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ABSTRACT

Shear-force acoustic near-field microscopy (SANM) is employed to monitor stochastic formation and post dynamic response of a water
meniscus that bridges a tapered gold probe (undergoing lateral oscillations of a few nanometers amplitude at constant frequency) and a flat
(gold or silicon oxide) substrate. As the probe further approaches the substrate, its amplitude decreases. Shear forces (of yet unknown
precise origin) are typically invoked to explain the apparently pure damping effects affecting the probe’s motion. Herein, SANM measure-
ments underscore instead the role of near-field acoustic emission from the water meniscus as an elastic energy dissipation channel involved
in shear interactions. A simplified thermodynamic argument is provided to justify the formation of a water meniscus between the probe and
the sample once they are at sufficient separation distance. The reported measurements focus on the role played by the tip’s geometry (by
using probes of slender and chubby apex termination). The results shed some light on the potential origin of the so-called shear forces,
invoked in many scanning probe microscopy applications, but not yet well understood.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0215054

I. INTRODUCTION

Investigation into the unusual viscoelastic properties (different
from the bulk)1,2 displayed by mesoscopic water menisci—that
spontaneously forms at ambient conditions when a sharp probe is
placed in close proximity to a flat substrate—is relevant to a variety
of technological areas, including adhesion,3,4 wetting processes,5

and interfacial (i.e., wearless) friction phenomena.6–8 Several tech-
niques have significantly contributed to the study of this type
of mesoscopic fluids,9–11 but information about the nature of
probe–fluid–substrate interactions is typically inferred only from
the mechanical response of the participating probe.12,13 An inde-
pendent monitoring of the fluid’s response would be ideal. Herein,
the capabilities of shear-force acoustic near-field microscopy
(SANM)14 for monitoring the near-field15 acoustic emission from
the fluid meniscus are demonstrated, thus accounting for an elastic
(i.e., reversible) energy dissipation channel in shear interactions.
Focus is placed on the role played by the geometry of the probe in

the SANM measurements, for which results obtained using slender
and chubby tapered probes will be contrasted. In general, the man-
uscript underscores the potential benefits of having an extra
sensing mechanism (the near-field acoustic emission) to character-
ize confined mesoscopic fluids under shear.

II. SANM EXPERIMENTAL DETAILS

Tapered probes were fabricated using gold wires of 100 μm
diameter through electrochemical etching procedures.16 Monolayer
patches of water are expected to cover a gold surface at 35% relative
humidity.17 The experiments are performed at ambient conditions
with the probe, the sample, and the vertical-scanner stage inside an
acrylic enclosure, which serves both to keep clean the region of mea-
surements and to set the humidity under controlled pumping of DI
water vapor and nitrogen gas. Wetting properties of the probe (gold
is reported to be hydrophilic18 but it is affected by the adhesion of
hydrocarbons present in the ambient) are verified by immersing the
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back cylindrical section of the gold probe into a macroscopic drop of
water; a 90° contact angle is observed. This type of hydrophobic
probe is used in the experiments reported herein.19 A tapered probe
is mounted to one of the prongs of a 32 kHz quartz tuning fork
(QTF), with the apex protruding less than 1mm beyond the prong’s
edge. A silicon wafer (with its naturally grown oxide) was cleaned in
Piranha solution and dried under N2, which rendered a sample of
the hydrophilic character.20 The experiments are performed at 25%
relative humidity, at which ∼2 monolayers of icelike water are
expected to cover the silicon oxide surface at room temperature.21

The sample is placed on top of an acoustic sensor.22

The experimental setup is schematically presented in Fig. 1.
Vertical position control of the probe is implemented using a
piezo-actuated nanopositioner.23 A quartz tuning fork (QTF) of
32 kHz nominal frequency, with a tapered probe mounted to one
of the prongs, is electrically driven at its resonance frequency
(initially measured when the probe is far away from the sample); its
piezoelectric current ΔI response is synchronously detected (lock-in
#1, SR850 Stanford Research System), which is used to estimate the
probe’s amplitude of oscillations.24,25 At a certain probe–sample
distance d, while the probe is approaching the sample, a water
meniscus bridge stochastically forms (typically d∼ 20 nm, but
depending on the humidity), which generates an acoustic wave that
couples into the millimeter-thick substrate and travels down to the
acoustic sensor (located in mechanical contact with the back side of
the sample, thus in a near-field detection region).15 The output
current signal from the acoustic sensor is synchronously detected
(lock-in #2 in Fig. 1). As the tip further approaches the sample,
changes in the QTF signal (the probe’s amplitude) reflect the effect
of shear interaction on the tip, while the simultaneously recorded
changes of the SANM acoustic signal reflects the effects of shear
interaction on the confined mesoscopic fluid. Overall, since the com-
plexity of the probe–fluid–substrate interactions may depend on
several factors (including the environment humidity, the wetting

properties of the surfaces, and the velocity of the tip’s vertical
motion), herein, the measurements focus on the impact produced by
changes in the gold tip’s geometry upon approaching a flat hydro-
philic silicon oxide substrate.

III. RESULTS AND DISCUSSIONS

A. Control experiment: Conducting probe and
conducting sample

First, a control experiment is implemented with an electrically
biased (50 mV) gold probe and a grounded conducting sample,26

which (a) will allow to more precisely identify the location of the
substrate in an approach–retraction signal trace (contact current
should be detected when the probe mechanically touches the sub-
strate during the approach), and consequently, (b) would help
recognize how a near-field acoustic trace behaves near a substrate.
(In this control experiment, the probe fabrication followed a
regular procedure used in our laboratory that renders a probe of
typical ∼200 nm apex radius, different than the specific fabrication
steps taken to obtain the very slender and chubby probes reported
in Sec. III B). The results of the control experiment are displayed in
Fig. 2. When the probe is far away from the substrate and driven at
resonance conditions, the estimated lateral oscillation amplitude
and equivalent driving force are 1 nm and 50 nN, respectively.24,25

This initial value of the resonance frequency is selected as the cons-
tant driving frequency of the QTF during the approach and retrac-
tion. Notice that the amplitude decreases monotonically but at,
respectively, distinct rates in the regions labeled 1, 2, and 3 (the
additional three dashed lines drawn along the amplitude trace serve
as a reference aid). As the probe begins approaching the sample, at
some distance the amplitude starts to decrease. The nominal posi-
tion d = 0 nm has been arbitrarily defined that way. The approach-
ing curve of the probe’s amplitude signal in the control experiment
displays a longer probe–substrate interaction range (the trace looks
a bit inclined already at the 25 nm probe-sample distance) com-
pared with the traces to be reported in Fig. 327 (where the trace is
flat at the 25 nm probe-sample distance). This is attributed to the
applied bias voltage in the control-experiment case.28 Long range

FIG. 1. Schematic of the SANM experimental setup used to independently, but
simultaneously, monitor both (a) the probe’s lateral oscillation amplitude (QTF
signal) and (b) the near-field acoustic wave emitted by the fluid meniscus that
bridges the tapered probe and the flat substrate (SANM signal), at different
probe–substrate separation distances. Inset: images of the chubby and slender
tapered gold probes (of apex’s radius of curvature R = 350 nm and r = 70 nm,
respectively) used in these experiments.

FIG. 2. Left: traces of the probe’s lateral oscillation amplitude (QTF signal, left
vertical scale), the water meniscus’ near-field acoustic emission (indicated by
the output current from the acoustic sensor; right side vertical scale), and the
probe–sample contact current, as a metallic probe approaches a metallic
sample. Right: the contact current circuit added to the setup of Fig. 1.
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electrostatic effects are also observed in AFM experiments, where
sometimes, a bias voltage between the probe and the sample is pur-
posely applied to counteract the effect.29 At the other extreme of the
traces location of the substrate is revealed, as expected, by a rapid
increment of the contact current (notice the good correlation between
the zero-amplitude of oscillations and the saturation current at the
nominal position d = 31 nm).30

On the other hand, no acoustic signal is detected in region-1;
only at the nominal position d = 10 nm (defined as the beginning
of region-2) an acoustic signal is detected, suggesting that a water
meniscus has just been formed at this probe–sample separation dis-
tance (this claim will be further justified below in more detail with
additional experimental results). Upon further approach, the near-
field acoustic emission from the fluid increases monotonically
(even though the probe’s amplitude keeps decreasing) and peaks
before the probe’s amplitude reaches zero. Overall, the acoustic
trace in Fig. 2 furnishes a helpful reference trace shape for

comparison purposes with traces to be obtained when testing non-
conducting samples, where identification of the surface location is
typically less certain.

B. Near-field acoustic emission driven by probes
of different tapered geometries

The results obtained using a metallic probe and a hydrophilic
silicon oxide substrate are described next. The experiments are per-
formed at 25% relative humidity. First, a chubby (slender) gold
probe is placed far away from the sample, where synchronous
measurements of its frequency response reveal a Q = 260 (485)
mechanical quality factor, 3.2 nm (2.4 nm) resonant amplitude of
oscillations, corresponding to 220 nN (130 nN) driving force.
Subsequently, the probe moves vertically toward the sample at
1.5 nm/s speed. The resulting approach/retraction traces are shown
in Fig. 3, which reveals again three distinct regions of interaction

FIG. 3. Approach (top) and retraction (bottom) traces of the gold probe’s amplitude (QTF) and the fluid’s near-field acoustic emission (SANM) signals acquired with
chubby (left) and sharp (right) probes on a (piranha cleaned) hydrophilic silicon oxide substrate, at 25% relative humidity. This set of data belongs to the first group of
traces acquired with a freshly prepared probe.27
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(like the three regions observed in Fig. 2). The magnitude of the
acoustic signal level in Fig. 3 is lower than the one displayed in
Fig. 2 (these two sets of data were acquired at different days
and correspond to different samples,) which can be attributed to
unintentional variations in the very thin layer of high-vacuum
grease that is applied (sandwiched between the bottom surface of
the sample and the top surface of the acoustic sensor) to improve
the acoustic signal coupling.31

C. Correlation between larger probe’s apex area and
the increased likelihood of filament bridge formation

Notice that the approaching trace for the chubby probe (displayed
on the top-left side of Fig. 3) shows an abrupt decrease in its lateral
oscillation amplitude during the trip through region-1; this occurs at
the vertical position arbitrarily defined as d = 0. Such a feature is not
observed in the trace for the slender probe (top-right diagram), whose
transition from constant-amplitude toward decreasing-amplitude trend
is rather smooth. It turns out that a similar approaching-trace behavior
(with sudden jumps in the probe’s dynamic response) is typically
observed in atomic force microscopy.32 In the latter, a plausible inter-
pretation attributes the sudden changes to capillary forces (acting on
the relatively weak AFM-cantilever of spring constant, typically 40N/m
or lower) exerted by finger-like water bridges (similar to the ones sche-
matically shown in Fig. 4).33 It is argued that these filaments stochasti-
cally form (between the gaps of multiple discrete asperities present on
both the probe and the sample) when the two solid boundaries are suf-
ficiently close (nanometer range) to each other.34 This explanation
borrows arguments from stochastic phenomena models used in the
description of interfacial friction phenomena,34 which claim that ther-
mally activated mechanisms are involved in the nucleation of capillary
bridges across the vertical gap between asperities distributed on the
confining sliding surfaces. Similar capillary phenomena may occur
then in the SANM set up, but their effects will be on the lateral motion
of the probe (the QTF probe holding the probe is rigidly held by the
microscope frame, so sudden vertical jumps are discarded). Under this
interpretation, the sudden change in amplitude experienced by the
chubby probe during the approach process (as observed in Fig. 3)
reflects a higher probability for the formation of fluid filament bridges
when using probes of a larger apex area. On the other hand, such a
sudden change feature is not observed in the corresponding retraction

amplitude trace in Fig. 3, which emphasizes the typical hysteresis
observed in these approach/retraction experiments. The smooth charac-
teristic of a retraction trace can be attributed to the gradual elongation
(i.e., absence of abrupt changes) of the water meniscus surrounding the
probe (the presence of the water meniscus during the retraction is jus-
tified in Section III D).35 The volume of the water meniscus (com-
mensurate with the size of the probe’s apex) also contributes to the
hysteresis. In effect, notice that the chubby probe’s gradual retraction
trace extends more than the slender counterpart because of the
greater volume of the water meniscus.

D. Onset of water meniscus formation and
acoustic emission

As the probe further approaches the sample through region-1,
the number of discrete finger-like bridges may increase and, thus,
cause an increasing damping effect, which explains the monotonic
decrease in the probe’s lateral oscillation amplitude during the
approach. Incidentally, notice that no acoustic signal is detected
across region-1 but until d = 9 nm (d = 8 nm) in the case of the
chubby (slender) probe (a position that defines the beginning of
region-2). This result suggests that at this probe–sample distance, the
multiple finger-like bridges (accumulated during the trip through
region-1) coalesce into a single bulk water meniscus; the latter being
able to emit a sustained acoustic wave. A similar interpretation that
water condensation is preceded by preliminary transitional states is
supported by numerical simulations,36 where it is reported that capil-
lary condensation is preceded by accumulation of a dense vapor
between the confining surfaces; likewise, Grand Canonical Monte
Carlo simulations report the formation of a chain of hydrogen bonds
between the probe and sample as the separation gap reduces.37

SANM adopts then the interpretation that region-1 constitutes a
transition region preceding the condensation of a fluid meniscus,
after which acoustic emission occurs (see Fig. 4). This acoustic wave,
generated at the fluid meniscus, couples to the sample and, subse-
quently, reaches the acoustic detector located on the back side of the
sample.15 As the approach continues through region-2 (where the
probe is not in mechanical contact with the substrate), it is observed
that the probe’s amplitude keeps decreasing while the acoustic signal
increases. Thus, SANM helps to identify the near-field acoustic emis-
sion from the water meniscus as one of the energy dissipation chan-
nels in shear surface interactions.38,39

E. Thermodynamic argument justifying the stochastic
formation of a water meniscus

To further support that acoustic emission is not the result of
an eventual mechanical contact (of the laterally oscillating probe
against the flat substrate) but from the water meniscus that bridges
these two solid boundaries, such a condensation phenomenon
occurring at the probe–substrate vapor gap can be put on more
solid theoretical grounds. But, to simplify the description and fol-
lowing Ref. 33, let us consider a much simpler scenario comprising
two parallel plates separated by a distance d and let us find the con-
ditions for water condensation to occur.33 The right side of Fig. 4
shows a cylindrically symmetric liquid condensate of diameter
2L; the liquid-substrate contact angle is θc and R is the radius of
curvature of the condensate’s surface in the vertical direction.

FIG. 4. Left: precursor formation of finger-like bridges between asperities on the
probe and the substrate, prior to their coalescence into a bulk meniscus.34 No
acoustic emission is detected. Right: formation of a water meniscus as two par-
allel solid boundaries get closer to each other at a sufficient distance d;33 acous-
tic emission from the meniscus is detected while the probe oscillates laterally.
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(a) The change in the bulk grand potential Φ (T, V, μ) = –PV of
replacing a slab of vapor of thickness d by a slab of liquid is
ΔΦ = (−Pliq Vliq)− (−Pvap Vvap) = (Pvap− Pliq)(πL

2) d.
(b) When adding the surface energy term to the grand poten-

tial,40,41 the increment due to the addition of the liquid plug is

ΔΦ ¼ 2(πL2)(σsl � σsv)
Surface energy term

þ (Pvap � Pliq)(πL2)d
bulk energy term

: (1)

The second term on the right side of (1) is positive and, thus,
represents an energy barrier to overcome if the liquid slab were to
be formed. In fact, that term has been used in thermally activated
water bridge nucleation models to describe the effects of capillary
condensation in friction phenomena.42 On the other hand, for a
smaller finite value of d, if the surface tension σsl of the wet solid
surface is lower than the surface tension σsv of the dry solid
surface, then the solid favors liquid condensation. The two terms
on the right side of expression (1) compete then in the formation
of a liquid meniscus. One can see that for a large value of d, an
equilibrium condition could not be reached. But for a sufficiently
small d, the condition ΔΩ = 0 for the coexistence of vapor and the
fluid plug is fulfilled,

�2(σsl � σsv) ¼
�
Pvap � Pliq

�
d: (2)

(c) In Fig. 4, Young’s equation for the contact angle can be
written as σ lvcos θ þ σsl ¼ σsv. Relation (2) becomes 2
σ lvcos θ ¼ Pvap � Pliq

� �
d

(d) Let us use the Gibbs–Duhem relationship dμ =−s dT + (V/N)
dp =−s dT + (1/n) dp, in order to connect these pressures to
the chemical potentials. At a constant temperature, expanding
the pressures for small departures Δμ from their common value
at the reference saturated condition, Pvap ¼ Psat þ nv Δμ and
Pliq ¼ Psat þ nliq Δμ; hence, Pvap � Pliq ¼ � nliq � nvap

� �
Δμ.

2σ lv cos θ ¼ �(nliq � nvap)Δμ d, (3)

where nliq and nvap are the liquid and vapor number densities,
respectively.

In Eq. (3), for Δμ, one can use the change in the chemical
potential of the fluid or the vapor. Opting for the latter,
Δμ ¼ kT ln Pvapor=Psat

� �
leads to an expression for the distance

between the plates required for the condensation of a fluid menis-
cus to occur,

d ¼ 2 σ lv cos θ

� nliq � nvap
� �

kT ln Pvap=Psat
� � : (4)

At 50% humidity, d is of the order of just a few nanometers.43

Although expression (4) provides values that fall within the
order of magnitude (nanometers) of experimental observations,
additional intervening factors may contribute to the formation of
the water meniscus. For example, when using probes of tapered
geometry, strong electric fields formed around the apex could play
an important role.44–46

F. Source of acoustic emission more involved than just
the probe geometry

On the other hand, when comparing the acoustic traces for
the chubby and slender probes in Fig. 3, the former shows a
decrease in intensity across region-1, which is not observed in the
latter. This difference is not fundamental; it can be explained by
first noticing that the acoustic signal of the chubby probe displays a
non-zero background level, which is present even when the tip is
away from the substrate. This is attributed to far-field standing
waves in the surrounding ambient air generated by the oscillating
QTF.47 Once the probe starts to interact with the fluid (at the
nominal position d = 0 in the approaching trace), this background
acoustic signal decreases because the probe’s amplitude decreases.
(This assessment is validated by experiments performed with a
probe immersed in bulk water media, where the SAM signal is
found to be proportional to the probe’s amplitude.48) The acoustic
trace in region-1 for the slender probe does not change simply
because the background acoustic signal is already at a minimum to
begin with.

In region-2, the deeper the probe immerses into the meniscus
(whose volume is expected to remain constant11), the stronger the
acoustic signal. Notice that acoustic emission from the water menis-
cus around the slender probe is 50% weaker than the fluid around
the chubby probe, likely related to its lower volume. (Its shorter
retraction-trace path also supports this claim.) However, a 50%
decrease in acoustic emission is not commensurate with the five
times smaller size of the slender probe (Fig. 1). Hence, explaining
the variation of the acoustic signal may be more involved than being
associated with just the probe’s apex size. In particular, it could be
related to the change in the curvature of the meniscus (and its
associated change in Laplace pressure) upon variations of the
probe–sample distance. Further tests to corroborate this hypothe-
sis are currently being implemented in our laboratory. Other than
that, the behavior of the acoustic trace in regions (2) and (3) in
Fig. 3 is similar to the one displayed in Fig. 2. Overall, these
results show competition between the damping component of
shear interactions (causing the probe’s amplitude to decrease, and
thus, also making the acoustic signal to decrease) and the elastic
component of shear interactions (causing the emission of near-
field acoustic waves by the mesoscopic meniscus), as the probe
approaches the substrate. In this context, the decrease of the
acoustic SANM signal in ∼4 nm-sized region-3 can be attributed
to the overwhelming increasing damping force at very short
probe–sample distances. The current signal-to-noise ratio of the
acoustic signal does not allow to discern the potential presence of
solidified water layer(s) on the substrate36 or evaluate the dynam-
ics solidification attributed to the last four water layers (the size of
one molecular water layer is 0.25 nm).13

IV. CONCLUSION

In summary, shear-force acoustic near-field microscopy
(SANM) has been used to monitor acoustic emission from the
water meniscus that stochastically forms when the apex of a later-
ally oscillating tapered probe is placed near a flat sample.
The experimental results support the hypothesis that, as the
probe approaches the flat sample, first, a number of thin
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finger-like water bridges are formed between the discrete asperi-
ties on the probe and sample. These finger bridges (more likely
to form on wider apex probes) cause damping effects on the
probe but are unable to produce sound. Upon further approach,
these fingers coalesce into a water meniscus, whose acoustic
emission increases despite a decrease in the probe’s oscillation
amplitude as the probe–sample distance decreases. The use of
probes of different apex sizes allowed to identify a lack of propor-
tionality between the intensity of the emitted acoustic signal and
the size of their corresponding water meniscus volume, leading to
a plausible hypothesis that rather the changing morphology of
the meniscus (hence, the change in the Laplace pressure) may
play an important role in the SANM signal. SANM brings near-
field acoustic sensing capabilities to the study of surface shear
interactions. Near-field Acoustic emission accounts for an elastic
energy dissipation channel in interfacial friction phenomena.
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