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Abstract 

 

 Electromagnetic fields from localized current source interacting with an oscillatory 

cosmic axion field are studied, accounting for the possibility of a finite photon mass.  In 

particular, focus will be on the dipole radiation from static current sources.  The Proca theory is 

generalized to include the axion field and solutions to the modified EM field equations are 

obtained to first order in the axion coupling parameter.  Analysis of the interplay between the two 

vanishingly small parameters – the axion mass (via the coupling constant and the oscillating 

frequency) and the photon mass – is carried out with reference to possible future detection of the 

cosmic axion and/or the photon mass via electromagnetic interaction with the axion. 
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Introduction 

 As most of the cosmologists would agree, one of the most intriguing mysteries in the 

physical Universe is the large percentage of invisible non-baryonic matter whose presence is 

anticipated only through the gravitational effects it provides.  Over almost a century, a large 

number of candidates has been proposed to account for this dark matter [1].  One promising 

solution to this mystery refers to the illusive axion, whose existence was first proposed in the 

1970’s to resolve the so-called CP conservation problem in strong interaction [2].  In 1983, 

Sikivie first proposed to detect this particle via a possible weak electromagnetic (EM) interaction 

coupled with the axion, based on a generalization of the conventional Maxwell theory with a 

Lagrangian to include a term ~ E B  [3].  Since then, many EM experimental investigations 

have been carried out for the search of the axion to include observation of possible unexpected 

low frequency EM radiations from static current source like the neutron star [2, 4]. 

 While these axions are expected to have very light masses with a conventional mass 

range expected to be from a micro eV to pico eV,  more recently an ultralight class of axions has 

also been proposed with a mass ~ 10-22 eV [5].  This then leads to an interesting question of the 

possibility for one to consider also photons with a finite mass which has an upper limit ~ 10-16 

eV [6].  Although conventionally the photon is believed to be massless, experimentally one can 

only set a stringent upper bound for its mass via a large variety of experiments to include both 

dynamic and static EM setups [7].  In fact, a scalar component of the “massive photon” has also 

been proposed as a possible candidate for the dark matter in the literature [8]. 

 It is the purpose of our present work to propose a “synergistic study” of these two illusive 

phenomena – the cosmic axion and the photon mass – both of which have undergone tremendous 

investigations in the past many decades.  Specifically, we shall re-investigate theoretically the 
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EM interaction between a static magnetic dipole and a cosmic oscillatory axion background, via 

a generalization of the well-known axion electrodynamics (AED) to a massive theory (m-AED) 

in which the photon can acquire a finite mass, arriving at an axionic Proca theory [9].  In the 

literature, this Proca theory has been applied recently to the study of topological superconductor 

in which a massive axionic Lagrangian was considered for the calculation of the photon 

propagator [10].  Here, our focus is on the interplay of both the axion and photon masses to 

investigate how these will affect the EM radiations emitted from the interaction between a 

localized current source and a background oscillatory axion field [4, 11, 12]. 

 

Theory (m-AED) 

 We start with the Lagrangian for massive axion electrodynamics (in vacuum) as follows 

(in Gaussian units): 

  
21 1 1

16 8 8
F F J A A A g F F

c

   

     




 
= − − + −  ,   (1) 

where 

1

m c


−

 
=   
 

is the inverse Compton wavelength for the massive photon, ag  is the small 

axion-photon coupling constant, and 
0

i te  −= is the background cosmic harmonic axion field 

where we have assumed the source to be at the origin in the rest frame of the axion and 0  is a 

constant [4, 11].   Hence the dynamics of the axion is not included in Eq. (1) in this case.  Note 

that incorporating this dynamics will only lead to an effective current which is of an order ag  

smaller than the external EM source current, and hence will be a second order effect [2, 12].   

Straightforward variation of the action integral with respect to the 4-potential leads to the 

following massive axionic field equation: 



4 
 

  ( )24
2 0aF J A g F

c

   

  


   − + +   = ,    (2) 

where the Lorenz gauge ( 0A

 = ) has been fixed due to charge conservation ( 0j = ) [13].   

Note that this m-AED has the same gauge-fixing property as in the Proca theory as is clear from 

Eq. (2) since the 4-divergence of the last term is zero.  The above leads to the following set of 3D 

axionic Proca equations:   

  

2

2

4 4

0

1
0

1 4 1
4

a

a

g

c t

g
c t c c t

   


 

 = − − 

 =


 + =



  
 − = − + +    

 





 

E B

B

B
E

E
B J A B E

.   (3) 

In the following, we shall calculate the fields generated by a localized source perturbatively to  

first order of the axion-photon coupling constant treating the Proca solutions as the zeroth order 

fields.  This is justified at least for ultralight axions since it is known that the coupling constant 

193.86 10a ag m− [14], where am  is the mass of the axion in eV [15].  Hence we assume the 

following perturbative expansions: 

  ( ) ( ) ( ) ( )2

0 1, , , at t t O g= + +E r E r E r ,    

  ( ) ( ) ( ) ( )2

0 1, , , at t t O g= + +B r B r B r  , 

  ( ) ( ) ( ) ( )2

0 1, , , at t t O g= + +A r A r A r , 

  ( ) ( ) ( ) ( )2

0 1, , , at t t O g  = + +r r r .                (4) 

Following previous works as described in [4, 12], we start by ignoring the spatial gradient terms 

of the axion field in Eq. (3) which is obvious in our choice of frame; and in general is also 

justified due to the de Broglie wavelength of the axion being much greater than the oscillation 
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wavelength [12].  Hence with (4) in (3), we obtain each of the zeroth and first order fields satisfy 

the following equations: 

  

2

0 0

0

0
0

20
0 0

4

0

1
0

1 4

c t

c t c

  




 = −

 =


 + =




 − = −



E

B

B
E

E
B J A









 ,     (5) 

and 
2

1 1

1

1
1

21
1 0 1

0

1
0

1
4 a

c t

ig k
c t

 

 

 = −

 =


 + =




 − = −  −



E

B

B
E

E
B B A









.     (6) 

where k c . 

 

The Green Dyadic solution 

 Next we solve the system in (5) and (6) applying the Green dyadic method assuming all  

fields and sources are harmonic in time.  Let the characteristic frequencies for the source and the 

first order field be 0 and 1 , respectively.  Note that the general results established here cover 

the special case of static current source by simply setting 0 0 = , a case we shall focus on in the 

following study. 

  For the unperturbed system in (5), we have previously worked out the Proca Green 

dyadic and the results can be expressed as follows [16]: 

  ( ) 30
0

4
( , ) ( ) 'e

ik
d x

c


= E r G r r' J r' ,     (7) 

  ( ) 3

0

4
( , ) ( ) 'm d x

c


= B r G r r' J r' ,     (8) 
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with the dyadic given by: 

02

1
( , )

            

e G
k

 
= +  
 

G r r' I
,     (9) 

( )0( , )m G=G r r' I ,      (10) 

where 
0

0 ( , ) =
i

e
G

 −

−

r r'

r r'
r r'

, and 
2 2

0 0 0 0,  k k c  = − = .  Hence for a given localized current 

source, Eqs. (7) – (10) will yield the unperturbed Proca fields (zeroth order in ag ).  Then from 

Eq. (6), the first order fields can be obtained as: 

   ( ) 3

1 1 0 1 04 ( , ) ( ) 'a eg kk d x = E r G r r' B r' ,   (11) 

   ( ) 3

1 0 1 04 ( , ) ( ) 'a mig k d x = − B r G r r' B r' ,   (12) 

where the dyadic e1 m1and  G G in (11) and (12) are the same as those in (9) and (10) with the 

following wave number replacements: 
2 2

0 1 0 1 1 ,   k k k  → → = − where 

1
1 1 0, and  k

c


  = =  .  Note that the corresponding harmonic time factors associated with 

the zeroth and first order fields in (7), (8) and (11), (12) are 0 1and  
i t i t

e e
 − − , respectively. 

 

Calculation of fields from localized dipole source 

 To illustrate the above formalism, here we give two examples of calculating explicitly the 

electromagnetic fields generated by localized harmonic dipole sources in the context of m-AED. 

(i) Magnetic dipole current source 

For a point magnetic dipole moment current 0 '
( , t') c ' [ ( )]

i t
e

 −
 J r' = m r' at the 

origin, the zeroth order Proca magnetic field was obtained previously to be [16]: 
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 ( )
0 0

2

0

i r i r
e e

r r

    
=  −    

   
B r m m ,   (13) 

which leads to Eq. (33) of Ref. [16]: 

                    
( ) ( ) ( ) ( )( )

0

2 2 2 2 2

0 0 0 0 05

8
1 3 3

3

i r
e

r i r r i r r
r


     = + − + + − −

 
B r m r m + r m r

. (14) 

Substituting (13) together with 0 1   →  in the result in (10) into Eq. (12), we 

finally obtain the first order magnetic field in m-AED in the form: 

( )
0 '

'2 3

1 0 014 ( , ) '
'

i r

a

e
ig k G d x

r



 
 

= −    
 

B r m r r' ,  (15) 

where 
1

01( , ) =
i

e
G

 −

−

r r'

r r'
r r'

.  The integral in (15) can then be evaluated by 

expanding 01( , )G r r' in terms of the spherical Bessel function, and finally leads to 

the following result for the first order magnetic field: 

( ) 0 12 20 0 1
1 0 12 2 2 2

1 0

4 1 1
ˆi r i raig k i i

e e
r r r r

    
 

 

−     
= − + − − +    

−    
B r m r ,      (16) 

The corresponding zeroth and first order electric fields can also be obtained as: 

00
0 0 2

1
ˆ( , ) =

i ri
ik e

r r

 
− −  

 
E r r' m r ,   (17) 

                      

( ) 0 1

0 1

2 2

0 0 1 1

2 3 2 3

1 0
1 2 2 2 2

1 0
0 0 1 1

2 3 2 3

3 33 3
ˆ ˆ

4
( ) =

1 1

i r i r

a

i r i r

i i
e e

r r r r r rg kk

i i
e e

r r r r r r

 

 

   

 

     

     
 + − + − − +     

    
 

−      
+ − − + + + −     

    

m r r

E r

m

. 

         (18) 

As a check of the above results, we apply the results in Eq. (16) and (18) to the 

case of massless AED and for a static current source.  Thus, by setting the 
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following conditions:  0 0 1 10 0; 0; and ;   k k   = = = =  ; Eq. (16) and (18) 

reduce to: 

( )1 0 3 2

1
ˆ4 ikr

a

ik
ig k e

r r
 

 
= − −  

 
B r m r ,  (19) 

( ) ( )
2

1 0 3 2 3

1 1
ˆ ˆ ˆ ˆ( ) = 4 3ikr ikr ikr

a

ik k
g e e e

r r r r
 

  
− + + −  + −          
  

E r m m r r m m r r . 

         (20) 

The results in (19) and (20) reproduce the results obtained previously in the 

literature [4, 11].  

(ii) Electric dipole current source 

For a point harmonic electric dipole current of the form: 

0 '

0( , t') ( , ')
i t

i t e
  −

−J r' = p r' , let us first calculate the zeroth order Proca magnetic 

field 0B .  Previously, we have obtained the zeroth order Proca electric field for 

this case in the form [16]: 

  ( ) ( ) ( ) ( )( )
0

2 2 2 2 2

0 0 0 0 05

4
1 3 3

3

i r
e

r i r k r i r r
r


    = − + − + + − −

 
E r p r p+ r p r . 

           (21) 

The corresponding magnetic field can then be obtained using (8) and (10) as 

follows: 

 
0

0 0 0 2

0

1
1

i r
e

k
i r r






 
= −  

 
B r p .    (22)  

Following similar steps as in (i), the first order corrections to the fields within m-

AED can finally be obtained from Eqs. (11) and (12) in the following form: 
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( ) ( ) ( )1 0aig k 2W + W W= −  B r r p p r  ,  (23) 

( )1 1 0ag kk W= E r r p ,     (24) 

  where the function ( )W r is defined as follows: 

   
( )

0 10
0 12 2 2

1 0

4 1 1
( )

i r i rik
W r i e i e

r rr

 
 

 

    
= − − −    

−     
. (25) 

   

Radiation from static magnetic dipole source 

 The most interesting radiation problem from localized dipole current source, in the 

background of a cosmic axion, is the one with a stationary (static) current since there is no 

“zeroth order contribution” (i.e. in the absence of the axion)[4, 11].  Hence detection of any 

radiation in this case is a signature of the axion.  In this section, we are going to calculate such 

radiation from a static magnetic dipole using the results in Part (i) above and setting 0 0 = .  The 

results will be an extension of the previous results [4, 11] to accommodate for the possibility of 

the existence of a finite non-zero photon mass. 

 Let us first recall the following well-known generalized Poynting vector and energy 

density for the EM fields in the Proca theory [17]: 

   ( )2=
4

c
 


 +S E B A ,     (26) 

   ( )2 2 22 21
=

8
u  


 + +
 

E B + A .    (27) 

In the presence of the axion field, it is straightforward to show that if we still adopt the above 

expressions for S and u , then Eq. (3) will lead to the following result: 

   a

u
g

t t

 
 = − −

 
S + J E E B ,    (28) 
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which deviates from the general form of the Poynting theorem for time varying axion field.  

However, in our present perturbative approach of calculating the fields, the last term in (28) is of 

a higher order in the coupling constant and can thus be ignored.  Hence we shall here adopt the 

same definitions of S and u as in (26) and (27) which in the limit of zero photon mass, agree 

with the results adopted in the literature for the calculation of radiation power in conventional 

(massless) AED [2, 4,11].  It may be relevant to mention here that the formulation of Poynting’s 

theorem in AED has been a controversial issue in the literature [18]. 

Note that although the potentials here in m-AED must satisfy the Lorenz gauge as 

pointed out in the above, these potentials are unique for a given source and do not subject to 

further “ restricted gauge transformation ” (e.g. , with 0→ +  =A A ) [17].  This thus 

guarantees the uniqueness of the results in (26) and (27), and S  and u are thus measurable.  In 

the following we shall apply the result in (26) to calculate the radiation power from a static 

magnetic dipole, using the dipole fields obtained above in Eqs. (16) and (18) by setting 

0 0 10  and  ,  i k k
c

  = = = =  .  To begin with, we have also to calculate the first order 

corrections to the scalar and vector potentials as are required in Eq. (26).  Using Eq. (6), it is 

straightforward to obtain the first order correction to the vector potential as follows:  

              (29)  

Using Eq. (13) into (29), we finally obtain: 

( ) ( ) ( )0 12 20
1 0 12 2

1 0

4 1
ˆ ˆi r i raig k

e e
r

  
 

 

−  
= − −   −  

A r m r r m  .  (30) 

The first order correction to the scalar potential can then be obtained from the Lorenz gauge 

condition leading to: 

( ) 3

1 0 01 04 ( , ) ( ) ' .aig k G d x = − A r r r' B r'
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  1 2

1

1
  

c

i r



=  A      as   r →  .     (31)  

Hence there is no contribution to the radiated power from the second term of the Poynting vector 

in Eq. (26) in this case, and the radiated power is exclusively determined by the far fields 

obtained from Eqs. (16) and (18), respectively.  Thus as r → , we obtain the far fields from Eq. 

(16) and (18) as follows: 

      ( ) ( )0 13 30
1 0 12 2

1 0

ˆ4 i r i rag k
e e

r

  
 

 


→ −

−

m r
B r   ,          (32)      

                ( )
( )

0 1

2
2 20

1 0 12 2

1 0

ˆ ˆ4
( )

i r i rag k
e e

r

  
 

 

 −  → −
−

m r r m
E r .  (33) 

By recalling the harmonic time factor associated with the first order fields to be 1i t i te e
 − −= since 

0 0 = in this case, the first term in the parenthesis of each of (32) and (33) simply leads to a 

damped harmonic field (for 0 i = ) which has no contribution to radiation.  Furthermore, 

since there is no zeroth order radiation fields in this case, the radiated power will be given 

exclusively by the time averaged Poynting vector ( )*

1 1 1Re
8

c


= S E B  where 

         ( ) 130
1 12 2

1

ˆ4 i rag k
e

r

 


 


→ −

+

m r
B r   ,    (34)                  

  
( )

1

2
20

1 12 2

1

ˆ ˆ4
( )

i rag k
e

r

 


 

 −  → −
+

m r r m
E r ,    (35) 

with ( )
2

2 2 2 2

1 k
c

  = − = − .  Using (34) and (35), we finally obtain the differential and total 

radiated power to be: 

  

2

2 3 5 20
1 1 2 2

1

ˆ 2 sinamgdP
r ck

d


  

 

 
= =  

 + 
S r ,   (36) 
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2

3 5 0
1 2 2

1

41

3

amg
P ck

 


 

 
=  

+ 
,      (37) 

where   is the angle between the magnetic dipole and the observer direction and m is the 

magnitude of the dipole moment.  In the limit 0 → , both (36) and (37) reduce to the previous 

results accordingly [4].  It is of interest to note that in a massive photon theory, radiation fields 

should in general contain three polarizations (two transverse and one longitudinal) whereas Eqs. 

(34) and (35) show that the magnetic dipole radiation fields are purely transverse.  This is 

consistent with previous calculations using a general multipole expansion approach which 

showed explicitly that longitudinally polarized radiations are indeed present in the Proca theory 

for electric dipole and electric quadrupole sources; but not for magnetic dipole radiation [13].   

This is mainly due to the fact that the “effective current 
eff
j ” associated with a magnetic dipole is 

always a transverse current with 0 =
eff
j .  One can then argue as a consequence, the vector 

potential, the electric field, and the magnetic fields must all be transverse to the direction from 

the source to the observer in the far zone [19]. 

To study the interplay between the axion mass ( )am  and the photon mass ( )m  in the 

radiated power, we first note the following relations (in appropriate units [12], [14]): 

 
1

0; ; ;   a a a ag m k m m m  −
;  ( ) ( )2 2 2 2 2

1 ak m m = − − ;      (38) 

hence (37) can be re-casted into the following form: 

  ( )
5/2

2

0 1 aP P m m
 = −
  

 ,      (39) 

where  
2

2 2 2 4

0 0

16

3
aP g m ck


=  is the radiated power from conventional AED with zero photon 

mass [4].  Figure 1 shows how the axion-induced radiated power from a localized static magnetic 
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dipole will decrease due to the finiteness of the photon mass.  Note that it is required to have 

am m  so that the propagation constant 1  remains real. 

 To provide some numerical estimates for the above radiated power, we refer to a  

neutron star with a radius a  ~ 2 km which can be approximated as a magnetic dipole when 

observed from the Earth [4], especially for axions with a small mass and hence a long oscillation 

wavelength ~a

a

h

m c
 .  With values set for 21

0 ~10ag  − [11] and the magnetic field 0B ~ 1013 G 

[2]; the maximum radiated power emitted in a direction perpendicular to the axis of the neutron 

star can be estimated from Eq. (36) to be: 

      ( ) ( )

5/2
22 55/2

2 23 2 4 21 1
0 02 2

01

2 2 1a a

a

mdP dP
ck m g ck m g

d k d m

 
   

 

       
 = = →  −     

 +         

, (40) 

where ( )
24 2

0

0

2 a

dP
ck m g

d
 

 
= 

 
 is the radiated power from a point magnetic dipole in case of 

zero photon mass.  Hence if we let the magnetic moment of the neutron star 3

0

1

2
m B a= [4] and 

assuming a range of the axion mass to be : 12 2 610 10aeV m c eV− −  , the factor 

5/2

1
a

m

m


  
−  
  

can 

be ignored and we have: 

  ( )
4 2

23

0 0

2 1
~ 2 erg / s

2
   a

a

dP
c B a g

d


 



   
   

   
 .   (41) 

So if we take the axion mass to be 1010 eV− (hence 61.24 10a cm  ); and use the above quoted 

values for the neutron star magnetic moment, as well as for the axion coupling strength and 
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amplitude; Eq. (41) will yield:

( ) ( )
24 2 21

35 10 13 5 5

6

1 1
~ 2 3 10 10 2 10 10  2 10 erg / s 0.02 watt

1.24 10 2
   

dP

d


−    
         

      
. 

Note that a higher value for the axion mass will yield even higher radiated power.  Hence, as 

long as the photon mass is much smaller than the axion mass, e.g. 10-16 eV vs 10-6 eV or even  

10-12 eV, the decrease in the above estimated power is insignificant and it may still be measurable 

(e.g. from space lab).  However, for ultralight axions, this radiated power may become much 

reduced or even be extinguished.  Note that the above estimate has assumed the neutron star to 

be a point magnetic dipole which is subject to a correction with a finite size factor as studied in 

our previous work in Ref. [4].   

Conclusion 

 In this work, we have studied the effect of a finite photon mass on the axion-induced 

electromagnetic fields from localized current sources.  In particular, we have focused on the 

radiation from a static current source of a magnetic dipole for which the radiation arises 

exclusively from the presence of an oscillatory cosmic axion background.  This is achieved via 

an extension of the Proca theory to incorporate the axion, leading to a formulation of the massive 

axion electrodynamics (m-AED) theory.  Such a theory has also been studied recently in the 

context of topological superconductor [10].  One limitation of our work is that our calculation is 

only up to the first order in the coupling constant and has not included back reaction on the axion 

field which will be a second order effect.  An interesting future investigation on this effect will 

have to solve the Euler-Lagrange equation for the dynamics of the axion which will lead to a 

varying field amplitude for the axion [2].   

Here it is found that for a static magnetic dipole interacting with the cosmic axion, the 

radiation power will in general depend on the interplay between the axion mass and the photon 
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mass, and will decrease if the photon is not exactly massless.  In addition, it is noted  that there 

will be a “cutoff” of this radiated power if the photon mass turns out to be greater than that of the 

axion. This “cutoff effect” may be understood as radiation generated with frequency matching 

that of the axion via an “instability effect” arises when the photon mass is below that of the 

axion. One application of this effect may be that in the absence of observing this kind of 

radiation, one can use the lower bound of the axion mass to set a lower bound for the photon 

mass limited by the sensitivity of the measurement.  This, together with the existing knowledge 

of the upper bound of the photon mass, will enable one to confirm the finiteness of the photon 

mass.  On the other hand, the detection of such radiation can also be used to set a lower limit of 

the axion mass assuming an upper bound for the photon mass is known (e.g. from experiments 

via the study of deviation from Coulomb’s law).  These results should be of interest for future 

investigations into the mass of both the axion and the photon, and ultimately to be relevant to the 

probing of the dark matter universe.   
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( )0 ,
ikre

r
 A A  (with the radial component 0 0rA = ), hence the electric field 

t





A
E  

being parallel to A  for harmonic fields must also be transverse.  In addition, 

= →B A B B B   +e e to ( )1/O r  showing B is also transverse to r̂ .  This is true 

for both the Maxwell and Proca theory.   
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