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Integral Representations over Finite Limits for
Quantum Amplitudes
Jack C. Straton

Department of Physics, Portland State University, Portland, OR 97207-0751, USA; straton@pdx.edu

Abstract: We extend previous research to derive three additional M-1-dimensional integral represen-
tations over the interval [0, 1]. The prior version covered the interval [0, ∞]. This extension applies to
products of M Slater orbitals, since they (and wave functions derived from them) appear in quantum
transition amplitudes. It enables the magnitudes of coordinate vector differences (square roots of

polynomials) |x1 − x2| =
√

x2
1 − 2x1x2 cos θ + x2

2 to be shifted from disjoint products of functions
into a single quadratic form, allowing for the completion of its square. The M-1-dimensional integral
representations of M Slater orbitals that both this extension and the prior version introduce provide al-
ternatives to Fourier transforms and are much more compact. The latter introduce a 3M-dimensional
momentum integral for M products of Slater orbitals (in M separate denominators), followed in many
cases by another set of M-1-dimensional integral representations to combine those denominators into
one denominator having a single (momentum) quadratic form. The current and prior methods are
also slightly more compact than Gaussian transforms that introduce an M-dimensional integral for
products of M Slater orbitals while simultaneously moving them into a single (spatial) quadratic form
in a common exponential. One may also use addition theorems for extracting the angular variables or
even direct integration at times. Each method has its strengths and weaknesses. We found that these
M-1-dimensional integral representations over the interval [0, 1] are numerically stable, as was the
prior version, having integrals running over the interval [0, ∞], and one does not need to test for a
sufficiently large upper integration limit as one does for the latter approach. For analytical reductions
of integrals arising from any of the three, however, there is the possible drawback for large M of
there being fewer tabled integrals over [0, 1] than over [0, ∞]. In particular, the results of both prior
and current representations have integration variables residing within square roots asarguments of
Macdonald functions. In a number of cases, these can be converted to Meijer G-functions whose
arguments have the form (ax2 + bx + c)/x, for which a single tabled integral exists for the integrals
from running over the interval [0, ∞] of the prior paper, and from which other forms can be found
using the techniques given therein. This is not so for integral representations over the interval [0, 1].
Finally, we introduce a fourth integral representation that is not easily generalizable to large M but
may well provide a bridge for finding the requisite integrals for such Meijer G-functions over [0, 1].

Keywords: integral transform; integral representation; quantum amplitudes; integrals of Macdonald
functions; integrals of hypergeometric functions; integrals of Meijer G-functions; Feynman integrals

MSC: 44A20; 44A30; 81Q30; 81Q99; 33C10; 33C70; 33C60

1. Introduction

When evaluating quantum transition amplitudes, one is faced with the analytical
reduction of integrals involving explicit functions of the interelectron (or nucleon) distances.
On occasion, one can integrate them directly (see, for instance, [1], among many others),
while at other times, addition theorems (e.g., [2–4]) are more useful. More typically, we
apply Fourier transforms (e.g., [5–7]) and/or Gaussian transforms (e.g., [8–10]) to effect
these reductions.
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A prior paper [11] introduced a fifth reduction method in the spirit of Fourier and
Gaussian transforms that is an integral representation, having one fewer integral dimension
than does a Gaussiantransform to represent a product of M Slater functions and roughly a
quarter of the integral dimensions introduced by a Fourier transform for such a product.
This is an advantage since the main drawback of using integral representations is that one
adds to the number of integral dimensions one must ultimately solve. In each of these three
methods, the reduction of those introduced integrals becomes more difficult the larger the
numbers of wave functions transformed, so one fewer dimension is not a trivial advantage.

Gaussian transforms require a single one-dimensional integral for each wave function,
and the completion of the square in the coordinate variables—to allow the angular integrals
to be performed—can be undertaken in the resulting exponential. For Fourier transforms,
on the other hand, one must introduce a three-dimensional integral for each wave function
and often additional integrals to combine the resulting momentum denominators into a
single denominator so that one can complete the square in the momenta [12]. Our prior
work requires the introduction of one fewer integral dimension than does the Gaussian
transform and many fewer than for Fourier transforms. Its main downside is that the
resulting quadratic form (whose square one will complete) resides in a square root as the
argument of a Macdonald function, for which there are fewer tabled integrals than for the
exponential function wherein resides the quadratic form of Gaussian transforms.

The present paper derives four integral representations over finite intervals to rep-
resent a product of Slater orbitals. Often written as ψ000, the Slater orbital e−ηx

x acts as a
seed function from which Slater functions [13], Hylleraas powers [7], and hydrogenic wave
functions are derived by differentiation. (Known as the Yukawa [14] exchange potential
in nuclear physics, this function also appears in plasma physics, where it is known as the
Debye–Hückel potential, arising from screened charges [15] requiring the replacement
of the Coulomb potential by an effective screened potential [16,17]. Such screening of
charges also appears in solid-state physics, where this function is called the Thomas–Fermi
potential. In the atomic physics of negative ions, the radial wave function is given by the
equivalent Macdonald function

(
R(r) = C√

r K1/2(ηr)
)

[18]. This function also appears in
the approximate ground state wave function [19] for a hydrogen atom interacting with
hypothesized non-zero-mass photons [20]. We will simply call these Slater orbitals herein.)

We start with the simplest integral requiring transformation, the product of two Slater
orbitals integrated over all space,

Sη10η120
1 (0; 0, x2) ≡ Sη1 j1η12 j2

1 (p1; y1, y2)p1→0,y1,→0,y2→x2,j1→0,j2→0 =
∫

d3x1
e−η1x1

x1

e−η12x12

x12
, (1)

where we use the much more general notation of the previous work [10] in which the short-
hand form for shifted coordinates is x12 = x1 − x2, p1 is a momentum variable within any
plane wave associated with the (first) integration variable, the yi are coordinates external
to the integration, and the js are defined in the Gaussian transform [10] of the generalized
Slater orbital:

Vη j(R) = Rj−1e−ηR = (−1)j dj

dη j
1√
π

∫ ∞
0 dρ

e−R2ρe−η2/(4ρ)

ρ 1/2 [η = 0, R > 0] .

=
1

2j√π

∫ ∞
0 dρ

e−R2ρe−η2/(4ρ)

ρ(j+1)/2
Hj

(
η

2
√

ρ

)
[∀j ≥ 0 if η > 0, j = 0 if η = 0]

(2)

In our prior work, we showed how Gaussian transforms can reduce this integral in
roughly eight steps, so this time we will use Fourier transforms [21] (p. 512 No. 3.893.1, p.
382 No. 3.461.2, p. 384 No. 3.471.9):
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Sη10η20
1 (0; 0, x2)=

∫
d3x1

e−η1x1

x1

e−η12x12

x12

=
∫

d3x1
1

2π2

∫
d3k1

ei k1·x1(
η2

1 + k2
1
) 1

2π2

∫
d3k2

ei k2·(x1−x2)(
η2

12 + k2
2
)

=
2
π

∫
d3k1

1(
η2

1 + k2
1
) ∫ d3k2

e−i k2·x2(
η2

12 + k2
2
) δ(k1 + k2)

=
2
π

∫
d3k2

1(
η2

1 + k2
2
) e−i k2·x2(

η2
12 + k2

2
)

=
2
π

∫
d3k2

∫ 1

0
dα1

1(
α1
(
k2

2 + η2
1
)
+ (1− α1)

(
k2

2 + η2
12
))2 e−i k2·x2

=
2
π

∫
d3k2

∫ 1

0
dα1

∫ ∞

0
dρρ (3)

× exp
(
−i k2 · x2 − ρ

(
α1

(
k2

2 + η2
1

)
+ (1− α1)

(
k2

2 + η2
12

)))
=

2
π

∫
d3k′2

∫ 1

0
dα1

∫ ∞

0
dρρ exp

(
−ρk′22 −

x2
2

4ρ
− ρ
(

α1

(
η2

1 − η2
12

)
+ η2

12

))

=
2
π

4π
∫ 1

0
dα1

∫ ∞

0
dρρ

√
π

4ρ3/2 exp

(
−

x2
2

4ρ
− ρ
(

α1

(
η2

1 − η2
12

)
+ η2

12

))

= 2π
∫ 1

0
dα1

e−x2

√
α1(η2

1−η2
12)+η2

12√
α1
(
η2

1 − η2
12
)
+ η2

12

=
(4π)

x2
(
η2

1 − η2
12
) ∫ x2η1

x2η12

e−y dy

=
4π(e−η12x2 − e−η1x2)

x2
(
η2

1 − η2
12
) .

This is a considerably lengthy derivation, and the Gaussian transform approach is not
much better. Of course, in this simple case, one can invoke the addition theorem expression
for e−i k2·x2 in the fourth line to shorten the reduction, but for the large-M equivalent, the
above process is what one must follow. (Actually, one would do well to avoid the use of
the Dirac delta function in the third line when dealing with large M.)

The length of such derivations was the motivation for the fifth path to a solution given
in our prior paper and for the present approach.

2. A Simpler Integral Representation

We begin by introducing an integral representation over a finite interval for a pair
product of Slater orbitals,

e−η1x1

x1

e−η12x12

x12
=
∫ 1

0
dα1

√
(1− α1)η

2
1 + α1η2

12K1

(√
x2

1
1−α1

+
x2

12
α1

√
(1− α1)η

2
1 + α1η2

12

)

π(1− α1)
3/2α3/2

1

√
x2

1
1−α1

+
x2

12
α1

, (4)

whose derivation will follow a display of its utility. We insert it as a replacement for the
second line in the above problem, complete the square in the quadratic form, and then
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change variables from x1 to x′1 = x1 − (1− α1)x2 (with unit Jacobian) in both places in the
integrand where it appears. This gives [21] (p. 727. No. 6.596.3; p. 111 No. 2.311)

Sη10η120
1 (0; 0, x2) =

∫
d3x1

∫ 1

0
dα1

√
(1− α1)η

2
1 + α1η2

12.

π(1− α1)
3/2α3/2

1

√
x2

1
1−α1

+
x2

12
α1

× K1

√ x2
1

1− α1
+

x2
12

α1

√
(1− α1)η

2
1 + α1η2

12


=

∫
d3x′1

∫ 1

0
dα1

√
(1− α1)η

2
1 + α1η2

12

π(1− α1)
3/2α3/2

1

√
x′21

(1−α1)α1
+ x2

2

(5)

× K1

√ x′21
(1− α1)α1

+ x2
2

√
(1− α1)η

2
1 + α1η2

12


=

∫ 1

0
dα1

2πe−x2
√

(1−α1)η
2
1+α1η2

12√
(1− α1)η

2
1 + α1η2

12

=
∫ x2η12

x2η1

dy
4πe−y

x2
(
η2

12 − η2
1
)

=
4π(e−η12x2 − e−η1x2)

x2
(
η2

1 − η2
12
) ,

which is indeed a much shorter path to the solution than the Fourier and Gaussian trans-
forms give. This follows from the fact that it requires the introduction of one integral to
represent a pair product of Slater orbitals rather than one integral for each orbital that the
Gaussian transform requires or the three-dimensional integral that the Fourier transform
approach requires for each Slater orbital (with two additional integrals required, as in (4)).

Note that this new integral representation has a similar integrand to the integral
representation introduced in our prior paper for products of M Slater orbitals,

e−R1η1

R1
e−R2η2

R2
· · · e−RMηM

RM
= 1

2Mπ2M

∫ ∞
0 dζ1

∫ ∞
0 dζ2 · · ·

∫ ∞
0 dζM−1

π3M/2

∏M−1
i=1 ζ3/2

i

2
M
2 +1

×
(

R2
1 +

R2
2

ζ1
+

R2
3

ζ2
+ · · · + R2

M
ζM−1

)−M/4(
η2

1 + ζ1η2
2 + ζ2η2

3 + · · · + ζM−1η2
M
)M/4

× K M
2

(√
R2

1 +
R2

2
ζ1

+
R2

3
ζ2

+ · · · + R2
M

ζM−1

√
η2

1 + ζ1η2
2 + ζ2η2

3 + · · · + ζM−1η2
M

)
,

(6)

except that the new integral representation has finite limits of integration rather than the
infinite intervals of the previous work.

3. A Derivation Sketch

The first step in creating the prior integral representation—and the new one—entails
converting a product of Slater orbitals into denominators of some power (combined with
other factors) using some initial integral representation, such as via the Stieltjes trans-
form [22] or [21] (p.706 No. 6.554.4); in the following, we use [21] (p. 467 No. 3.773.5):

e−η1x1

x1

e−η12x12

x12
=
∫ ∞

0

∫ ∞

0
dt1dt2

2
π

cos(t1η1)(
t2
1 + x2

1
) 2

π

cos(t2η12)(
t2
2 + x2

12
) . (7)

In the prior paper, we combined products of denominators into one, consolidating the
coordinate variables into a common quadratic form, using [21] (p. 649 No. 4.638.2)
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1

rp1
1 rp2

2 · · · r
pn
n rs−p1−p2−···−pn

0

=
Γ(s)

Γ(s− p1 − p2 − · · · − pn)Γ(p1)Γ(p2) · · · Γ(pn)

×
∫ ∞

0
dζ1

∫ ∞

0
dζ2 · · ·

∫ ∞

0
dζn

ζ
p1−1
1 ζ

p2−1
1 · · · ζ pn−1

1
(r0 + r1ζ1 + r2ζ2 + · · ·+ rnζn)

s

[pi > 0, ri > 0, s > p1 + p2 + · · ·+ pn > 0] , (8)

(with p1 = 1 and s = 2 for n = 1):

e−η1x1

x1

e−η12x12

x12
=

4
π2

∫ ∞

0

∫ ∞

0
dt1dt2 cos(t1η1) cos(t2η12)

∫ ∞

0
dζ1

ζ1−1
1(

ζ1
(
t2
1 + x2

1
)
+
(
t2
2 + x2

12
))2 . (9)

One then performs the t integrals to obtain the n = 2 version of (6).
While conceptually easy to follow, the subsequent integration of the ts as M increases

beyond 3 produces functions whose arguments do not form discernible patterns, so we
were not able to generalize this approach (using [21] (p. 467 No. 3.773.5)) to large M in
either the prior or the present paper.

4. Full Derivation of a Finite-Interval Integral Representation for M Slater Orbitals

To represent a product of M Slater orbitals using finite-interval integrals, one can
in principle use Feynman parametrization [23] as extended by Schweber in three formu-
lations [24]. Schweber’s first parametrization gives an M-dimensional integral with an
embedded Dirac delta function that will ultimately remove one integral. We found this
form less easy to work with than the other two.

Schweber’s second parametrization,

1
D1D2 · · ·Dn

= (n− 1)!
∫ 1

0
dα1

∫ α1

0
dα2 · · ·

∫ αn−2

0
dαn−1

× 1
(Dnαn−1 + Dn−1(αn−2 − αn−1) + · · ·+ D1(1− α1))

n (10)

looks somewhat dubious for analytical uses since each succeeding integral has the prior
parameter as its upper limit. It turns out, however, that one can perform a change of
variables in each integral at the end of the derivation to give all integrals over [0, 1].

In our prior work, we used Fourier transforms to convert the product of M Slater
orbitals into denominators instead of the integral set using [21] (p. 467 No. 3.773.5), which
we utilized in Equation (7). Since Fourier transforms include momentum variables in plane
waves, we take the additional step of moving the combined momentum denominator into
an exponential by using [21] (p. 364 No. 3.381.4).

(ν− 1)!D−ν =
∫ ∞

0
dρρν−1e−ρD . (11)

Thus, for a product of M Slater orbitals, we have [21] (p. 649 No. 4.638.2).
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e−R1η1

R1

e−R2η2

R2
· · · e−RMηM

RM
=
∫

d3k1

∫
d3k2 · · ·

∫
d3kM

× 1
2π2 ·

eik1·R1

k2
1 + η2

1
· 1

2π2 ·
eik2·R2

k2
2 + η2

2
· · · 1

2π2 ·
eikM ·RM

k2
M + η2

M

=
∫ 1

0
dα1

∫ α1

0
dα2 · · ·

∫ αM−2

0
dαM−1

∫
d3k1

∫
d3k2 · · ·

∫
d3kM

(M− 1)!
2Mπ2M

× exp(ik1 · R1 + ik2 · R2 + · · ·+ ikM−1 · xM−1 + ikM · RM)

×
[(

k2
1 + η2

1

)
(1− α1) +

(
k2

2 + η2
2

)
(α1 − α2)+· · ·

· · ·+
(

k2
M−1 + η2

M−1

)
(αM−2 − αM−1) +

(
k2

M + η2
M

)
αM

]−M
(12)

=
1

2Mπ2M

∫ ∞

0
dρ
∫ 1

0
dα1

∫ α1

0
dα2 · · ·

∫ αM−2

0
dαM−1

∫
d3k1

∫
d3k2 · · ·

∫
d3kMρM−1

×exp(−ρ(ik1 · R1/ρ + ik2 · R2/ρ + · · ·+ ikM−1 · xM−1/ρ + ikM · RM/ρ))

× exp
[
−ρ
((

k2
1 + η2

1

)
(1− α1) +

(
k2

2 + η2
2

)
(α1 − α2) + · · ·

+ · · ·+
(

k2
M−1 + η2

M−1

)
(αM−2 − αM−1) +

(
k2

M + η2
M

)
αM

)]
≡ 1

2Mπ2M

∫ ∞

0
dρ
∫ 1

0
dα1

∫ α1

0
dα2 · · ·

∫ αM−2

0
dαM−1

∫
d3k1

∫
d3k2 · · ·

∫
d3kM

× ρM−1 exp(−ρ Q) .

The quadratic form can be written as [12]

Q = VTWV , (13)

where
VT = (k1, k2, · · · , kM, 1) , (14)

W =



(1− α1) 0 · · · 0 0 b1
0 (α1 − α2) · · · 0 0 b2
...

...
. . .

...
...

...
0 0 · · · (αM−2 − αM−1) 0 bM−1
0 0 · · · 0 αM−1 bM

b1 b2 · · · bM−1 bM C


, (15)

C = (1− α1)η
2
1 + (α1 − α2)η

2
2 + · · ·+ (αM−2 − αM−1)η

2
M−1 + αM−1η2

M , (16)

and
bj = −

i
2ρ

Rj . (17)

Now suppose one could find an orthogonal transformation that reduced Q to diago-
nal form

Q′ = a′1k
′2
1 + a′′2k

′2
2 + . . . + a′N+Mk

′2
N+M + c′, (18)

where, as shown by Chisholm [25], the a′ are positive. Then, after a simple translation in
{k1, k2, · · · , kM} space (with Jacobian = 1), the k integrals could be performed [21] (p. 382
No. 3.461.2),

∫
d3k′1 . . . d3k′Me−ρ

(
a′1k
′2
1 +a′2k

′2
2 +...+a′Mk

′2
M

)
=

(
πM

ρMΛ

)3/2

. (19)
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Since this result is expressed in the form of an invariant determinant,

Λ =

∣∣∣∣∣∣∣∣∣∣∣

(1− α1) 0 · · · 0 0
0 (α1 − α2) · · · 0 0
...

...
. . .

...
...

0 0 · · · (αM−2 − αM−1) 0
0 0 · · · 0 αM−1

∣∣∣∣∣∣∣∣∣∣∣
, (20)

= (1− α1)

(
M−1

∏
i=2

(αi−1 − αi)

)
αM−1 =

M

∏
i=1

a′i

actually finding the orthogonal transformation that reduces Q to diagonal form is unnec-
essary. What is left to find is just the exponential of −ρc′, which we integrate over ρ and
the αi.

This orthogonal transformation also leaves

Ω = det W (21)

invariant, and to find its value, one need only expand Ω by minors:

Ω = CΛ +
M

∑
i=1

M

∑
j=1

bi · bj(−1)i+j+1Λij

= CΛ− b2
1

(
M−1

∏
i=2

(αi−1 − αi)

)
αM−1 −

M−1

∑
j=2

b2
j
(1− α1)

αj−1 − αj

(
M−1

∏
i=2

(αi−1 − αi)

)
αM−1 (22)

− b2
M(1− α1)

M−1

∏
i=2

(αi−1 − αi) ,

where Λij is Λ with the ith row and jth column deleted and is diagonal in the present case.
Therefore, c′ (of (18)) is given by

c′ = Ω/Λ = (1− α1)η
2
1 +

M−1

∑
j=2

η2
j
(
αj−1 − αj

)
+ αM−1η2

M −
b2

1
(1− α1)

−
M−1

∑
j=2

b2
j(

αj−1 − αj
)

−
b2

M
αM−1

(23)

= (1− α1)η
2
1 +

M−1

∑
j=2

η2
j
(
αj−1 − αj

)
+ αM−1η2

M +
1

4ρ2
R2

1
(1− α1)

+
M−1

∑
j=2

1
4ρ2

R2
j(

αj−1 − αj
) + 1

4ρ2
b2

M
αM−1

,

so that

e−R1η1

R1
e−R2η2

R2
· · · e−RMηM

RM
= 1

2Mπ2M

∫ ∞
0 dρ

∫ 1
0 dα1

∫ α1
0 dα2 · · ·

∫ αM−2
0 dαM−1

× π3M/2

ρM/2+1
(
(1− α1)

(
∏M−1

i=2 (αi−1 − αi)
)

αM−1

)3/2

× exp
[
−ρ
(
(1− α1)η

2
1 + (α1 − α2)η

2
2 + · · ·+ (αM−2 − αM−1)η

2
M−1 + · · · + αM−1η2

M
)]

× exp

(
−
(

R2
1

(1− α1)
+

R2
2

(α1 − α2)
+ · · ·+

R2
M−1

(αM−2 − αM−1)
+

R2
M

αM−1

)
1

4ρ

)
.

(24)
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We perform the ρ integral [21] (p. 384 No. 3.471.9) to give the most compact, semifinal
form for the desired integral representation:

e−R1η1
R1

e−R2η2
R2
· · · e−RMηM

RM
=
∫ 1

0 dα1
∫ α1

0 dα2 · · ·
∫ αM−2

0 dαM−1

× 21−M
2 π−M/2

(1− α1)
3/2
(

∏M−1
i=2 (αi−1 − αi)

3/2
)

α3/2
M−1

×
(
(1− α1)η

2
1 + (α1 − α2)η

2
2 + · · ·+ (αM−2 − αM−1)η

2
M−1 + · · · + αM−1η2

M
)M/4

×
(

R2
1

(1−α1)
+

R2
2

(α1−α2)
+ · · ·+ R2

M−1
(αM−2−αM−1)

+
R2

M
αM−1

)−M/4

× K M
2

(√
(1− α1)η

2
1 + (α1 − α2)η

2
2 + · · ·+ (αM−2 − αM−1)η

2
M−1 + · · · + αM−1η2

M

×
√

R2
1

(1−α1)
+

R2
2

(α1−α2)
+ · · ·+ R2

M−1
(αM−2−αM−1)

+
R2

M
αM−1

)
.

(25)

5. Unifying the Upper Limits of the Integrals to Give a Second Integral Representation

The above forms are fine for numerical integration, but for M > 2, their utility is
somewhat hampered for analytical reduction since each succeeding integral has the prior
parameter as its upper limit. One can cast each such integral into one over the interval [0, 1]
by making a change of variables to

αj → αj−1σj (26)

in sequence from j = M− 1 down to j = 2 and multiplying by the Jacobian that consists of
the product of derivatives of αj/αj−1 that defines each new variable σj,

M−2

∏
j=1

1
αj

. (27)

The first three such are, where we explicitly put in the shifted coordinates R2
j = x2

1j

(and corresponding parameters η2
j = η2

1j),

e−x1η1

x1
e−x12η12

x12
e−x13η13

x13
=
∫ 1

0 dα1
∫ 1

0 dσ2
α1((1−α1)η

2
1+α1(1−σ2)η

2
12+α1σ2η2

13)
3/4

√
2π3/2((1−α1)α

2
1(1−σ2)σ2)

3/2

×
(

x2
1

1−α1
+

x2
12

α1(1−σ2)
+

x2
13

α1σ2

)−3/4

× K 3
2

(√
x2

1
1−α1

+
x2

12
α1(1−σ2)

+
x2

13
α1σ2

√
(1− α1)η

2
1 + α1(1− σ2)η

2
12 + α1σ2η2

13

)
,

(28)

e−x1η1

x1
e−x12η12

x12
e−x13η13

x13
e−x14η14

x14
=
∫ 1

0 dα1
∫ 1

0 dσ2
∫ 1

0 dσ3

× α2
1σ2((1−α1)η

2
1+η2

12α1(1−σ2)+η2
13α1σ2(1−σ3)+η2

14α1σ2σ3)
2π2((1−α1)α

3
1(1−σ2)σ

2
2 (1−σ3)σ3)

3/2

×
(

x2
1

1−α1
+

x2
12

α1(1−σ2)
+

x2
13

α1σ2(1−σ3)
+

x2
14

α1σ2σ3

)−1

× K2

[√
x2

1
1−α1

+
x2

12
α1(1−σ2)

+
x2

13
α1σ2(1−σ3)

+
x2

14
α1σ2σ3

×
√
(1− α1)η

2
1 + η2

12α1(1− σ2) + η2
13α1σ2(1− σ3) + η2

14α1σ2σ3

]
,

(29)

and
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e−x1η1

x1
e−x12η12

x12
e−x13η13

x13
e−x14η14

x14
e−x15η15

x15
=
∫ 1

0 dα1
∫ 1

0 dσ2
∫ 1

0 dσ3
∫ 1

0 dσ4

×
α3

1σ2
2 σ3

(√
(1−α1)η

2
1+η2

12α1(1−σ2)+η2
13α1σ2(1−σ3)+η2

14α1σ2σ3(1−σ4)+η2
15α1σ2σ3σ4

)5/4

2
√

2π5/2((1−α1)α
4
1(1−σ2)σ

3
2 (1−σ3)σ

2
3 (1−σ4)σ4)

3/2

×
(

x2
1

1−α1
+

x2
12

α1(1−σ2)
+

x2
13

α1σ2(1−σ3)
+

x2
14

α1σ2σ3(1−σ4)
+

x2
15

α1σ2σ3σ4

)−5/4

× K 5
2

[√
x2

1
1−α1

+
x2

12
α1(1−σ2)

+
x2

13
α1σ2(1−σ3)

+
x2

14
α1σ2σ3(1−σ4)

+
x2

15
α1σ2σ3σ4

×
√
(1− α1)η

2
1 + η2

12α1(1− σ2) + η2
13α1σ2(1− σ3) + η2

14α1σ2σ3(1− σ4) + η2
15α1σ2σ3σ4

]
.

(30)

This can easily be seen to generalize to

e−R1η1

R1
e−R2η2

R2
· · · e−RMηM

RM
=
∫ 1

0 dα1
∫ 1

0 dσ2
∫ 1

0 dσ3 · · ·
∫ 1

0 dσM−1

×
2−(M−2)/2π−M/2αM−2

1 σM−3
2 σM−4

3 · · · σM−2(
(1− α1)α

M−1
1 (1− σ2)σ

M−2
2 (1− σ3) · · · σ2

M−2(1− σM−1)σM−1

)3/2

×
(
(1− α1)η

2
1 + η2

2α1(1− σ2) + η2
3α1σ2(1− σ3) + · · ·

· · ·+ η2
M−1α1σ2σ3 · · · σM−2(1− σM−1) + η2

Mα1σ2σ3 · · · σM−1
)M/4

×
(

R2
1

(1−α1)
+

R2
2

α1(1−σ2)
+

R2
3

α1σ2(1−σ3)
+ · · ·+ R2

M−1
α1σ2σ3···σM−2(1−σM−1)

+
R2

M
α1σ2σ3···σM−1

)−M/4

× K M
2

([
(1− α1)η

2
1 + η2

2α1(1− σ2) + η2
3α1σ2(1− σ3) + · · ·

· · ·+ η2
M−1α1σ2σ3 · · · σM−2(1− σM−1) + η2

Mα1σ2σ3 · · · σM−1
]1/2

×
√

R2
1

(1−α1)
+

R2
2

α1(1−σ2)
+

R2
3

α1σ2(1−σ3)
+ · · ·+ R2

M−1
α1σ2σ3···σM−2(1−σM−1)

+
R2

M
α1σ2σ3···σM−1

)
.

(31)

Inspection shows that for M = 2, we indeed obtain Equation (4).
One unusual feature of this integral representation is that, like that derived in the prior

paper, the recursion relationships of Macdonald functions can be applied to lower (or raise)
the indices.

Inclusion of Plane Waves and Dipole Interactions

Transition amplitudes sometimes contain plane waves, and these can be easily in-
cluded in this integral representation directly in the ρ version,

e−R1η1

R1
e−R2η2

R2
· · · e−RMηM

RM
=
∫ ∞

0 dρ
∫ 1

0 dα1
∫ 1

0 dσ2
∫ 1

0 dσ3 · · ·
∫ 1

0 dσM−1

×
2−Mπ−M/2ρ−(M+2)/2αM−2

1 σM−3
2 σM−4

3 · · · σM−2(
(1− α1)α

M−1
1 (1− σ2)σ

M−2
2 (1− σ3) · · · σ2

M−2(1− σM−1)σM−1

)3/2

× exp
(
−ρ
(
(1− α1)η

2
1 + η2

2α1(1− σ2) + η2
3α1σ2(1− σ3) + · · ·

· · ·+ η2
M−1α1σ2σ3 · · · σM−2(1− σM−1) + η2

Mα1σ2σ3 · · · σM−1
))

× exp

(
−
(

R2
1

(1− α1)
+

R2
2

α1(1− σ2)
+

R2
3

α1σ2(1− σ3)
+ · · ·

· · ·+
R2

M−1
α1σ2σ3 · · · σM−2(1− σM−1)

+
R2

M
α1σ2σ3 · · · σM−1

)
1

4ρ

)

(32)
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prior to completing the square by utilizing an orthogonal transformation (like that for the
k j) that reduces the spatial-coordinate quadratic form to become diagonal. Again, one has
invariant determinants for this orthogonal transformation so that it never needs to actually
be explicitly found. As before, this is followed by a simple translation in {x1, x2, · · · , xN}
space (with Jacobian = 1).

In the more compact version containing Macdonald functions, one can simply apply
the translation in {x1, x2, · · · , xN} space to the plane wave(s) that multiply
Equations (25), (31) and (37).

Photoionization transition amplitudes will generally contain dipole terms cos(θ) that
can be transformed into plane waves via a transformation like [26]

cos θ12 = −x−1
1 x−1

2
∂

∂Q
e−Qx1·x2

∣∣∣∣
Q=0

, (33)

giving an integro-differential representation whose inclusion follows that for other sorts of
plane waves.

6. A Third Integral Representation

Schweber’s third parametrization, which can be derived by iterating [21] (p. 336 No.
3.199) and [27], is

1
D1

1
D2
· · · 1

Dn
= (n− 1)!

∫ 1

0
dα1αn−2

1

∫ 1

0
dα2αn−3

2 · · ·
∫ 1

0
dαn−1 , (34)

× 1
(D1α1α2 · · · αn−1 + D2α1 · · · αn−2(1− αn−1) + · · ·+ Dn−1α1(1− α2) + Dn(1− α1))

n

so that, for instance,

e−η1x1

x1

e−η12x12

x12
=

4
π2

∫ ∞

0

∫ ∞

0
cos(t1η1) cos(t2η12)dt1dt2

×
∫ 1

0
dα1

1((
t2
1 + x2

1
)
α1 +

(
t2
2 + x2

12
)
(1− α1)

)2 . (35)

However, to derive the integral representation for M products of Slater orbitals, we
again utilize the Fourier transform approach, above, with Schweber’s third parametrization
of the resulting denominators, yielding

e−R1η1

R1

e−R2η2

R2
· · · e−RMηM

RM
=

1
2Mπ2M

∫ ∞

0
dρ
∫ 1

0
dα1

∫ 1

0
dα2 · · ·

∫ 1

0
dαM−1

× αM−2
1 αM−3

2 · · · α2
M−3α1

M−2

× π3M/2

ρM/2+1 ∏M−1
i=1 α

3(M−i)/2
i (1− αi)

3/2

× exp
(
−ρ
(

α1α2 · · · αM−1η2
1 + α1α2 · · · αM−2(1− αM−1)η

2
2 (36)

+ · · ·+ α1(1− α2)η
2
M−1 + (1− α1)η

2
M

))
× exp

(
−
(

R2
1

α1α2 · · · αM−1
+

R2
2

α1α2 · · · αM−2(1− αM−1)

+ · · ·+
R2

M−1
α1(1− α2)

+
R2

M
(1− α1)

)
1

4ρ

)
.

We perform the ρ integral [21] (p. 384 No. 3.471.9) to give the most compact form,
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e−R1η1

R1
e−R2η2

R2
· · · e−RMηM

RM
= 1

2Mπ2M

∫ 1
0 dα1

∫ 1
0 dα2 · · ·

∫ 1
0 dαM−1αM−2

1 αM−3
2 · · · α2

M−3α1
M−2

× π3M/221+M/2

∏M−1
i=1 α

3(M−i)/2
i (1− αi)

3/2

[
α1α2 · · · αM−1η2

1 + α1α2 · · · αM−2(1− αM−1)η
2
2+

· · ·+ α1(1− α2)η
2
M−1 + (1− α1)η

2
M
]M/4

×
(

R2
1

α1α2···αM−1
+

R2
2

α1α2···αM−2(1−αM−1)
+ · · ·+ R2

M−1
α1(1−α2)

+
R2

M
(1−α1)

)−M/4

× K M
2

[(
α1α2 · · · αM−1η2

1 + α1α2 · · · αM−2(1− αM−1)η
2
2 + · · ·

· · ·+ α1(1− α2)η
2
M−1 + (1− α1)η

2
M
)1/2

×
√

R2
1

α1α2···αM−1
+

R2
2

α1α2···αM−2(1−αM−1)
+ · · ·+ R2

M−1
α1(1−α2)

+
R2

M
(1−α1)

]
,

(37)

The M = 3 version is given explicitly as follows:

e−x1η1

x1
e−x12η2

x12
e−x13η13

x13
=
∫ 1

0

∫ 1
0 dα1dα2

α1(α1α2η2
1+α1(1−α2)η

2
12+(1−α1)η

2
13)

3/4
√

2π3/2((1−α1)α
2
1(1−α2)α2)3/2

×
(

x2
1

α1α2
+

x2
12

α1(1−α2)
+

x2
13

1−α1

)−3/4

× K 3
2

(√
x2

1
α1α2

+
x2

12
α1(1−α2)

+
x2

13
1−α1

√
α1α2η2

1 + α1(1− α2)η
2
12 + (1− α1)η

2
13

) (38)

Comparison with (28) shows that the associations of the integration parameters with x2
13

and x2
1 have been reversed, as have their associations with η2

13 and η2
1 . This may or may not

be an advantage in subsequent integrations after completing the square in x1 for M ≥ 3.

7. Utilizing Meijer G-Functions to Reduce Integrals

The utility of these new integral transformations for large M may well hinge on finding
integrals over variables that reside within square roots as the argument of a Macdonald
function. One method for crafting such untabled integrals is to violate two general rules of
procedure in the analytic reduction of integrals. The first rule is to use sequential integration
whenever possible. For instance, if one adds a third unshifted Slater orbital to Equation (1)
and integrates over both variables, one would reasonably start by transforming only those
Slater orbitals that contain x1 and integrate over that variable. Next, one integrates the
resultant and the third Slater orbital over x2. The result is easily found to be [21] (p. 358
No. 3.351.3)

Sη10η120η20
1 (0, 0; 0, 0, 0) =

∫
d3x2

∫
d3x1

e−η1x1

x1

e−η12x12

x12

e−η2x2

x2
.

=
∫ ∞

0
dx24πx2

2
4π(e−x2η12 − e−x2η1)

x2
(
η2

1 − η2
12
) e−η2x2

x2
(39)

=
16π2

(η1 + η2)(η1 + η12)(η2 + η12)

There is utility, however, in simultaneously transforming the full product of Slater
orbitals to generate unusual integrals whose values we know (as above) but whose reduc-
tion path may be fraught with difficulty. If one can find the solution path for a known
integral, this may provide a path for unknown integrals. Furthermore, it is clear that
the integral representations of the present paper, like that in the prior paper, are unusual
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in that they have integration variables residing within square roots as the arguments of
Macdonald functions.

The present integral representation appears on the surface to be less likely to allow for
such a reduction because there are many fewer tabled integrals over the interval [0, 1] than
there are over the [0, ∞] interval in the integral representation of the prior work. We will
see that this concern is not at all the case if we apply the strategy of doing both coordinate
integrals first within the above integral.

We apply the integral representation Equation (28) to all three Slater orbitals si-
multaneously. After completing the square and changing variables, the integral over

x
′2
1 K 3

2

(
α
√

x′21 + z2
)

/
√(

x′21 + z2
)3/2

can be done using [21] (p. 727. No. 6.596.3), the

consequent x2
2K0(ax2) integral can also be done via [28], and the second-to-last integral is

given by [21] (p. 333 No. 3.194.1)

Sη10η120η20
1 (0, 0; 0, 0, 0) =

∫
d3x2

∫
d3x1

e−η1x1

x1

e−η12x12

x12

e−η2x2

x2

=
∫

d3x2

∫
d3x1

∫ 1

0
dα1

∫ 1

0
dσ2

α1
(
(1− α1)η

2
1 + η2

12α1(1− σ2) + η2
2α1σ2

)3/4

√
2π3/2

(
(1− α1)α

2
1(1− σ2)σ2

)3/2

×
K 3

2

(√
x2

1
1−α1

+
x2

12
α1(1−σ2)

+
x2

2
α1σ2

√
(1− α1)η

2
1 + η2

12α1(1− σ2) + η2
2α1σ2

)
(

x2
1

1−α1
+

x2
12

α1(1−σ2)
+

x2
2

α1σ2

)3/4

=
∫

d3x2

∫
d3x

′
1

∫ 1

0
dα1

∫ 1

0
dσ2

α1
(
(1− α1)η

2
1 + η2

12α1(1− σ2) + η2
2α1σ2

)3/4

√
2π3/2

(
(1− α1)α

2
1(1− σ2)σ2

)3/2

×
K 3

2

(√
x′21 (1−α1σ2)

(1−α1)α1(1−σ2)
+

x2
2

α1σ2−α2
1σ2

2

√
(1− α1)η

2
1 + η2

12α1(1− σ2) + η2
2α1σ2

)
(

x′21 (1−α1σ2)
(1−α1)α1(1−σ2)

+
x2

2
α1σ2−α2

1σ2
2

)3/4

=
∫ ∞

0
dx2

∫ 1

0
dα1

∫ 1

0
dσ28πx2

2K0

 x2

√
(1− α1)η

2
1 + α1η2

13σ2 + η2
12(α1 − α1σ2)

√
α1
√

σ2
√

1− α1σ2

 (40)

×
(
α1η2

13σ2 + η2
12(α1 − α1σ2) + (1− α1)η

2
1
)3/4

(1− α1)
3/4α5/4

1 (1− σ2)
3/4σ3/2

2 (1− α1σ2)
3/4

×

√1− α1σ2

√
α1η2

13σ2 + η2
12(α1 − α1σ2) + (1− α1)η

2
1√

1− α1
√

α1
√

1− σ2

−3/2

=
∫ 1

0
dα1

∫ 1

0
dσ2

4π2α1(
α1
(
η2

12(1− σ2) + η2
13σ2 − η2

1
)
+ η2

1
)3/2

=
∫ 1

0
dσ2

8π2
(√(

η2
13 − η2

12
)
σ2 + η2

12 − η1

)2

((
η2

12 − η2
13
)
σ2 + η2

1 − η2
12
)2
√(

η2
13 − η2

12
)
σ2 + η2

12

=
∫ η2

13

η2
12

8π2

√
y
(
η2

13 − η2
12
)(√

y + η1
)2 dy =

∫ η13

η12

16π2(
η2

13 − η2
12
)
(z + η1)

2 dz .

Using [21] (p. 69 No. 2.113.1) in the final integral, above, gives the final line of Equation (39),
and it does so in a more straightforward fashion—using tabled integrals—than did the
integral representation of the prior paper when applied to this problem (which required
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the generation of new integrals in the final step using the computer algebra and calculus
program Mathematica).

We will see next that this advantage over the prior method is not universal. That is,
each integral representation, in turn, will shine brighter on specific problems.

The second general rule of analytical integration is that the easiest path is to integrate
over the coordinate variables first. The doubly contrary approach of the prior paper
generated a set of integrals that might be of utility for future researchers. We showed
therein that integration (over the interval [0, ∞]), when the variables reside within square
roots as the argument of a Macdonald function, can be undertaken if we rewrite the
Macdonald function in terms of a Meijer G-function. In the case of a product of three
Slater orbitals, after completing the square in the variable common to all three and then
integrating over the result, one has the following function to be integrated over [29] (p. 665.
No. 8.4.23.1):

1

ζ3/2
2

K0

2
x2
√

ζ1 + ζ2 + 1η2

√
ζ1η2

12+η2
1

4η2
2

+ ζ2
4

√
ζ1 + 1

√
ζ2



=
1
2

1

ζ3/2
2

G2,0
0,2

 x2
2(ζ1 + ζ2 + 1)η2

2

(
ζ2 +

η2
1+ζ1η2

12
η2

2

)
(ζ1 + 1)ζ2

| 0, 0

 , (41)

for which there is but one tabled integral [29] (p. 349 No. 2.24.2.9) that has roughly the
right form (with ζ2 = x),

∫ ∞

0
dx xα−1

(
ax2 + bx + c

) 3
2−α

G2,0
0,2

(
ax2 + bx + c

x
| ν,−ν

)

=

√
πG3,0

1,3

(
b + 2

√
a
√

c|
3
2

0,−α− ν + 3,−α + ν + 3

)
2a3/2 . (42)

+

√
π
√

cG3,0
1,3

(
b + 2

√
a
√

c|
1
2

0,−α− ν + 2,−α + ν + 2

)
a

A modification was required since inserting α = 3
2 to remove the polynomial mul-

tiplying the G-function in the integrand leaves us with the wrong power of x. One can,
however, take derivatives with respect to c of the integrand and resultant, with ν = 1/2 in
combination with ν = 0, to show the following (in Equation (43) and following, we explicitly
include an alternative expression for K as the hypergeometric U function [30], while expressions
in related functions can be found in [31,32] and [21] (p. 1090 No.9.235.2). None of these seem to
have tabled integrals with arguments as complicated as [29] (p. 349 No. 2.24.2.9)):

∫ ∞

0
dx

1
x3/2 K0

(
2

√
ax2 + bx + c

x

)
=
∫ ∞

0
dx

1
x3/2

√
πe−2

√
ax2+bx+c

x U

(
1
2

, 1, 4

√
ax2 + bx + c

x

)

=
∫ ∞

0
dx

1
2x3/2 G2,0

0,2

(
ax2 + b x + c

x
| 0, 0

)

=
πe−2

√
2
√

a
√

c+b

2
√

c
√

2
√

a
√

c + b
−

√
πG2,1

1,3

(
b + 2

√
a
√

c|
− 3

2

− 1
2 , 0,− 1

2

)
2
√

c
, (43)

=
πe−2

√
2
√

a
√

c+b

2
√

c

⇒ πe−2
(

2
√

a
√

c
x2η2

+
x2η2

2

)
2
√

c
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where the reduction of the Meijer G-function in the third line is from [33] and the last step√
2
√

a
√

c + b⇒ 2
√

a
√

c
x2η2

+
x2η2

2
(44)

holds for a number of cases akin to the present one in which{
a→

x2
2η2

2
4(ζ1 + 1)

, b→
x2

2η2
2

4(ζ1 + 1)

(
ζ1η2

12 + η2
1

η2
2

+ ζ1 + 1

)
, c→ 1

4
x2

2

(
ζ1η2

12 + η2
1

)}
. (45)

The integral representations of the current paper use integrals over the interval [0, 1]
rather than over [0, ∞], and the only tabled integral over a G-function on [0, 1] we found
that has a fairly complicated argument [29] (p. 349 No. 2.24.2.7),

∫ 1

0
dx

xα−1(1− x)β−1

(1 + ax + b(1− x))α+β
Gm,n

p,q

(
x`(1− x)k

(1 + ax + b(1− x))`+k

∣∣∣∣ (ap
)(

bq
) ) (46)

has a markedly different integrand than the square of the argument of the Macdonald function

8πx2
2√

α1σ3/2
2 (1− α1σ2)

3/2 K0

 x2

√
(1− α1)η

2
1 + α1η2

13σ2 + η2
12(α1 − α1σ2)

√
α1
√

σ2
√

1− α1σ2

 (47)

to which the fourth equality in (40) reduces, so it is useless for the present problem.
Schweber’s third parametrization gives no better result. All of this provided motiva-

tion for the integral representation we derive in the next section.

8. An Ungainly but Useful Bridge

There is an obscure integral [27] (p. 176 No. 421.8) that will serve as an integral
representation for a product of denominators,

B(κ,λ−κ)
cκdλ−κ =

∫ 1
0 dx

(
xκ−1

(cx+d)λ + x−κ+λ−1

(c+dx)λ

)
=
∫ ∞

1 dx
(

xκ−1

(cx+d)λ + x−κ+λ−1

(c+dx)λ

)
= 1

2

∫ ∞
0 dx

(
xκ−1

(cx+d)λ + x−κ+λ−1

(c+dx)λ

)
,

(48)

that has the very useful property of relating integrals over [0, ∞] to integrals over [0, 1] and
[1, ∞]. One might hope to extend integrals like [29] (p. 349 No. 2.24.2.9) to integrals over
[0, 1] or [1, ∞] if the integral over [0, ∞] could be found.

Its ungainliness is revealed in the process of extending it from a pair of denominators

1
a1a2

=
∫ 1

0
dτ1

(
1

(a1 + a2τ1)
2 +

1

(a1τ1 + a2)
2

)
(49)

to triplets by iteration

1
a1a2a3

=
∫ 1

0
dτ1

∫ 1

0
dτ2 2

(
1

(a1τ1 + a3τ2 + a2)
3 +

1

(a2τ1 + a3τ2 + a1)
3

+
τ2

(τ2(a1τ1 + a2) + a3)
3 +

τ2

(τ2(a2τ1 + a1) + a3)
3

)
(50)

and beyond: at each step, the number of terms doubles so a general-M version is difficult
to imagine.

To derive an integral representation for a product of two or three Slater orbitals, one
simply follows the procedure laid out in Section 4, above, for each of the two or four terms,
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but the determinants are different in this new case and are different from term to term. The
final forms are

e−η1x1

x1
e−η12x12

x12
=
∫ 1

0 dτ1
∫ ∞

0 dρ

exp

− x2
1

τ1
+x2

12
4ρ −ρ(η2

1 τ1+η2
12)

+exp

− x2
12
τ1

+x2
1

4ρ −ρ(η2
12τ1+η2

1)


4πρ2τ3/2

1

=
∫ 1

0 dτ1


√

η2
1 τ1+η2

12K1

(√
x2

1
τ1
+x2

12

√
τ1η2

1+η2
12

)

πτ3/2
1

√
x2

1
τ1
+x2

12

+

√
η2

12τ1+η2
1 K1

(√
x2

1+
x2

12
τ1

√
η2

1+η2
12τ1

)

πτ3/2
1

√
x2

12
τ1

+x2
1


(51)

and

e−η1x1

x1
e−η12x12

x12
e−η13x13

x13
=
∫ 1

0 dτ1
∫ 1

0 dτ2
∫ ∞

0 dρ
1

8π3/2ρ5/2(τ1τ2)3/2

+

exp

− x2
1

τ1
+

x2
13
τ2

+x2
12

4ρ − ρ
(
η2

1τ1 + η2
13τ2 + η2

12
)

+ exp

− x2
12
τ1

+
x2

13
τ2

+x2
1

4ρ − ρ
(
η2

12τ1 + η2
13τ2 + η2

1
)

+ τ2 exp

− x2
1

τ1τ2
+

x2
12
τ2

+x2
13

4ρ − ρ
(
η2

1τ1τ2 + η2
12τ2 + η2

13
)

+ τ2 exp

− x2
1

τ2
+

x2
12

τ1τ2
+x2

13
4ρ − ρ

(
η2

1τ2 + η2
12τ1τ2 + η2

13
)

=
∫ 1

0 dτ1
∫ 1

0 dτ2

 (η2
1 τ1+η2

13τ2+η2
12)

3/4K 3
2

(√
x2

1
τ1
+x2

12+
x2

13
τ2

√
τ1η2

1+η2
12+η2

13τ2

)
√

2π3/2(τ1τ2)3/2
(

x2
1

τ1
+

x2
13
τ2

+x2
12

)
3/4

+
(η2

12τ1+η2
13τ2+η2

1)
3/4K 3

2

(√
x2

1+
x2

12
τ1

+
x2

13
τ2

√
η2

1+η2
12τ1+η2

13τ2

)
√

2π3/2(τ1τ2)3/2
(

x2
12
τ1

+
x2

13
τ2

+x2
1

)
3/4

(η2
1 τ1τ2+η2

12τ2+η2
13)

3/4K 3
2

(√
x2

1
τ1τ2

+x2
13+

x2
12
τ2

√
τ1τ2η2

1+η2
13+η2

12τ2

)
√

2π3/2τ3/2
1 τ2

2

(
x2

1
τ1τ2

+
x2

12
τ2

+x2
13

)
3/4

+
(η2

1 τ2+η2
12τ1τ2+η2

13)
3/4K 3

2

(√
x2

1
τ2
+x2

13+
x2

12
τ1τ2

√
τ2η2

1+η2
13+η2

12τ1τ2

)
√

2π3/2τ3/2
1 τ2

2

(
x2

1
τ2
+

x2
12

τ1τ2
+x2

13

)
3/4



, (52)

with the equality also holding for integrals over [1, ∞]. It also holds over [0, ∞] if one
multiplies the right-hand side by 1

2
1
2 . In the case of M ≥ 3, one can even mix these three

intervals among the integrals present.
We (simultaneously) apply the above integral representation (52) to all three Slater

orbitals in the first line of (39), whose last line gives 117.4952904891590 when we arbi-
trarily set parameters to {η1 → 0.3, η12 → 0.5, η13 → 0.9}. After completing the square
and changing variables, using [21] (p. 727. No. 6.596.3), one can perform the integral

over x
′2
1 K 3

2

(
α
√

x′21 + z2
)

/
√(

x′21 + z2
)3/2

.



Axioms 2024, 13, 120 16 of 23

Sη10η120η20
1 (0, 0; 0, 0, 0)=

∫
d3x2

∫
d3x1

e−η1x1

x1

e−η12x12

x12

e−η2x2

x2
=
∫

d3x2

∫
d3x′1

∫ 1

0
dτ1

∫ 1

0
dτ2

×


(
η2

1τ1 + η2
13τ2 + η2

12
)3/4K 3

2

(√
x′21 (τ1+1)

τ1
+

x2
2(τ1+τ2+1)
(τ1+1)τ2

√
τ1η2

1 + η2
12 + η2

13τ2

)
√

2π3/2(τ1τ2)3/2
(

x′21 (τ1+1)
τ1

+
x2

2(τ1+τ2+1)
(τ1+1)τ2

)
3/4

+

(
η2

12τ1 + η2
13τ2 + η2

1
)3/4K 3

2

(√
x′21 (τ1+1)

τ1
+

x2
2(τ1+τ2+1)
(τ1+1)τ2

√
η2

1 + η2
12τ1 + η2

13τ2

)
√

2π3/2(τ1τ2)3/2
(

x′21 (τ1+1)
τ1

+
x2

2(τ1+τ2+1)
(τ1+1)τ2

)
3/4

+

(
η2

1τ1τ2 + η2
12τ2 + η2

13
)3/4K 3

2

(√
x′21 (τ1+1)

τ1τ2
+

x2
2((τ1+1)τ2+1)

(τ1+1)τ2

√
τ1τ2η2

1 + η2
13 + η2

12τ2

)
√

2π3/2τ3/2
1 τ2

2

(
x′21 (τ1+1)

τ1τ2
+

x2
2((τ1+1)τ2+1)

(τ1+1)τ2

)
3/4

+

(
η2

1τ2 + η2
12τ1τ2 + η2

13
)3/4K 3

2

(√
x′21 (τ1+1)

τ1τ2
+

x2
2((τ1+1)τ2+1)

(τ1+1)τ2

√
τ2η2

1 + η2
13 + η2

12τ1τ2

)
√

2π3/2τ3/2
1 τ2

2

(
x′21 (τ1+1)

τ1τ2
+

x2
2((τ1+1)τ2+1)

(τ1+1)τ2

)
3/4



=
∫

d3x2

∫ 1

0
dτ1

∫ 1

0
dτ2

2K0

(
x2
√

τ1+τ2+1
√

τ1η2
1+η2

12+η2
13τ2√

τ1+1
√

τ2

)
(τ1 + 1)3/2τ3/2

2

+

2K0

(
x2
√

τ1+τ2+1
√

η2
1+η2

12τ1+η2
13τ2√

τ1+1
√

τ2

)
(τ1 + 1)3/2τ3/2

2

+

2K0

(
x2
√

τ1τ2η2
1+η2

13+η2
12τ2
√

(τ1+1)τ2+1√
τ1+1

√
τ2

)
(τ1 + 1)3/2√τ2

+

2K0

(
x2
√

τ2η2
1+η2

13+η2
12τ1τ2
√

(τ1+1)τ2+1√
τ1+1

√
τ2

)
(τ1 + 1)3/2√τ2

 . (53)

For the values of {η1 → 0.3, η12 → 0.5, η13 → 0.9} used above, these four terms nu-
merically integrate to

S0.3,0,0.5,0,0.9,0
1 (0, 0; 0, 0, 0)=(39.2072 + 61.8386 + 7.89946 + 8.55004)=117.49528665800858 . (54)

On the other hand, if we change the integration limits to [1, ∞], they yield

S0.3,0,0.5,0,0.9,0
1 (0, 0; 0, 0, 0)=(31.4147 + 22.115 + 38.9735 + 24.9916)=117.49480820934275 . (55)

If we now change the integration limits to [0, ∞] and multiply by 1
2

1
2 , these terms are

S0.3,0,0.5,0,0.9,0
1 (0, 0; 0, 0, 0) =

= (29.373735823279375 + 29.37376872163303 (56)

+ 29.373735823279382 + 29.37376872163304) = 117.49500908982483 .

It should not be surprising that changing the limits of integration will change the
value of an integral, nor that different integrands will yield different results under changed
limits of integration. What is remarkable is that the four different integrands in each case
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compensate for each other under such a change of integration limits so as to produce the
same sum (to six-digit accuracy in this numerical integration) for all three limit sets. (Such
compensation is inherent in the integral representation (49) we used as the stepping stone
to the Slater orbital version expressed in Equations (51) and (52).) This compensation is also
a harbinger of the [0, ∞] form of the present set of integral representations indeed acting as
a bridge to analytical results for sums of integrals of Meijer G-functions over the intervals
[0, 1] and [1, ∞]. It is also notable that the four terms contribute almost equally when the
limits are set to [0, ∞], with the first and third terms the same to 15 digits—as are the second
and fourth—though the first and second terms differ in the 7th digit.

9. Analytical Results for Sums of Integrals of Such G-Functions

Rather than doing the x2
2K0(ax2) integrals via [28], we will attempt to do the τ2

integrals first as a means to generate some useful integrals for future researchers. We begin
by recasting the Macdonald functions of (53) as Meijer G-functions using (41) [29] (p. 665.
No. 8.4.23.1), with each of the four terms having different values for{

a→ x2
2η2

13
4(τ1+1) , b→ x2

2(η2
1 τ1+η2

13(τ1+1)+η2
12)

4(τ1+1) , c→ 1
4 x2

2
(
η2

1τ1 + η2
12
)}{

a2 →
x2

2η2
13

4(τ1+1) , b2 →
x2

2(η2
12τ1+η2

13(τ1+1)+η2
1)

4(τ1+1) , c2 → 1
4 x2

2
(
η2

12τ1 + η2
1
)}{

a3 → 1
4 x2

2
(
η2

1τ1 + η2
12
)
, b3 →

x2
2(η2

1 τ1+η2
13(τ1+1)+η2

12)
4(τ1+1) , c3 →

x2
2η2

13
4(τ1+1)

}
{

a4 → 1
4 x2

2
(
η2

12τ1 + η2
1
)
, b4 →

x2
2(η2

12τ1+η2
13(τ1+1)+η2

1)
4(τ1+1) , c4 →

x2
2η2

13
4(τ1+1)

}
. (57)

We switch to the form with integrals over [0, ∞] so that we can consider just the first
term of (53) that is precisely the integral found in the prior paper’s Equation (43) except that

in the present case, with
{

a→ x2
2η2

13
4(τ1+1) , b→ x2

2(η2
1 τ1+η2

13(τ1+1)+η2
12)

4(τ1+1) , c→ 1
4 x2

2
(
η2

1τ1 + η2
12
)}

,

the last term simplifies differently:√
2
√

a
√

c + b⇒
√

a(τ1 + 1) + 2
√

c
τ1 + 1

. (58)

Then,

∫
d3x2

1
22

∫ ∞
0 dτ1

∫ ∞
0 dτ2

2
(τ1+1)3/2τ3/2

2
K0

2

√
η2

13τ2
2 x2

2
4(τ1+1)

+ 1
4 (τ1η2

1+η2
12)x2

2+
(τ1η2

1+η2
12+η2

13(τ1+1))τ2x2
2

4(τ1+1)√
τ2

 =

∫
d3x2

1
2

1
2

∫ ∞
0 dτ1

∫ ∞
0 dτ2

1
(τ1+1)3/2

2
τ3/2

2
K0

(
2
√

aτ2
2 +bτ2+c√

τ2

)
=∫

d3x2
1
2

1
2

∫ ∞
0 dτ1

1
(τ1+1)3/2

πe−2
√

2
√

a
√

c+b
√

c ⇒∫
d3x2

1
2

1
2

∫ ∞
0 dτ1

1
(τ1+1)3/2

π√
c e
−2
(√

a(τ1+1)+
√

c
τ1+1

)
(59)

The second term has the same general form but with η2
1 and η2

12 switching places in
their associations with τ1 (symbolically, η2

1 ↔ η2
12). This means that we can write it as
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∫
d3x2

1
22

∫ ∞
0 dτ1

∫ ∞
0 dτ2

2
(τ1+1)3/2τ3/2

2
K0

2

√
η2

13τ2
2 x2

2
4(τ1+1)

+ 1
4 (η2

1+η2
12τ1)x2

2+
(η2

1+η2
12τ1+η2

13(τ1+1))τ2x2
2

4(τ1+1)√
τ2

 =

∫
d3x2

1
2

1
2

∫ ∞
0 dτ1

∫ ∞
0 dτ2

1
(τ1+1)3/2

2
τ3/2

2
K0

(
2
√

aτ2
2 +(b− f )τ2+(c−g)√

τ2

)
=

∫
d3x2

1
2

1
2

∫ ∞
0 dτ1

1

(τ1 + 1)3/2
πe−2

√
2
√

a
√

c−g+(b− f )
√

c− g
⇒∫

d3x2
1
2

1
2

∫ ∞
0 dτ1

1
(τ1+1)3/2

π√
c e−2

(√
a(τ1+1)+

√
c−g

τ1+1

)

(60)

where {
g→ 1

4
x2

2

(
η2

1 − η2
12

)
(τ1 − 1), f →

x2
2
(
η2

1 − η2
12
)
(τ1 − 1)

4(τ1 + 1)

}
(61)

The third term has x1/2 instead of x3/2 in the denominator so we have to use a different
sequence of derivatives of (42) to find that

∫ ∞

0
dx

1
x1/2 K0

(
2

√
ax2 + bx + c

x

)
=
∫ ∞

0
dx

1
x1/2

√
πe−2

√
ax2+bx+c

x U

(
1
2

, 1, 4

√
ax2 + bx + c

x

)

=
∫ ∞

0
dx

1
2x1/2 G2,0

0,2

(
ax2 + b x + c

x
| 0, 0

)
=

√
π√
a

G3,0
1,3

(
b + 2

√
a
√

c| − 1
2

0,− 1
2 , 1

2

)
, (62)

=
e−2
√

b+2
√

a
√

cπ√
a

⇒ π√
a3

e
−2
(√ a3

τ1+1+
√

c3(τ1+1)
)

where the reduction in the fourth line is from [34] and the last line holds for the class of

parameters akin to this particular set:
{

a3 → 1
4 x2

2
(
η2

1τ1 + η2
12
)
, b3 →

x2
2(η2

1 τ1+η2
13(τ1+1)+η2

12)
4(τ1+1) ,

c3 →
x2

2η2
13

4(τ1+1)

}
. We furthermore see that {a3 → c, c3 → a} in the present case, so the third

term integrates to the same value as the first:

∫
d3x2

1
22

∫ ∞
0 dτ1

∫ ∞
0 dτ2

2
(τ1+1)3/2√τ2

K0

2

√
1
4 (τ1η2

1+η2
12)τ2

2 x2
2+

(τ1η2
1+η2

12+η2
13(τ1+1))τ2x2

2
4(τ1+1)

+
η2

13x2
2

4(τ1+1)√
τ2

 =

∫
d3x2

1
2

1
2

∫ ∞
0 dτ1

∫ ∞
0 dτ2

1
(τ1+1)3/2

2√
τ2

K0

(
2
√

cτ2
2 +bτ2+a√

τ2

)
=

∫
d3x2

1
2

1
2

∫ ∞
0 dτ1

1
(τ1 + 1)3/2

πe−2
√

2
√

a
√

c+b
√

c
⇒

∫
d3x2

1
2

1
2

∫ ∞
0 dτ1

1
(τ1+1)3/2

π√
c e
−2
(√

a(τ1+1)+
√

c
τ1+1

)
(63)

The fourth term has the same general form as the third but with η2
1 ↔ η2

12. This means
that we can write it as
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∫
d3x2

1
22

∫ ∞
0 dτ1

∫ ∞
0 dτ2

2
(τ1+1)3/2τ1/2

2
K0

2

√
1
4 (η2

1+η2
12τ1)τ2

2 x2
2+

(η2
1+η2

12τ1+η2
13(τ1+1))τ2x2

2
4(τ1+1)

+
η2

13x2
2

4(τ1+1)√
τ2

 =

∫
d3x2

1
2

1
2

∫ ∞
0 dτ1

∫ ∞
0 dτ2

1
(τ1+1)3/2

2
τ1/2

2
K0

(
2
√

aτ2
2 +(b− f )τ2+(c−g)√

τ2

)
=

∫
d3x2

1
2

1
2

∫ ∞
0 dτ1

1

(τ1 + 1)3/2
πe−2

√
2
√

a
√

c−g+(b− f )
√

c− g
= ⇒∫

d3x2
1
2

1
2

∫ ∞
0 dτ1

1
(τ1+1)3/2

π√
c e−2

(√
a(τ1+1)−

√
c−g

τ1+1

)

(64)

where f and g are as in (61).
In numerically integrating these final four analytical results, the final lines of (59), (60),

(63), and (64), for the values of {η1 → 0.3, η12 → 0.5, η13 → 0.9} used above, the four terms
differ only in the final two decimal places:

S0.3,0,0.5,0,0.9,0
1 (0, 0; 0, 0, 0) = (29.37382253070293 + 29.373822530702924

+ 29.37382253070293 + 29.373822530702924)

= 117.49529012281171 , (65)

and the penultimate lines in each case are identically 29.373822530702924. So our hope that
the sum of the four integrals over the intervals [0, 1] and [1, ∞] could be analytically found
by using integration limits of [0, ∞] as a sort of Rosetta stone bears fruit:

∫
d3x2

∫ ∞
1 dτ1

1
(τ1+1)3/2

∫ ∞
1 dτ2

(
2

τ3/2
2

[
K0

(
2
√

aτ2
2 +bτ2+c√

τ2

)
+ K0

(
2
√

aτ2
2 +(b− f )τ2+(c−g)√

τ2

)]
+

2√
τ2

[
K0

(
2
√

cτ2
2 +bτ2+a√

τ2

)
+ K0

(
2
√

aτ2
2 +(b− f )τ2+(c−g)√

τ2

)])
=

31.4147 + 22.115 + 38.9735 + 24.9916 = 117.495 =∫
d3x2

∫ ∞
1 dτ1

1
(τ1+1)3/2

(
π√

c e−2
√

2
√

a
√

c+b + π√
c−g e−2

√
2
√

a
√

c−g+(b− f ) +

π√
c e−2
√

2
√

a
√

c+b + π√
c−g e−2

√
2
√

a
√

c−g+(b− f )
)

⇒ .∫
d3x2

∫ ∞
1 dτ1

1
(τ1+1)3/2

 π√
c e
−2
(√

a(τ1+1)−
√

c
τ1+1

)
+ π√

c e−2
(√

a(τ1+1)−
√

c−g
τ1+1

)
+

π√
c e
−2
(√

a(τ1+1)+
√

c
τ1+1

)
+ π√

c e−2
(√

a(τ1+1)−
√

c−g
τ1+1

) =

35.1943 + 23.5533 + 35.1943 + 23.5533 = 117.495

(66)

We note that the analytical τ2 results (in the last line above after numerically integrating
over d3x2dτ1) are identical for the first and third terms and for the second and fourth. One
can likewise see that the average of the first and third terms resulting from the numerical
integral that includes dτ2 (in the third line above) gives the first analytical term, and the
average of the second and fourth terms resulting from the numerical integral that includes
dτ2 gives the second analytical term. So our results extend significantly beyond our hope
that the sum of the four integrals over the interval [1, ∞] would have an analytical result.
In fact, an analytical result comes from the sum of only two terms. The same holds when
we replace the integral limits with [0, 1]. Written with this new understanding, the pairs of
integrals give
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∫
d3x2

∫ 1
0 dτ1

1
(τ1+1)3/2

∫ 1
0 dτ2

(
2

τ3/2
2

K0

(
2
√

aτ2
2 +bτ2+c√

τ2

)
+ 2√

τ2
K0

(
2
√

cτ2
2 +bτ2+a√

τ2

))
=∫

d3x2
∫ 1

0 dτ1
1

(τ1+1)3/2
π√

c e−2
√

2
√

a
√

c+b ⇒∫
d3x2

∫ 1
0 dτ1

1
(τ1+1)3/2 2 π√

c e
−2
(√

a(τ1+1)−
√

c
τ1+1

)
=

2× 23.5533

∫
d3x2

∫ 1
0 dτ1

1
(τ1+1)3/2

∫ 1
0 dτ2

(
2

τ3/2
2

K0

(
2
√

aτ2
2 +(b− f )τ2+(c−g)√

τ2

)
+

+ 2√
τ2

K0

(
2
√

aτ2
2 +(b− f )τ2+(c−g)√

τ2

))
=∫

d3x2
∫ 1

0 dτ1
1

(τ1+1)3/2 2 π√
c−g e−2

√
2
√

a
√

c−g+(b− f ) ⇒∫
d3x2

∫ 1
0 dτ1

1
(τ1+1)3/2 2 π√

c e−2
(√

a(τ1+1)−
√

c−g
τ1+1

)
=

2× 35.1943

(67)

whose sum is again 117.495.
We noted earlier that one can have a different τ1 integration interval than for τ2. If we

substitute [0, ∞] for the τ1 integration interval and multiply by 1
2 while keeping [0, 1] for

the τ2 integral, each of the above two integrals yields a value of 2× 29.3738 whose sum is
again 117.495. These are averages of the first and third terms in the set of results from the
individual terms {39.0904, 43.4151, 19.6571, 15.3325}. The same holds if we substitute [0, ∞]
for the τ1 integration interval and multiply by 1

2 while setting [1, ∞] for the τ2 integral,
though the first and last pairs swap values in the individual terms.

These are integral results extracted from the particular case under study. Of course,
the final form will not hold for generic values of the parameters, but do the penultimate
ones hold? Indeed, they do:∫ 1

0 dx
(

2
x3/2 K0

(
2
√

ax2+bx+c√
x

)
+ 2√

x K0

(
2
√

cx2+bx+a√
x

))
=∫ 1

0 dx

(
2
√

π
x3/2 e−

2
√

ax2+bx+c√
x U

(
1
2 , 1, 4

√
ax2+bx+c√

x

)
+ 2
√

π√
x e−

2
√

a+bx+cx2√
x U

(
1
2 , 1, 4

√
cx2+bx+a√

x

))
=∫ 1

0 dx
(

1
x3/2 G2,0

0,2

(
ax2+bx+c

x | 0, 0
)
+ 1√

x G2,0
0,2

(
cx2+bx+a

x | 0, 0
))

=

π√
c e−2
√

2
√

a
√

c+b =

0.738215
[{a→ 0.21, b→ 0.31, c→ 0.41}]

(68)

The same values result when the integration is over the interval [1, ∞] as they do if
we change the integration limits to [0, ∞] and multiply by 1

2 . We note that the second pair
of integrals in (67), when cast into generic terms, replicate the above integral if we simply
rename b− f as b and c− g as g, so we have derived one new integral relation and not two
distinct ones.

While each of the two terms in the above integral does not map onto a known ana-
lytical result, having the sum map onto a known analytical result is a significant step in
that direction.

10. Conclusions

We crafted a quartet of integral representations of products of Slater orbitals over the
interval [0, 1] that may be useful in the reduction of multidimensional transition amplitudes
of quantum theory. For three of these representations, the general form was found for a
product of any number of Slater orbitals, whose derivatives in the atomic realm represent
hydrogenic and Hylleraas wave functions, as well as those composed of explicitly correlated
exponentials of the kind introduced by Thakkar and Smith [35]. These results are also



Axioms 2024, 13, 120 21 of 23

useful in nuclear transition amplitudes and may also find application in solid-state physics,
plasma physics, negative ion physics, and problems involving a hypothesized non-zero-
mass photon.

These three integral representations have the advantage over the Gaussian transform
of requiring the introduction of one fewer integral to be subsequently reduced. They also
require many fewer than the (3(M− 1) + M− 1) integral dimensions that the Fourier
transform introduces for a product of M Slater orbitals. Direct integration of products of
Slater orbitals containing angular functions centered on different points usually bears fruit
in only the simplest problems. The fourth conventional approach to these problems is to
represent M Slater orbitals as M addition theorems, that is, M infinite sums over spherical
harmonics containing the angular dependencies. Orthogonality allows one to remove a few
of these infinite sums in the process of integrating some of the original integrals. For large
M, this approach rapidly bogs down.

Each of the four extant approaches to such problems runs into difficulties at some
point as M increases. These three new integral representations (over the interval [0, 1]) for
M Slater orbitals likewise have some positives and some negatives. One advantage for
numerical integration using the present set compared to undertaking this integration with
the version in the prior paper—which has integrals running over the interval [0, ∞] (as do
and Fourier and Gaussian methods)—is avoiding the inconvenience of needing to test for a
sufficiently large upper integration limit.

For the simplest analytical integration problems, the three integral representations
(over the interval [0, 1]) for Slater orbitals in the present paper provide solutions in a much
more rapid fashion than do the four traditional approaches and even surpass the integral
representation over the interval [0, ∞] of the prior paper in allowing the moderately hard
problem of the integral over three Slater orbitals—after all coordinate integrals have been
performed—to be reduced to analytical form via tabled integrals over the interval [0, 1].
On the other hand, the integral representation over the interval [0, ∞] of the prior paper
lacked any tabled result in the final step of this problem and had to rely on the computer
algebra and calculus program Mathematica 7 to find this integral. This, however, belies
the general paucity of tabled integrals over the interval [0, 1] relative to those over the
interval [0, ∞].

The fact that the integration variables reside within a square root as the argument of a
Macdonald function, shared by the prior work, will lead to difficulties in some complicated
problems since only one such integral (transformed into a Meijer G-function) was known
before extensions in the prior paper. Unlike that paper, the three integral representations
for M Slater orbitals of the present work have the added difficulty of having no known
integrals of this sort upon which to build.

It was for this reason that we introduced a fourth integral representation that is
not easily generalizable to large M, but we hoped it would provide a bridge for find-
ing the requisite integrals in the above problems. This final integral representation al-
lowed us to derive the analytical result for an integral of a sum of two Meijer G-functions
f (x)G2,0

0,2

(
ax2+b x+c

x | 0, 0
)

over the interval [0, 1] via a bridge from the version of this inte-
gral representation that is over the interval [0, ∞]. This is only halfway to the desired result
but is a promising step and provides an integral that researchers in fields far afield from
atomic theory may find useful.
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Acknowledgments: As it became clear that I needed to make at least some progress on finding

analytical results for integrals of Meijer G-functions f (x)G2,0
0,2

(
ax2+b x+c
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)

over the interval

[0, 1] for this research project to come to a sense of completion, I chanced upon an integral in Gröbner
and Hofreiter [27] (p. 176 No. 421.8) that would serve as an integral representation for a product of
denominators. I found that I could use this as the basis for an integral representation for a product of
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several Slater orbitals that had the property of bridging from known integrals of Meijer G-functions
(with such arguments) over the interval [0, ∞] to heretofore untabled pairs of such integrals over
the the interval [0, 1] (and over [1, ∞])—a sort of mathematical Rosetta stone. I have long had the
practice of filling the 10 minutes prior to when my astronomy class starts with videos of music
featuring women instrumentalists, just as I make it my practice to bring video clips of experts in
the field who happen to be women into the class content. The reader may or may not be aware
that the historical predicament of women in STEM fields has significant parallels to the historical
predicament of women in music, particularly when it comes to women instrumentalists. Indeed,
women came to be auditioned into orchestras in significant numbers only after blind auditions were
introduced in the 1970s. Neither did one see women instrumentalists playing with Miles Davis, say,
or the Rolling Stones. Fortunately, both pop music and STEM fields are beginning to shift in this
regard. It is my hope, intent, and practice that as the younger generation comes to see women in both
roles as “normal,” they will help accelerate this shift. So my students hear Lari Basilio shredding on
electric guitar on, say, Alive and Living, Sonah Jobarteh playing Mamamuso on the kora, and Sophie
Alloway on drums with Ida Hollis on electric bass playing Shuffle Bubble, among many others. They
likewise learn about the process of looking for life on Mars from Moogega Cooper and about the
sound of black holes colliding from Janna Levin. I share all of this detail so that it will be clear why
the background soundtrack to my research into the material that comprises Sections 8 and 9—and the
idea that one sort of integral could act as a bridge or mathematical Rosetta stone to craft others—was
guitarist, composer, and singer Sister Rosetta Tharpe. She was inducted by the Rock and Roll Hall of
Fame as “the Godmother of Rock & Roll" for songs such as Trouble In Mind, though her influences on
gospel, country, and R&B were also vast. I am a jazz drummer who has been immersed in learning
these other four musical styles over the past two decades, and, thus, Sister Rosetta Tharpe has been
key not only to deepening and generalizing my musical patterning but also to the joy I experience in
the process. On a weekly basis, I am immersed in the creative expression of the musicians I jam with,
and the rhythmical patterns they manifest in their music evoke a resonant rhythmical response in
my drumming. Sometimes this response is delayed by months, because my skill level needs to grow
to accommodate it. Furthermore, I sense, but cannot prove, that this response also manifests in my
work as a theoretical physicist who relies heavily on pattern recognition for insights that culminate in
my math-based results, such as the generalization to Equation (31) from the sequence from (28) to
(30). It is with all this in mind that I dedicate this paper, and in particular the integral representations
of Sections 8 and 9, to Sister Rosetta Tharpe.
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