Drones for Commercial Last-Mile Deliveries: A Discussion of Logistical, Environmental, and Economic Trade-Offs

Miguel Figliozzi
Portland State University, figliozzi@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/cengin_fac

Part of the Environmental Engineering Commons, and the Transportation Engineering Commons

Let us know how access to this document benefits you.

Citation Details
https://pdxscholar.library.pdx.edu/cengin_fac/416

This Presentation is brought to you for free and open access. It has been accepted for inclusion in Civil and Environmental Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
Drones for commercial last-mile deliveries: a discussion of logistical, environmental, and economic trade-offs

Miguel Figliozzi, Professor
Director Transportation Technology and People (TTP) Lab
Civil Engineering – Portland State University

Seminar – University of Toronto
September 15, 2017
Drones for commercial last-mile deliveries: a discussion of logistical, environmental, and economic trade-offs

3 papers in one presentation

No formulae in this presentation
Urban Delivery Industry Landscape

• Congestion
• Pollution – air, water, and noise
• Scarcity of parking in urban areas
• Pressure to meet environmental mandates
• Rapid increase in package deliveries and service calls
• Urban population growth
• Growing problems – growing market (online, real-time)
“reinventing” the last-mile

Conventional supply chain with truck last-mile deliveries

“New” supply chain with drone last-mile deliveries
Survey of UAV capabilities

- Methodology: extensive internet search
- Information on websites along and downloadable material
- In some cases, customer service was contacted to request additional information.
- Smaller drones: not designed to carry packages (weight of cameras, etc. is a proxy for payload)
- **21 UAVs** currently available in the market.
Survey of UAV capabilities

- Inclusion of multicopter UAVs that cover the range of existing capabilities, sizes and prices.
- Search limited to multicopter drones that can potentially deliver in both urban and rural areas.
- No helicopters (1 propeller) due to safety reasons
- No fixed wing drones due to lack of VTOL
- Electric due to noise and environmental reasons (more later)
Photo sources: microdrones and DHL
Speed, Flying Times, Ranges and Payloads

- **Speeds:** Most speeds are in the range of 16 to 20 meters per second (35 to 45 miles per hour)

- **Flying times:** 20 to 30 minutes.

- **Ranges:** heavily dependent on a multitude of factors (payload size, weather, flown within LOS etc.). Typical range 15 - 35 kms (~ 10 - 22 miles).

- **Payloads:** affect range, depending on configuration, typical 6.4 kg to 1.8 kg. (14 to 4 lbs).
Size and Weight

• Typical payload/takeoff-weight ratio ranges from 0.33 to 0.20; battery/takeoff-weight ratio typically ranges from 0.30 to 0.25.

• Average size across the diagonal is 1,045 mm, typical range 1485 to 350 mm (w.o. propellers)

• The typical takeoff weight is approximately 4 kg longer-range drones have a takeoff weight of 10 kg or more.
Costs

• Wide range of costs:
 – Small multicopters cost a few hundred dollars.
 – The most expensive multicopters cost over $20,000 each.

• The wide range is explained by the different capabilities and the cost of the batteries.
Typical UAV and delivery van specification:

<table>
<thead>
<tr>
<th>Specification</th>
<th>UAV (MD4-3000)</th>
<th>Diesel cargo van (RAM ProMaster 2500)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take off / Gross weight</td>
<td>15.1 kg</td>
<td>4060 kg</td>
</tr>
<tr>
<td>Tare / Curb Weight</td>
<td>10.1 kg</td>
<td>2170 kg</td>
</tr>
<tr>
<td>Max. Payload</td>
<td>5.0 kg</td>
<td>1890 kg</td>
</tr>
<tr>
<td>Max. Range</td>
<td>36 km</td>
<td>695 km</td>
</tr>
</tbody>
</table>
Drones for commercial last-mile deliveries: a discussion of economic, logistical, and environmental trade-offs
One-to-one last-mile routes

One vehicle serves 1 (one) customer per round trip
One-to-one last-mile routes

One vehicle serves 1 (one) customer per round trip
Typical UAV and delivery van

<table>
<thead>
<tr>
<th>Specification</th>
<th>UAV</th>
<th>Diesel cargo van</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MD4-3000</td>
<td>RAM ProMaster 2500</td>
</tr>
<tr>
<td>Range</td>
<td>25 km (practical)</td>
<td>695 km</td>
</tr>
<tr>
<td>Battery/Fuel Capacity</td>
<td>0.777 kWh</td>
<td>8.63 kWh</td>
</tr>
<tr>
<td>Energy consumption</td>
<td>21.6 wh/km</td>
<td>1016 wh/km</td>
</tr>
</tbody>
</table>

Per-unit distance the UAV is almost 50 times more energy efficient than the van assuming a 5kg payload.
Why? Physics!
Per-unit distance the UAV is 50 times more energy efficient than the van (assuming a 5kg payload), but...

The van can deliver almost 400 times more cargo than the UAV; assuming maximum payloads the van is almost 8 times more energy efficient
Well-to-tank (WTT) and Tank-to-wheel (TTW) Fuel CO$_2$e emissions

Typical UAV and delivery van

Per-unit distance the UAV is 1050 times cleaner than the van (assuming a 5kg payload)

<table>
<thead>
<tr>
<th>Specification</th>
<th>UAV</th>
<th>Diesel cargo van</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJI S1000</td>
<td>RAM ProMaster 2500</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>25 km</td>
<td>695 km</td>
</tr>
<tr>
<td>Battery/Fuel Capacity</td>
<td>0.777 kWh</td>
<td>8.63 kWh</td>
</tr>
<tr>
<td>WTT emissions</td>
<td>1.235 lbs CO2e / kWh</td>
<td>5.108 lbs CO2e / gallon</td>
</tr>
<tr>
<td>TTW emissions</td>
<td>-</td>
<td>22.72 lbs CO2e / gallon</td>
</tr>
<tr>
<td>Energy consumption</td>
<td>10.8 wh/km</td>
<td>1016 wh/km</td>
</tr>
</tbody>
</table>

WTT = well to tank TTW = tank to wheel

Portland State University **Maseeh College of Engineering and Computer Science** **TIP Lab**
Typical UAV and delivery van

Per-unit distance the UAV is 1050 times cleaner than the van (assuming a 5kg payload), but…

The van can deliver almost 400 times more cargo than the UAV; assuming maximum payloads the van is 8 times more efficient in terms of energy consumption but the van is almost 2.8 times less efficient regarding CO₂ emissions.
One-to-many last-mile routes

One vehicle serves n (many) customers

More efficient as n grows (distance traveled by customer)

UAV carry just one package at the time
Energy efficiency breakeven points

Reference point: how many packages are delivered by a typical UPS vehicle? (urban areas)

TABLE 3. UAV and Diesel Van Breakeven Energy Scenarios - One-to-one Routes

<table>
<thead>
<tr>
<th>Avg. Dist. depot to Customers (km)</th>
<th>Service Area (km²)</th>
<th>$\rho_{1}^{en} \approx 94$ wh/km</th>
<th>$\rho_{1}^{en} \approx 47$ wh/km</th>
<th>$\rho_{1}^{en} \approx 31$ wh/km</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>60</td>
<td>1,340</td>
<td>362</td>
<td>173</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>785</td>
<td>224</td>
<td>113</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>413</td>
<td>131</td>
<td>72</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>219</td>
<td>83</td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>127</td>
<td>58</td>
<td>37</td>
</tr>
</tbody>
</table>
Energy/emissions efficiency breakeven points

Reference point: how many packages are delivered by an electric van/truck?

<table>
<thead>
<tr>
<th>Avg. Dist. depot to Customers (km)</th>
<th>Service Area (km²)</th>
<th>n^*</th>
<th>n^*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$\rho_1^{en}\approx 35$ vs. E-truck</td>
<td>$\rho_1^{en}\approx 9.5$ vs. E-van</td>
</tr>
<tr>
<td>8</td>
<td>60</td>
<td>214</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>137</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>58</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>42</td>
<td>10</td>
</tr>
</tbody>
</table>
Energy/emissions efficiency breakeven points

Reference point: how many packages are delivered by a typical tricycle?

<table>
<thead>
<tr>
<th>Avg. Dist. depot to Customers (km)</th>
<th>Service Area (km²)</th>
<th>n^* vs. E-tricycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>60</td>
<td>2.1</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>1.9</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>1.7</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>1.6</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Lifecycle: add production, maintenance and disposal

(also includes maintenance and spare parts)

Fuel / Electricity - Utilization Cycle
- Petroleum Refining
- Fuel / Electricity Production
- Petroleum Transport
- Fuel / Electricity Distribution
- Petroleum pumping & extracting

Vehicle Cycle
- Vehicle & Battery Assembly
- Fuel / Electricity and Vehicle use
- Vehicle Distribution
- Vehicle & Battery Assembly

Source: adapted from M. Shahraeeni et al.
Lifecycle assessment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>UAV</th>
<th>Tricycle</th>
<th>Diesel Van</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of daily deliveries</td>
<td>4</td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>Delivery days per year (days)</td>
<td>260</td>
<td>260</td>
<td>260</td>
</tr>
<tr>
<td>Vehicle life (years)</td>
<td>3</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Emissions per delivery (kg CO2e per delivery)</td>
<td>0.16</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Equivalent travel distance (in km)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg CO2e per delivery)</td>
<td>13.0</td>
<td>1.2</td>
<td>0.002</td>
</tr>
<tr>
<td>Range (km)</td>
<td>25</td>
<td>48</td>
<td>625</td>
</tr>
<tr>
<td>Equivalent travel distance as % of range</td>
<td>52</td>
<td>2.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

(*) Included in the vehicle chassis
(**) To improve readability numbers have been rounded
Economics

- Vehicle costs
- Battery costs
- Labor costs
- Energy costs
- Other costs (overhead, fixed costs)
Many potential scenarios

- Impact of regulation, BLOS operation?

- Utilization? Useful life?

- Weight of energy costs

- Key cost elements
Key logistical tradeoffs

- Speed and reliable (uncongested airways?)
- Low payloads and limited range
- For high payloads (more than 7 kgs) or long distances, ground vehicles are still dominant
- Drop-off technology/solutions? Multiple?
Key environmental tradeoffs

• Relatively low per-mile emissions
• Relatively high vehicle phase emissions
• UAVs very CO$_2$e efficient (per-unit distance)
• EVs and Tricycles more CO$_2$e efficient with multiple dropoffs
Key economical tradeoffs

• High cost per delivery when compared to traditional parcel deliveries

• Dynamic and uncertain cost variables

• New markets and opportunities?
Other key issues

• Air traffic control
• Safety, liability and litigations
• Energy (clean electric vs. carbon based)
• Regulation and land use restrictions
 — Noise
 — Privacy
• Technology: batteries, electronics, ...
Related Publications

• Figliozzi M., Lifecycle Modeling and Assessment of Unmanned Aerial Vehicles (Drones) CO2e Emissions, forthcoming 2017 Transportation Research Part D

• Figliozzi and Tucker, What can multicopter drones deliver? A survey and analysis of the capabilities and limitations of state of the art drones, Submitted to TRB 2018

• Figliozzi M., Economic and Market Analysis of multicopter drones deliveries, Working paper.
Acknowledgements

• Freight Mobility Research Institute (FMRI) funding
THANK YOU

Questions? Comments...

Visit the TTP Lab webpage:

http://www.pdx.edu/transportation-lab/

Email us at: ttplab@pdx.edu or figliozzi@pdx.edu