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ABSTRACT

Introduction: There is an urgent need to
develop new drugs to treat malaria due to
increasing resistance to first-line therapeutics
targeting the causative organism, Plasmodium
falciparum (P. falciparum). One drug candidate is
DM1157, a small molecule that inhibits the
formation of hemozoin, which protects P. fal-
ciparum from heme toxicity. We describe a first-
in-human, phase 1 trial of DM1157 in healthy

adult volunteers that was halted early because
of significant toxicity.
Methods: Adverse events were summarized
using descriptive statistics. We used pharma-
cokinetic modeling to quantitatively assess
whether the DM1157 exposure needed for P.
falciparum inhibition was achievable at safe
doses.
Results: We found that there was no dose
where both the safety and efficacy target were
simultaneously achieved; conversely, the model
predicted that 27 mg was the highest dosage at
which patients would consistently maintain
safe exposure with multiple dosing. By pre-
defining dose escalation stopping rules and
conducting an interim pharmacokinetic/phar-
macodynamic analysis, we determined that the
study would be unable to safely achieve a
dosage needed to observe an anti-malarial
effect, thereby providing strong rationale to
halt the study.
Conclusion: This study provides an important
example of the risks and challenges of con-
ducting early phase research as well as the role
of modeling and simulation to optimize par-
ticipant safety (ClinicalTrials.gov,
NCT03490162).

Keywords: Clinical trials; Drug safety; Malaria;
Pharmacokinetics; Plasmodium falciparum
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Key Summary Points

We describe a first-in-human, phase 1 trial
of of an anti-malarial drug in healthy
adult volunteers that was halted early
because of significant toxicity

By pre-defining dose escalation stopping
rules and conducting an interim
pharmacokinetic/pharmacodynamic
analysis, we determined that the study
would be unable to safely achieve a dosage
needed to observe an anti-malarial effect

This study provides an important example
of the risks and challenges of conducting
early phase research as well as the role of
modeling and simulation to optimize
participant safety

INTRODUCTION

Malaria is a substantial global health crisis
causing more than 400,000 deaths annually [1].
As a result of rising resistance to first-line ther-
apeutics targeted at the most deadly causative
organism, Plasmodium falciparum (P. falciparum),
there is an urgent need to develop new treat-
ments for malaria. One such drug candidate is
DM1157, a small molecule that inhibits the
formation of hemazoin, which protects P. fal-
ciparum from heme toxicity [2]. In addition,
DM1157 has the additive advantage of com-
petitively inhibiting the chloroquine resistance
transporter (PfCRT), thereby potentially
impairing drug efflux and overcoming common
resistance mechanisms in P. falciparum. In vitro
studies demonstrated that DM1157 had mini-
mum 50% inhibitory concentrations (IC50)
between 0.9 and 1.8 nM against laboratory
strains of P. falciparum and was potent against
39 clinical isolates, most of which were resistant
to chloroquine.

DM1157 is an analog of chloroquine bound
to a dipyridinylmethylamino piperidinyl moi-
ety. Preclinical pharmacokinetic (PK) and

metabolism studies in rat and cynomolgus
monkey indicate oral DM1157 is rapidly absor-
bed and has relatively high bioavailability. In
these species, DM1157 accumulates in erythro-
cytes and undergoes hepatic metabolism, and
concentrations increase in a greater-than-pro-
portional manner relative to dose, suggesting
non-linear kinetics. In a non-GLP (Good Labo-
ratory Practice) microsomal stability study, the
half-life for DM1157 in liver microsomes from
rat, cynomolgus monkey and humans
was[ 60 min with an estimated intrinsic clear-
ance of\ 115.5 ll/min/mg. In a non-GLP
in vitro metabolite identification study,
DM1157 is metabolized to 18 metabolites in rat,
cynomolgus monkey and human liver micro-
somes. All major metabolites produced by
human liver microsomes are also produced by
rat and cynomolgus monkey liver microsomes.

The half-life of DM1157 was 6.5–13.7 h in
cynomolgus monkeys, supporting the testing of
once daily dosing in humans. The preclinical
toxicity studies demonstrated dose-limiting
gastrointestinal intolerance, weight loss,
lethargy, reversible elevation in liver enzymes
and a systemic inflammatory response consist-
ing of elevations in neutrophils, monocytes,
fibrinogen and globulins. The inflammatory
response, which occurred in animals at dosages
of 10 mg/kg/day and 80 mg/kg/day, lacked
microscopic correlates. Additionally, there was
potential for QTc prolongation based on in vitro
human ether-a-go-go (hERG) channel activa-
tion. Overall, the constellation of findings was
similar to the known and expected class effects
for chloroquine and related molecules. A no
observed adverse event level dose was deter-
mined to be 9 mg/kg in rat and 10 mg/kg in
cynomolgus monkey; standard conversion fac-
tors for human equivalent doses and a further
safety factor of tenfold were applied to select a
maximal clinical starting dose of 0.145 mg/kg
for this study.

DM1157 was evaluated in a first-in-human,
phase 1 trial that was terminated because of
significant toxicity in healthy adult volunteers.
Due to the need to raise awareness of drug
toxicity that can occur during clinical trials, we
aimed to present a study overview with an
emphasis on safety outcomes for DM1157 and
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the use of PK/pharmacodynamics (PD) model-
ing and simulation to inform phase 1 clinical
trial decision-making.

METHODS

Study Synopsis

The study was a phase 1, randomized, double-
blind, single site and placebo-controlled study of
DM1157 in healthy adult volunteers (Clini-
calTrials.gov, NCT03490162). Briefly, the study
was designed in three parts; part 1 assessed the
single ascending dose (SAD) DM1157 in seven
cohorts (6 active drug and 2 placebo participants
per cohort) at dosages ranging from 9 to 900 mg;
part 2 was a multiple ascending dose (MAD)
study in four cohorts (8 active drug and 2 pla-
cebo participants per cohort) at dosages ranging
from 150–900 mg; and part 3 was a food effect
study. The primary objective of the study was to
assess the safety and tolerability of DM1157, and
the secondary objective was to characterize
DM1157 PK. Pre-defined study halting rules
included any subject developing a serious
adverse event (SAE) related to the study drug;
two or more subjects in any cohort experiencing
a grade 3 adverse event (AE) of the same type; or
any subject developing an episode of anaphy-
laxis within 24 h of study drug administration.
During the MAD arm, individual participants
were to be halted if they experienced an SAE
related to study drug or any other condition that
unduly increased the risk to the subject at the
site principal investigator’s discretion.

Ethics Approval

The study was approved by the Duke Institu-
tional Review Board (Pro00091787), all subjects
provided written consent, and the trial was
conducted in accordance with the Declaration
of Helsinki.

Definitions of Adverse Events

Using protocol-defined adverse event grading, a
mild (grade 1) adverse event (AE) was defined as

an event that required minimal or no treatment
and did not interfere with a participant’s daily
activities; a moderate (grade 2) AE was defined
as that which resulted in a low level of incon-
venience or concern with therapeutic inter-
vention and may have caused some interference
with daily activities; a severe (grade 3) AE
interrupted the participant’s usual daily activi-
ties, may have required therapy or other treat-
ment and was usually incapacitating.

Inclusion/Exclusion Criteria

Healthy male and non-pregnant females aged
18–45 years with body mass index 18–35 kg/m2

were eligible to participate. Subjects were
excluded if they had clinically significant elec-
trocardiogram abnormalities at baseline, used
any prescription medication within 14 days
prior to study drug (excluding oral contracep-
tives), used non-prescription medication within
7 days of study drug and/or had significant
medical comorbidities or baseline laboratory
abnormalities.

PK Sampling and Analysis

During the SAD, plasma and whole-blood sam-
ples were collected on days 1, 2, 3, 4, 5 and 6 at
the following time points: pre-dose and at 0.5,
1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 48, 72, 96 and
120 h post-dose. Samples from participants were
included in the analysis if the participant had
received a complete DM1157 dose without
vomiting within 2 h and had at least one mea-
sureable concentration. PK samples were ana-
lyzed by Frontage Laboratories using liquid
chromatography tandem-mass spectrometry
(LC-MS/MS).

Noncompartmental analysis PK parameters
were determined using Phoenix WinNOnlin
(V8.1, Certara), including maximum drug con-
centration (Cmax), time to reach maximum
concentration (Tmax), area under the concen-
tration vs. time curve from dosing through the
last measurable concentration (AUC0–last), area
under the concentration vs. time curve from
time 0 to infinity (AUC0–inf), apparent total
clearance after oral administration (CL/F) and
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apparent volume of distribution during termi-
nal phase (Vz/F). For noncompartmental anal-
ysis, values below the quantifiable limit were
imputed as zero if there was no previous mea-
surable concentration for the subject and
otherwise treated as missing.

Population PK (PopPK) analysis was con-
ducted as part of an ad hoc interim analysis
after cohort 6 of the SAD. The analysis was
conducted using Phoenix NLME (V8.1) to esti-
mate PopPK parameters and conduct dosing
simulations; 1-, 2- and 3-compartment models
and a variety of approaches for modeling non-
linearity were explored. Results below the
quantifiable limit (BQL) were included in the
analysis dataset and imputed as one-half the
limit of quantification. Modeling was con-
ducted using total concentrations rather than
unbound concentrations; accordingly, saturable
protein binding was used empirically to predict
nonlinearity. The first order conditional esti-
mation- extended least square method was used
for estimation, and the final model was selected
based on the lowest negative log likelihood,
Akaike information criterion and overall model
fit. The final model was evaluated using pre-
diction-corrected visual predictive checks.
Thereafter, the final model was used to simulate
1000 time-concentration profiles for each dose.
Pointwise prediction bands were plotted using
the 2.5th and 97.5th percentiles for predicted
concentration at each time point.

Correlations between whole-blood DM1157
exposure (AUC) and clinical laboratory results
were explored using linear mixed effects mod-
els, and laboratory tests with significant
(p\ 0.01) main effects or time interactions with
AUC were visualized graphically.

Efficacy and Safety Exposure Targets

For dosing simulations, AUC0–120 h, a measure
of total exposure over three doses, was used to
assess the safety of planned MAD dosing (three
times daily for three consecutive days). Based
on exposures at which severe AEs occurred in
cohort 1–cohort 6, a safety target of AUC0–120 -

h\5560 h ng/ml was used. For efficacy, in vivo
experiments using whole blood from

humanized mice suggested an AUC0–24 h of
9892 h ng/ml following five doses (given daily
for five consecutive days) were required for
parasite clearance of a chloroquine-resistant
strain. Therefore, an efficacy target of day 5
AUC0-24 h[9892 h ng/ml was used.

Statistics

All AEs were coded using MedDRA dictionary
version 22.1. The number of AEs and number of
subjects with an AE were summarized by dose
group, MedDRA SOC and preferred term, max-
imum severity and relatedness to study product.
Relatedness was categorized as related or not
related. Summary statistics were computed for
change from baseline in clinical laboratory tests
by time point, severity and dose group. Sum-
mary statistics were also computed for change
in baseline vital signs and electrocardiogram
intervals. Clinical laboratory results, vital signs
and electrocardiogram intervals were graded
using a pre-defined toxicity table.

RESULTS

Demographics and Study Disposition

A total of 121 subjects were screened, 50 were
enrolled in the study, and 48 received study
drug. Of 50 subjects enrolled, 60% were males
and 40% were females. The majority of subjects
were black or African American (48%) or white
(32%), and most subjects were not Hispanic or
Latino (94%). The mean (range) demographics
were: age 30.7 years (19–45), weight 78.4 kg
(50.4–110) and body mass index 26.4 kg/m2

(18.6–33).
An ad hoc interim analysis of safety and PK

was conducted after dose escalation halting
rules were met in cohort 6 of the SAD arm. After
review, the safety monitoring committee rec-
ommended study termination due to safety.
The 900-mg SAD cohort, the MAD arm, and the
food study were not conducted.
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Adverse Events

The overall summary of AEs by dose group is
presented in Table 1. Among 48 subjects in the
safety population (defined as subjects receiving
a dose), 38 (79%) experienced at least one AE.
Twenty subjects (42%) experienced at least one
mild or worse treatment-related AE, six subjects
(13%) experienced at least one moderate or
worse treatment-related AE, and three (6%)
subjects experienced at least one severe, treat-
ment-related AE. All severe AEs occurred in the
600-mg dosing group. No deaths or serious
adverse events were reported in the study, and
no AEs led to early termination or withdrawal.
Of the seven moderate or severe AEs related to
treatment, participants experienced: moderate,
intermittent systolic hypertension, moderate
vomiting for 3 days, moderate acute inflamma-
tory response for 3 days, moderate sinus brady-
cardia for 7 days, severe acute inflammatory
response (3 individuals) lasting 5 days for two
subjects and 10 days for one subject. The
inflammatory responses in the 300-mg and
600-mg cohorts generally coincided with

increased white blood cells on day 2 with tran-
siently increased neutrophils, decreased lym-
phocytes and decreased platelets. The white
blood cell and neutrophil counts then
decreased by day 6 before approaching baseline
on day 14. Furthermore, several subjects in the
600-mg dosage group experienced elevations in
liver enzymes, most commonly a mild (n = 3) or
moderate (n = 1) elevation in aspartate amino-
transferase (AST) and/or alanine aminotrans-
ferase (ALT) on day 6. All elevations in liver
enzymes in the 600-mg cohort were deemed
related to study drug. All participants recovered
from these events. Representative plots of the
white blood cell count, AST and ALT results by
dose group are noted in Supplemental Figs.1–3.

Across all dosages, the mean (SD) change
from baseline for total leukocytes (109/l) was
1.58 (1.46) on day 2 and - 0.41 (1.43) on day 6.
The mean (SD) change from baseline for lym-
phocytes (109/l) was 0.61 (0.62) on day 2 and
- 0.07 (0.47) on day 6. The mean (SD) change
from baseline for platelets (109/l) was - 6.7
(19.3) on day 2 and - 20.1 (28.6) on day 6.

Table 1 Overall summary of adverse events by dose group

SAD
9 mg
(N = 6)

SAD
27 mg
(N = 6)

SAD
81 mg
(N = 6)

SAD
150 mg
(N = 6)

SAD
300 mg
(N = 6)

SAD
600 mg
(N = 6)

Placebo
(N = 12)

All
subjects
(N = 48)

Subjects with n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%)

At least one adverse

event

4 (67) 6 (100) 3 (50) 5 (83) 6 (100) 5 (83) 9 (75) 38 (79)

At least one related

adverse event

2 (33) 1 (17) 2 (33) 3 (50) 4 (67) 4 (67) 4 (33) 20 (42)

At least one mild (or

worse) related adverse

event

2 (33) 1 (17) 2 (33) 3 (50) 4 (67) 4 (67) 4 (33) 20 (42)

At least one moderate

(or worse) related

adverse event

– – – 1 (17) 2 (33) 3 (50) – 6 (13)

At least one severe

related adverse event

– – – – – 3 (50) – 3 (6)

N number of subjects in the safety population, SAD single ascending dose
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Regarding electrocardiogram measurements,
there was one AE for mild QTc prolongation in
the 150-mg dose group that was deemed unre-
lated to the study drug. No subjects who had
normal parameters at baseline developed clini-
cally significant abnormalities post-baseline.

Exposure-Response Analysis

Figures 1, 2 and 3 characterize the relationship
between drug exposure in whole blood (AUC)

and total white blood count, lymphocyte count
and platelet count. We observed a trend toward
increased white blood cells on Day 2 and
decreased white blood cells on Days 3 and six
with whole-blood exposure. Similarly, there
appeared to be a decrease in both lymphocytes
and platelets with whole-blood exposure on
Days 3 and 6. Although statistically significant,
there was no apparent visual relationship
between whole-blood AUC and AST or ALT.

Fig. 1 Whole-blood AUC vs. leukocyte count. AUC area under the curve for the time-concentration profile
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PK Modeling and Simulation

Plasma samples from three participants who
received 9 mg and one participant who received
150 mg had no measurable DM1157 concen-
tration and were excluded. Additionally, whole-
blood samples from one participant who
received 9 mg and one who received 150 mg
had no measurable concentration and were
excluded. In total, 510 plasma samples from 32
subjects and 543 whole-blood samples from 34
participants were included in the PK analysis.

PK parameters in plasma from non-com-
partmental analysis are noted in Table 2,
whereas PK parameters in whole blood are
noted in Supplemental Table 1. Acceptance
criteria for estimation of the terminal slope of
the time-concentration profile (kz) were not met
in any subject (insufficient number of half-lives
observed after Tmax) with plasma concentra-
tions and so the terminal phase PK parameters
(half-life, CL/F, Vz/F, AUC0–inf) could not be
analyzed. The median Tmax in plasma ranged
from 0.5 to 2 h, and the geometric mean Cmax

Fig. 2 Whole-blood AUC vs. lymphocyte count. AUC area under the curve for the time-concentration profile
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was 2.48–613.5 ng/ml. Both Cmax and AUC0–last

appeared to increase in a non-linear (greater
than dose proportional) fashion with dosage.
Furthermore, exposure was higher for whole
blood compared to plasma. For the 600-mg SAD
cohort, the mean estimated half-life in whole
blood was 29.53 h; CL/F was 53.23 l/h; Vz/F was
2268.06 l. The time-concentration profile in
whole blood is depicted in Supplemental Fig. 4.

The final PopPK model was a two-compart-
ment model with saturable protein binding, a
delay in absorption and estimated between-

subject variability for each parameter (expo-
nential model). The prediction-corrected visual
predictive checks show that the model can
adequately predict the median trend and vari-
ability of the observed data (Supplemental
Figs. 5–8).

Using the final PopPK model, dosing simu-
lations were conducted for 1000 virtual subjects
per dose, including intermediate doses of
222 mg and 450 mg that were not assessed in
the trial. The simulations suggested that none
of the virtual subjects met both the safety and

Fig. 3 Whole-blood AUC vs. platelet count. AUC area under the curve for the time-concentration profile
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efficacy criteria. The 9-mg and 27-mg dosages
were predicted to meet safety criteria in 100% of
simulations, 81 mg in 97% of simulations,
150 mg in 55% of simulations, 300 mg in 2% of
simulations, and 600 mg was not predicted to
meet the safety target in any simulations. From
an efficacy standpoint, the primary systemic
exposure efficacy target was reached 1% of the
time at the 150-mg dosage, 36% of the time for
the 300-mg dosage and 94% of the time for the
600-mg dosage. Results of the dosing simula-
tions are noted in Fig. 4.

DISCUSSION

In this first-in-human, phase 1 trial of DM1157
in healthy volunteers, we observed mild to
moderate AEs in the 300-mg dosage group and
more severe symptoms (e.g., headache, nausea,
vomiting, fever, tachycardia, chills) in the
600-mg dosage group. In addition to this dose-
adverse event relationship, all participants
reported a comparable timeline for their symp-
toms, starting on the evening of day 2 post-
dose, worsening on day 3 and then gradual
resolution. There were no similar symptoms in
study staff, symptoms did not occur in subjects
dosed with placebo, and testing for viral ill-
nesses was negative in selected participants.
Overall, these findings suggest that the symp-
toms were study drug-related and not
attributable to a communicable illness. Similar
inflammatory responses have not been observed
with chloroquine analogs, with typical adverse
events being lightheadedness/dizziness, gas-
trointestinal distress, tinnitus, rash or vision
changes [3]. However, agranulocytosis has been
reported with the chloroquine analog amodi-
aquine [4]; reversible hepatotoxicity has been
reported with administration of chloroquine in
combination with proguanil [5] and very rarely
with use of hydroxychloroquine in rheumato-
logic and dermatologic disease [6, 7]. Hepato-
toxicity may reflect accumulation of
intracellular chloroquine analogs within lyso-
somes, a process that interferes with the lyso-
somal acidification that is necessary for
proteolysis, endocytosis, exosome release and
phagolysosomal fusion [8, 9].T
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Population PK/PD models are powerful
mathematical tools that relate drug concentra-
tion to effect and can be used to predict drug
exposure at different dosages. The United States
Food and Drug Administration routinely
encourages the use of this modeling and simu-
lation approach to guide drug development
[10]. This study provides an important example
of how modeling and simulation can be used to
guide clinical trial design and study manage-
ment. Specifically, we used a population PK
model to quantitatively assess whether the
DM1157 exposure needed for P. falciparum
inhibition was achievable at safe doses. We
found that there was no dose where both the
safety and efficacy targets were simultaneously
achieved; conversely, 27 mg was the highest
dosage at which the model predicted patients
would consistently maintain safe exposure.
Accordingly, the combination of stopping rules
and interim assessment with pharmacokinetic
modeling resulted in the early termination of a
study that could otherwise have resulted in
significant harm to participants without any
benefit to the clinical development of the
therapeutic.

There are a few limitations of the study. First,
there were limited in vivo experimental data to
definitely determine the target therapeutic
exposure of DM1157. Despite this potential

limitation, several modeling exercises suggested
that safe and effective dosages could not be
simultaneously achieved, even if alternative
exposure targets were used. Second, we could
not quantify PK parameters for all subjects
because of difficulty estimating the terminal
elimination profile. However, the population
PK model evaluation methods still suggested
that the PK model fit the data well and therefore
is unlikely to impact the study conclusions.

CONCLUSION

In this first-in-human, phase 1 trial of DM1157
in healthy volunteers, we observed dose-de-
pendent adverse events consistent with an
acute inflammatory response. By pre-defining
dosage escalation stopping rules and conduct-
ing an interim PK/PD analysis, we were able to
address the safety signals and determine that
the study would be unable to safely achieve a
dosage needed to observe an anti-malarial
effect, thereby providing strong rationale to
halt the study. This study provides an important
example of the risks and challenges of con-
ducting early phase research as well as the role
of modeling and simulation to optimize par-
ticipant safety.

Fig. 4 Dosing simulations. Model predicted AUC on the
Y axis with doses on X axis. Box plots represent the mean
(symbols), median (solid line), interquartile range (IQR;
box) and min/max values within the 1.5*IQR boundary

(whiskers). Left: Efficacy target. Right: Safety target. AUC
area under the curve for the time-concentration profile
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