diabetes
Associations recommended screening for GDM between
24 and 28 weeks gestation using the Carpenter and Cou-
stan criteria [56].

Ethnic enclave exposure
In the CSL, area of residence was estimated using the
HRR in which the birth occurred. HRR is the only geo-
graphic unit of analysis available in the CSL [57]. HRRs
are regional geographies (average miles2: 13,065) com-
parable to Metropolitan Statistical Areas [58], with large
enough populations (average population size in thou-
sands: 2026) for observable residential sorting [54, 58].
We aggregated sociodemographic data at the zip code

tabulation area (ZCTA) level to provide estimates at the
HRR level. As HRR are partially defined by ZCTA, we
aggregated ZCTA data to the corresponding HRR using
year-specific ZCTA to HRR crosswalk from the Dart-
mouth Atlas of Health Care [54, 58]. ZCTA data was
accessed from the National Historical Geographic Infor-
mation System for the 2000 decennial census, and the
2007–2011 5-year average of the American Community
Survey (ACS) [59]. We linked CSL data with year-
specific sociodemographic data: births between 2002 and
2004 were linked with 2000 Census data, and births be-
tween 2005 and 2008 were linked with 2007–2011 ACS
data [11, 58].
We identified ethnic enclaves at the HRR level [11].

HRRs are centered on urban areas, where the majority
of U.S. API populations reside [2], yet the regional
coverage of HRRs allows for inclusion of potential ethnic
enclaves outside of urban centers [60].
Described in Table 1, the distinct social and geo-

graphic attributes of an ethnic enclave are represented
by API population density and racial/ethnic segregation,
defined using three variables [5, 11]. First, API popula-
tion density, is measured by the percent of API individ-
uals residing in an HRR. Second, API-White
dissimilarity index, is the differential distribution of API
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and White populations within a geographic area [61, 62].
Lastly, the API isolation index, is the probability that an
API individual will interact with another API individual
[61, 62]. API population density, API-white dissimilarity
index, and API isolation index were calculated separately
for Census data and ACS data.
We used population-based percentiles [4, 5, 11, 18] to

identify tertiles (low, medium, high) for API population
density, API-white dissimilarity, and API isolation. An
HRR was considered an ethnic enclave if it was in the
upper third of the distribution for all three variables:
API population density, API-white dissimilarity, and API
isolation [11].

Ambient volatile organic compound exposure
The Air Quality and Reproductive Health study esti-
mated VOC exposure in the CSL using a modified ver-
sion of the Community Multiscale Air Quality Model
(version 4.7.1), a 3-dimensional, multipollutant air qual-
ity model used to predict ambient pollutant levels using
2005 (version 4) National Emission Inventory (NEI)
emissions data and Weather Research Forecasting Model
meteorological data. The 2005 NEI v4 was used to gen-
erate anthropogenic emissions for 2005–2010. Emissions
of year 2002 to 2004 and 2006–2010 were adjusted
based on the average annual emissions trends. Modified
CMAQ models were evaluated at 4 km and 36 km, and
we used 36 km as the HRR resolution was minimally im-
pacted [57]. Exposure was based on predicted hourly
ambient pollutant concentrations within HRRs, fused
with local air monitoring data to improve accuracy, and
weighted to reflect population concentration and non-
residential areas (i.e. industrial, large parks, water,
mountains), as previously described [57].
As GDM screening is recommended between 24 and

28 weeks gestation [56], we averaged the predicted

hourly ambient pollutant concentration across precon-
ception (3 months preconception) and first trimester
(through 13 weeks gestation) exposure windows. Ambi-
ent concentrations (parts per billion; ppb) were esti-
mated for 14 VOCs: benzene, 1,3-butadiene,
ethylbenzene, cyclohexane, methyl-tertiary-butyl ether,
N-hexane, ethyl-methyl ketone, m-xylene, o-xylene, p-
xylene, propene, sesquiterpene, styrene, and toluene for
each exposure window. Exposure to ≥75th percentile in
ppb was considered high exposure, and all values <75th
percentile in ppb were considered low exposure.

Joint exposure categories
Using the categorical ethnic enclave (yes/no) variable,
and the categorical VOC (high/low) variable, we created
joint exposure categories: Low VOC/Enclave (reference),
Low VOC/No Enclave, High VOC/Enclave, High VOC/
No Enclave. The joint exposure variables were created
for each of the 14 VOC in both the preconception and
first trimester exposure windows.

Covariates
Individual-level covariates included maternal age, marital
status (married, single, other), health insurance (public,
private, other), pre-pregnancy body mass index (BMI, <
18.5, 18.5- < 224.9, 25- < 29.9, ≥30), season of conception
(winter, spring, summer, fall) and parity (nulliparous or
multiparous). As income is not available in the CSL,
health insurance [63] and marital status [64] were used
as proxies for socioeconomic status. BMI was imputed
using multiple imputations (10 iterations) due to a high
degree of missingness (42%).
Area-level poverty (continuous proportion of residents

in the HRR living below federal poverty thresholds), hos-
pital type (university teaching hospital, community
teaching hospital, and community non-teaching hospital)

Table 1 Area-level measures used to identify ethnic enclaves (also described in Williams et al., 2020) [11]

Measure Formula Description

API population density
(social attribute)

(AT/PT) ∗ 100 Percentage of API residents within an HRR.
Range 0–100; 100 suggests HRR consists of only API residents

Dissimilarity Index
(geographic attribute)

1
2

Pn

i¼1
j wi
WT

− ai
AT
j Differential distribution of API and White populations within an HRR.

Range 0–1; score of 1 suggests absolute geographic separation of API and White populations within HRR.

Isolation Index
(geographic attribute)

Pn

i¼1
ðaiATÞ�ðaiPTÞ

Probability that API residents of an HRR will interaction with another API individual.
Range 0–1; score of 1 suggests an API resident in an HRR will only interact with other API residents.

Components Description

ai Number of API in the Zip code

AT Number of API in the HRR

n Number of Zip codes

PT Total population of the HRR

wi Number of white in the Zip code

WT Number of white in the HRR
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were included as HRR-level covariates. Covariates in-
cluded in analysis were informed by previous studies
[11, 12].

Statistical analysis
Prevalence of GDM was reported for ethnic enclave resi-
dence and maternal characteristics, and by joint enclave-
VOC exposure. Spearman rank correlations between
each of the VOCs were calculated (Supplemental Ta-
bles 1 and 2).
Mothers in CSL were nested in HRRs for analysis.

Hierarchical logistic regression models were used to esti-
mate the odds ratio (OR) and 95% confidence intervals
for the association between joint VOC/Enclave exposure
and GDM, with robust standard errors to account for re-
peat births to the same mother (n = 731, 7.9% of births).
Low VOC/Enclave exposure category served as reference
group as we anticipated this was the lowest risk cat-
egory. Separate models were run for each of the 14
VOCs for the preconception and first trimester exposure
windows, using PROC GLIMMIX and PROC MIAN
ALYZE (SAS 9.4) [65]. Benjamini-Hochberg false discov-
ery rate adjustment procedure was used to account for
multiple testing [66] (false discovery rate = 10%). Ana-
lyses were performed using PROC MULTTEST (SAS
9.4) [65].

Sensitivity analyses
To further disentangle the potential effects of individual
component measures (API population density, dissimi-
larity index or isolation index), we fit separate models to
examine the association of ethnic enclaves, and each
component part alone, with GDM. The ethnic enclave
variable was dichotomous (yes/no), with 'no' serving as
the reference category. The component variables were
the tertile (low/medium/high) variables used to identify
ethnic enclaves, with the 'low' category serving as the
reference. Covariates included maternal age, marital sta-
tus, health insurance, BMI, season of conception, parity,
area-level poverty, hospital type, preconception benzene,
and first trimester benzene.
Our primary models were single pollutant models but,

we recognize that there is correlation between VOCs,
and humans are typically exposed to a mixture of VOCs.
We conducted a sensitivity analysis to determine if util-
izing a measure of VOC mixtures modified results ob-
served in the main analysis. We used Principal
Component Analysis (PCA) to identify variables to in-
clude in a “multiple high VOCs” exposure category.
PCA identified 7 VOCs that were jointly high: benzene,
ethylbenzene, toluene, m-xylene, o-xylene, p-xylene, n-
hexane. These 7 VOCs were jointly high for both pre-
conception and first trimester exposure. If an individual
was in the “high” group for all 7 of the VOCs, they were

in the new “High Multiple VOC” group. We used this
“high multiple VOC” group to identify new VOC-
Enclave joint categories. Models with the same covari-
ates as the primary models were run to estimate the as-
sociation between High Multiple VOC/Enclave
categories and GDM, with Not High in Multiple VOCs/
Enclave areas serving as reference.

Results
Of the 9069 pregnancies among API women in the CSL,
there were 899 (9.9%) cases of GDM. Table 2 includes
distribution of GDM by ethnic enclave residence, mater-
nal characteristics, and area-level covariates. There were
1891 (20.8%) API women within ethnic enclaves, and
7178 (79.2%) API women in non-enclave areas. The
prevalence of GDM was lower among women in ethnic
enclaves (7.5%) compared to women in non-enclave
areas (10.5%). GDM was more prevalent as BMI and age
increased, as well as among multiparous women. GDM
was more prevalent among women with private (10.6%)
versus public (9.7%), self pay (9.3%) or other (6.5%) in-
surance coverage. GDM prevalence differed by season of
conception, with warmer months having lower preva-
lence of GDM compared to colder months. Of note,
GDM prevalence did not greatly differ by area-level
poverty.
Distribution of GDM by joint VOC/Enclave exposure

categories is included in Table 3. For preconception
VOC exposure, prevalence of GDM was lowest in Low
VOC/Enclave areas for 7 of 14 VOCs, as anticipated, but
was lowest in 6 of 14 High VOC/Enclave areas. For pre-
conception exposure to sesquiterpene, Low VOC/En-
clave areas and High VOC/Enclave areas, had the same
GDM prevalence (7.5%). Prevalence of GDM was similar
across categories of first trimester VOC exposure. For
both preconception and first trimester exposures, non-
enclave areas had higher GDM prevalence than enclave
areas, regardless of VOC exposure levels.
Hierarchical regression results for the association be-

tween VOC/Enclave joint exposure and GDM are re-
ported in Table 4. Compared to Low VOC/Enclave
areas, non-enclave areas were generally associated with
higher risk of GDM, regardless of VOC exposure levels.
For example, preconception benzene exposure was asso-
ciated with elevated risk for High VOC/No Enclave (OR:
3.45, 95%CI:1.77, 6.72) and for Low VOC/No Enclave
(OR:2.85, 95%CI:1.57, 5.17), while the risk for High
VOC/Enclave (OR:2.07, 95%:1.09, 3.94) was elevated but
somewhat mitigated. There was a similar pattern for 12
of 14 VOC during preconception and 10 of 14 during
the first trimester. For example, for propene exposure,
risks were similar for both preconception High VOC/No
Enclave (OR:1.99, 95%CI: 1.46, 2.72) and first trimester
High VOC/No Enclave (OR:1.96, 95%CI: 1.44, 2.67).
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Table 2 Frequency (and percent) of GDM status by ethnic enclave residence and maternal characteristics among Asian/Pacific
Islander women in the Consortium on Safe Labor among Asian/Pacific Islander women (n = 9069)

Gestational Diabetes Mellitus p-valuesa

Yes
(n = 899)

No
(n = 8170)

Ethnic enclave

Yes (1891) 142 (7.5) 1749 (92.5) p < .01

No (7178) 757 (10.5) 6421 (89.5)

Maternal Age

< 20 years (168) 4 (2.34) 164 (97.4) p < .01

20–24 years (1289) 74 (5.7) 1215 (94.3)

25–29 years (2797) 226 (8.1) 2571 (91.9)

30–34 years (2958) 318 (10.8) 2640 (89.2)

35+ years (1851) 277 (15.0) 1574 (85.0)

Unknown/Missing [6] 0 (0.0) 6 (100.0)

Body Mass Index

≥ 30 (425) 75 (17.7) 350 (82.3) p < .01

25–29.9 (744) 111 (14.9) 633 (85.1)

18.5–24.9 (3466) 282 (8.1) 3184 (91.9)

11.2–18.49 (621) 31 (5.0) 590 (95.0)

Unknown (3813) 400 (10.5) 3413 (89.5)

Insurance Type

Private (6374) 677 (10.6) 5697 (89.4) p < .01

Public (1280) 124 (9.7) 1156 (90.3)

Self Pay (193) 18 (9.3) 175 (90.7)

Other (1222) 80 (6.5) 1142 (93.5)

Marital Status

Married (7642) 800 (10.5) 6842 (89.5) p < .01

Single (1241) 78 (6.3) 1163 (93.7)

Divorced (186) 21 (11.3) 165 (88.7)

Parity

0 (4433) 395 (8.9) 4038 (91.1) p < .01

≥ 1 (4636) 504 (10.9) 4132 (89.1)

Hospital Type

University Affiliated (3716) 329 (8.9) 3387 (91.1) p < .01

Community: Teaching (4948) 541 (10.9) 4407 (89.1)

Community: Non-teaching (405) 29 (7.2) 376 (92.8)

Season of Conception

March–May (2140) 203 (9.5) 1937 (90.5) p = .05

June–August (2363) 208 (8.8) 2155 (91.2)

September–November (2437) 250 (10.3) 2187 (89.7)

December–February (2129) 238 (11.2) 1891 (88.8)

Area-Level Poverty

≥ 15.9% (3323) 348 (10.5) 2975 (89.5) p = .17

< 15.9% (5746) 551 (9.6) 5195 (90.4)
aP-values obtain using generalized estimating equations to account for women with > 1 pregnancy
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Table 3 Frequency (and percent) of gestational diabetes mellitus status by joint preconception VOC-Enclave category among Asian/
Pacific Islander women in the Consortium on Safe Labor (2002–2008)

Preconception First Trimester

VOC
(High = ≥ 75th
percentile)

Enclave n
(N = 9069)

GDM
(N = 899)

No GDM (n = 8170) p valuea n
(N = 9069)

GDM
(N = 899)

No GDM (n = 8170) p valuea

Benzene Low Yes 242 13 (5.3) 229 (94.6) p < .01 245 15 (6.1) 230 (93.9) p < .01

No 4115 415 (10.0) 3700 (90.0) 4179 420 (10.0) 3759 (90.0)

High Yes 1649 129 (7.8) 1520 (92.2) 1646 127 (7.7) 1519 (92.3)

No 3063 342 (11.1) 2721 (88.9) 2999 337 (11.2) 2662 (88.8)

Ethylbenzene Low Yes 245 15 (6.1) 230 (93.9) p < .01 245 15 (6.1) 230 (93.9) p < .01

No 3916 406 (10.3) 3510 (89.7) 3943 412 (10.4) 3531 (89.6)

High Yes 1646 127 (7.7) 1519 (92.3) 1646 127 (7.7) 1519 (92.3)

No 3262 351 (10.7) 2911 (89.3) 3235 345 (10.6) 2890 (89.4)

MTB Ether Low Yes 738 63 (8.5) 675 (91.5) p < .01 596 50 (8.4) 546 (91.6) p < .01

No 4578 437 (9.5) 4141 (90.5) 4436 419 (9.4) 4017 (90.6)

High Yes 1153 79 (6.9) 1074 (93.1) 1295 92 (7.1) 1203 (92.9)

No 2600 320 (12.3) 2280 (87.7) 2742 338 (12.3) 2404 (87.7)

N-hexane Low Yes 535 44 (8.22) 491 (91.8) p < .01 410 32 (7.8) 378 (92.2) p < .01

No 3834 373 (9.7) 3461 (90.3) 3984 388 (9.7) 3596 (90.3)

High Yes 1356 98 (7.2) 1258 (92.8) 1481 110 (7.4) 1371 (92.6)

No 3344 384 (11.5) 2960 (88.5) 3194 369 (11.5) 2825 (88.5)

EMK Low Yes 739 58 (7.8) 681 (92.2) p < .01 627 54 (8.6) 573 (91.4) p < .01

No 4827 490 (10.1) 4337 (89.9) 4615 460 (9.9) 4155 (90.1)

High Yes 1152 84 (7.3) 1068 (92.7) 1264 88 (6.9) 1176 (93.1)

No 2351 267 (11.3) 2084 (88.7) 2563 297 (11.6) 2266 (88.4)

m-xylene Low Yes 245 15 (6.1) 230 (93.9) p < .01 245 15 (6.1) 230 (93.9) p < .01

No 3909 408 (10.4) 3501 (89.6) 3926 410 (10.4) 3516 (89.6)

High Yes 1646 127 (7.7) 1519 (92.3) 1646 127 (7.7) 1519 (92.3)

No 3269 349 (10.7) 2920 (89.3) 3252 347 (10.7) 2905 (89.3)

o-xylene Low Yes 304 18 (5.9) 286 (94.1) p < .01 246 15 (6.1) 231 (93.9) p < .01

No 3897 405 (10.4) 3492 (89.6) 3936 410 (10.4) 3526 (89.6)

High Yes 1587 124 (7.8) 1463 (92.2) 1645 127 (7.7) 1518 (92.3)

No 3281 352 (10.7) 2929 (89.3) 3242 347 (10.7) 2895 (89.3)

p-xylene Low Yes 438 31 (7.1) 407 (92.9) p < .01 338 24 (7.1) 314 (92.9) p < .01

No 3868 399 (10.3) 3469 (89.7) 3900 406 (10.4) 3494 (89.6)

High Yes 1453 111 (7.6) 1342 (92.4) 1553 118 (7.6) 1435 (92.4)

No 3310 358 (10.8) 2952 (89.2) 3278 351 (10.7) 2927 (89.3)

Propene Low Yes 827 67 (8.1) 760 (91.9) p < .01 945 74 (7.8) 871 (92.2) p < .01

No 4728 449 (9.5) 4279 (90.5) 4471 420 (9.4) 4051 (90.6)

High Yes 1064 75 (7.1) 989 (92.9) 946 68 (7.1) 878 (92.9)

No 2450 308 (12.6) 2142 (87.4) 2707 337 (12.5) 2370 (87.5)

Sesquiterpene Low Yes 818 62 (7.5) 756 (92.5) p < .01 741 62 (8.4) 679 (91.6) p < .01

No 3753 355 (9.5) 3398 (90.5) 3841 360 (9.4) 3481 (90.6)

High Yes 1073 80 (7.5) 993 (92.5) 1150 80 (6.9) 1070 (93.1)

No 3425 402 (11.7) 3023 (88.2) 3337 397 (11.9) 2940 (88.1)

Toluene Low Yes 334 19 (5.7) 315 (94.3) p < .01 245 15 (6.1) 230 (93.9) p < .01
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Results of the enclave components sensitivity analysis
are shown in Table 5. Residence in an ethnic enclave
was associated with 49% lower odds of GDM (OR:0.51,
95%CI:0.37, 0.69) compared to residence in a non-
enclave area. For the ethnic enclave components, high
API population density was associated with a 38% lower
odds of GDM (OR:0.62, 95%CI: 0.46, 0.83) compared to
low API population density. Additionally, high levels of
dissimilarity (OR: 0.81, 95% CI:0.64, 1.08) and isolation
(OR: 0.83, 95% CI:0.64, 1.07) suggest a potential healthy
effect compared to respective low levels.
The “high multiple VOC” sensitivity analysis results

are consistent and presented in Supplemental Table 3.
Compared to Not High in Multiple VOCs/Enclave areas,
non-enclave areas were associated with higher risk of
GDM, regardless of VOC exposure levels. Results were
similar across exposure windows. For example, High in
Multiple VOCs/Non-Enclave was associated with ap-
proximately 75% increased risk of GDM in preconcep-
tion (OR: 1.74 95%CI: 1.12, 2.69) and first trimester (OR:
1.75 95%CI: 1.08, 2.86) exposure windows.

Discussion
In this first investigation of the association between joint
exposure to air pollution and residence in an ethnic en-
clave and GDM risk, we found evidence that residence
within an ethnic enclave may mitigate negative conse-
quences of environmental exposures. In line with evi-
dence of an association between preconception and first

trimester exposure to air pollution and increased risk of
GDM [12, 28, 67–69] as well as evidence of lower risk of
GDM among women residing within ethnic enclaves
[11, 17, 18] we found evidence that residence in enclaves
is associated with lower GDM risk, regardless of VOC
level.
The observations suggest chronic exposure to resi-

dence outside of ethnic enclaves and VOCs are associ-
ated with increased GDM risk for API mothers, as risks
appear consistent across preconception and first trimes-
ter exposure windows. Previously among women in the
CSL, we have observed consistent increases in GDM risk
across preconception and first trimester exposure win-
dows for criteria air pollutants such as nitrogen oxides
and sulfur dioxide [28], as well as VOCs [12]. Similar ob-
servations of chronic exposure to criteria air pollutants
and GDM were observed among women in Denmark,
Sweden, and Taiwan [67–69]. Given that air pollution
and ethnic enclave exposures are likely chronic, the de-
velopment of GDM is likely not due to an acute expos-
ure in pregnancy.
As ethnic enclave residence appears to mitigate the

negative consequences of VOC exposure, these observa-
tions suggest immunologic function may be an import-
ant factor. The normative immunologic response to air
pollution, including during pregnancy [27], induces pro-
inflammatory responses evidenced by heightened cyto-
kine production and serum c-reactive protein levels [27,
32, 37–40]. Exposure to chronic stress leads to excessive

Table 3 Frequency (and percent) of gestational diabetes mellitus status by joint preconception VOC-Enclave category among Asian/
Pacific Islander women in the Consortium on Safe Labor (2002–2008) (Continued)

Preconception First Trimester

VOC
(High = ≥ 75th
percentile)

Enclave n
(N = 9069)

GDM
(N = 899)

No GDM (n = 8170) p valuea n
(N = 9069)

GDM
(N = 899)

No GDM (n = 8170) p valuea

No 3891 407 (10.5) 3484 (89.5) 3934 411 (10.5) 3523 (89.5)

High Yes 1557 123 (7.9) 1434 (92.1) 1646 127 (7.7) 1519 (92.3)

No 3287 350 (10.6) 2937 (89.4) 3244 346 (10.7) 2898 (89.3)

Styrene Low Yes 736 64 (8.7) 672 (91.3) p < .01 619 52 (8.4) 567 (91.6) p < .01

No 6268 657 (10.5) 5611 (89.5) 6266 661 (10.6) 5605 (89.4)

High Yes 1155 78 (6.7) 1077 (93.3) 1272 90 (7.1) 1182 (92.9)

No 910 100 (11.0) 810 (89.0) 912 96 (10.5) 816 (89.5)

1,3 butadiene Low Yes 732 64 (8.7) 668 (91.3) p < .01 595 51 (8.6) 544 (91.4) p < .01

No 6197 642 (10.4) 5555 (89.6) 6354 673 (10.6) 5681 (89.4)

High Yes 1159 78 (6.7) 1081 (92.3) 1296 91 (7.0) 1205 (93.0)

No 981 115 (11.7) 866 (88.3) 824 84 (10.1) 740 (89.9)

Cyclohexane Low Yes 1022 66 (6.5) 956 (93.5) p < .01 1016 74 (7.3) 942 (92.7) p < .01

No 3747 391 (10.4) 3356 (89.6) 3794 400 (10.5) 3394 (89.5)

High Yes 869 76 (8.7) 793 (91.3) 875 68 (7.8) 807 (92.3)

No 3431 366 (10.7) 3065 (89.3) 3384 357 (10.6) 3027 (89.5)
aP-values obtain using generalized estimating equations to account for women who had more than one pregnancy in the study
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Table 4 Joint associations between exposure to ambient volatile organic compounds, ethnic enclaves, and gestational diabetes
mellitus among Asian/Pacific Islander women in the Consortium on Safe Labor (2002–2008)

Preconception First Trimester

VOC
(High = ≥ 75th percentile)

Enclave n
(N = 9069)

Odds Ratio
(95% CI)

n
(N = 9069)

Odds Ratio
(95% CI)

Benzene Low Yes 242 Ref. 245 Ref.

No 4115 2.85 (1.57, 5.17)a 4179 2.38 (1.36, 4.16)a

High Yes 1649 2.07 (1.09, 3.94)a 1646 1.65 (0.90, 3.03)

No 3063 3.45 (1.77, 6.72)a 2999 2.70 (1.45, 5.03)a

Ethylbenzene Low Yes 245 Ref. 245 Ref.

No 3916 2.43 (1.37, 4.32)a 3943 2.30 (1.29, 4.09)a

High Yes 1646 1.70 (0.90, 3.22) 1646 1.56 (0.82, 2.95)

No 3262 2.76 (1.32, 5.75)a 3235 2.29 (1.10, 4.77)a

MTB Ether Low Yes 738 Ref. 596 Ref.

No 4578 1.38 (1.02, 1.87)a 4436 1.40 (1.01, 1.95)

High Yes 1153 0.87 (0.58, 1.31) 1295 0.90 (0.60, 1.36)

No 2600 1.84 (1.34, 2.52)a 2742 1.88 (1.33, 2.66)a

N-hexane Low Yes 535 Ref. 410 Ref.

No 3834 1.56 (1.11, 2.20)a 3984 1.72 (1.16, 2.55)a

High Yes 1356 1.03 (0.68, 1.57) 1481 1.16 (0.74, 1.83)

No 3344 2.09 (1.39, 3.15)a 3194 2.25 (1.43, 3.53)a

EMK Low Yes 739 Ref. 627 Ref.

No 4827 1.62 (1.19, 2.20)a 4615 1.43 (1.04, 1.96)a

High Yes 1152 1.09 (0.72, 1.63) 1264 0.85 (0.57, 1.28)

No 2351 1.84 (1.32, 2.58)a 2563 1.67 (1.18, 2.36)a

m-xylene Low Yes 245 Ref. 245 Ref.

No 3909 2.33 (1.31, 4.15)a 3926 2.30 (1.29, 4.08)a

High Yes 1646 1.59 (0.84, 3.01) 1646 1.55 (0.82, 2.94)

No 3269 2.40 (1.15, 5.00)a 3252 2.27 (1.08, 4.76)a

o-xylene Low Yes 304 Ref. 246 Ref.

No 3897 2.37 (1.42, 3.98)a 3936 2.35 (1.32, 4.17)a

High Yes 1587 1.66 (0.94, 2.94) 1645 1.60 (0.85, 3.04)

No 3281 2.52 (1.30, 4.87)a 3242 2.42 (1.15, 5.09)a

p-xylene Low Yes 438 Ref. 338 Ref.

No 3868 1.87 (1.25, 2.78)a 3900 1.93 (1.23, 3.03)a

High Yes 1453 1.27 (0.80, 2.03) 1553 1.29 (0.77, 2.16)

No 3310 2.02 (1.20, 3.40)a 3278 1.93 (1.06, 3.53)a

Propene Low Yes 827 Ref. 945 Ref.

No 4728 1.44 (1.07, 1.93)a 4471 1.45 (1.09, 1.93)a

High Yes 1064 0.93 (0.64, 1.36) 946 0.94 (0.66, 1.34)

No 2450 1.99 (1.46, 2.72)a 2707 1.96 (1.44, 2.67)a

Sesquiterpene Low Yes 818 Ref. 741 Ref.

No 3753 1.55 (1.15, 2.10)a 3841 1.38 (1.02, 1.87)a

High Yes 1073 1.13 (0.77, 1.65) 1150 0.87 (0.59, 1.28)

No 3425 2.23 (1.59, 3.14)a 3337 1.91 (1.36, 2.69)a

Toluene Low Yes 334 Ref. 245 Ref.

No 3891 2.39 (1.45, 3.95)a 3934 2.31 (1.30, 4.11)a
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release of stress hormones resulting in physiologic dys-
regulation, including impaired immune function, and
consequent excessive inflammation [42, 43]. Evidence of
immune function in regards to ethnic enclave residence
is seen among Hispanic women, as those residing in eth-
nic enclaves have lower risk of allostatic load (dysfunc-
tion across multiple physiologic domains including
impaired immune function), compared to those residing
in non-enclave areas [20]. Impaired immunologic func-
tion may respond to air pollution exposure with exces-
sive inflammation, resulting in excessive release of pro-
inflammatory cytokines and damage to healthy cells,
which in turn can lead to insulin resistance, a precursor
to metabolic disease [41, 42]. Thus, the similar systemic
inflammatory and oxidative stress responses between ex-
posure to chronic stress and exposure to air pollution
may explain the synergic effects between residence in
non-enclave areas and exposure to high levels of VOCs.

Our findings are also in line with evidence suggesting
that the deleterious effect of air pollution on health is
stronger among those residing in more stressful con-
texts. For instance, the effect estimates for exposure to
high levels of VOCs with poor cardiometabolic health
are higher among adolescents residing in high-poverty
areas compared to those residing in low-poverty areas
[70]. Additionally, criteria air pollution exposure during
the first year of life is associated with increased risk of
childhood asthma, but only among children in high pov-
erty areas [71]. It is noteworthy that the observed GDM
risks were independent of individual-level proxies of
health insurance and marital status, suggesting residence
in an ethnic enclave may buffer the negative conse-
quences of exposure to high levels of air pollution.
The results of the enclaves components sensitivity ana-

lysis suggest our measure of ethnic enclaves better de-
picts the unique social and geographic attributes of API

Table 4 Joint associations between exposure to ambient volatile organic compounds, ethnic enclaves, and gestational diabetes
mellitus among Asian/Pacific Islander women in the Consortium on Safe Labor (2002–2008) (Continued)

Preconception First Trimester

VOC
(High = ≥ 75th percentile)

Enclave n
(N = 9069)

Odds Ratio
(95% CI)

n
(N = 9069)

Odds Ratio
(95% CI)

High Yes 1557 1.68 (0.96, 2.91) 1646 1.57 (0.83, 2.97)

No 3287 2.38 (1.25, 4.52)a 3244 2.31 (1.09, 4.89)a

Styrene Low Yes 736 Ref. 619 Ref.

No 6268 1.41 (1.04, 1.93)a 6266 1.47 (1.05, 2.06)a

High Yes 1155 0.84 (0.56, 1.26) 1272 0.89 (0.59, 1.34)

No 910 1.59 (1.13, 2.24)a 912 1.56 (1.08, 2.25)a

1,3 butadiene Low Yes 732 Ref. 595 Ref.

No 6197 1.39 (1.02, 1.88)a 6354 1.48 (1.06, 2.06)a

High Yes 1159 0.83 (0.55, 1.25) 1296 0.86 (0.57, 1.29)

No 981 1.67 (1.19, 2.33)a 824 1.46 (1.01, 2.13)a

Cyclohexane Low Yes 1022 Ref. 1016 Ref.

No 3747 1.86 (1.37, 2.53)a 3794 1.70 (1.26, 2.28)a

High Yes 869 1.31 (0.92, 1.87) 875 1.08 (0.76, 1.54)

No 3431 1.73 (1.15, 2.59)a 3384 1.46 (0.98, 2.18)

Analytic sample restricted to Asian/Pacific Islander women without diagnosed preconception diabetes. Hierarchical logistic regression, women nested within
hospital referral region. Models adjusted for maternal age, preconception BMI, parity, insurance status, hospital, marital status, area-level poverty, season of birth.
astatistically significant after Benjamini-Hochberg procedure (false discovery rate = 10%)

Table 5 Sensitivity analysis: Association between ethnic enclaves and component measures and gestational diabetes mellitus

Ethnic Enclave components

API Enclave
OR (95% CI)

API Dissimilarity
OR (95% CI)

API Isolation
OR (95% CI)

API concentration
OR (95% CI)

Non-Enclave Ref. Low Ref. Ref. Ref.

Enclave 0.51 (0.37, 0.69) Medium 0.83 (0.64, 1.08) 1.10 (0.88, 1.39) 0.79 (0.55, 1.12)

High 0.81 (0.64, 1.08) 0.83 (0.64, 1.07) 0.62 (0.46, 0.83)

Models adjusted for maternal age, marital status, health insurance, BMI, season of conception, parity, area-level poverty, hospital type, preconception benzene,
and first trimester benzene
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ethnic enclaves than any of the individual components
do alone (Table 5). While high levels of dissimilarity
index, isolation index, and population density suggest a
potential healthy effect, the healthy effect is greatest in
those areas identified as API ethnic enclaves. The com-
bination of dissimilarity index, isolation index, and
population density allowed us to identify areas that were
geographically distinct, and with a large enough popula-
tion of API residents to be socially distinct. This defin-
ition of API ethnic enclaves could be refined by
inclusion of more culturally-relevant data such as ances-
try data, immigration data, and language data.
The results of the “high multiple VOC” analysis do not

change the interpretation that ethnic enclaves are pro-
tective against the negative effects of air pollution. While
PCA solves the potential VOC inter-correlation prob-
lem, it does not allow for examination of specific expo-
sures that may be related to particular sources, or for
confirmation from animal or occupational studies which
might focus on individual compounds. Additionally,
given the observed effects of the “high multiple VOC”
approach greatly differs from several individual VOCs,
this “high multiple VOC” approach may be masking es-
pecially harmful VOCs. Since examination of VOCs is
novel in regards to GDM, we want to maintain the indi-
vidual exposures. We believe this specificity can encour-
age occupational and animal studies to potentially
confirm our findings.
Our observations highlight the importance of focusing

on API communities in environmental health research.
API communities are often aggregated in research and
identified as ‘model minorities’ due to higher socioeco-
nomic status compared to other non-white racial/ethnic
groups in the U.S., suggesting API communities have fa-
vorable health outcomes compared to other racial/ethnic
groups [6, 9]. Reliance on the ‘model minority’ label, in
addition to API encompassing approximately 6% of the
U.S. population, contributes to limited representation of
API populations in national datasets, the
homogenization of API ancestry by aggregation across
distinct countries of origin, poor recognition of dispar-
ities among API populations, and a lack of environmen-
tal justice research targeting API communities [6–9]. By
aggregating API ancestry groups, important differences
in health status and environmental exposures may be
masked, thus representing the same level of risk for poor
health outcomes among a diverse group. The lack of
relevant data excludes API communities from environ-
mental health policy and health promotion planning
when they may be an at-risk group [7, 9]. Given known
health disparities, adverse environmental exposures, and
the need for data disaggregation among API communi-
ties, public health surveillance and research should in-
crease efforts to collect ancestry-specific and culturally-

specific data to better address disparities impacting API
communities.
In order to improve health outcomes among U.S. API

populations, it could be beneficial for API communities
to implement culturally-specific efforts to jointly im-
prove social and environmental conditions. Previous at-
tempts to improve environmental conditions have failed
when a community’s cultural considerations have not
been taken into account, resulting in worse environmen-
tal conditions and rapid displacement and gentrification
[72–74]. API communities in California have been suc-
cessful in community-led efforts to assemble multisector
coalitions to implement environmentally friendly trans-
portation and infrastructure improvements, affordable
housing developments, and economic vitalization that
reflect cultural values of API communities [72]. How-
ever, further research is warranted to better understand
the population-health benefits of these community-led
efforts.
Our findings are notable for several reasons. First, to

the best of our knowledge, this is the initial investigation
of joint exposure to air pollution and residence in an
ethnic enclave among pregnant women. The observa-
tions that residence within an ethnic enclave mitigates
air pollution suggest chronic exposure to low or high
stress prior to pregnancy has important physiologic im-
plications during pregnancy. Secondly, this study ex-
pands our understanding of complex
socioenvironmental exposures among an understudied
minority population. API communities are at greater risk
for high air pollution exposure, and are typically concen-
trated within urban areas in the U.S. Lastly, this study
benefits from a large amount of clinical data for a large
sample of API women in the CSL. This allows for a ro-
bust examination of community-level risk factors for
GDM, a condition that disproportionately affects U.S.
API women.
These findings are best considered in the context of

the study’s limitations. Our measure of ethnic enclaves
has not been validated in studies outside of the CSL
[11], as to the best of or our knowledge, no validated
measure of ethnic enclaves exists. Given HRR is the sole
geographic unit of analysis in the CSL, our measurement
of ethnic enclaves was informed by previous studies in
order to best capture social and geographic distinctions
of ethnic enclaves. API women in the CSL are aggre-
gated into a single category, not allowing us to examine
API women by ancestry. Due to this, we used the aggre-
gated API census data to measure ethnic enclaves. This
limits our observations as API ancestry may be related
to GDM risk [18], and air pollution exposure [6, 75],
and effect of ethnic enclave residence may differ by API
ancestry [17, 18]. However, previous analyses suggest the
API population of metropolitan areas represented in the
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CSL is over 93% women of Asian ancestry with relatively
few Pacific Islander women [12]. The CSL lacks mater-
nal residential history, limiting our understanding of
length of exposure to ethnic enclaves. However, most
residential relocation during pregnancy occurs with a
similar geographic area, and cross-sectional data allows
for an approximate understanding of chronic exposures
to community-level factors [76].
Immigration history for women within the CSL is not

available, thus, examination of differences by immigra-
tion status is not possible. From our previous analysis of
API ethnic enclaves in the CSL, the API population
within metropolitan areas represented in the CSL is over
65% foreign born [11], suggesting potential acculturation
to U.S. norms or a healthy migrant effect may affect our
results. More detailed immigration data may allow for
additional explorations of acculturation and healthy mi-
grant in the context of ethnic enclaves.
Overall, we applied a conservative strategy for estimat-

ing VOC exposure, averaging over broader time and
space dimensions to provide more stable estimates. Due
to this approach, these observations are likely biased to-
wards the null for several reasons. We averaged VOC
exposure over the HRR, which reduces the impact of
small point source exposure. We note that there is larger
degree of uncertainty in CMAQ models with respect to
population-level VOC exposures compared to exposure
to ambient criteria air pollutants, such as PM and ozone.
To account for this, we examined a dichotomous high/
low VOC exposure variable as we did not assume VOCs
were measured well enough to estimate linear relation-
ships and there is no routine VOC monitoring data to
fuse to the modified CMAQ data. We recognize a more
robust continuous estimate may elucidate these relation-
ships and better describe biologic mechanisms, as well
as provide more information for regulatory decisions.
We encourage other researchers with more robust VOC
data, such as air pollution estimates from CMAQ-CB6
[77], to further analyze this question with better spatial
resolution.
VOC exposure was averaged over HRRs in which the

birth occurred and was not based on participant resi-
dence or specific location of ethnic enclaves. However,
our enclave and exposure estimates are based on the
areas covered by the HRR under the assumption that
most women will live in the catchment area of their de-
livery hospital. Exposure misclassification may occur if
mothers resided outside the HRR for all or part of their
pregnancy. However, while 10–30% of pregnant women
change residence during pregnancy, most move to an
area of similar level of air pollution [78, 79]. Misclassifi-
cation may also be a function of local mobility and activ-
ity patterns of pregnant women. While the CSL does not
have local mobility or daily activity data, current

evidence suggests pregnant women and a general popu-
lation comparison group both spent approximately 15 h
per day indoors at or near their home [80]. Additionally,
during the first trimester of pregnancy, exposure esti-
mates based on residential address are strongly corre-
lated with exposure estimates accounting for daily
activities (r = 0.98, p < 0.01) [81].

Conclusions
In conclusion, we observed that API women residing in
non-enclave areas have higher risk for GDM, regardless
of VOC level. Residence in an ethnic enclave may miti-
gate the negative health effects of VOC exposure, poten-
tially due to lower stress levels. Lower levels of stress
among residents of ethnic enclaves may be related to
greater access to culturally-relevant goods and services,
and greater political representation [3, 4, 15, 24]. API
communities should lead culturally-relevant efforts to
promote health through improved social and environ-
mental conditions. Additional research is warranted to
better understand the effects of joint exposures to air
pollution and ethnic enclave across diverse ancestry
groups within the broader U.S. API population.
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